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ABSTRACT

We formulate transfer learning as a meta-learning problem by extending upon the
current meta-learning paradigm in that support and query data are drawn from
different, but related distributions of tasks. Inspired by the success of Gradient-
Based Meta-Learning, we propose to expand it to the transfer learning setting by
constructing a general encoder-decoder architecture that learns a map between
functionals of different domains. This is achieved by leveraging on the idea that
the task-adapted parameters of a meta-learner can serve as an informative repre-
sentation of the task itself. We demonstrate the proposed method on regression,
prediction of dynamical systems and meta-imitation learning problems.

1 INTRODUCTION

The ability to quickly adapt to unseen conditions is a necessary skill for any intelligent system.
It provides the means to generalize outside of the training conditions as well as the capacity to
extract unobservable features affecting the learner (Lake et al. (2017)). Adaptation to a new task
involves two steps. The first is inferring the characterizing information of the task at hand. The
second is regressing the function representing the task. The importance of this ability is reflected in
the considerable volume of work conducted on the matter in the past years e.g. Hospedales et al.
(2021); Ben-David et al. (2006); Ljung (2010). The field of meta-learning provides the means to
unify these two steps and learn them simultaneously and fully data-driven (Huisman et al. (2021)).
The learning process comprises multiple datasets representing different conditions, or tasks, the
learner is concurrently exposed to. Adaptation is performed by extracting the relevant information
about each task from a small set of data sampled from the task.

In this paper we consider the case of transferring knowledge using a small set of data from a task
to another, different, task. In this regard, we build upon the framework of few-shot learning (Wang
et al. (2020)). This can be summarized as estimating an optimal learner for any task with the fewest
data samples possible. Recent work has explored the case where the data used for the adaptation
and the downstream-task’s data are subject to a distributional shift in their domain, referred to as
support-query-shift (Bennequin et al. (2021)). Here, we assume the more general formulation of
meta-transfer where the shift can take place on both the domain and co-domain of the underlying
function generating the data. This brings us beyond the problem of domain-shift and into the more
general notion of learning to transfer between support task and query task.

The need for transfer emerges in a multitude of situations. Sequential decision-making problems are
one of them. Real-world dynamical systems, for example, are often only partially observable. They
require an initial exploration phase to gather the necessary information before estimating a suitable
policy. In this case, we would need a way to transfer the knowledge acquired from the dynamics
of the system to the estimation of the target policy. That is, transfer between a dynamics prediction
model to the estimation of a policy in a control problem. Moreover, transfer learning can be used
in situations where we have access to labeled data of a simple problem but would like to solve a
more complex, but related, problem. For example, transfer from a single inverted pendulum to a
double pendulum with the same dynamics e.g. same length of the poles, same gravity and friction
coefficients.

To this end, we present an approach to transfer learning through adaptation. Inspired by Gradient-
Based Meta-Learning (GBML) we propose a method for meta-transfer learning in a general encoder-
decoder model. This can be used independently of the shift between the support task and the query
task and is agnostic to architectural changes between the meta-learner and the base-learner (see Fig-
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Figure 1: Visual depiction of the proposed model. The representation of the task is the gradient,
∇θL, of a meta-learner model i.e. green arrow on the blue loss surface on the left. This representa-
tion is then mapped throughMϕ (light blue arrow) to the parameters, ψ, of the main network which
is optimal for the given task (minimizes the orange loss function on the right)

ure 1). The main idea of this work is that the parameters of a learner that is optimal for a given task
contain all the relevant information of such task (Tegnér et al. (2022)). The proposed model learns
a map from the gradients used to adapt the parameters of a meta-learner to the parameters of a base
learner. This, in fact, is a map between functions that has proven to be effective in different contexts
e.g. Xu et al. (2020); Dupont et al. (2022). We argue that representing the task’s parameters as the
gradients of the meta-learner is more robust to noise and bias in the data. We empirically support
this claim with a number of experiments on synthetic regression, dynamical system prediction and
meta-imitation learning.

Our contributions are as follows:

• We extend the formulation of support-query shift to the problem of transfer learning.
• We describe a meta-transfer learning method that builds upon previous gradient-based

methodologies.
• We provide an empirical evaluation of the advantages of gradient-based task representations

on a variety of problems.

2 RELATED WORK

In this section we review the relevant literature regarding adaptation methods. The idea of adapting
the learning system has been widely studied in the past years (Naik & Mammone (1992); Bengio
et al. (1990); Hochreiter et al. (2001)). Adaptation is performed using data-points that uniquely
characterize the task. Different approaches can be included in this definition depending on the
framework they abide to and the assumptions they make about the adaptation process.

