
RouteFinder
Towards Foundation Models for Vehicle Routing Problems

Federico Berto * 1 Chuanbo Hua * 1 Nayeli Gast Zepeda * 2 André Hottung 2 Niels Wouda 3 Leon Lan 4

Kevin Tierney 2 Jinkyoo Park 1 5

Abstract
This paper introduces RouteFinder, a frame-
work for developing foundation models for Ve-
hicle Routing Problems (VRPs). Our key idea
is that a foundation model for VRPs should be
able to model variants by treating each variant
as a subset of a larger VRP problem, equipped
with different attributes. We introduce a par-
allelized environment to handle any combina-
tion of attributes simultaneously in a batched
manner and an efficient sampling procedure to
train on a mix of problems at each optimiza-
tion step, greatly improving convergence robust-
ness. We also introduce novel Global Feature
Embeddings that project instance-wise attributes
efficiently onto the latent space and help the
model understand different VRP variants. Fi-
nally, we introduce Efficient Adapter Layers, a
simple-yet-effective technique to finetune pre-
trained RouteFinder models to solve novel
variants with previously unseen attributes, out-
side of the original feature space. We validate
our approach through extensive experiments on
24 VRP variants, demonstrating competitive re-
sults over recent multi-task learning models. We
make our code openly available at https://
github.com/ai4co/routefinder.

1. Introduction
Vehicle Routing Problems (VRPs) are an important class of
Combinatorial Optimization (CO) problems that have re-
ceived much attention in Operations Research (OR) and
Computer Science. Since the VRP is an NP-hard prob-
lem, finding an optimal solution by exhaustively explor-

*Equal contributions. ‡The authors of this paper are members
of the AI4CO open research community. 1KAIST 2Bielefeld Uni-
versity 3University of Groningen 4VU Amsterdam 5OMELET.
Correspondence to: Federico Berto <fberto@kaist.ac.kr>.

Published at ICML 2024 Workshop on Foundation Models in the
Wild. Copyright 2024 by the author(s).

ing the solution space is often computationally expensive,
and impractical for large instances. Instead, heuristic meth-
ods that quickly generate good (but possibly suboptimal)
solutions are commonly used to solve large-scale VRPs.
The OR community has developed many VRP heuristics,
including the well-known Lin-Kernighan-Helsgaun (LKH)
heuristic (Helsgaun, 2017), Fast Iterated Local Optimiza-
tion (FILO) (Accorsi and Vigo, 2021; 2024) and Hybrid
Genetic Search (HGS) (Vidal, 2022; Wouda et al., 2024).

Recently, Neural Combinatorial Optimization (NCO) ap-
proaches have been developed to solve CO problems. By
leveraging deep learning, these approaches seek to learn
and generalize from data, potentially providing more flex-
ible and scalable solutions (Kool et al., 2019; Hottung and
Tierney, 2019; Kwon et al., 2020; Kim et al., 2022; Berto
et al., 2024; Hottung et al., 2024). Similar to how the de-
velopments in Natural Language Processing (NLP) have
resulted in Large Language Models (LLMs), research ef-
forts in solving CO problems through machine learning are
also going towards foundation models (Liu et al., 2024b; Ye
et al., 2024a; Liu et al., 2024a; Zhou et al., 2024). A foun-
dation model for VRPs would have important implications
in terms of cost savings for companies and organizations
while, most importantly, being adaptable to new require-
ments (constraints) outside of the training distribution.

In this work, we introduce RouteFinder, a foundation
model framework for VRPs. Our contributions are:

• We introduce RouteFinder, a general framework
to solve any combination of VRP variants via a unified
environment handling any number of attributes.

• We propose Mixed Batch Training to sample diverse
variants at the same optimization step to concurrently
train multiple tasks to enhance performance.

• We introduce Global Attribute Embeddings to model
shared instance features, enabling the model to under-
stand and differentiate among various VRP variants.

• We present Efficient Adapter Layers to finetune pre-
trained RouteFindermodels to adapt to novel VRP
variants with any number of new attributes.

1

https://github.com/ai4co/routefinder
https://github.com/ai4co/routefinder

• We validate RouteFinder in extensive experiments
on 24 VRP variants demonstrating competitive perfor-
mance against recent multi-task learning methods.

2. Related Works
Multi-task learning for VRPs In this work we develop
a unified VRP solver that can readily be generalized to any
number of VRP variants. This issue of generalization has
garnered much attention recently. Wang and Yu (2023)
introduces a multi-armed bandit method that solves sev-
eral VRP variants with limited training budgets. Lin et al.
(2024) proposes training a backbone model (i.e. deep lay-
ers) for VRPs that can then be adapted via low-dimensional
layers such as linear projections to efficiently fine-tune
different problems. Most related to us are the recent
works of Liu et al. (2024a) and Zhou et al. (2024), which
use attribute composition (Ruis et al., 2021) to achieve
(zero-shot) generalization on several VRP variants. Liu
et al. (2024a) builds on the Reinforcement-Learning-based
POMO (Kwon et al., 2020), on top of which Zhou et al.
(2024) employ a mixture-of-experts model to improve gen-
eralization. We include additional literature about more
general VRPs in Appendix D.

3. Vehicle Routing Problems
The Capacitated VRP (CVRP) is formulated on a graph
G = (N,E), where N = {0, 1, . . . , n} represents the set
of nodes, with 0 denoting the depot and Nc = {1, . . . , n}
representing the customers. Each customer i ∈ Nc has a
demand qi. The edges E connect pairs of nodes, and each
edge (i, j) ∈ E has a travel cost cij (e.g., distance or travel
duration). A fleet of vehicles, each with a capacity Q, de-
parts from the depot to serve each of the customers exactly
once and returns, with the objective of minimizing the total
travel cost.

Following (Vidal et al., 2014), we consider a collection of
VRP variants that each consist of one or more attributes,
resulting in a rich set of routing problems with practical
relevance. Each of these variants offers a unique gener-
alization task for RouteFinder. Table A.1 in the Ap-
pendix provides a list of all 24 VRP variants we consider in
this paper. We divide the attributes we consider into node
attributes, global attributes, and edge attributes. Node at-
tributes are specific to the depot and customer nodes and
local to specific nodes, for example (linehaul) demands,
backhaul demands, time windows, and service durations.
Global attributes represent structural aspects of the prob-
lem as a whole, e.g., open vs. closed routes, distance lim-
its, and the type of backhaul. In this work, the only relevant
edge attributes we consider is the travel cost of each edge,
which represents a distance or travel duration depending on
the problem definition. Fig. A.1 describes node and global

attributes modeled in this work. We defer to Appendix A.1
additional details.

4. The RouteFinder Recipe
We leverage attribute composition from Liu et al. (2024a);
Zhou et al. (2024) to solve multiple VRP variants, and we
similarly employ autoregressive models trained with RE-
INFORCE (Sutton et al., 1999) with the POMO (Kwon
et al., 2020) baseline (see Appendix B). Attribute com-
position treats different variants of the VRP as combina-
tions of fundamental attributes (see Appendix A.1), us-
ing a common network to learn their representations. We
go one step further than previous works and consider dif-
ferent combinations of attributes within training batches
(see Section 4.2). Fig. 4.1 provides an overview of
RouteFinder’s architecture.

4.1. Unified VRP Environment

In previous works proposing multi-task learning across
VRP variants, like MTPOMO (Liu et al., 2024a) and MV-
MoE (Zhou et al., 2024), the training scheme samples an
instance variant (CVRP, VRPTW, etc.) out of the set of
available variants during training. Every instance within
that batch, therefore, is of the same problem category. We
hypothesize that this leads to a bias in training: instead of
learning a broad set of problems from the beginning, the
model learns individual problems, potentially overlooking
interrelations between them. We therefore propose to learn
across problems from the beginning and include problem
instances of various attributes within each training batch.

We define an environment capable of modeling all of the
previously discussed VRP attributes simultaneously, essen-
tially building an OVRPBLTW environment: an open route
vehicle routing problem with linehauls, backhauls, distance
limits, and time windows. The environment supports sub-
sets of the OVRPBLTW defining other VRP variants, i.e.,
some attributes can be “turned off.” For example, if an in-
stance should not have time windows, the time windows
are all set to [0,∞]. In this way, all attributes characteriz-
ing a VRP variant can simply be turned “on” and “off”,
allowing us to model up to 16 different problem types
with one single environment. This approach can be easily
and flexibly extended (e.g., by including different location
sampling mechanisms, backhaul classes, etc.), allowing for
even more problem variants to be modeled with the same
environment in the future.

4.2. Variant Sampling for Mixed Batch Training

Optimizing a neural solver for tackling multiple tasks re-
quires careful consideration of its training scheme, which
needs to be robust against different variant distributions.

2

Mixed Batch Training

CVRPB

OVRPLTW

OVRPBMLTW

C TW BO L

...
C TW BO L

C TW BO L

Node
Attributes

Global
Attributes

Encoder

Node Embedding

Global Embedding
Encoder
Layers

Decoder

CVRPB
OVRPLTW

OVRPBMLTW
...

Hidden States

Context

CVRPB
OVRPLTW

OVRPBMLTW
...

Context
Embedding

Decoder
Layers

Action
Probabilities

Unified VRP Env

+ EAL

+ EAL

+ EAL

+ EAL...

...
CVRPB
OVRPLTW

OVRPBMLTW
...

Actions

...

reset()
step()

Figure 4.1: Overview of RouteFinder.

We introduce a flexible approach which we coin Mixed
Batch Training (MBT) to efficiently reuse a single dataset
to generate multiple problem variants, optimizing data
storage and processing capabilities. We observe that the
OVRPBLTW problem variant is the most general problem
variant we study in this paper, and can be used to generate
any of the other variants by selectively removing the (O),
(B), (L), or (TW) attributes (note that for zero-shot general-
ization and few-shot learning, we will additionally sample
with the mixed (M) backhaul attribute in Section 5.3). De-
note by X a dataset of OVRPBLTW problem instances,
and let V be the set of attributes, where each attribute
ν ∈ V is associated with a sampling probability pν . For
each instance x ∈ X , we can write x((11)ν∈V) to con-
veniently express using indicator functions 11 for each at-
tribute ν ∈ V that the instance x is equipped with ν. The
sampling procedure of MBT can be defined as follows:

Xsubsampled = {x((1rand(0,1)<pν
)ν∈V)}x∈X ,

where rand(0, 1) draws an independent sample from
U [0, 1]. For example, to sample uniformly across all prob-
lem variants, we could set pν = 1

2 for each ν ∈ V . MBT
is flexible and scalable, capable of adapting to any problem
where different constraints or features might be selectively
activated or deactivated. Fig. 4.2 provides an overview of
MBT.

