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Abstract

In multi-agent reinforcement learning (MARL), achieving multi-task generalization
to diverse agents and objectives presents significant challenges. Existing online
MARL algorithms primarily focus on single-task performance, but their lack of
multi-task generalization capabilities typically results in substantial computational
waste and limited real-life applicability. Meanwhile, existing offline multi-task
MARL approaches are heavily dependent on data quality, often resulting in poor
performance on unseen tasks. In this paper, we introduce HyGen, a novel hybrid
MARL framework, Hybrid Training for Enhanced Multi-Task Generalization,
which integrates online and offline learning to ensure both multi-task generalization
and training efficiency. Specifically, our framework extracts potential general skills
from offline multi-task datasets. We then train policies to select the optimal
skills under the centralized training and decentralized execution paradigm (CTDE).
During this stage, we utilize a replay buffer that integrates both offline data and
online interactions. We empirically demonstrate that our framework effectively
extracts and refines general skills, yielding impressive generalization to unseen
tasks. Comparative analyses on the StarCraft multi-agent challenge show that
HyGen obtains superior performances across a broad range of tasks. Code is
available at https://github.com/Mr-Bright/HyGen.

1 Introduction

Multi-agent reinforcement learning (MARL) has drawn broad attention for addressing problems in
areas such as multi-robot systems [13, 35], video game AIs [24, 2], and autonomous driving [38].
Most existing MARL algorithms remain narrow, in that they focus on optimizing performance for
specific tasks [19, 30], resulting in a significant gap between their poor multi-task generalization
abilities and the variability of MARL tasks in real-world scenarios. Training specific agents from
scratch for each task using MARL algorithms remains very costly and inefficient. Therefore, develop-
ing a generalized multi-task MARL algorithm is crucial to address these inefficiencies and improve
scalability across diverse MARL tasks.
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Two significant obstacles currently limit generalization in multi-task MARL. First, the restrictive
model architectures in most MARL algorithms, characterized by fixed input and output dimensions
of their neural architectures, fail to accommodate the variability of inputs and outputs across different
tasks [11]. Recent online multi-task MARL works primarily focus on training across a predefined set
of tasks simultaneously [23, 14] or on fine-tuning pre-trained policies for specific target tasks [11,
41, 25]. Although these approaches utilize a universal input network architecture to address the
first obstacle and show promising performance on certain tasks, they fail to resolve another issue
of significantly varying policies across different tasks. This results in their learned policies being
limited to training tasks and unable to transfer knowledge from source to unseen tasks without further
fine-tuning. Offline multi-task MARL [39] involves extracting skills from static datasets and training
policies that select and reuse these skills in new tasks, underscoring the potential of leveraging
generalizable skills from offline data. However, the effectiveness of these offline methods is often
sensitive to the quality of their training dataset. Specifically, when the dataset lacks sufficient optimal
or diverse trajectories, agents struggle to learn general skills and optimal policies for source tasks,
limiting their performance and generalization capabilities in new tasks. Recent advancements in
hybrid reinforcement learning (RL) [6, 10, 33] have shown that extracting skills or behaviors from
offline data and then reusing them in online single-agent environments offers a potential solution
to addressing issues existing in currently purely online or offline multi-task MARL approaches.
However, applications of such frameworks in multi-agent systems remain rare.

Figure 1: The overall framework of HyGen is structured as follows: (1) Initially, HyGen learns a
global trajectory encoder and action decoders from multi-task data to discover general skills applicable
across different tasks. (2) HyGen then learns high-level policies utilizing a hybrid replay buffer that
incorporates both offline data and online interactions, essentially refining the skills discovered in the
initial stage. (3) During zero-shot execution, HyGen selects and sequences these skills based on a
high-level policy and decodes specific actions through the action decoder.

In this paper, we propose HyGen: Hybrid Training for Enhanced Multi-Task Generalization, a
novel hybrid multi-task MARL approach combining both online environment interaction and offline
datasets, as depicted in Figure 1. HyGen first extracts general skills from multi-task offline datasets,
and then relies on hybrid training to learn generalizable policies for selecting optimal skills. These
general skills and trained policies can then be applied to unseen tasks. Specifically, HyGen first
extracts general skills using a global trajectory encoder and action encoders. The global trajectory
encoder extracts a set of general skills common across different tasks from multi-task offline datasets,
while the action decoders learn to delineate different agent actions with the discovered skills. We then
train policies to select the optimal skills to maximize the global return via the centralized training and
decentralized execution paradigm (CTDE). During this stage, we utilize a replay buffer that integrates
both offline data and online interaction experiences, refining the action decoders to make our skills
unconstrained by prior data. Our proposed hybrid training paradigm is unique in how it integrates
online interactions with offline data. Unlike RLPD [1], which uses a fixed ratio to sample data from
both the online replay buffer and the offline data buffer, our method employs a linearly decreasing
ratio. This strategy initially leverages the efficiency of offline learning and progressively incorporates
the diversity of online interactions for exploration. Our refined skills during hybrid training are
significant compared to previous works in offline multi-task multi-agent skill discovery [39, 17],
where skills are constrained to offline data. We finally present empirical results on the Starcraft
Multi-Agent Challenge (SMAC), where we show that HyGen achieves remarkable generalization to
unseen tasks by discovering general skills and learning high-quality policies, outperforming existing
state-of-the-art multi-task MARL methods.
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2 Related Works