Transfer Learning. It refers to the problem of learning algorithms to extract knowledge from one
task to solve a second task (Weiss et al. (2016); Zhuang et al. (2020); Pan & Yang (2009)). These
methods cannot be considered to perform general adaptation strategies. However, they require the
identification of useful information for a task from a different distribution. They are generally limited
to two tasks only and most involve aligning the distributions of these two tasks. In Wu & He (2022)
they propose the use of meta-learning for a transfer learning problem. The method is limited to
matching the empirical distribution of dynamic source and target tasks.

Parameter Identification. A more general form of adaptation to dynamical systems can be identi-
fied in the early work on system identification (Åström & Eykhoff (1971)). More precisely, parame-
ter identification refer to the estimation of unobservable parameters influencing the dynamic system
considered from a sequence of observations. Most of these studies however consider only one of the
two required steps for adaptation. In fact, they assume to know the law governing the process and
estimate the conditional parameters (Bhat et al. (2002); Yu et al. (2017)), impose a suitable inductive
bias to guide the learning process (Sanchez-Gonzalez et al. (2018)) or use a hybrid approach to learn
a residual of an imperfect but known system (Ajay et al. (2019)).
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Optimization-Based Meta-Learning. Meta-learning is concerned with estimating both of the re-
quired adaptation steps from data alone. Optimization-based methods do this by performing an
adaptation step on the learner itself (Ravi & Larochelle (2016)). Of these, Gradient-Based Meta-
Learning is a particular case where the adaptation is performed by a gradient descend step on the
parameters of the learner (Finn et al. (2017)). This family of methods have been shown to be univer-
sal function approximators (Finn & Levine (2017)). One shortcoming of these methods is that they
can only be used on problems where the architecture of the function used to infer the gradient is the
same as the adapted learner. Indeed, the only works considering a form of transfer assume a shift in
the input space (Bennequin et al. (2021); Du et al. (2020); Jiang et al. (2022)). In contrast to past
work, our method can be applied in the case of the adaptation data being of a different nature with
respect to the final task.

Model-Based Meta-Learning. A second approach to meta-learning is to learn a model to output
directly the adapted learner for the task. For problems requiring a specific adaptation strategy, in
fact, the two steps can be coupled together and learned with a unique model (Xu et al. (2019);
Li et al. (2018)). More general is, instead, the use of a parallel neural network, conditioned on
the adaptation data, to output directly the parameters of the adapted learner. HyperNetworks are
one of the most commonly used methods for this (Ha et al. (2016)). This has been done using
amortized inference (Gordon et al. (2018)), gradient-based (Rusu et al. (2018); Munkhdalai & Yu
(2017)) or outputting a conditional to the learner (Kirchmeyer et al. (2022)). Similarly to our work,
(Xian et al. (2021)) have used HyperNetworks to estimate the unobservable properties of dynamical
systems. In contrast, they require the use of a feature extractor when dealing with high-dimensional
inputs. Overall, these black-box approaches can be particularly expressive but suffer generalization
performances and are subject to statistical noise. Another line of work is the Neural Process Family
(Garnelo et al. (2018), Kim et al. (2019)). In contrast to HyperNetworks, they generate functions
by conditioning and also incorporate uncertainty through a variational approach. Wang et al. (2021)
considers a model-based meta-learning framework where they learn to transfer between different
tasks from the NLP domain. In contrast to our work, they use the Fisher Information Matrix of their
base learner to define the task representation.

3 PRELIMINARIES

We situate transfer learning as a learning-to-learn problem. As a necessary preamble, we review
the general formulation of meta-learning and describe two specific instances of it as GBML and
HyperNetworks respectively.

3.1 META-LEARNING

Meta-Learning describes a family of algorithms that are designed for learning-to-learn. Given a
space of tasks, a meta-learner utilizes previous knowledge to efficiently learn new tasks using only a
limited number of data samples. A task can equivalently be seen as a dataset or a function. Formally,
we define a task Tf ⊆ X×Y as a collection of input-output pairs defined by an underlying, unknown
function f : X→ Y. In other words, Tf = {(x, f(x))|x ∈ X}. From this definition, we can denote
the space of tasks over a function space F as TF . In fact, the function f uniquely identifies the task
Tf . Throughout the paper we drop the subscript f whenever the tasks functional dependence on f
is not of importance.