Without Mixed Batch Training With Mixed Batch Training

Optimal Optimal
CVRP

VRPTW

OVRPB

…

CVRP
VRPTW

OVRPB

…

…

…

Figure 4.2: [Left] Training without MBT may lead to instability
since at each step the optimization is biased toward a single task.
[Right] Training RouteFinder with MBT allows for more sta-
ble training.

4.3. Global Attribute Embeddings

Global attributes as outlined in Appendix A.1 are essen-
tial for modeling VRPs; for instance, given an open (O) at-
tribute, the solver may find optimal routes that do not nec-
essarily loop back to the starting depot. Previous multi-
task learning models for VRPs (Liu et al., 2024a; Zhou
et al., 2024) project such features on the shallow decoder
as dynamic features. However, such a design can be sub-
optimal since the deep transformer layers carry out most of
the learning and, importantly, can enable effective attribute
mixing, which is essential in understanding a (new) prob-
lem. We thus design Global Attribute Embeddings for ef-
fective problem representation, which incorporate problem
variants and help the deep layers understand which prob-
lem is being faced. Global attributes ϕ0, . . . , ϕk are pro-
jected via a projection layer:

h0
g = fθ([ϕ0, . . . , ϕk]), fθ : Rk → Rd

into d-dimensional space. Given our unified VRP represen-
tation, some attributes, such as the duration limit l for un-
constrained VRPs, might be ∞. Such attributes get trans-
formed to 0, not influencing the calculations. The embed-
ding is then processed in deep transformer layers.

4.4. Efficient Adapter Layers: Finetuning to Unseen
Attributes

Wang and Yu (2023) and Lin et al. (2024) propose pretrain-
ing a backbone solver, on top of which problem-specific
layers can be applied. However, doing so excludes previ-
ous knowledge accumulated in the projection layers, com-
plicating optimization. We propose Efficient Adapter Lay-
ers (EAL), an effective approach for few-shot learning for
VRP foundation models.

Consider a linear projection layer W ∈ Rk×d as the origi-
nal weight matrix for the projection from the raw attribute
to latent space, where k is the number of attributes and d is
the hidden dimension. In this work, for simplicity, we con-
sider unbiased linear projections to the latent space. This

3

can be trivially extended to general affine projections using
a bias term. To accommodate l new attributes, EAL aug-
ments W with zeros. The new matrix W′ ∈ R(k+l)×d can

be written as W′ =

[
W
0

]
where 0 ∈ Rl×d is a matrix

of zeros. The augmented matrix W′ retains the original k
attributes and adds l new attributes initialized to zero. Do-
ing so does not affect the model as the new l dimensions
are muted until fine-tuning occurs, enabling many new at-
tributes to be included in virtually any part of the model via
EAL as shown in Fig. 4.1.

5. Experiments
In this section, we empirically demonstrate the state-of-
the-art performance of RouteFinder in several exper-
iments.1. We employ as traditional baselines the state-
of-the-art HGS-PyVRP (Wouda et al., 2024) and Google
OR-Tools (Perron and Furnon, 2023). In terms of neural
solvers, we consider MTPOMO (Liu et al., 2024a), based
on POMO (Kwon et al., 2020), and MVMoE (Zhou et al.,
2024), which additionally includes mixture-of-experts (Fe-
dus et al., 2022) to improve the model performance as base-
lines for multi-task learned models. We consider two ver-
sions of RouteFinder (also denoted as RF in tables for
brevity): one version considering POMO as a backbone
(RF-POMO) and another one with the MVMoE model with
four experts and hierarchical gating (RF-MoE-L).

5.1. Main Results

Table G.1 compares RouteFinder to the previously dis-
cussed baselines. We note that the neural baselines perform
well on simpler tasks such as the vanilla CVRP, but overall
much worse on more complex VRPs, particularly with time
windows (TW) and open (O) problems, hinting at the use-
fulness of our proposed global attribute embeddings. While
the training and testing for these results are performed on
the same uniform distribution of 50 and 100 nodes, we
include results on large-scale CVRPLIB instances in Ta-
ble G.3 in the Appendix. Remarkably, even though base-
lines may outperform our method when testing on simi-
lar settings as in training, RouteFinder can scale better
than the neural baselines in real-world settings. Moreover,
training on any possible attribute combination (either with
our MBT sampling or without) greatly improves the per-
formance of RouteFinder and baselines, even for tasks
such as CVRP, both in distribution and real-world bench-
marks.

1We open-source the code at: https://github.com/
ai4co/routefinder

5.2. Ablation Studies

We conduct an ablation study to evaluate the impact of
the newly introduced components. To this end, we train
RouteFinder without 1) the mixed batch training mode
(Section 4.2), and 2) the new global attribute embeddings
(Section 4.3) with the same training strategy. We tested ab-
lation models on the mixed test instances used in Table G.1.
The results are shown in Table G.2 and demonstrate that es-
pecially the global feature embeddings and the mixed batch
training mode have a significant impact on the performance
of RouteFinder, improving the gap by 0.23 and 0.21
percentage points, respectively.

5.3. Generalization with EAL

We evaluate RouteFinder in few-shot learning settings
to unseen attributes, namely the mixed (M) backhauls vari-
ants. Unlike classical backhauls, this setting allows to pick
up items before delivering, but the model needs to keep
track of the current number of picked up items as well as
a new global attribute to effectively learn to plan. We ini-
tialize a new EAL that results in a global embedding W′

0

adding l = 1 features, i.e., the mixed backhaul flag. More-
over, we additionally encode the available load accounting
for the backhaul demand that has been picked up as a dy-
namic context during decoding, resulting in another EAL
W′

c, also adding one dimension.

We compare our EAL against 1) zero-shot performance of
the model, 2) fine-tuning only without adding any adapter
layer, 3) adding new layers while keeping the backbone
fixed (i.e., the proposed method of Lin et al. (2024)) and
4) training from scratch. We train baselines and EAL with
the same setup as the full training, but for only 10 epochs
in which 10K instances are sampled each. Fig. G.2 shows
that EAL can outperform baselines in few-shot learning.
Remarkably, keeping the backbone model fixed but chang-
ing projection layers significantly drops the performance in
the first few epochs, even against zero-shot settings. Con-
versely, fine-tuning and EAL can preserve the previous
information, thus avoiding performance drops, with EAL
converging the fastest.

6. Conclusion
We presented RouteFinder, a general framework to de-
velop foundation models for VRPs. We introduced a uni-
fied VRP environment that represents any combination of
attributes. Moreover, we introduced a novel Mixed Batch
Training technique that allows learned VRP solvers to learn
effective solution strategies for a wide variety of different
VRP variants with better robustness, as well as Global At-
tribute Embeddings that enable deep layers to effectively
represent different variants. Finally, we introduced Effi-

4

https://github.com/ai4co/routefinder
https://github.com/ai4co/routefinder

cient Adapter Layers that enable the model to efficiently
fine-tune to extended variants with any number of new
attributes. We evaluate RouteFinder with extensive
experiments on 24 VRP variants with promising results
in advancing foundation models for VRPs. We refer the
reader to Appendix E for limitations and, importantly, fu-
ture works for RouteFinder.

Acknowledgements
We would like to thank people in the AI4CO open research
community who have contributed to RouteFinder. We
also gratefully acknowledge the funding of this project by
computing time provided by the Paderborn Center for Par-
allel Computing (PC2). Furthermore, we thank OMELET
for supporting us with additional computing.

Funding
This work was supported by the Institute of Information &
communications Technology Planning & Evaluation (IITP)
grant funded by the Korean government(MSIT)[2022-0-
01032, Development of Collective Collaboration Intelli-
gence Framework for Internet of Autonomous Things].

References
L. Accorsi and D. Vigo. A fast and scalable heuristic for the

solution of large-scale capacitated vehicle routing prob-
lems. Transportation Science, 55(4):832–856, 2021.

L. Accorsi and D. Vigo. Routing one million customers in a
handful of minutes. Computers & Operations Research,
164:106562, 2024.

A. Bdeir, J. K. Falkner, and L. Schmidt-Thieme. Atten-
tion, filling in the gaps for generalization in routing prob-
lems. In Joint European Conference on Machine Learn-
ing and Knowledge Discovery in Databases, pages 505–
520. Springer, 2022.

I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio.
Neural combinatorial optimization with reinforcement
learning. arXiv preprint arXiv:1611.09940, 2016.

Y. Bengio, A. Lodi, and A. Prouvost. Machine learning
for combinatorial optimization: a methodological tour
d’horizon. European Journal of Operational Research,
290(2):405–421, 2021.

F. Berto, C. Hua, J. Park, L. Luttmann, Y. Ma, F. Bu,
J. Wang, H. Ye, M. Kim, S. Choi, N. G. Zepeda,
A. Hottung, J. Zhou, J. Bi, Y. Hu, F. Liu, H. Kim,
J. Son, H. Kim, D. Angioni, W. Kool, Z. Cao, J. Zhang,
K. Shin, C. Wu, S. Ahn, G. Song, C. Kwon, L. Xie, and

J. Park. RL4CO: an Extensive Reinforcement Learn-
ing for Combinatorial Optimization Benchmark. arXiv
preprint arXiv:2306.17100, 2024. URL https://
github.com/ai4co/rl4co.

J. Bi, Y. Ma, J. Wang, Z. Cao, J. Chen, Y. Sun, and Y. M.
Chee. Learning generalizable models for vehicle routing
problems via knowledge distillation. Advances in Neural
Information Processing Systems, 2022.

A. Bogyrbayeva, M. Meraliyev, T. Mustakhov, and
B. Dauletbayev. Learning to solve vehicle routing prob-
lems: A survey. arXiv preprint arXiv:2205.02453, 2022.

F. Chalumeau, S. Surana, C. Bonnet, N. Grinsztajn, A. Pre-
torius, A. Laterre, and T. Barrett. Combinatorial op-
timization with policy adaptation using latent space
search. Advances in Neural Information Processing Sys-
tems, 36, 2024.