2.1 Multi-task MARL

Multi-task MARL methods are more adaptable and efficient than single-task MARL due to knowledge
reuse [28] across various tasks. However, reusing knowledge across different tasks comes with its own
set of challenges, e.g., varying input and output dimensions, which requires networks with flexible
structures, such as self-attention mechanisms [11, 41, 39]. The MT-MARL approach described
in [23] distills single-task policies into a unified policy that excels across multiple related tasks.
REFIL [14] employs randomized entity-wise factorization for multi-task learning. However, these
online methods require simultaneous training across a predefined set of tasks, incurring high costs
of online interactions. UPDeT [11] leverages transformer-based value networks to accommodate
changes in populations and inputs but requires additional online fine-tuning for new tasks. Offline
multi-task skill-based MARL methods such as ODIS [39] and HiSSD [17], also utilize transformer-
based networks. While these approaches can generalize to unseen tasks without additional fine-tuning
by reusing skills, their performance is typically limited by the quality of the dataset. Achieving great
generalization ability in unseen tasks remains a challenge.

2.2 Skill Discovery in MARL

Skill discovery is an effective approach for tackling complex tasks due to its ability to identify and
build a library of skills, often without relying on extrinsic rewards [5]. Recently, single-agent skill
learning methods have been extended to MARL. Most skill-based MARL approaches [36, 7, 12,
18, 37] develop skills online to improve coordination. However, they do not emphasize reusing
these skills for unseen tasks. ODIS [39] and VO-MASD [3] extract transferable skills from offline
multi-task data, whereas HiSSD [17] jointly learns common and task-specific skills. However, the
skills discovered by purely offline methods are limited to the dataset from which they are derived
and often perform poorly on unseen tasks when the dataset quality is only moderate. Discovering
high-quality reusable skills remains a significant challenge.

2.3 Hybrid Reinforcement Learning

Hybrid RL [29] has been popular recently since it can take advantage of both purely online and offline
methods. Recent efforts have focused on developing offline-to-online RL, a promising paradigm to
reuse offline discovered skills [6] or offline learned behaviors [10, 40]. Other studies [16, 29, 21]
have concentrated on adapting Q-learning to hybrid settings. Notably, research [16, 1] on integrating
offline data and online interactions into a hybrid buffer aligns closely with our approach. The work
in [16] introduces a balanced replay scheme that effectively utilizes online samples by leveraging
relevant, near-on-policy offline samples. RLPD [1] employs symmetric sampling, where each batch
comprises 50% data from the online replay buffer and 50% from the offline data buffer. However, the
application of hybrid settings to multi-agent environments is still relatively unexplored.

3 Background

Recent multi-task MARL works consider policy learning among two or several cooperative multi-
agent tasks. In our settings, we focus on a multi-agent task set {T } which contains tasks with varying
team sizes. A multi-agent task Ti ∈ {T } can be described as a decentralized partially observable
Markov decision process (Dec-POMDP) [20] consisting of a tuple G = ⟨I, S,A, P,Ω, O,R, γ⟩.
i ∈ I ≡ {1, . . . , n} is one of the agents and s ∈ S describes the global state of the environment. At
each time step, each agent i ∈ I chooses an action ai ∈ A, forming a joint action a ∈ A ≡ An.
This causes a transition on the environment according to the state transition function P (s′ | s,a) :
S × A × S → [0, 1]. All agents would receive the reward according to the reward function
r(s,a) : S × A → R and γ ∈ [0, 1) is a discount factor. In a partially observable scenario, the
agents could not get the global state s but draw their individual observations o ∈ Ω according to
the observation function O(s, i) : S × I → Ω. τi ∈ τ denotes the trajectory of agent i which is an
action-observation history

(
o1i , a

1
i , . . . , o

t−1
i , at−1

i , oti
)
.

The task set {T } is divided into subsets for source tasks {T source} and target tasks {T target}.
Source tasks involve a combination of online interaction environments Gsource and offline datasets
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D, which consist of pre-collected agent trajectories τ = (s,o,a, r, s′,o′). These datasets are crucial
for training agents to generalize across various scenarios. Upon successful training, these agents are
then deployed directly to handle target tasks {T target} in a zero-shot setting, where they perform
without any additional training or fine-tuning. This approach tests the agents’ ability to apply learned
skills to new and potentially more complex tasks, evaluating their adaptability and generalization
capabilities.