In the standard supervised learning setting, we aim to learn a function fψ with parameters ψ ∈
Ψ ⊆ Rd that approximates a function f through a supervised loss L(Tf , ψ). The purpose of meta-
learning is, instead, to find a set of optimal parameters ψ from only a small dataset Df ∼ Tf .
From the notation defined above, the meta-learning methodology can be formalized as learning a
parameterized update functionMϕ : TF ×Θ→ Ψ that maps a single task Tf and some prior θ ∈ Θ
to the updated optimal parameters ψ of fψ . The optimization problem can then be stated as:

min
ϕ,θ

ETf

[
L(DQf , ψ)

]
s.t. ψ =Mϕ(DSf , θ) (1)

Here, DSf ,D
Q
f refer to a support and query set that are sampled without replacement from task Tf .
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3.2 GRADIENT-BASED META-LEARNING

The framework described above is general and fits a variety of meta-learning methodologies. These
methodologies mainly differ in how they implement the update functionM. In particular, GBML
uses as a prior another set of parameters i.e. θ ∈ Θ ⊆ Rd. This common set of parameters is used
as the initialization among tasks such that any task can be learnt by only a few gradient-steps on a
limited number of samples. In the general case, the update function can be expressed as:

Mϕ(DSf , θ) = θ −M∇θL(DSf , θ) (2)

Here, M ∈ Rd×d is a learnable preconditioning matrix which facilitates the gradient descent. In
particular, we have ϕ = M in this case. For example, a diagonal preconditioning corresponds to
learnable learning rates used in Meta-SGD (Li et al. (2017)) while a full-rank matrix corresponds to
Meta-Curvature (Park & Oliva (2019)). Other forms of preconditioning have been studied in (Lee
& Choi (2018); Flennerhag et al. (2019)).

3.3 HYPERNETWORKS

GBML incorporates the inductive bias in that adaptation to a new task necessarily implies an opti-
mization procedure. From the general formulation expressed in Equation 1, this does not necessarily
have to be the case. An alternative approach is to consider the mapMϕ : D ×Θ→ Ψ directly as a
parameterized neural network. As such, the network takes as input the task and possibly some ad-
ditional parameters and outputs the task-adapted parameters ψ directly. To this end,M constitutes
a HyperNetwork (Ha et al. (2016)) which are networks whose output are the weights of another
neural network denoted as the main network. This formulation is also consistent with recurrent-
based meta-learners that implement a learning algorithm through a recurrent neural network (RNN)
(Santoro et al. (2016)).

The update functionM, in this case, can be formulated with a general auto-encoder structure i.e.
Mϕ =MD

ϕ2
◦ME

ϕ1
. HyperNetworks take as input the support dataset DSf ∼ Tf of a task by encod-

ing the N input-output pairs (xSi , y
S
i )
N
i=1 using a non-linear function hϕ1

. To ensure permutation-
invariance, an appropriate aggregation function Σ can be used. The latent representation z ∈ Rk of
the task can then be formulated as:

z =ME
ϕ1
(DSf ) = Σ({hϕ1(x

S
i , y

S
i )}Ni=1) (3)

This representation is then passed through the decoderMD to output the parameters ψ of the main
network gψ .

4 META-TRANSFER

Transfer-Learning is concerned with learning a specific target task, given knowledge of a source
task. To achieve this, one can utilize some inductive bias e.g. the assumption that representations
learnt in the source task can in turn be useful to learn the target task. We now ask the question
if this inductive bias for transfer can be learnt as well. Instead of a single source and target, we
consider a joint distribution over pairs of tasks and aim to learn to meta-transfer. In the meta-
learning formalism we have presented up until now, we have made the assumption that the support
and query set are samples from the same task w.r.t a functional f i.e. DSf ,D

Q
f ∼ Tf . To address the

problem of meta-transfer, we extend the meta-learning formulation by considering support and query
to be defined over different function spaces . In this respect, we have DSf ∼ Tf and DQg ∼ Tg with
f ̸= g. To learn an efficient adaptation on the query set, there needs to be an explicit relationship
between support and query. We define this as an unknown map T from function to function such
that g = T (f). In particular, when T = I we fall back to the case of standard meta-learning. On the
other hand, the meta-learner needs to learn this functional dependency as well if T ̸= I . In the next
section we describe the proposed method to achieve this.