X. Chen, Y. Li, Y. Yang, L. Zhang, S. Li, and G. Pan.
Extnco: A fine-grained divide-and-conquer approach for
extending nco to solve large-scale traveling salesman
problem. Available at SSRN 4679437, 2024.

J. Choo, Y.-D. Kwon, J. Kim, J. Jae, A. Hottung, K. Tier-
ney, and Y. Gwon. Simulation-guided beam search for
neural combinatorial optimization. Advances in Neural
Information Processing Systems, 35:8760–8772, 2022.

T. Dao. FlashAttention-2: Faster attention with bet-
ter parallelism and work partitioning. arXiv preprint
arXiv:2307.08691, 2023.

T. Dao, D. Fu, S. Ermon, A. Rudra, and C. Ré. Flashat-
tention: Fast and memory-efficient exact attention with
io-awareness. Advances in Neural Information Process-
ing Systems, 35:16344–16359, 2022.

D. Drakulic, S. Michel, F. Mai, A. Sors, and J.-M. An-
dreoli. BQ-NCO: Bisimulation quotienting for efficient
neural combinatorial optimization. Advances in Neural
Information Processing Systems, 36, 2024.

W. Fedus, J. Dean, and B. Zoph. A review of
sparse expert models in deep learning. arXiv preprint
arXiv:2209.01667, 2022.

Z.-H. Fu, K.-B. Qiu, and H. Zha. Generalize a small
pre-trained model to arbitrarily large tsp instances. In
Proceedings of the AAAI conference on artificial intelli-
gence, volume 35, pages 7474–7482, 2021.

C. Gao, H. Shang, K. Xue, D. Li, and C. Qian. Towards
generalizable neural solvers for vehicle routing prob-
lems via ensemble with transferrable local policy. arXiv
preprint arXiv:2308.14104, 2023.

5

https://github.com/ai4co/rl4co
https://github.com/ai4co/rl4co

M. Goetschalckx and C. Jacobs-Blecha. The vehicle rout-
ing problem with backhauls. European Journal of Oper-
ational Research, 1989.

N. Grinsztajn, D. Furelos-Blanco, S. Surana, C. Bonnet,
and T. Barrett. Winner takes it all: Training performant
rl populations for combinatorial optimization. Advances
in Neural Information Processing Systems, 36, 2024.

K. Helsgaun. An extension of the lin-kernighan-helsgaun
tsp solver for constrained traveling salesman and vehi-
cle routing problems. Roskilde: Roskilde University, 12:
966–980, 2017.

A. Hottung and K. Tierney. Neural large neighborhood
search for the capacitated vehicle routing problem. arXiv
preprint arXiv:1911.09539, 2019.

A. Hottung, Y.-D. Kwon, and K. Tierney. Efficient active
search for combinatorial optimization problems. arXiv
preprint arXiv:2106.05126, 2021.

A. Hottung, M. Mahajan, and K. Tierney. PolyNet: Learn-
ing diverse solution strategies for neural combinatorial
optimization. arXiv preprint arXiv:2402.14048, 2024.

Q. Hou, J. Yang, Y. Su, X. Wang, and Y. Deng. Gener-
alize learned heuristics to solve large-scale vehicle rout-
ing problems in real-time. In The Eleventh International
Conference on Learning Representations, 2022.

C. K. Joshi, Q. Cappart, L.-M. Rousseau, and T. Lau-
rent. Learning the travelling salesperson problem
requires rethinking generalization. arXiv preprint
arXiv:2006.07054, 2020.

M. Kim, J. Park, et al. Learning collaborative policies to
solve NP-hard routing problems. Advances in Neural In-
formation Processing Systems, 34:10418–10430, 2021.

M. Kim, J. Park, and J. Park. Sym-NCO: Leveraging
symmetricity for neural combinatorial optimization. Ad-
vances in Neural Information Processing Systems, 35:
1936–1949, 2022.

M. Kim, S. Choi, J. Son, H. Kim, J. Park, and Y. Bengio.
Ant colony sampling with gflownets for combinatorial
optimization. arXiv preprint arXiv:2403.07041, 2024.

D. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. In International Conference on Learning Rep-
resentations (ICLR), San Diego, CA, USA, 2015.

Ç. Koç and G. Laporte. Vehicle routing with backhauls:
Review and research perspectives. Computers & Opera-
tions Research, 2018.

V. Konda and J. Tsitsiklis. Actor-critic algorithms. Ad-
vances in neural information processing systems, 12,
1999.

W. Kool, H. Van Hoof, and M. Welling. Attention, learn
to solve routing problems! International Conference on
Learning Representations, 2019.

W. Kool, H. van Hoof, J. Gromicho, and M. Welling. Deep
policy dynamic programming for vehicle routing prob-
lems. In International conference on integration of con-
straint programming, artificial intelligence, and opera-
tions research, pages 190–213. Springer, 2022.

Y.-D. Kwon, J. Choo, B. Kim, I. Yoon, Y. Gwon, and
S. Min. Pomo: Policy optimization with multiple optima
for reinforcement learning. Advances in Neural Informa-
tion Processing Systems, 33:21188–21198, 2020.

Y.-D. Kwon, J. Choo, I. Yoon, M. Park, D. Park, and
Y. Gwon. Matrix encoding networks for neural com-
binatorial optimization. Advances in Neural Information
Processing Systems, 34:5138–5149, 2021.

F. Li, B. Golden, and E. Wasil. The open vehicle rout-
ing problem: Algorithms, large-scale test problems, and
computational results. Computers & Operations Re-
search, 2007.

S. Li, Z. Yan, and C. Wu. Learning to delegate for large-
scale vehicle routing. Advances in Neural Information
Processing Systems, 34:26198–26211, 2021.

I. Lima, E. Uchoa, D. Oliveira, and E. Queiroga. CVR-
PLIB: Capacitated vehicle routing problem library. Date
accessed, 8(02):2022, 2014.

Z. Lin, Y. Wu, B. Zhou, Z. Cao, W. Song, Y. Zhang, and
S. Jayavelu. Cross-problem learning for solving vehicle
routing problems. IJCAI, 2024.

F. Liu, X. Lin, Q. Zhang, X. Tong, and M. Yuan. Multi-task
learning for routing problem with cross-problem zero-
shot generalization. KDD, 2024a.

F. Liu, X. Tong, M. Yuan, X. Lin, F. Luo, Z. Wang, Z. Lu,
and Q. Zhang. Evolution of heuristics: Towards efficient
automatic algorithm design using large language mode.
In ICML, 2024b. URL https://arxiv.org/abs/
2401.02051.

S. Liu, Y. Zhang, K. Tang, and X. Yao. How good is neural
combinatorial optimization? A systematic evaluation on
the traveling salesman problem. IEEE Computational
Intelligence Magazine, 18(3):14–28, 2023.

F. Luo, X. Lin, F. Liu, Q. Zhang, and Z. Wang. Neural
combinatorial optimization with heavy decoder: Toward

6

https://arxiv.org/abs/2401.02051
https://arxiv.org/abs/2401.02051

large scale generalization. Advances in Neural Informa-
tion Processing Systems, 36, 2024a.

F. Luo, X. Lin, Z. Wang, T. Xialiang, M. Yuan,
and Q. Zhang. Self-improved learning for scalable
neural combinatorial optimization. arXiv preprint
arXiv:2403.19561, 2024b.

Y. Ma, J. Li, Z. Cao, W. Song, L. Zhang, Z. Chen, and
J. Tang. Learning to iteratively solve routing problems
with dual-aspect collaborative transformer. Advances
in Neural Information Processing Systems, 34:11096–
11107, 2021.

Y. Ma, J. Li, Z. Cao, W. Song, H. Guo, Y. Gong, and
Y. M. Chee. Efficient neural neighborhood search
for pickup and delivery problems. arXiv preprint
arXiv:2204.11399, 2022.

Y. Ma, Z. Cao, and Y. M. Chee. Learning to search feasible
and infeasible regions of routing problems with flexible
neural k-opt. Advances in Neural Information Process-
ing Systems, 36, 2024.

N. Mazyavkina, S. Sviridov, S. Ivanov, and E. Burnaev. Re-
inforcement learning for combinatorial optimization: A
survey. Computers & Operations Research, 2021.

M. Nazari, A. Oroojlooy, L. Snyder, and M. Takác. Rein-
forcement learning for solving the vehicle routing prob-
lem. Advances in neural information processing systems,
31, 2018.

Y. Peng, B. Choi, and J. Xu. Graph learning for combi-
natorial optimization: a survey of state-of-the-art. Data
Science and Engineering, 6(2):119–141, 2021.

L. Perron and F. Didier. CP-SAT. URL https:
//developers.google.com/optimization/
cp/cp_solver/.

L. Perron and V. Furnon. OR-Tools. Google, 2023.

S. Ropke and D. Pisinger. A unified heuristic for a large
class of vehicle routing problems with backhauls. Euro-
pean Journal of Operational Research, 2006.

F. Ruis, G. Burghouts, and D. Bucur. Independent pro-
totype propagation for zero-shot compositionality. Ad-
vances in Neural Information Processing Systems, 34:
10641–10653, 2021.

Z. Sun and Y. Yang. Difusco: Graph-based diffusion
solvers for combinatorial optimization. Advances in
Neural Information Processing Systems, 36, 2024.

R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour.
Policy gradient methods for reinforcement learning with
function approximation. Advances in neural information
processing systems, 12, 1999.

D. Thyssens, T. Dernedde, J. K. Falkner, and L. Schmidt-
Thieme. Routing arena: A benchmark suite for neural
routing solvers. arXiv preprint arXiv:2310.04140, 2023.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention is
all you need. Advances in neural information processing
systems, 30, 2017.

T. Vidal. Hybrid genetic search for the cvrp: Open-source
implementation and swap* neighborhood. Computers &
Operations Research, 140:105643, 2022.

T. Vidal, T. G. Crainic, M. Gendreau, and C. Prins. A uni-
fied solution framework for multi-attribute vehicle rout-
ing problems. European Journal of Operational Re-
search, 2014.

O. Vinyals, M. Fortunato, and N. Jaitly. Pointer networks.
Advances in neural information processing systems, 28,
2015.

C. Wang and T. Yu. Efficient training of multi-task neu-
ral solver with multi-armed bandits. arXiv preprint
arXiv:2305.06361, 2023.