4 Hybrid Training for Enhanced Multi-Task Generalization

In this section, we detail HyGen designed to enhance multi-task generalization through hybrid training.
The algorithm is structured into two main components: 1) unsupervised discovery of general skills
from multi-task offline datasets D and 2) hybrid high-level policy learning to refine and sequence the
discovered skills.

4.1 Unsupervised Offline General Skill Discovery

Figure 2: Training framework during the general
skill discovery phase of HyGen. The global trajec-
tory encoder extracts a set of general skills com-
mon across different tasks from multi-task offline
datasets, while the action decoders learn to delin-
eate different agent actions within the discovered
skills. The global trajectory encoder uses a task de-
composer and multi-head self-attention to handle
varying input from different tasks.

Useful skills are expected to be general latent
knowledge across different tasks in MARL. We
assume the skill zi for agent i is a discrete vari-
able from a finite skill set Z , where the number
of skills |Z| is a hyper-parameter. In this project,
We use a pair of VAE-style [9] networks, which
contain a multi-head attention global trajectory
encoder and an action decoder to abstract the
skills from multi-task offline datasets. In terms
of basic functions, the global trajectory encoder
q(zi|s,a, i) extracts the information containing
the global state s and joint action a among
each agent in the multi-task offline trajectories
datasets D into general skill zi for agent i. There
are different lengths of state s and joint action
a across different tasks. To handle this issue
we reuse the task decompose module in UPDet
[11]. After the decomposing, (s,a) in differ-
ent tasks is transferred into a group of entities
e = {e1agent, e2agent, . . . , e1enemy, e

2
enemy, . . . }

with same entity length. Because each entity
ei only contains its own relevant environment
information, we use N -head self-attention to
calculate the mutual influence between the en-
tities containing all agents and the substitute entities. For each head i, we first compute separate
query, key, and value projections: Qi = MLP i

Q(e),Ki = MLP i
K(e), Vi = MLP i

V (e), then we
can calculate the separate attention:

Attni(e) = softmax

(
QiK

T
i√

dKi

)
Vi, dKi

= dim(Ki) (1)

The final attention of whole entities is Attntotal = concat{Attn1, Attn2, . . . , Attnn}, n = N .
Since self-attention computing does not change the relative position of entities in the group,
we can extract the attention embedding for each agent to compute the general skill zi =
MLPe(Attnagenti), Attnagenti ∈ Attntotal. It is noted that since each head in self-attention
can learn to focus on different features of the input data and capture information from different
representational subspaces [32], we can regard the latent information abstracted by each head as one
skill. Therefore in this project, we set the number of skills |Z| equal to the number of attention heads
N .

After the global trajectory encoder outputs skills, we use an action decoder to convert the skill obtained
for each agent into corresponding task-specific actions. Since task-specific actions are executed in
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decentralized situations, acquiring global information and backward trajectory is impractical for
individual agents. Therefore, the action decoder predicts a task-specific action âi ∼ p (· | τi, zi)
using an agent i’s local information τi and the chosen skill zi output by the encoder.

Following β-VAE [9], The training objective is to maximize the likelihood of the real action ai
from data, along with the KL divergence [8] between q(zi|s,a, i) and a uniform prior p̃ (zi) as a
regularization. The regularization with a uniform distribution of cooperative strategies can prevent
the state encoder from choosing similar skills for all inputs, thereby helping to discover distinguished
skills. The final objective reads:

LVAE (θs, ϕ) = −Eτ∼D

[
n∑

i=1

Eq(zi|s,a,i)

[
log p (ai | τi, zi)

]
− βDKL

(
q(·)∥p̃(·)

)]
(2)

where θs and ϕ denote the parameters of the global trajectory encoder and the action decoder respec-
tively, and β is the regularization coefficient. Figure 2 summarizes the skill discovery processing.

4.2 Hybrid High-level Policy Learning

Figure 3: Training framework during the high-
level policy learning phase of HyGen. The hy-
brid buffer contains trajectories from the online
buffer R and the offline dataset D. The observa-
tion encoder extracts representations from local
information. Meanwhile, the mixing network em-
ploys self-attention to accommodate varying input
dimensions across different tasks.

After discovering general skills from multi-task
offline datasets, we further learn a general high-
level policy to use these skills with hybrid train-
ing. In this work, we use a hybrid sampling
approach, fully utilizing trajectory data gen-
erated by online environment exploration and
existing trajectories in offline datasets during
the data sampling process. Contrasting with
[1, 6, 10, 33] which either entirely disregard
offline data or blend offline and online data uni-
formly, our approach dynamically adjusts the
proportion of data used during training. Given
that the model parameters are initially near-
random, leveraging offline trajectories predom-
inantly at the outset provides a stable starting
point for learning. As the model’s performance
improves, it increasingly benefits from explor-
ing the online environment, thereby gradually
transitioning to a higher proportion of online
data to refine policies. When the model perfor-
mance is close to the performance bottleneck of
offline trajectories, the model mainly relies on
exploration in the online environment to obtain better policies. Online exploration trajectories account
for the majority of the training batch, and offline trajectories maintain a small proportion. In practice,
We implement a linear decay scheme for adjusting the hybrid ratio Rh, defined by the following
equation:

Rh = max(Rend,
(Rstart −Rend) · t

N
) (3)

where Rstart is the initial hybrid ratio value, Rend is the final and minimum hybrid ratio value, N is
the total number of time steps over which the hybrid ratio will decrease, and t is the current time step.
Each training batch comprises Rh × B offline trajectories from dataset D and (1−Rh)× B online
trajectories from replay buffer R, where B is the batch size.