4.1 METHOD

When the two functions f and g require a different architecture for their parametric approximation,
standard GBML methods cannot be used. In this section we describe an extension of GBML to
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handle such cases. In particular, we propose to approximate T by learning a map from function
space to function space. Let fθ be a parameterized neural network and DSf = (xSi , y

S
i )
N
i=1 be

the support data sampled Tf . We argue that a good representation of the function f is a function
itself. In similar notation as in Section 3.3, we want to construct an encoder ME of the support
set. We attain this by defining ME as the gradients of fθ w.r.t. to a chosen loss function L on
the support. However, representing a function through its parameters bears with it a problem of
dimensionality. Since the parameters θ′ ∈ Rd are of a neural network, they will possibly belong to
a very high-dimensional space. To solve this, we adhere to only optimizing over a subspace of the
full parameter space.

In practice, there are two ways of achieving this. The first is to modulate the gradients through
a conditioning variable z that is concatenated with the input. The second approach is to use a
hypernetwork hϕ1

: Z → Θ from a low-dimensional latent-space Z ⊆ Rk to the parameter space
of the learner f . More specifically, the first approach was explored in the meta-learning literature
as CAVIA (Zintgraf et al. (2019)) while the second approach corresponds to the method employed
in LEO (Rusu et al. (2018)). This last method can be further divided into two variations based on
the implementation of the function hϕ1 . This can be, in fact, either a linear or a non-linear neural
network. The linear approach would effectively imply a linear projection of the gradients to a low-
dimensional subspace.

ME gives a task representation z in a similar vein as equation 3. This representation of the function
f can thus be extracted by means ofME using one of these three methods summarized below:

• Context: We concatenate the input to learner f with a parameter z ∈ Rk to modulate the
output. Thus:

ME(Df , ξ) = Ex,y∼Df
[∇zL(fθ(x, z), y)] , ξ = [z, θ] (4)

• Non-Linear: The task-adapted parameters are modulated through a latent parameter z ∈
Rk. This is achieved through the use of a hypernetwork hϕ1

mapping from the latent space
to parameter space:

ME(Df , ξ) = Ex,y∼Df
[∇zL(fhϕ1

(z)(x), y)], ξ = [z, ϕ1] (5)

• Linear: In the case of linearity we rewrite the hypernetwork as V = hϕ1 . The matrix
V ∈ Rk×d is employed to linearly project the gradients to a lower-dimensional subspace.
We thus calculate the k directional derivatives w.r.t [v1, . . . ,vk]

T = V :

ME(Df , ξ) = Ex,y∼Df
[V∇θL(fθ(x), y)], ξ = [V, θ] (6)

The representation of the support task can then be used to estimate an optimal learner on the related
downstream task Tg . This, in turn, requires decoding this representation to a set of parameters that
are optimal on the query dataset DQg . For this, we employ a decoder networkMd on z that outputs
the parameters ψ ∈ Ψ of a neural network gψ . In summary, our update function is defined as

M(Df ) =MD(ME(Df , ξ)) (7)

We train the model end-to-end by optimizing the loss of gψ on the query set DQg on every training
task through gradient-descent. The final objective of the model can thus be formulated as:

min
ξ

ETg∼TG ,Tf∼TF [L(Dg, ψ)] s.t. ψ =ME(Df , ξ) (8)

5 EXPERIMENTS

We validate our approach on three different classes of problems involving regression, dynamics
prediction and imitation learning. For each of these problems, we evaluate the ability to transfer in
the presence of increasing amount of noise in the support. We further assess the representational
capability of our model by learning to predict the ground-truth task parameters from the learnt
representation. Finally, we evaluate our model’s capacity to learn high-dimensional representations
by considering a maze environment in which the ground-truth task parameters are potentially high-
dimensional and unknown.
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5.1 BASELINES

We consider different encodersME as our baselines. In past work (Xian et al. (2021), Garnelo et al.
(2018)), the mean pooling function is used. For comparison, we also consider the MAX operation.
For context, mean pooling would correspond to DeepSets, (Zaheer et al. (2017)) while max pooling
would correspond to PointNet (Qi et al. (2017)). Furthermore, we consider an encoder based on
the transformer architecture (Vaswani et al. (2017)) in which we find a weighted average of all the
samples in the support where the weights are the pairwise dot-products between encodings of the
data points. We refer to the different aggregation schemes as pooling methods in our experiments.
Lastly, we consider a deep-kernel architecture based on MetaFun (Xu et al. (2020)). Here, points
of the query are directly compared to points from the support based on a learnt kernel-function. As
such, we do not achieve an intermediate latent representation z of our task but rather we directly out-
put a function f defined as f =

∑N
i=1 k(·, xSi )r(xSi , ySi ) with k, r as parameterized neural networks.