N. A. Wouda, L. Lan, and W. Kool. PyVRP: A high-
performance VRP solver package. INFORMS Journal
on Computing, 2024.

O. Yadan. Hydra - a framework for elegantly configuring
complex applications. Github, 2019. URL https://
github.com/facebookresearch/hydra.

H. Ye, J. Wang, Z. Cao, F. Berto, C. Hua, H. Kim, J. Park,
and G. Song. Large language models as hyper-heuristics
for combinatorial optimization, 2024a.

H. Ye, J. Wang, Z. Cao, H. Liang, and Y. Li. Deep-
ACO: Neural-enhanced ant systems for combinatorial
optimization. Advances in Neural Information Process-
ing Systems, 36, 2024b.

H. Ye, J. Wang, H. Liang, Z. Cao, Y. Li, and F. Li. Glop:
Learning global partition and local construction for solv-
ing large-scale routing problems in real-time. AAAI
2024, 2024c.

J. Zhou, Y. Wu, W. Song, Z. Cao, and J. Zhang. To-
wards omni-generalizable neural methods for vehicle
routing problems. In International Conference on Ma-
chine Learning, pages 42769–42789. PMLR, 2023.

J. Zhou, Z. Cao, Y. Wu, W. Song, Y. Ma, J. Zhang, and
C. Xu. MVMoE: Multi-task vehicle routing solver with
mixture-of-experts. In International Conference on Ma-
chine Learning, 2024.

7

https://developers.google.com/optimization/cp/cp_solver/
https://developers.google.com/optimization/cp/cp_solver/
https://developers.google.com/optimization/cp/cp_solver/
https://github.com/facebookresearch/hydra
https://github.com/facebookresearch/hydra

RouteFinder
Towards Foundation Models for Vehicle Routing Problems

Appendix

A. Unified VRP Environment

Open route (O)

< L

0.2

0.1

0.3

0.1

0.2
0.1

Duration limit (L) Time windows (TW)

0.1

0.2
0.4

0.5

0.3

Linehaul demands (C) Backhaul demands (B) Mixed backhaul demands (M)

Depot Customer Linehaul Backhaul Feasible route Customer time window

sd:0.5

sd:1.2

sd:0.7

sd:0.2
sd:0.3sd:0

sd:0.2 Service duration

<latexit sha1_base64="3DsdrsOQ3l8lsdKN9DOtlI63R7Q=">AAAB9HicdVDLSgMxFM3UV62vqktdBIvgapiptdZdwY3LFuwDOkPJpJk2NMlMk0yhDP0ONy4UcevHuPNvTKcVVPTAhcM593LvPUHMqNKO82Hl1tY3Nrfy24Wd3b39g+LhUVtFicSkhSMWyW6AFGFUkJammpFuLAniASOdYHy78DtTIhWNxL2excTnaChoSDHSRvI9lXAYQ4+RCWz2iyXHvnLcm+oldGwnQ0ZqbrkG3ZVSAis0+sV3bxDhhBOhMUNK9Vwn1n6KpKaYkXnBSxSJER6jIekZKhAnyk+zo+fw3CgDGEbSlNAwU79PpIgrNeOB6eRIj9RvbyH+5fUSHdb8lIo40UTg5aIwYVBHcJEAHFBJsGYzQxCW1NwK8QhJhLXJqWBC+PoU/k/aZdut2pVmpVQ/XcWRByfgDFwAF1yDOrgDDdACGEzAA3gCz9bUerRerNdla85azRyDH7DePgH3t5F6</latexit>X
p Q

Figure A.1: Different VRP attributes. Open routes (O) and duration limits (L) are global attributes, whereas time windows (TW),
capacitated vehicles for linehaul demands (C), backhaul demands (B) and mixed (M) backhaul demands are node attributes. Attributes
may be combined in different ways to define VRP variants.

A.1. Attribute Details

NODE ATTRIBUTES

Demand and Vehicle Capacity (C) [q ∈ [0, Q]]: Every customer i ∈ Nc has a linehaul demand qi that needs to be
served using vehicles with a homogeneous fixed capacity Q > 0. The total customer demand in the vehicle must not
exceed its capacity at any point of the route.

Time Windows (TW) [e, s, l ∈ [0, T]3]: Every customer i ∈ Nc has a time window [ei, li] during which service must
begin. Service takes si time. The depot has a time window [e0, l0] = [0, T], and a service duration of s0 = 0. Vehicles
must reach node i before the end of its time window at li, but any early arrivals must wait at the node location until time ei
before service may commence.

Backhauls (B) [p ∈ [0, Q]]: Backhauls generalize demand to also account for return shipments. Customers are either
linehaul or backhaul customers. Linehaul customers require delivery of a demand qi that needs to be transported from the
depot to customer i (as in the CVRP), whereas backhaul customers need a pickup of an amount pi that is transported from
the client back to the depot. It is possible for vehicles to serve a combination of linehaul and backhaul customers in a single
route, but then any linehaul customers must precede the backhaul customers in the route. An application with returnable
bottles is presented in (Ropke and Pisinger, 2006): full bottles need to be delivered from the depot to customers, while
empty bottles are returned to the depot via backhaul.

We remark that our definition of backhauls follows the generally accepted definition in the OR community, originally due
to (Goetschalckx and Jacobs-Blecha, 1989). This definition differs from the routing problems with backhaul considered in
several recent papers in the machine learning (e.g., (Liu et al., 2024a; Zhou et al., 2024)), who define backhaul customers
as having a negative demand of the same commodity used for linehaul, and do not consider the precedence constraint that
all linehaul must be completed before backhaul may start on the route. The problem setting with a single commodity is
not commonly studied in the OR literature since it implies pickups may be used for deliveries at later customers, while the
relaxation of the precedence constraint is more properly referred to as a mixed backhaul problem (Koç and Laporte, 2018).

8

RouteFinder

GLOBAL ATTRIBUTES

Open Routes (O) [o ∈ {0, 1}]: Vehicles are not required to return to the depot after serving all customers. Open routes
can be found in applications with third-party drivers, who are often only compensated until they have completed their last
delivery (Li et al., 2007).

Duration Limits (L) [l ∈ [0, L]]: Imposes a limit on the total travel duration (or length) of each route, balancing the
workload across vehicles. This limit is uniformly applied to all routes.

Mixed (M) Backhauls [m ∈ {0, 1}]: Relaxes the strict precedence constraint of linehaul customers before any backhaul
customers: with mixed backhauls, linehaul and backhaul customers may be mixed along the route in any configuration.
The vehicle’s capacity must of course still be respected by the delivery and pickup amounts in the vehicle at any point
along the route.

A.2. Data generation process

We consider the six attributes from Section A.1 for instance generation through our environment definition explained in
Section 4.1. Leveraging our environment’s modular structure, we build the same 16 VRP variants as used in MVMoE
(Zhou et al., 2024), but by differentiating between traditional and mixed backhauls, we extend that number to 24, as shown
in Table A.1. We now explain the individual steps in the data generation process we use for our modular VRP environment.

Locations We generate n + 1 locations randomly with xi and yi ∼ U(0, 1),∀i ∈ {0, ..., n}, where [x0, y0] denotes the
depot and [xi, yi], i ∈ {1, ..., n}, the n customer nodes. Note that this setting can be expanded to consider more realistic
distributions as in (Bi et al., 2022; Zhou et al., 2023; Gao et al., 2023), and our implementation is already set up in such a
way to allow for different distributions in the future via the get_sampler method.

Vehicle capacity (C) The vehicle capacity C is a fixed value applied to all vehicles, and calculated according to:

C =

30 +
⌊
1000
5 + n−1000

33.3

⌋
if 1000 < n

30 +
⌊
n
5

⌋
if 20 < n ≤ 1000

30 otherwise.
which is commonly used in NCO for VRP approaches (Kool et al., 2019; Kwon et al., 2020).

Linehaul and backhaul demands We generate demands according to the following scheme:

1. Generate linehaul demands qi ∈ {0, ..., Q} for all customers i ∈ Nc. These are needed for both linehaul and backhaul
scenarios.

2. Generate backhaul demands pi ∈ {0, ..., Q} for all customers i ∈ Nc.

3. Generate temporary decision variables xi ∈ {0, 1} for all customers i ∈ Nc with probabilities p(0) = 0.8 and
p(1) = 0.2 to determine which customers should be assigned a backhaul demand (xi = 1) and set the backhaul
demands to 0 for all remaining customers.

Note that even in a backhaul setting, usually not all customers are backhaul customers, i.e., we need to consider both
linehaul and backhaul demands in backhaul problem settings.

Backhaul class (B) For testing the few-shot setting described in Section 5.3, we generate instances with mixed backhauls.
The instances themselves are actually identical to instances with the traditional backhaul and we use a global attribute in
the instance to differentiate between them. For this purpose, we allow either setting a fixed value ∈ {1, 2} or sampling
from {1, 2} for every customer with equal probabilities p(1) = p(2) = 0.5, allowing for different backhaul settings within
one batch, if needed (see the batching procedure described in Section 4.2). Note that we sample from {1, 2} instead of
boolean sampling, because we plan to extend the number of backhaul setting in the future.

Open routes (O) For open routes, we generate a boolean vector with all True values. During sampling (see Section 4.2)
the actual ratio of open route instances is defined, not at the initial instance generation.

Time Windows (TW) We generate the time windows [ei, li] and service times si in several steps for all customers i ∈ Nc:

9

RouteFinder

1. Generate service times si ∈ [0.15, 0.18].

2. Generate time window lengths ti ∈ [0.18, 0.2].

3. Calculate distances d0i from the depot to the customer.

4. Calculate upper bounds for time window start times hi =
tmax−si−ti

d0i
− 1.

5. Calculate time window start times as ei = (1 + (hi − 1) · ui) · d0i with ui ∼ U(0, 1).

6. Calculate time window end times as li = ei + ti.

Distance limit (L) The distance limit is a fixed value with a default value of 3. We check that d0i · 2 < L, ∀i ∈ Nc, where
L is the distance limit.

Scaling All demands, both linehauls and backhauls, are scaled to lie in [0, 1] through division by the vehicle capacity.