Our approach utilizes a QMIX-style value-based MARL method, as delineated by [26], integrated
within the Centralized Training with Decentralized Execution (CTDE) paradigm [22] to train the
high-level policy. Similar to QMIX, it tries to learn a global value function Qtot(τ , z) that can be
decomposed into agents’ individual value functions Q1 (τ1, z1) , . . . , Qn (τn, zn). This global value
function Qtot(τ , z) can be trained with the squared TD loss as follows:

LTD (θv) = E(τ ,τ ′)∼D,R

[(
r + γmax

z′
Qtot

(
τ ′, z′; θ−v

)
−Qtot (τ , z; θv)

)2]
(4)
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Following previous MARL methods [26, 11], we use θv to denote all parameters in the value networks
and the action decoder, θ−v to denote parameters of target networks. To address potential performance
bottlenecks from sub-optimal offline data in the previous skill discovery phase, which could impair
cross-task performance, we incorporate the action decoder in the hybrid training stage, enhancing skill
application. When estimating Q-targets, we choose the joint general skills z′ by selecting each skill z′i
with maximal individual Q-value Qi (τ

′
i , z

′
i) to avoid search in the large joint skills space, as the same

as [30, 26]. Finally, We adopt a mixing network to ensure that it can satisfy the individual-global-max
(IGM) [34] principle which promises the action selection with individual value functions is accurate.

One challenge that remains is that we cannot directly get skills information since there are only state
and joint actions recorded in both offline datasets and online replay buffers. Reusing skills calculated
by the pre-trained global trajectory encoder is obtained with global information, which does not
follow CTDE. Consequently, we train a local observation encoder q̂(· | τ if ), leveraging only agent i’s
local trajectory, comprising its specific action sequences and local observations, to infer skills. The
output distribution is expected to be similar to the pre-trained global trajectory encoder q(zi|s,a, i).
We calculate the KL-divergence [8] between them to update the local observation encoder as the
consistent loss Lc below:

Lc(ϕo) =

n∑
i=1

Eτ∼D,R[DKL(q̂(· | τ if ) || q(zi|s,a, i))] (5)

where ϕo denotes parameters of the local observation encoder in the individual value network.

The out-of-distribution (OOD) problem refers to the challenge of dealing with situations or state-
action pairs that were not encountered in the pre-collected dataset on which the agent is trained and it
directly impacts the reliability and generalization of the trained models to new, unseen environments.
To tackle the out-of-distribution issue, we adopt the popular conservative Q-learning (CQL) [15]
method. Different from purely offline RL, in this project, the use of offline data changes according
to Rh. Therefore, when using CQL loss, Rh is used as a coefficient to control the impact of CQL
on the learning process. To be concise, the total loss term in the high-level policy learning phase is
presented as

Ltotal(θv, ϕo) = LTD (θv) + α · Lc(ϕo) + η ·Rh · LCQL (6)

where α and η are two coefficients.

Zero-shot Execution In zero-shot decentralized executions for test tasks, local information is
employed to compute Q-values for each skill through individual value networks Qi (τi, zi), with
the optimal skill being selected based on the highest Q-value. The action decoder then utilizes this
skill in conjunction with agents’ local trajectories to formulate actions tailored to the specific task,
enabling effective zero-shot execution.

5 Experiments

In this section, we assess HyGen’s multi-task generalization capabilities, specifically focusing on
zero-shot generalization across unseen tasks. Our experiments utilize custom-designed task sets from
the SMAC [27], where we employ offline data of varied quality integrated with corresponding online
interaction environments. We benchmark HyGen against purely online and offline methods across
multiple source tasks, further examining its transfer capabilities in multi-scenario zero-shot transfer
tasks. Experimental outcomes demonstrate that HyGen significantly outperforms purely online and
offline methods.

5.1 Performances on Multi-task Generalization

5.1.1 Baselines

We compare HyGen with state-of-the-art multi-task MARL methods. Given the scarcity of such
methods, we include baselines developed by ODIS [39]:

• BC-t [31, 39], a transformer-based behavior cloning method sharing the same structure as
ODIS [39].
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• BC-r [31, 39], a transformer-based behavior cloning method that incorporates return-to-go
information [4] in addition to the features of BC-t.