For the gradient-based encoders, we consider the three different methods outlined in Equations 4-6.
To enable a fair comparison between the methods, we employ the same decoder network for all
models except MetaFun. Implementation details can be found in the Appendix. We use the same
subspace dimension k for all models and let k equal the true dimension of the task-space when
known as we found this is sufficient to achieve a good performance.

5.2 SYNTHETIC REGRESSION TASK

As a proof-of-concept, we consider the problem of transfer learning between two sinusoidal func-
tions. We consider the support data to be regression tasks drawn from y = A cos(x + b) with
A ∈ [0.1, 5.0] and b ∈ [−π, π]. The corresponding query tasks are constructed from a sine wave
with the same amplitude A and phase b as the support task. The task is then to essentially extract
the task-parameters A, b from the support to learn the query task. In this experiment, we highlight
our methods robustness to white noise in the support. The results can be seen in Table 1. As the
amount of noise increases, the performance of gradient-based encoders remains constant while other
pooling methods eventually become unstable. Figure 2 shows qualitative results. The figure shows
the sinusoids found through the linear-projection of the gradient compared to the ground-truth and
MEAN and MAX pooling. We evaluate the models on 100 different samples of noise and plot the
mean and standard deviation. The results show the robustness of our method even up to noise with
a standard deviation of 4.0.

Figure 2: Sinusoid regression for different levels of noise. Using the gradients as an encoder stays
invariant to the amount of noise in the support data.

5.3 DOUBLE INVERTED PENDULUM

For our next experiment we consider the more complex, real-world scenario of learning the dynamics
of a physical system. The system we consider is the double inverted pendulum. We hypothesize that
from observing the dynamics of a single pendulum, one can infer the dynamics of a double pendulum
that shares the same global physical parameters and object properties as the single pendulum. The
single and double pendulum are simulated using the Mujoco environment (Brockman et al. (2016))
and involve a pendulum attached to a cartpole which can move left and right. Our support task
thus consists of state-action-state triples drawn from the single pendulum. Concretely, we have
XS = S × A and YS = S with S defined as the state of the pendulum denoted by its position,
velocity, angle and angular velocity, (x, ẋ, θ, θ̇) and A = [−3, 3] representing the force applied to
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Model σ = 0.0 σ = 0.5 σ = 1.0 σ = 1.5

G
R

A
D

IE
N

T
- CONTEXT 0.23±0.04 0.35±0.07 0.49±0.10 0.61±0.10

- NON-LINEAR 0.41±0.10 0.46±0.05 0.57±0.09 0.69±0.08

- LINEAR 0.31±0.05 0.36±0.09 0.43±0.08 0.51±0.05

P
O

O
L

IN
G - MEAN 0.24±0.03 0.25±0.03 0.44±0.02 0.86±0.11

- MAX 0.13±0.06 0.22±0.04 0.61±0.15 1.31±0.24

- TRANSFORMER 0.26±0.04 0.80±0.02 1.34±0.05 2.30±0.18

DEEP KERNEL 0.75±0.25 0.87±0.04 1.12±0.03 1.58±0.09

Table 1: Results for the cosine-sine experiment. The top three rows compares different methods of
encoding the gradients based on LINEAR, NON-LINEAR and CONTEXT methods. We compare all
models against different standard deviations of noise in the support (σ). From the results, gradient-
based encodings are more robust as the amount of noise increases.

the base cart. The corresponding query task is forward dynamics prediction on the double pendulum.
Hence, XQ and YQ are state-action triples as before. We experiment with varying degrees of noise
to confirm our models robustness properties. For the support data, we add noise ỹS = yS + ε with
ε ∼ N (0, σ2). We experiment with various σ ∈ [0.4, 1.0, 2.0, 3.0] respectively. The results for the
forward dynamics prediction are shown in the Appendix in Table 4. To further confirm our findings
on noise robustness, we perform an additional experiment where we instead consider the task of
regression to the physical parameters of the single pendulum. We plot the MSE to the physical
parameters (pendulum length and gravity) against the standard deviation of noise in the support. We
evaluate each model 100 times and plot the mean and standard deviation. The results are shown in
Figure 3. We can note similar performance across all models for low levels of noise. As the amount
of noise increases however, the MAX aggregation quickly explodes. The MEAN aggregator is more
robust but similarly is also not unaffected by noise in the support. In this experiment, we also note
that methods based on non-linear projections of gradients such as CONTEXT and NON-LINEAR show
better performance than the linear projection.