Capacity
(C)

Open Route
(O)

Backhaul
(B)

Mixed
(M)

Duration Limit
(L)

Time Windows
(TW)

CVRP ✓
OVRP ✓ ✓
VRPB ✓ ✓
VRPL ✓ ✓
VRPTW ✓ ✓
OVRPTW ✓ ✓ ✓
OVRPB ✓ ✓ ✓
OVRPL ✓ ✓ ✓
VRPBL ✓ ✓ ✓
VRPBTW ✓ ✓ ✓
VRPLTW ✓ ✓ ✓
OVRPBL ✓ ✓ ✓ ✓
OVRPBTW ✓ ✓ ✓ ✓
OVRPLTW ✓ ✓ ✓ ✓
VRPBLTW ✓ ✓ ✓ ✓
OVRPBLTW ✓ ✓ ✓ ✓ ✓
VRPMB ✓ ✓ ✓
OVRPMB ✓ ✓ ✓ ✓
VRPMBL ✓ ✓ ✓ ✓
VRPMBTW ✓ ✓ ✓ ✓
OVRPMBL ✓ ✓ ✓ ✓ ✓
OVRPMBTW ✓ ✓ ✓ ✓ ✓
VRPMBLTW ✓ ✓ ✓ ✓ ✓
OVRPMBLTW ✓ ✓ ✓ ✓ ✓ ✓

Table A.1: The 24 VRP variants we consider. All variants include the base Capacity (C). The k = 4 features O, B, L, and TW can be
combined into any subset, including the empty set and itself (i.e., a power set) with 2k = 16 possible combinations. Finally, we study
the additional Mixed (M) global feature that creates new Backhaul (B) variants in generalization studies, adding 8 more variants.

A.3. Determining available actions

To determine available actions for the unified environment formulation, the constraints for the individual problems have
to be combined in the action mask. We build a logical test structure, essentially separating the checks in the action mask

10

RouteFinder

according to the individual VRP problem types and then bringing them all together again. The individual checks are the
following:

a) Can reach in time: depending on the current time and the travel distance to every node not yet visited, can we reach
that node before its service time window ends?

b) Can reach depot: if we are handling closed routes, we need to ensure we can reach the depot in time, i.e., the current
time plus traveling time to the depot must be smaller than the system end time. For open routes, this will always be
set to True.

c) Does not exceed distance limit: depending on the current length of the route, if we travel to any available node, will
we exceed the total distance limit for the route?

d) Demand constraints for backhaul problems:

• Checks for all backhauls problems:
– Does the linehaul demand exceed vehicle capacity, if we add a node’s demand to the current vehicle?
– Does the backhaul demand exceed vehicle capacity, if we add a node’s demand to the current vehicle?

• Checks for traditional backhaul settings:
– Carrying backhaul: if we are already picking up backhaul demands, we cannot service any linehaul demands

on this route anymore.
– If we are not carrying backhaul demands yet, are there any unserved linehaul demands left?
– If there are no linehaul demands left or we are already carrying backhauls, are there still unserved backhaul

demands?
• Checks for mixed backhaul settings:

– Cannot service linehaul demands: depending on the backhaul demands currently loaded in the vehicle, do
we have space left for further linehaul demands?

e) Already visited: every customer node needs to be visited exactly one.

We bring together checks a) to e) and introduce an additional check for the depot: if we are currently in the depot and
there are still unserved customers, we cannot select the depot as next action. Combining these checks in this way allows us
to meticulously check for individual VRP settings while at the same time maintaining the necessary flexibility the unified
environment formulation requires.

B. Learning Neural Solvers for VRPs
Solving VRPs using Autoregressive Sequence Generation Autoregressive (AR) methods address CO problems by
constructing solutions sequentially. The process begins with encoding the problem instance x (e.g., node and global
attributes) using a trainable encoder fθ which maps x to an embedding h = fθ(x). The solution a is then decoded based
on h through a series of actions, where each action determines the next step in the solution based on the current partial
sequence. This is achieved using a decoder gθ. The encoding and decoding process can be formalized as follows:

at ∼ gθ(at|at−1, ..., a0,h),

πθ(a|x) ≜
T−1∏

t=1

gθ(at|at−1, ..., a0,h),

where a = (a1, ..., aT) represents a feasible solution to the CO problem, T denotes the steps in solution construction, and
πθ is the stochastic solver mapping problem instance x to a solution a.

Training VRP Solvers via Reinforcement Learning The solver pθ can be trained using either supervised learning (SL)
or reinforcement learning (RL). This paper focuses on RL due to its ability to train solvers independent of optimal solutions.
Under the RL framework, the training objective for neural combinatorial optimization solvers is defined as:

θ∗ = argmax
θ

[
Ex∼P (x)

[
Ea∼πθ(a|x)[R(a,x)]

]]
,

11

RouteFinder

where P (x) is the distribution of problem instances, and R(a,x) represents the reward (i.e., the negative cost), associated
with the solution a for the given x. The above training problem can be tackled using various RL techniques, including
value-based, policy gradient (PG) (Sutton et al., 1999), and actor-critic (AC) methods (Konda and Tsitsiklis, 1999). The
REINFORCE algorithm is typically employed to train the policy network πθ, optimizing the policy through estimated
gradients of the expected reward as follows:

∇θLa(θ|x) = Eπθ(a|x) [(R(a,x)− b(x))∇θ log πθ(a|x)] ,
where b(·) is a baseline function used to stabilize training and reduce gradient variance.

C. RouteFinder Model
RouteFinder follows the encoder-decoder architecture from the Attention Model (Kool et al., 2019), a transformer-like
architecture based on the attention mechanism (Vaswani et al., 2017).

C.1. Multi-Head Attention

At the core of RouteFinder lies the Multi-Head Attention (MHA) mechanism, proposed by Vaswani et al. (2017). MHA
concurrently attends to information from various representation subspaces, facilitating the capture of diverse relationships
between input elements. Notably, MHA is capable of handling a variable number of elements.

The MHA operation starts by linearly projecting the input sequences of queries Q, keys K, and values V to H distinct
subspaces using learned projection matrices WQ

i , WK
i , and WV

i , respectively, where H denotes the number of attention
heads: Qi = QWQ

i , Ki = KWK
i , Vi = VWV

i for i = 1, . . . ,H . Subsequently, the attention weights for each head are
computed by performing a scaled dot product between the projected queries and keys, followed by a softmax operation:

Ai = Softmax
(
QiK

T
i√

dk
+M

)
(1)

where dk represents the dimension of the keys, acting as a scaling factor to prevent the dot products from growing too
large, Softmax(xi) = exp(xi)∑N

j=1 exp(xj)
and M is an optional attention mask that can be used to prevent attending to certain

positions (e.g., infeasible actions), which can be done by setting elements to −∞. The output of each attention head is
then calculated as a weighted sum of the projected values, using the attention weights: Zi = AiVi.

Lastly, the outputs from all attention heads are concatenated and linearly projected using a learned matrix WO to yield the
final output of the MHA operation:

MHA(Q,K, V) = Concat(Z1, . . . , ZH)WO (2)
While the MHA grows quadratically, i.e., with sequence length (i.e., number of nodes) N , it grows as O(N2), several
efficient implementations have been proposed over the years, and we use FlashAttention (Dao et al., 2022; Dao, 2023) to
speed up the model.

C.2. Encoder

The Encoder transforms an input instance x into a hidden embedding h. The Encoder architecture consists of the following
main components: 1) Global Embedding 2) Node Embedding, and 3) a series of Encoder Layers 2. We consider a VRP
instance of N location as having N + 1 nodes, where n0 is the depot, and n1, . . . , nN are N customers.

Global Embedding The global embedding f captures problem-level attributes and is projected onto the depot node.
These attributes include Open Routes o ∈ {0, 1}, Duration Limits l ∈ [0, L], (with EAL only), Mixed Backhauls flag m ∈
{0, 1}, l0 as the late Time Window for the problem, and the location of the depot node [x0, y0] ∈ R2. In RouteFinder,
the global embedding f is a linear projection layer Wg ∈ Rk×d where k = 5 features and d = 128 is the hidden dimension.
The initial projected global hidden embedding can be written as h(0)

g = Wg[o, l,m, l0, x0, y0]
⊤.

Node Embedding The node embeddings, on the other hand, capture customer-specific attributes and are projected onto
the remaining N nodes. These attributes include for nodes i ∈ 1, . . . , N : Demand and Vehicle Capacity qi ∈ [0, Q]],
Time Windows parameters ei, si, li ∈ [0, T]3] where e and l are early and late time windows and s is the service time, and

2Note that the following description might slightly differ from the code implementation due to minor differences - for instance, we
erroneously did not implement l0 for the depot in the main experiments, where l0 however was kept constant.

12

RouteFinder

pi ∈ [0, Q] are Backhaul demands, and finally locations [xi, yi] ∈ R2. In RouteFinder this a linear projection layer
Wn ∈ Rk×d where k = 7 features and d = 128 is the hidden dimension. The initial projected node hidden embedding
can be written for each node ni as h(0)

ni = Wn[qi, ei, si, li, pi, xi, yi]
⊤.

Raw Features to Hidden States The projected global embedding and node embeddings are concatenated to obtain the
initial hidden representation h(0) ∈ RN×d, where N is the total number of nodes (depot + customers) and d is the hidden
dimension:

h(0) = Concat(h(0)
g ,h(0)

n1
, . . . ,h(0)

nN
) (3)

The initial hidden representation h(0) is then passed through a series of Encoder Layers to refine and enrich the represen-
tation. Each Encoder Layer consists of a Multi-Head Attention (MHA) layer and a Multi-Layer Perceptron (MLP) layer,
as described in Eq. (5) and Eq. (6), respectively.

The Encoder can be represented as:
h = EncoderBlocks(h(0)) (4)

Each EncoderBlock consists of two sub-layers: a Multi-Head Attention (MHA) layer and a Multi-Layer Perceptron (MLP)
layer. The MHA layer allows the model to capture dependencies between different positions in the input sequence, while
the MLP layer applies non-linear transformations to the features at each position. The input to each EncoderBlock is first
passed through the MHA layer, which computes the self-attention using the input as queries, keys, and values:

ĥ = Norm
(
h(ℓ−1) + MHA(h(ℓ−1),h(ℓ−1),h(ℓ−1))

)
(5)

where h(ℓ−1) represents the input to the ℓ-th EncoderBlock, and Norm denotes a normalization operation, in
RouteFinder we employ Instance Normalization (IN). The output of the MHA layer, ĥ, is then passed through the
MLP layer, which applies a series of linear transformations with non-linear activations:

h(ℓ) = Norm
(
ĥ+ MLP(ĥ)

)
(6)

The pointwise MLP layer consists of two linear layers with a non-linear activation function as ReLU, between them. In
RouteFinder we adopt 6 encoder blocks.