• UPDeT-m [11, 39], a transformer-based universal MARL model using the transformer-based
mixing network of ODIS [39] to facilitate simultaneous multi-task learning.

• UPDeT-l [11, 39], a transformer-based universal MARL model that utilizes the linear
decomposable network from VDN [30] for multi-task learning.

• ODIS [39], an offline multi-task MARL method capable of discovering general skills and
learning generalizable policies, thus enabling zero-shot generalization to unseen tasks.

• HiSSD [17], an offline multi-task MARL method that jointly learns common and task-
specific skills.

• QMIX [26], a prevalent online MARL baseline operating under the CTDE paradigm,
lacks zero-shot generalization capabilities. However, it can still be utilized to validate the
efficiency of HyGen.

For our experiments in SMAC, we use the marine-hard and stalker-zealot task sets and both expert
and medium offline datasets as defined and collected by ODIS [39], to ensure fairness. Those task
sets include three source tasks for training and multiple unseen tasks for evaluation. Agents are
required to control various units, such as marines and stalkers, with the number of controllable agents
and target enemies differing across tasks. Detailed descriptions of the task sets and properties of the
offline datasets are available in Appendix A.

5.1.2 Experimental Results

Table 1: Average test win rates of the final policies in the task set marine-hard and stalker-zealot
with different data qualities, averaged over five random seeds. The results for BC-best represent
the highest test win rates between BC-t and BC-r, while those for UPDeT-best represent the highest
test win rates between UPDeT-l and UPDeT-m. For ease of reference, asymmetric task names are
abbreviated, with ’9m10m’ denoting the SMAC map ’9m_vs_10m’.

Task Marine-Hard-Expert Marine-Hard-Medium
BC-best UPDeT-best ODIS HiSSD HyGen (ours) BC-best UPDeT-best ODIS HiSSD HyGen (ours)

Source Tasks

3m 96.9 ± 4 82.1 ± 10 97.4 ± 2 99.5 ± 0 99.1 ± 1 65.4 ± 14 56.6 ± 14 85.9 ± 10 62.7 ± 6 91.5 ± 11
5m6m 50.4 ± 2 17.2 ± 28 53.9 ± 5 66.1 ± 7 61.2 ± 8 21.9 ± 3 26.4 ± 4 22.7 ± 7 26.4 ± 4 31.6 ± 7

9m10m 95.3 ± 1 26.6 ± 12 80.4 ± 8 95.5 ± 3 96.4 ± 3 63.8 ± 10 34.4 ± 13 78.1 ± 3 73.9 ± 2 79.2 ± 4
Unseen Tasks

4m 92.1 ± 3 33.0 ± 27 95.3 ± 3 99.2 ± 1 95.8 ± 4 48.8 ± 21 21.6 ± 17 61.7 ± 17 77.3 ± 10 91.4 ± 8
5m 87.1 ± 10 40.1 ± 25 89.1 ± 10 99.2 ± 1 99.5 ± 1 76.6 ± 14 77.4 ± 16 85.9 ± 11 88.4 ± 8 96.5 ± 6

10m 90.5 ± 3 54.7 ± 44 93.8 ± 2 98.4 ± 1 93.5 ± 5 56.2 ± 20 36.8 ± 20 61.3 ± 11 98.0 ± 0 96.4 ± 3
12m 70.8 ± 15 17.2 ± 28 58.6 ± 11 75.5 ± 20 85.2 ± 6 24.0 ± 10 4.0 ± 5 35.9 ± 8 86.4 ± 6 81.5 ± 14

7m8m 18.8 ± 3 0.8 ± 1 25.0 ± 15 35.3 ± 10 28.9 ± 12 1.6 ± 1 2.4 ± 2 28.1 ± 22 14.2 ± 10 24.5 ± 9
8m9m 15.8 ± 3 1.6 ± 1 19.6 ± 6 47.0 ± 6 25.7 ± 9 3.1 ± 3 3.1 ± 3 4.7 ± 2 15.3 ± 3 22.3 ± 10

10m11m 45.3 ± 11 0.8 ± 1 42.2 ± 7 86.3 ± 15 57.2 ± 13 19.7 ± 8 4.0 ± 3 29.7 ± 15 43.6 ± 5 47.2 ± 13
10m12m 1.0 ± 1 0.0 ± 0 1.6 ± 1 14.5 ± 9 13.8 ± 4 0.0 ± 0 0.0 ± 0 1.6 ± 1 0.6 ± 0 5.2 ± 2
13m15m 0.0 ± 0 0.0 ± 0 2.3 ± 2 1.3 ± 2 9.5 ± 5 0.6 ± 1 0.0 ± 0 1.6 ± 1 1.4 ± 2 9.3 ± 6