5.4 IMITATION LEARNING

Model σ = 0.0 σ = 1.0 σ = 2.0 σ = 4.0

G
R

A
D

IE
N

T

- CONTEXT 4.075±0.214 4.220±0.154 4.321±0.262 4.361±0.152

- NON-LINEAR 4.255±0.010 4.277±0.144 4.295±0.121 4.096±0.027

- LINEAR 3.999±0.112 4.062±0.108 4.173±0.106 4.052±0.159

P
O

O
L

IN
G - MEAN 3.929±0.061 3.930±0.064 3.955±0.344 3.370±0.538

- MAX 4.108±0.155 4.027±0.157 3.958±0.325 3.139±1.060

- TRANSFORMER 3.947±0.102 4.199±0.223 4.037±0.104 −30.564±29.494

DEEP KERNEL 0.086±0.086 −0.001±0.169 0.099±0.183 −0.192±0.134

Table 2: Final reward for the imitation learning experiment. Higher is better.

We conduct an experiment to probe our models ability to infer an optimal policy for a given MDP
given only a few observations from the environment. We consider a modification of the Mujoco Ant
environment where we vary the length of the legs as our testing ground (see Figure 4 and Appendix).
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Figure 4: Visualization of the modified Ant environment. We vary the length of the upper and
bottom parts of the leg to create different conditions for the control task.

Figure 3: MSE of regression to the ground-
truth task parameters from a finite set of in-
teractions with a single pendulum.

The goal of this experiment is to test the models
ability to transfer between dynamics data and a pol-
icy estimation. Here we are not interested in in-
ferring an optimal exploration strategy but rather
assume that the dynamics data contains all the
relevant information to infer the optimal behavior
for the agent. We avoid the use of a reinforce-
ment learning loss as it has been shown that com-
mon automatic-differentiation tools can’t compute
the second derivative of Monte-Carlo expectations
(Rothfuss et al. (2018); Foerster et al. (2018)). The
target loss is thus a behavioral cloning of a second
policy trained with privileged information. We train
PPO (Schulman et al. (2017)), conditioned on the
ground-truth physical parameters. Our query task is
then from a given state to infer the action given by
the optimal policy. We condition our meta-imitation
learner by considering a trajectory (st, at, st+1)

T
t=1 gathered from a random policy as our support

data. We train for 100 epochs on a dataset of 100 different tasks with T = 30 number of points
in the support. Each task is constructed by sampling an upper-leg length and ankle length from
U(0.2, 0.6). We experiment with inputting varying amount of noise in the support data during test-
ing to validate our models robustness to noise. We show the final reward after one episode for the
methods in Table 2. We note that even with noise infused on the support set, our method achieves a
consistent high reward while for our baselines they slowly decline. With random noise added with
σ = 8.0, the transformer-based architecture achieves a large negative reward while the deep-kernel
method failed to transfer in all cases.

5.5 MAZE EXPERIMENT

We implement a simple maze environment defined over a 2×N grid. We define the starting point of
our agent in upper left corner and the goal is to reach the lower right corner as efficiently as possible.
To generate different mazes, we randomly place obstacles on the grid in such a way that the maze is
always solvable (see Appendix for further details). The optimal policy is in this case deterministic
and found through a depth-first search. For the support data we let XS ⊂ Z2 be positions of the
grid and YS = {0, 1} be binary variable indicating if a position in the grid is occupied or not. We
experiment with varying the width N of the maze by letting N ∈ [6, 12, 24].

The results can be seen in Table 3. In contrast to previous experiments, the advantage of deep kernels
become apparent in this task. Furthermore, the linear method achieves a significant performance
gain over the other methods.

6 DISCUSSION

6.1 THE ADVANTAGE OF GRADIENT-BASED ENCODERS

The empirical gradient of a function ∇L is an unbiased estimator of the true gradient. As such, it
possesses a form of consistency as it converges in distribution to the true expected gradient of the
loss over the entire data-space. This, results in statistical advantages over black-box representations.