C.3. Decoder

The Decoder autoregressively constructs the solution based on the Encoder output h and the state at the current step t, st.

Context Embedding The context embedding is used to modify the query embedding of the problem node of the current
partial solution. It consists of a linear layer that projects the concatenated current node embedding and state embedding to
the embedding space. The state embedding is computed by projecting the following: the current node embedding t and a
set of dynamic features from state st, i.e. the available load ct, current time tt and current distance traveled dt.

Attention and Pointer Mechanism The query qt is then obtained by projecting the concatenated current node embed-
ding and state embedding using a linear layer:

qt = WcConcat([ht; [ct, tt, dt]])
⊤ (7)

where Wc ∈ Rd×(d+k) is the linear projection matrix, d = 128 is the hidden dimension, and k = 3 is the number of state
features (available load, current time, and remaining distance). Note that with EAL, we additionally add another feature so
that k = 4, namely the difference between the vehicle capacity and the used backhaul capacity. This is necessary because
if we pick up items, the deliverable quantity must exceed the remaining capacity after pick up. The query qt is then passed
into a masked MHA layer and final single-head attention to obtain logits z:

hc
t = MHA(qt,K

g
t , V

g
t ,Mt), (8)

z =
V p
t h

c
t√

dk
(9)

where Mt is the set of feasible actions (i.e., the action_mask), and projections Kg
t , V

g
t , V

p
t = W g

kh,W
g
v h,W

p
v h are

precomputed once as cache. We note that Eq. (9) is usually referred to as the pointer mechanism (Vinyals et al., 2015).

Logits processing Finally, logits z are transformed into a probability distribution:
p = Softmax (C · tanh(z)) (10)

13

RouteFinder

where logits for infeasible actions can be masked, and C is the tanh clipping that serves in improving the exploration,
which we set to 10 according to Bello et al. (2016).

Action selection During training, we use the POMO multistart sampling which forces the first action to start from
all nodes to enhance diversity. During testing, we also employ multistart but with greedy selection (i.e., selecting the
maximum probability). Prior to the selection, a dihedral augmentation is also performed prior to encoding instance x in the
encoder, which enables exploring 8× as many solutions with 4 rotations × 2 flips. We note that additional augmentations
and techniques can be performed during inference, which can further boost evaluation performance (Kim et al., 2022; Ma
et al., 2022; Choo et al., 2022; Luo et al., 2024a), which we do not use for fairness of comparison but could greatly boost
RouteFinder performance.

D. Extended Related Works
Neural combinatorial optimization for VRPs NCO has emerged as a pivotal solution approach for VRPs and other
CO problems, leveraging advancements in machine learning and neural network architectures (Bengio et al., 2021; Peng
et al., 2021; Mazyavkina et al., 2021; Bogyrbayeva et al., 2022). The seminal work of Vinyals et al. (2015) using pointer
networks paved the way to apply these techniques to CO problems, where they now routinely find near-optimal solutions
for VRPs through further developments by Bello et al. (2016) and Nazari et al. (2018). Subsequent innovations, including
the transformer-based encoder with self-attention of Kool et al. (2019), POMO (Kwon et al., 2020) and Sym-NCO (Kim
et al., 2022), have significantly enhanced solution generation and improvement strategies for VRPs. These advancements
have been complemented by novel training algorithms, including learning with (partial) problem re-encoding at each step
(Bdeir et al., 2022; Drakulic et al., 2024; Luo et al., 2024a;b) and population-based approaches (Grinsztajn et al., 2024;
Hottung et al., 2024; Chalumeau et al., 2024).

Despite this progress, challenges remain in the form of requiring manual tuning for inductive bias, the need for problem-
specific models, and lack of generalization, which impact deployment and generalizability (Liu et al., 2023; Thyssens et al.,
2023). The field has also explored non-autoregressive solution construction methods that allow for better generalization,
such as predicting promising edges (Joshi et al., 2020; Fu et al., 2021; Kool et al., 2022; Sun and Yang, 2024), improvement
methods iteratively refining solutions through local adjustments or sequential rewriting (Hottung and Tierney, 2019; Ma
et al., 2021; 2022; 2024), and test-time adaptation methods (Hottung et al., 2021; Choo et al., 2022) which allow for
solution improvement given larger time budgets. Recent works additionally explore alternative ways of solving VRPs,
such as learning heuristics for Ant Colony Optimization (Ye et al., 2024b; Kim et al., 2024) and divide-and-conquer
methods (Kim et al., 2021; Li et al., 2021; Hou et al., 2022; Ye et al., 2024c; Chen et al., 2024).

E. Limitations & Future Works
Our approach represents an early attempt to learn across problem variants, but it does so at the expense of solution quality
compared to techniques trained on specific problem variants. Furthermore, autoregressive models have known scaling
issues, and even though they are able to solve real-world-sized problems effectively, the question remains how to best
integrate them into decompositions (Ye et al., 2024c) for solving larger problems. Finally, our foundation model ignores
asymmetric problem settings as in Kwon et al. (2021), which are highly relevant in real-world VRPs. For future work,
we intend to extend RouteFinder to support further variants of the vast VRP literature. We also intend to improve the
performance of the model with the goal of achieving parity with state-of-the-art, traditional OR solvers.

14

RouteFinder

F. Licenses for used assets
Table F.1 lists the used assets and their licenses. Our code is licensed under the MIT License.

Table F.1: Used assets and their licenses.

Type Asset License Usage

Code

POMO (Kwon et al., 2020) MIT License Evaluation
MTPOMO (Liu et al., 2024a) MIT License Evaluation
MVMoE (Zhou et al., 2024) MIT License Evaluation
RL4CO (Berto et al., 2024) MIT License Evaluation

ORTools (Perron and Didier) Apache-2.0 Evaluation
PyVRP (Wouda et al., 2024) MIT License Evaluation

Dataset CVRPLib (Lima et al., 2014) Available for any non-commercial use Testing

G. Additional Experiments
G.1. Experimental Setup Details

Hardware All training runs are conducted on NVIDIA A100 GPUs and take between 9 to 48 hours per model. Evaluation
runs are conducted on an AMD Ryzen Threadripper 3960X 24-core CPU with a single RTX 3090 GPU.

Classical Baselines Setup We use PyVRP (Wouda et al., 2024), an open-source, state-of-the-art heuristic VRP solver
built on top of HGS-CVRP (Vidal, 2022). PyVRP can solve all VRP variants considered in this study. We also use Google’s
OR-Tools (Perron and Furnon, 2023), an open-source exact and heuristic solver that relies on constraint programming and
commonly used in the ML community for its versatility to solve a large number of VRP variants. We use OR-Tools’ guided
local search procedure in this work. Both baseline methods solve each instance on a single CPU core with a time limit
of 10 and 20 seconds for instances with 50 and 100 nodes, respectively. We parallelize traditional solvers across 16 CPU
cores as in Kool et al. (2019).

Training We follow the setup in Kwon et al. (2020) and the recent works on MTPOMO (Liu et al., 2024a) and MVMoE
(Zhou et al., 2024). Each model is trained over 300 epochs, with each epoch containing 100,000 instances generated on
the fly. We use the Adam optimizer (Kingma and Ba, 2015) with a learning rate of 3 × 10−4 and a batch size of 256. At
epochs 270 and 295, the learning rate is reduced by a factor of 0.1. We observe that these settings enhance convergence
compared to using a learning rate of 1× 10−4. Our setup, however, is different from the one in Liu et al. (2024a) and Zhou
et al. (2024) in that we do not artificially restrict the variants with single attributes (such as only (B) or (TW)), but train
on all available data to enhance robustness. This is similar to how LLMs are trained on all available data, which is easily
available through our VRP environment.

G.2. Experiment Configuration

We show a non-exhaustive Hydra (Yadan, 2019) configuration template in Listing 1 for RouteFinder based on POMO.

15

RouteFinder

Listing 1 Template experiment.yaml configuration with the most notable hyperparameters for POMO-trained
RouteFinder.

Hydra Configuration
1 # Environment
2 env:
3 _target_: routefinder.envs.mtvrp.MTVRPEnv
4 generator_params:
5 num_loc: 100
6 variant_preset: "all"
7 use_combinations: True
8

9 # RL Algorithm and policy (env passed automatically)
10 model:
11 _target_: rl4co.models.model.RouteFinderBase
12 policy:
13 _target_: routefinder.models.policy.RouteFinderPolicy
14 embed_dim: 128
15 feedforward_hidden: 512

16 num_heads: 8
17 num_encoder_layers: 6
18 normalization: "instance"
19 tanh_clipping: 10.0
20 mask_logits: True
21 train_decode_type: "multistart_sampling"
22 test_decode_type: "multistart_greedy"
23 augment_fn: "dihedral"
24 batch_size: 256
25 train_data_size: 100_000
26 optimizer_kwargs:
27 lr: 3e-4
28 weight_decay: 1e-6
29 lr_scheduler:
30 "MultiStepLR"
31 lr_scheduler_kwargs:

32 milestones: [270, 295]
33 gamma: 0.1
34

35 seed: 69420
36

37 # Trainer
38 trainer:
39 gradient_clip_val: 1.0
40 max_epochs: 300
41

Inference For all ML approaches we roll out solutions greedily using multi-starts and 8× symmetric dihedral augmen-
tations of (Kwon et al., 2020), resulting in n× 8 solutions per instance.

G.3. Experimental Results

We present the main empirical results in full in Table G.1, deferred to the Appendix for space.

We report in Fig. G.2 the experiments on few-shot learning (finetuning) of RouteFinder. We compare our EAL against
1) zero-shot performance of the model, 2) fine-tuning only without adding any adapter layer, 3) adding new layers while
keeping the backbone fixed (i.e., the proposed method of Lin et al. (2024)) and 4) training from scratch. We train baselines
and EAL with the same setup as the full training, but for only 10 epochs in which 10K instances are sampled each.
Fig. G.2 shows that EAL can outperform baselines in few-shot learning. Remarkably, keeping the backbone model fixed
but changing projection layers significantly drops the performance in the first few epochs, even against zero-shot settings.