Task Stalker-Zealot-Expert Stalker-Zealot-Medium

Source Tasks

2s3z 93.1 ± 4 53.1 ± 39 97.7 ± 2 95.2 ± 1 97.1 ± 3 48.8 ± 9 35.0 ± 23 49.2 ± 8 32.3 ± 11.7 73.5 ± 11
2s4z 78.1 ± 8 48.4 ± 24 60.9 ± 6 79.8 ± 6 86.2 ± 10 12.5 ± 8 28.8 ± 4 32.8 ± 12 17.0 ± 2.2 51.3 ± 8
3s5z 92.5 ± 4 40.6 ± 11 87.5 ± 9 92.8 ± 5 88.9 ± 13 24.4 ± 12 25.6 ± 24 28.9 ± 6 24.4 ± 7.9 52.6 ± 13

Unseen Tasks

1s3z 45.6 ± 23 26.6 ± 25 76.6 ± 3 81.6 ± 15.2 84.1 ± 5 21.9 ± 37 33.1 ± 18 41.4 ± 18 44.2 ± 9.9 54.2 ± 8
1s4z 60.0 ± 32 37.5 ± 31 17.2 ± 10 42.0 ± 26.1 44.5 ± 9 6.2 ± 7 35.0 ± 7 50.7 ± 7 18.1 ± 11.0 67.3 ± 7
1s5z 45.6 ± 26 29.7 ± 26 2.5 ± 2 16.7 ± 12.3 47.2 ± 13 3.1 ± 2 13.1 ± 11 14.1 ± 8 2.5 ± 2.2 34.2 ± 13
2s5z 75.6 ± 11 27.3 ± 19 27.3 ± 6 79.7 ± 2.2 72.4 ± 15 14.4 ± 9 17.5 ± 9 32.0 ± 4 11.3 ± 3.7 43.7 ± 5
3s3z 80.6 ± 9 49.2 ± 25 89.1 ± 5 88.0 ± 4.5 93.3 ± 6 45.6 ± 14 24.4 ± 28 23.4 ± 9 21.9 ± 10.7 41.3 ± 7
3s4z 92.5 ± 5 59.4 ± 16 96.9 ± 2 88.1 ± 9.0 93.9 ± 5 40.0 ± 19 28.8 ± 31 50.8 ± 15 17.2 ± 4.5 71.6 ± 9
4s3z 67.5 ± 19 50.8 ± 24 64.1 ± 13 88.6 ± 4.1 74.9 ± 13 28.8 ± 26 11.2 ± 18 13.3 ± 7 31.9 ± 23.2 52.6 ± 13
4s4z 53.1 ± 18 41.4 ± 16 79.7 ± 10 73.4 ± 5.2 74.1 ± 16 20.0 ± 12 1.9 ± 2 12.5 ± 7 13.2 ± 6.5 44.2 ± 15
4s5z 40.6 ± 19 28.1 ± 17 86.7 ± 12 65.6 ± 3.7 89.9 ± 7 14.4 ± 8 5.6 ± 8 7.0 ± 4 4.5 ± 1.3 28.1 ± 13
4s6z 48.1 ± 23 10.9 ± 7 88.3 ± 8 68.4 ± 4.9 86.1 ± 12 3.8 ± 3 2.5 ± 2 1.6 ± 1 0.9 ± 0.9 23.8 ± 14

We conduct experiments using the task sets with two different data qualities: expert and medium. We
train baselines and HyGen with offline data only from three source tasks and online environments
respectively and evaluate them in a wide range of unseen tasks. To ensure fairness, we train each
method with the same 35k training steps. Detailed hyper-parameters of the experiments are available
in Appendix B. The average test win rates of the marine-hard task set and the stalker-zealot task
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set are shown in Table 1. We find that HyGen generally outperforms other baselines in both source
tasks and unseen tasks. HyGen can discover general skills from multi-task data and reuse them with
high-level policies, resulting in superior and stable performance compared with UPDeT methods,
which cannot generalize well among different levels of tasks. We find that BC methods, ODIS, and
HiSSD sometimes present comparable performance to HyGen, particularly with expert datasets.
However, in real-world scenarios where non-expert data quality is more common, these purely offline
methods are hampered by data quality limitations. This results in less robust performance and weaker
cross-task generalization compared to HyGen, as clearly demonstrated by the training outcomes
on the medium dataset. In addition, HyGen significantly outperforms all other baselines in the
stalker-zealot task set, a more complex task set than the marine-hard one due to the diversity of
agents involved. We believe that this underscores HyGen’s superior performance on more intricate
maps.

Figure 4: Comparison of HyGen, QMIX, and
ODIS on the source task 3m.

We also compare the efficiency of HyGen with
the online MARL method QMIX and the of-
fline MARL method ODIS. As illustrated in
Figure 4, HyGen’s learning speed surpasses
QMIX’s, demonstrating greater sample effi-
ciency. Initially, HyGen and ODIS exhibit com-
parable learning speeds, but after 8k steps, Hy-
Gen becomes more efficient than ODIS. We be-
lieve this improvement can be attributed to the
increasing significance of online interactions,
which continually enhance performance over
time, unlike purely offline MARL methods that
eventually encounter dataset limitations.