8



Under review as a conference paper at ICLR 2023

Model MAZE-SIZE = 6 MAZE-SIZE = 12 MAZE-SIZE = 24

G
R

A
D

IE
N

T
- CONTEXT −0.237±0.022 −0.368±0.000 −0.435±0.000

- NON-LINEAR 0.000±0.000 −0.348±0.037 −0.415±0.015

- LINEAR 0.000±0.000 −0.036±0.029 −0.355±0.041

P
O

O
L

IN
G - MEAN 0.000±0.000 −0.291±0.020 −0.396±0.003

- MAX 0.000±0.000 −0.156±0.093 −0.386±0.017

- TRANSFORMER −0.028±0.039 −0.275±0.029 −0.400±0.025

DEEP KERNEL 0.000±0.000 −0.257±0.010 −0.428±0.010

Table 3: Final reward as measured by the normalized distance to goal position for the maze exper-
iment. The results show that a linear projection can efficiently encode and transfer the information
gathered from the exploration phase while other gradient-based methods fail compared to the base-
lines.

One being resilience in overfitting and better generalization to out-of-domain tasks, as shown in
Finn & Levine (2017). Another being robustness to white noise in both the input and the output
of the support data, as empirically shown in this paper. This robustness to noise makes the use
of gradient as a representation appealing for real-world applications where noisy observations and
faulty labeling is often unavoidable. Moreover, the gradient carries a semantic meaning in that it
will always point in the direction of steepest descent given the data.

6.2 LIMITATIONS

Utilizing gradient-information in an end-to-end manner requires computing the second order deriva-
tive during training. This can be prohibitively expensive in large-scale experiments. Using first-order
methods such as Reptile (Nichol et al. (2018)) could potentially be incorporated into our method to
alleviate this concern. A second limitation is the dimensionality of the parameter space. When deal-
ing with large networks this might cause memory-related issues. Lastly, even though theoretically
sound, second-order Monte Carlo expectations cannot currently be handled by automatic differ-
entiation tools. This prevents the use of any GBML method with loss functions involving these
expectations e.g. reinforcement learning losses.

7 CONCLUSION

In this paper we have proposed a general framework for transferring knowledge from one task to
another from an adaptation perspective. To this end, we have described a family of methods based
on the intersection between GBML and model-based techniques. Furthermore, we have explored
the use of gradients as a task representation and the advantages of such with respect to other repre-
sentations. We have empirically demonstrated the advantages of this representation on a number of
experiments. Such advantages are especially noteworthy in case of statistical errors in the adaptation
data like the presence of white noise. These results not only reinforce the advantages of gradient-
based meta-learning but exemplify how the same methodology can be extended to novel problems
where gradient-based methods have previously been unexplored.

As a future line of work, one can further connect our method to the neural process family by ex-
plicitly incorporating uncertainty measures into the encoder. This can for example be achieved by
imbuing MAML in a probabilistic framework as done in Finn et al. (2018). Another possible exten-
sion is the use of hierarchical GBML methods to handle complex distributions of tasks.
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Gustaf Tegnér, Alfredo Reichlin, Hang Yin, Mårten Björkman, and Danica Kragic. On the subspace
structure of gradient-based meta-learning. arXiv preprint arXiv:2207.03804, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Jixuan Wang, Kuan-Chieh Wang, Frank Rudzicz, and Michael Brudno. Grad2task: Improved few-
shot text classification using gradients for task representation. Advances in Neural Information
Processing Systems, 34:6542–6554, 2021.

Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M Ni. Generalizing from a few examples:
A survey on few-shot learning. ACM computing surveys (csur), 53(3):1–34, 2020.

Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of transfer learning. Journal of
Big data, 3(1):1–40, 2016.

Jun Wu and Jingrui He. A unified meta-learning framework for dynamic transfer learning. arXiv
preprint arXiv:2207.01784, 2022.

Zhou Xian, Shamit Lal, Hsiao-Yu Tung, Emmanouil Antonios Platanios, and Katerina Fragkiadaki.
Hyperdynamics: Meta-learning object and agent dynamics with hypernetworks. arXiv preprint
arXiv:2103.09439, 2021.

Jin Xu, Jean-Francois Ton, Hyunjik Kim, Adam Kosiorek, and Yee Whye Teh. Metafun: Meta-
learning with iterative functional updates. In International Conference on Machine Learning, pp.
10617–10627. PMLR, 2020.

Zhenjia Xu, Jiajun Wu, Andy Zeng, Joshua B Tenenbaum, and Shuran Song. Densephysnet: Learn-
ing dense physical object representations via multi-step dynamic interactions. arXiv preprint
arXiv:1906.03853, 2019.