16

RouteFinder

Table G.1: Performance on 1000 test instances of trained VRPs. * represents the best solutions against which the other gaps are
computed. Best neural approach in bold; second underlined.

Solver
n = 50 n = 100

Solver
n = 50 n = 100

Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time

C
V

R
P

HGS-PyVRP 10.287 * 4.6m 15.543 * 9.2m

V
R

PT
W

HGS-PyVRP 16.032 * 4.6m 25.433 * 9.2m
OR-Tools 10.523 2.294 % 4.6m 16.361 5.263 % 9.2m OR-Tools 16.124 0.574 % 4.6m 25.923 1.927 % 9.2m
MTPOMO 10.458 1.662 % 2s 15.796 1.628 % 10s MTPOMO 16.570 3.356 % 2s 26.403 3.814 % 11s
MVMoE 10.414 1.235 % 3s 15.759 1.390 % 13s MVMoE 16.455 2.638 % 3s 26.374 3.700 % 14s
MVMoE-L 10.448 1.565 % 3s 15.777 1.506 % 12s MVMoE-L 16.521 3.050 % 3s 26.392 3.771 % 13s
RF-POMO 10.438 1.468 % 2s 15.836 1.885 % 10s RF-POMO 16.380 2.171 % 2s 26.294 3.385 % 11s
RF-MoE-L 10.424 1.332 % 2s 15.818 1.769 % 12s RF-MoE-L 16.381 2.177 % 3s 26.256 3.236 % 13s

O
V

R
P

HGS-PyVRP 6.494 * 4.6m 9.730 * 9.2m

V
R

PL

HGS-PyVRP 10.328 * 4.6m 15.637 * 9.2m
OR-Tools 6.555 0.939 % 4.6m 10.081 3.607 % 9.2m OR-Tools 10.570 2.343 % 4.6m 16.466 5.302 % 9.2m
MTPOMO 6.818 4.989 % 2s 10.239 5.231 % 10s MTPOMO 10.502 1.685 % 2s 15.905 1.714 % 12s
MVMoE 6.760 4.096 % 3s 10.195 4.779 % 13s MVMoE 10.457 1.249 % 3s 15.865 1.458 % 13s
MVMoE-L 6.796 4.650 % 2s 10.224 5.077 % 12s MVMoE-L 10.488 1.549 % 2s 15.885 1.586 % 10s
RF-POMO 6.706 3.265 % 2s 10.204 4.872 % 10s RF-POMO 10.482 1.491 % 2s 15.955 2.034 % 10s
RF-MoE-L 6.682 2.895 % 2s 10.165 4.471 % 12s RF-MoE-L 10.464 1.317 % 2s 15.924 1.835 % 12s

V
R

PB

HGS-PyVRP 9.688 * 4.6m 14.386 * 9.2m

O
V

R
PT

W

HGS-PyVRP 10.485 * 4.6m 16.900 * 9.2m
OR-Tools 9.829 1.455 % 4.6m 15.010 4.338 % 9.2m OR-Tools 10.497 0.114 % 4.6m 17.023 0.728 % 9.2m
MTPOMO 10.105 4.304 % 2s 15.012 4.351 % 10s MTPOMO 10.851 3.491 % 2s 17.525 3.698 % 11s
MVMoE 10.009 3.313 % 3s 14.948 3.907 % 13s MVMoE 10.760 2.623 % 3s 17.496 3.527 % 15s
MVMoE-L 10.069 3.933 % 2s 14.983 4.150 % 11s MVMoE-L 10.797 2.976 % 2s 17.516 3.645 % 14s
RF-POMO 10.012 3.344 % 2s 15.020 4.407 % 10s RF-POMO 10.651 1.583 % 2s 17.355 2.692 % 11s
RF-MoE-L 9.977 2.983 % 2s 14.980 4.129 % 11s RF-MoE-L 10.656 1.631 % 3s 17.330 2.544 % 14s

O
V

R
PB

HGS-PyVRP 6.897 * 4.6m 10.304 * 9.2m

O
V

R
PB

L

HGS-PyVRP 6.904 * 4.6m 10.310 * 9.2m
OR-Tools 6.940 0.623 % 4.6m 10.611 2.979 % 9.2m OR-Tools 6.949 0.652 % 4.6m 10.613 2.939 % 9.2m
MTPOMO 7.269 5.394 % 2s 10.901 5.794 % 10s MTPOMO 7.274 5.359 % 2s 10.903 5.752 % 10s
MVMoE 7.179 4.089 % 3s 10.846 5.260 % 13s MVMoE 7.191 4.157 % 3s 10.858 5.315 % 13s
MVMoE-L 7.239 4.959 % 2s 10.874 5.532 % 12s MVMoE-L 7.239 4.852 % 2s 10.886 5.587 % 12s
RF-POMO 7.108 3.059 % 2s 10.816 4.969 % 10s RF-POMO 7.117 3.085 % 2s 10.825 4.995 % 10s
RF-MoE-L 7.091 2.813 % 2s 10.773 4.552 % 12s RF-MoE-L 7.099 2.824 % 2s 10.781 4.568 % 12s

O
V

R
PB

LT
W

HGS-PyVRP 11.597 * 4.6m 19.005 * 9.2m

O
V

R
PB

T
W

HGS-PyVRP 11.590 * 4.6m 19.167 * 9.2m
OR-Tools 11.612 0.129 % 4.6m 19.198 1.016 % 9.2m OR-Tools 11.610 0.173 % 4.6m 19.314 0.767 % 9.2m
MTPOMO 11.963 3.156 % 2s 19.626 3.268 % 11s MTPOMO 11.957 3.167 % 2s 19.780 3.198 % 11s
MVMoE 11.847 2.156 % 3s 19.588 3.068 % 15s MVMoE 11.849 2.235 % 3s 19.752 3.052 % 15s
MVMoE-L 11.883 2.466 % 3s 19.605 3.157 % 14s MVMoE-L 11.880 2.502 % 2s 19.770 3.146 % 14s
RF-POMO 11.735 1.190 % 2s 19.429 2.231 % 11s RF-POMO 11.733 1.234 % 2s 19.579 2.150 % 11s
RF-MoE-L 11.743 1.259 % 3s 19.402 2.089 % 14s RF-MoE-L 11.737 1.268 % 3s 19.558 2.040 % 14s

O
V

R
PL

HGS-PyVRP 6.510 * 4.6m 9.709 * 9.2m

O
V

R
PL

T
W

HGS-PyVRP 10.455 * 4.6m 16.962 * 9.2m
OR-Tools 6.571 0.937 % 4.6m 10.047 3.481 % 9.2m OR-Tools 10.465 0.096 % 4.6m 17.100 0.814 % 9.2m
MTPOMO 6.839 5.054 % 2s 10.210 5.160 % 10s MTPOMO 10.803 3.329 % 2s 17.589 3.696 % 11s
MVMoE 6.777 4.101 % 3s 10.169 4.738 % 13s MVMoE 10.718 2.516 % 3s 17.553 3.484 % 15s
MVMoE-L 6.803 4.501 % 2s 10.199 5.047 % 12s MVMoE-L 10.750 2.822 % 3s 17.577 3.626 % 14s
RF-POMO 6.727 3.333 % 2s 10.176 4.810 % 10s RF-POMO 10.611 1.492 % 2s 17.429 2.753 % 11s
RF-MoE-L 6.700 2.919 % 2s 10.135 4.388 % 12s RF-MoE-L 10.617 1.549 % 3s 17.401 2.588 % 14s

V
R

PB
L

HGS-PyVRP 9.688 * 4.6m 14.373 * 9.2m

V
R

PB
LT

W

HGS-PyVRP 18.361 * 4.6m 29.026 * 9.2m
OR-Tools 9.820 1.363 % 4.6m 15.084 4.947 % 9.2m OR-Tools 18.422 0.332 % 4.6m 29.830 2.770 % 9.2m
MTPOMO 10.112 4.377 % 2s 15.023 4.522 % 10s MTPOMO 18.841 2.614 % 2s 30.232 4.155 % 11s
MVMoE 10.018 3.406 % 3s 14.951 4.021 % 13s MVMoE 18.715 1.928 % 3s 30.216 4.100 % 15s
MVMoE-L 10.080 4.046 % 2s 14.993 4.314 % 11s MVMoE-L 18.773 2.244 % 3s 30.223 4.124 % 13s
RF-POMO 10.026 3.489 % 2s 15.030 4.571 % 10s RF-POMO 18.628 1.454 % 2s 30.094 3.679 % 11s
RF-MoE-L 9.992 3.138 % 2s 14.982 4.237 % 12s RF-MoE-L 18.622 1.421 % 3s 30.060 3.562 % 13s

V
R

PB
T

W

HGS-PyVRP 18.167 * 4.6m 29.000 * 9.2m

V
R

PL
T

W

HGS-PyVRP 15.951 * 4.6m 25.678 * 9.2m
OR-Tools 18.374 1.139 % 4.6m 29.964 3.324 % 9.2m OR-Tools 16.036 0.533 % 4.6m 26.156 1.862 % 9.2m
MTPOMO 18.797 3.468 % 2s 30.325 4.569 % 11s MTPOMO 16.480 3.316 % 2s 26.684 3.918 % 11s
MVMoE 18.684 2.846 % 3s 30.319 4.548 % 15s MVMoE 16.368 2.614 % 3s 26.655 3.805 % 14s
MVMoE-L 18.760 3.264 % 2s 30.323 4.562 % 14s MVMoE-L 16.437 3.047 % 3s 26.674 3.879 % 13s
RF-POMO 18.589 2.323 % 2s 30.181 4.072 % 11s RF-POMO 16.303 2.207 % 2s 26.572 3.482 % 11s
RF-MoE-L 18.585 2.301 % 3s 30.157 3.990 % 13s RF-MoE-L 16.298 2.175 % 3s 26.533 3.330 % 13s

17

RouteFinder

Conversely, fine-tuning and EAL can preserve the previous information, thus avoiding performance drops, with EAL
converging the fastest.

Table G.2 reports an ablation study across tasks of proposed RouteFinder components, where each effectively improves
performances.

Table G.3: Results on large-scale CVRPLIB instances from the X set. All models are only trained on the uniformly distributed data
with the size n = 100 and evaluated via greedy rollouts. Results for methods with † are drawn from Zhou et al. (2024), models trained
with single features excluding feature compositions (except for OVRPTW). Training on multiple variants enhances generalization across
models.