5.2 Ablation Study

Table 2: Ablation studies on HyGen. We report average test win rates of the final policies in the task
set marine-hard with medium data qualities, averaged over five random seeds. For ease of reference,
asymmetric task names are abbreviated, with ’9m10m’ denoting the SMAC map ’9m_vs_10m’.

Task 20% Fixed 50% Fixed 80% Fixed w/o Refinement w/o CQL Fixed CQL HyGen

Source Tasks

3m 63.3 ± 14 78.4 ± 8 60.4 ± 17 72.7 ± 12 56.8 ± 9 61.1 ± 19 91.5 ± 11
5m6m 20.4 ± 12 27.2 ± 18 23.9 ± 15 26.1 ± 7 21.2 ± 8 31.7 ± 9 36.1 ± 7

9m10m 45.7 ± 11 41.6 ± 12 62.5 ± 11 55.5 ± 16 46.4 ± 9 54.3 ± 17 79.2 ± 4
Unseen Tasks

4m 72.1 ± 8 79.0 ± 11 65.3 ± 10 69.9 ± 15 75.8 ± 4 82.7 ± 9 91.4 ± 8
5m 80.2 ± 11 67.1 ± 25 69.4 ± 12 53.6 ± 21 88.5 ± 7 76.9 ± 14 96.5 ± 6

10m 42.6 ± 7 76.2 ± 11 44.3 ± 9 71.1 ± 17 70.9 ± 14 47.9 ± 23 96.4 ± 3
12m 64.3 ± 12 69.6 ± 18 58.9 ± 11 55.3 ± 12 61.0 ± 7 67.3 ± 13 81.5 ± 14

7m8m 8.8 ± 7 19.8 ± 5 5.3 ± 15 5.3 ± 9 11.5 ± 8 16.5 ± 11 24.5 ± 9
8m9m 5.3 ± 11 9.6 ± 13 17.2 ± 6 15.9 ± 10 19.5 ± 11 17.1 ± 9 22.3 ± 10

10m11m 41.4 ± 14 45.8 ± 7 38.8 ± 12 26.8 ± 21 29.5 ± 18 33.1 ± 8 47.2 ± 13
10m12m 1.3 ± 4 0.0 ± 0 0.0 ± 0 0.0 ± 0 0.0 ± 0 2.7 ± 6 5.2 ± 2
13m15m 0.0 ± 0 5.7 ± 8 2.3 ± 2 0.0 ± 0 2.0 ± 3 3.1 ± 7 9.3 ± 6

In our ablation studies, we investigate the effectiveness of components in our proposed HyGen
structure. First, we try to find whether the linearly decreasing hybrid ratio scheme can yield better
performance than the fixed. We perform HyGen hybrid training separately with the dynamic hybrid
ratio and three fixed hybrid ratios of 20%, 50%, and 80% in the marine-hard task set with medium-
quality offline datasets. As we see in Table 2 and Figure 5, HyGen with a linearly decreasing
hybrid ratio outperforms those with fixed hybrid ratios in both effectiveness and efficiency. This
improvement indicates that a linearly decreasing hybrid ratio better utilizes the initial efficiency of
offline learning, as offline data typically contain more useful experiences than early-stage online
interactions. Starting with a higher percentage of samples from offline datasets enhances sample
efficiency. Furthermore, a linearly decreasing ratio gradually increases the proportion of samples
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from the online replay buffer over time, progressively integrating the diversity of online interactions
for exploration.

(a) Source Task: 3m (b) Unseen Task: 10m

Figure 5: Average test win rates of HyGen using a linearly decreasing hybrid ratio and three fixed
hybrid ratios—20%, 50%, and 80%—in the marine-hard task set with the medium dataset. All
experiment results were conducted over five random seeds.

We also conduct experiments to investigate our proposed action decoder refinement during the hybrid
training phase. We run experiments with two variants of HyGen, with and without action decoder
refinement, during the hybrid training phase and present average test win rates in source tasks and
unseen tasks. According to the results in Table 2, HyGen with action decoder refinement performs
better, suggesting that refining skills during hybrid training reduces their dependency on the quality
of the offline dataset. This improvement occurs because online interactions contribute abundant
experiences that foster exploration and enhance skill diversity.

We then evaluate the effectiveness of the dynamic CQL loss scheme during the hybrid training
phase. We conduct experiments with HyGen using the dynamic CQL loss scheme, comparing its
performance against both the fixed CQL loss and no CQL loss schemes. The superior results of
HyGen with the dynamic CQL loss indicate that this approach not only mitigates the OOD problem
but also avoids the impact of excessive Q-value penalties on training performance in hybrid training,
as shown in Table 2.