Wenhao Yu, Jie Tan, C Karen Liu, and Greg Turk. Preparing for the unknown: Learning a universal
policy with online system identification. arXiv preprint arXiv:1702.02453, 2017.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. Advances in neural information processing systems, 30, 2017.

Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui Xiong,
and Qing He. A comprehensive survey on transfer learning. Proceedings of the IEEE, 109(1):
43–76, 2020.

Luisa Zintgraf, Kyriacos Shiarli, Vitaly Kurin, Katja Hofmann, and Shimon Whiteson. Fast context
adaptation via meta-learning. In International Conference on Machine Learning, pp. 7693–7702.
PMLR, 2019.

12



Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 IMPLEMENTATION DETAILS

In all of our experiments, we let the implicit representation learner fθ be a 3-layer MLP with 40
hidden units. For the non-linear method based on LEO Rusu et al. (2018), we implement the hyper-
network as a 2-layer MLP with 128 hidden units.

For the pooling methods, we let h be an MLP with 3 hidden layers of width 128 and a final out-
put layer of size k. For the transformer, we first encode each input separately with h. We then
implement the query, key and value networks as linear layers before we calculate the output as
SOFTMAX(QKT )V . For METAFUN, we encode each point in the support and query through a 2-
layer MLP into a 128-dim vector. We then utilize an RBF kernel with temperature τ = 1.0. The
outputs are multiplied by the outputs of a network r that is implemented as another 2-layer MLP. We
employ a final network w on the outputs to find yQ = w

(∑N
i=1 k(x

Q, xSi )r(x
S
i , y

S
i )

)
We use a learning-rate of 5e − 4 and train for 100 epochs. All results presented are averaged over
three different random seeds with the mean and standard deviation calculated on different held-out
test sets. For all experiments we use a 2-layer MLP for the decoder networkMD.

A.2 ALGORITHM

Algorithm 1 Meta-Transfer
Require: p(TF ), p(TG): distributions over tasks, randomly initialize ξ

while not done do
sample task Tf ∼ p(TF ), Tg ∼ p(TG)
sample batch of data-points Df ∼ Tf , Dg ∼ Tg
z =ME(Df , ξ) ▷ According to Equation 4, 5, 6
ψ =MD(z)
update ξ ← ξ − α∇ξLTg (Dg, ψ)

end while

A.3 ADDITIONAL PENDULUM EXPERIMENTS

Model σ = 0.0 σ = 0.4 σ = 1.0 σ = 2.0 σ = 3.0

G
R

A
D

IE
N

T

- CONTEXT 0.33±0.01 0.33±0.02 0.33±0.02 0.34±0.01 0.35±0.01

- NON-LINEAR 0.33±0.01 0.32±0.02 0.32±0.02 0.33±0.02 0.38±0.07

- LINEAR 0.32±0.02 0.33±0.03 0.33±0.03 0.35±0.01 0.41±0.05

P
O

O
L

IN
G - MEAN 0.33±0.01 0.33±0.01 0.35±0.01 0.42±0.03 0.60±0.14

- MAX 0.31±0.02 0.35±0.02 0.40±0.07 0.57±0.22 1.19±0.84

- TRANSFORMER 0.30±0.00 0.32±0.02 0.34±0.02 0.73±0.39 3.45±1.27

DEEP KERNEL 1.35±0.05 1.36±0.03 1.67±0.06 2.56±0.54 3.14±0.98

E[(xt+1 − xt)2] 3.23±0.00

Table 4: Results for double pendulum experiment

For reference we also compute the average distance between consecutive points. This would corre-
spond to always predicting the current state, thus computing E[(xt+1 − xt)2].
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Figure 5: Three examples of the maze environment. The start and goal position are defined by the
red and orange marker respectively.

A.4 ANT EXPERIMENT DETAILS

In the environment, the agent consists of a torso and four legs. Each leg is composed of two links
(upper-leg, ankle) joint together. To generate different tasks, we vary the length of the upper-leg
and the ankle for all the legs. To retain symmetry, for each of the four legs we consider the same
adjustment and thus leaving us with a two degree-of-freedom change between the tasks. The goal
of the agent is to walk as far as possible in the x-direction while maintaining a certain stability.

A.5 MAZE EXPERIMENT DETAILS

We define the maze over a 2 × N grid. From every other position on the top row of the maze (N2
positions) we sample an obstacle with probability p = 0.5. We then define the obstacles on the
bottom row as the complement of the top row. Three examples can be seen in Figure 5
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