Set-X POMO† MTPOMO † MVMoE† MVMoE-L† MTPOMO MVMoE-L MVMoE RF-POMO

Instance Opt. Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap

X-n502-k39 69226 75617 9.232% 77284 11.640% 73533 6.222% 74429 7.516% 77522 11.984% 76687 10.778% 74318 7.356% 76004 9.791%

X-n513-k21 24201 30518 26.102% 28510 17.805% 32102 32.647% 31231 29.048% 28395 17.330% 28255 16.751% 29419 21.561% 28527 17.875%

X-n524-k153 154593 201877 30.586% 192249 24.358% 186540 20.665% 182392 17.982% 170240 10.121% 172270 11.435% 173869 12.469% 174508 12.882%

X-n536-k96 94846 106073 11.837% 106514 12.302% 109581 15.536% 108543 14.441% 104049 9.703% 104205 9.868% 105737 11.483% 104871 10.570%

X-n548-k50 86700 103093 18.908% 94562 9.068% 95894 10.604% 95917 10.631% 105699 21.913% 102221 17.902% 103894 19.832% 101196 16.720%

X-n561-k42 42717 49370 15.575% 47846 12.007% 56008 31.114% 51810 21.287% 48994 14.694% 47908 12.152% 50151 17.403% 49539 15.970%

X-n573-k30 50673 83545 64.871% 60913 20.208% 59473 17.366% 57042 12.569% 58647 15.736% 63498 25.309% 59644 17.704% 56851 12.192%

X-n586-k159 190316 229887 20.792% 208893 9.761% 215668 13.321% 214577 12.748% 213955 12.421% 212127 11.460% 207459 9.008% 210637 10.678%

X-n599-k92 108451 150572 38.839% 120333 10.956% 128949 18.901% 125279 15.517% 121936 12.434% 119793 10.458% 121214 11.768% 121424 11.962%

X-n613-k62 59535 68451 14.976% 67984 14.192% 82586 38.718% 74945 25.884% 69175 16.192% 69281 16.370% 72504 21.784% 69637 16.968%

X-n627-k43 62164 84434 35.825% 73060 17.528% 70987 14.193% 70905 14.061% 71289 14.679% 69520 11.833% 69909 12.459% 76403 22.906%

X-n641-k35 63682 75573 18.672% 72643 14.071% 75329 18.289% 72655 14.090% 74013 16.223% 70250 10.314% 71854 12.833% 70401 10.551%

X-n655-k131 106780 127211 19.134% 116988 9.560% 117678 10.206% 118475 10.952% 117581 10.115% 130266 21.995% 121573 13.854% 125846 17.855%

X-n670-k130 146332 208079 42.197% 190118 29.922% 197695 35.100% 183447 25.364% 169786 16.028% 169561 15.874% 169681 15.956% 169553 15.869%

X-n685-k75 68205 79482 16.534% 80892 18.601% 97388 42.787% 89441 31.136% 78240 14.713% 79620 16.736% 83123 21.872% 79617 16.732%

X-n701-k44 81923 97843 19.433% 92075 12.392% 98469 20.197% 94924 15.870% 93681 14.353% 90621 10.617% 91378 11.541% 89327 9.038%

X-n716-k35 43373 51381 18.463% 52709 21.525% 56773 30.895% 52305 20.593% 49944 15.150% 50120 15.556% 52253 20.474% 48106 10.912%

X-n733-k159 136187 159098 16.823% 161961 18.925% 178322 30.939% 167477 22.976% 155223 13.978% 153501 12.713% 158140 16.120% 158791 16.598%

X-n749-k98 77269 87786 13.611% 90582 17.229% 100438 29.985% 94497 22.296% 87992 13.877% 87148 12.785% 90387 16.977% 86630 12.115%

X-n766-k71 114417 135464 18.395% 144041 25.891% 152352 33.155% 136255 19.086% 131245 14.708% 130967 14.465% 131081 14.564% 127796 11.693%

X-n783-k48 72386 90289 24.733% 83169 14.897% 100383 38.677% 92960 28.423% 84553 16.808% 84058 16.125% 89170 23.187% 81011 11.915%

X-n801-k40 73305 124278 69.536% 85077 16.059% 91560 24.903% 87662 19.585% 93004 26.873% 85231 16.269% 88535 20.776% 85453 16.572%

X-n819-k171 158121 193451 22.344% 177157 12.039% 183599 16.113% 185832 17.525% 180986 14.460% 180550 14.185% 177188 12.058% 181984 15.092%

X-n837-k142 193737 237884 22.787% 214207 10.566% 229526 18.473% 221286 14.220% 217954 12.500% 216751 11.879% 217447 12.238% 215919 11.450%

X-n856-k95 88965 152528 71.447% 101774 14.398% 99129 11.425% 106816 20.065% 100249 12.684% 102714 15.454% 106998 20.270% 111865 25.740%

X-n876-k59 99299 119764 20.609% 116617 17.440% 119619 20.463% 114333 15.140% 114211 15.017% 117081 17.908% 113637 14.439% 111835 12.624%

X-n895-k37 53860 70245 30.421% 65587 21.773% 79018 46.710% 64310 19.402% 68084 26.409% 65014 20.709% 68888 27.902% 63392 17.698%

X-n916-k207 329179 399372 21.324% 361719 9.885% 383681 16.557% 374016 13.621% 369221 12.164% 361855 9.927% 362826 10.221% 359112 9.093%

X-n936-k151 132715 237625 79.049% 186262 40.347% 220926 66.466% 190407 43.471% 161290 21.531% 163037 22.847% 169127 27.436% 167240 26.014%

X-n957-k87 85465 130850 53.104% 98198 14.898% 113882 33.250% 105629 23.593% 107345 25.601% 105951 23.970% 109249 27.829% 110441 29.224%

X-n979-k58 118976 147687 24.132% 138092 16.067% 146347 23.005% 139682 17.404% 143799 20.864% 134406 12.969% 138048 16.030% 130503 9.689%

X-n1001-k43 72355 100399 38.759% 87660 21.153% 114448 58.176% 94734 30.929% 89986 24.367% 87594 21.061% 91289 26.168% 82558 14.101%

Avg. Gap 29.658% 16.796% 26.408% 19.607% 16.114% 15.336% 17.190% 14.972%

Table G.2: Ablation of RouteFinder components.

Method Gap ↓
w/o global attribute embedding 3.771 ± 0.113%

w/o mixed batch training 3.750 ± 0.121%

RouteFinder 3.545 ± 0.111%

In Fig. G.1 we report loss and costs curves for the ablation
experiments. Our novel sampling technique leads to much
more stable training and to a lower overall loss.

In Fig. G.2 we report additional results for our zero and
few shot generalization experiment described in Section 5.3.
Across all considered problem variants, EAL shows excel-
lent performance.

18

RouteFinder

0 2000 4000 6000
Steps

0.0

0.5

1.0

1.5

2.0
L

os
s

Training Loss

RouteFinder w/o Sampling

RouteFinder

0 2000 4000 6000
Steps

14

16

18

20

22

24

C
os

t

Training Cost

RouteFinder w/o Sampling

RouteFinder

Figure G.1: Training loss and cost curve about the ablation study with and without sampling. We note how training with single-variant
attributes biases the optimization toward lower costs - while this is, in fact, not the case in multi-task learning. The proposed sampling
technique effectively stabilizes the optimization procedure.

0 2 4 6 8 10
Epochs

5.0

7.5

10.0

12.5

15.0

17.5

20.0

G
ap

to
H

G
S

(%
)

VRPMB

EAL
Zero-shot

Finetuning Only
New Layers Only

New Layers + Reinit

0 2 4 6 8 10
Epochs

5

10

15

20

25

G
ap

to
H

G
S

(%
)

OVRPMB

EAL
Zero-shot

Finetuning Only
New Layers Only

New Layers + Reinit

0 2 4 6 8 10
Epochs

2

4

6

8

10

12

14

G
ap

to
H

G
S

(%
)

VRPMBLTW

EAL
Zero-shot

Finetuning Only
New Layers Only

New Layers + Reinit

0 2 4 6 8 10
Epochs

2

4

6

8

10

12

14

G
ap

to
H

G
S

(%
)

OVRPMBTW

EAL
Zero-shot

Finetuning Only
New Layers Only

New Layers + Reinit

0 2 4 6 8 10
Epochs

5.0

7.5

10.0

12.5

15.0

17.5

20.0

G
ap

to
H

G
S

(%
)

VRPMBL

EAL
Zero-shot

Finetuning Only
New Layers Only

New Layers + Reinit

0 2 4 6 8 10
Epochs

2

4

6

8

10

12

14

G
ap

to
H

G
S

(%
)

OVRPMBLTW

EAL
Zero-shot

Finetuning Only
New Layers Only

New Layers + Reinit

0 2 4 6 8 10
Epochs

2

4

6

8

10

12

14

G
ap

to
H

G
S

(%
)

VRPMBLTW

EAL
Zero-shot

Finetuning Only
New Layers Only

New Layers + Reinit

0 2 4 6 8 10
Epochs

5

10

15

20

25

G
ap

to
H

G
S

(%
)

OVRPMBL

EAL
Zero-shot

Finetuning Only
New Layers Only

New Layers + Reinit

Figure G.2: Zero and few shot generalization to mixed (M) backhaul instances for 10 epochs with 10K instances per epoch. RF-POMO
with “-” and RF-MoE-L is denoted by “- -” linestyles. RouteFinder’s Efficient Adapter Layers (EAL) enable fast finetuning to novel
VRPs, even with new attributes that have never been seen by the model before.

19

	Introduction
	Related Works
	Vehicle Routing Problems
	The RouteFinder Recipe
	Unified VRP Environment
	Variant Sampling for Mixed Batch Training
	Global Attribute Embeddings
	Efficient Adapter Layers: Finetuning to Unseen Attributes

	Experiments
	Main Results
	Ablation Studies
	Generalization with EAL

	Conclusion
	Unified VRP Environment
	Attribute Details
	Data generation process
	Determining available actions

	Learning Neural Solvers for VRPs
	RouteFinder Model
	Multi-Head Attention
	Encoder
	Decoder

	Extended Related Works
	Limitations & Future Works
	Licenses for used assets
	Additional Experiments
	Experimental Setup Details
	Experiment Configuration
	Experimental Results