The number of general skills is a key hyper-parameter of HyGen which we recommend to set equal
to the number of attention heads according to the self-attention mechanism. To substantiate this,
we conducted experiments comparing performance metrics using a fixed number of attention heads
with varying skill numbers in the marine-hard task set with medium-quality offline datasets. Results
indicate that equalizing skill and attention head numbers yields optimal performance, as detailed in
Appendix C.

6 Conclusion

We introduce HyGen, a novel hybrid MARL framework, Hybrid Training for Enhanced Multi-Task
Generalization, which integrates online and offline learning to ensure both multi-task generalization
and training efficiency. By utilizing datasets of limited offline experiences and engaging in small-
scale interactive environments, HyGen effectively discovers general skills. This approach enables
the learning of a general policy applicable across diverse tasks, leading to enhanced performance
in both familiar source tasks and novel, unseen tasks. Our experimental results demonstrate that
HyGen effectively addresses the performance limitations inherent in offline MARL algorithms and
significantly outperforms traditional online MARL algorithms in terms of efficiency. We believe that
the success of HyGen underscores the importance of integrating skill discovery with hybrid training
methodologies to achieve generalization in cooperative MARL scenarios and will be instrumental
for the practical application of MARL in real-world settings. Future work will focus on exploring
integrating large language models (LLMs) to utilize their universal knowledge to further enhance the
efficiency and adaptability of HyGen, particularly focusing on scalability across even more diverse
and dynamic real-world applications.
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A Descriptions of Task Sets and Offline Multi-task Datasets

A.1 Task Sets

The StarCraft Multi-Agent Challenge (SMAC) [27] represents a widely recognized cooperative multi-
agent testbed featuring diverse StarCraft micromanagement scenarios. This study utilizes two distinct
SMAC task sets—marine-hard and stalker-zealot—each involving different agent types, defined by
ODIS [39]. The marine-hard task set comprises various marine battle scenarios, wherein groups of
allied marines confront equivalent or superior numbers of built-in-AI enemy marines. Conversely,
the stalker-zealot task set features symmetric battles involving equal numbers of built-in-AI stalkers
and zealots on opposing sides. Aiming for generalization to unseen tasks with limited offline data
and online interaction environments, we designate three tasks from each set for training purposes,
reserving the remainder for evaluation. Detailed attributes of these task sets are enumerated in Table
3 and Table 4.

Table 3: Descriptions of tasks in the marine-hard task set. [39]

Task type Task Ally units Enemy units Properties

Source tasks
3 m 3 Marines 3 Marines homogeneous & symmetric

5m_vs_6m 5 Marines 6 Marines homogeneous & asymmetric
9m_vs_10m 9 Marines 10 Marines homogeneous & asymmetric

Unseen tasks

4 m 4 Marines 4 Marines homogeneous & symmetric
5 m 5 Marines 5 Marines homogeneous & symmetric

10 m 10 Marines 10 Marines homogeneous & symmetric
12 m 12 Marines 12 Marines homogeneous & symmetric

7m_vs_8m 7 Marines 8 Marines homogeneous & asymmetric
8m_vs_9m 8 Marines 9 Marines homogeneous & asymmetric

10m_vs_11m 10 Marines 11 Marines homogeneous & asymmetric
10m_vs_12m 10 Marines 12 Marines homogeneous & asymmetric
13m_vs_15m 13 Marines 15 Marines homogeneous & asymmetric

A.2 Offline Multi-task Datasets

As stated in the experiments section, we utilize the same offline dataset as ODIS [39] to maintain
fairness in our evaluations. Definitions of expert and medium qualities are listed below:

• The expert dataset contains trajectory data collected by a QMIX policy trained with 2, 000,
000 steps of environment interactions. The test win rate of the trained QMIX policy (as the
expert policy) is recorded for constructing medium datasets.

• The medium dataset contains trajectory data collected by a QMIX policy (as the medium
policy) whose test win rate is half of the expert QMIX policy.

Considering our focus on generalizing to unseen tasks, we employ offline datasets exclusively from
the source tasks in the three aforementioned task sets. The Properties of offline datasets with different
qualities are detailed in Table 5. Data from various tasks is amalgamated into a multi-task dataset,
facilitating simultaneous multi-task policy training.

B Experiments Details

The specific hyper-parameters of HyGen are listed in Table 6. All the tabular results show the
performance of HyGen with 50, 000 optimization steps, and the steps of the hybrid high-level policy
learning phase are the subtraction of the general skill discovery steps from the total steps. Our
experiments are conducted on a server equipped with one Intel Xeon E5 CPU@3.60GHz processor
(6 cores, 12 threads), 128 GB memory, and 2 RTX 3090 GPU cards, and it usually costs 10-14 hours.
Our HyGen code follows Apache License 2.0, the same as the PyMARL framework.
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Table 4: Descriptions of tasks in the stalker-zealot task set. [39]

Task type Task Ally units Enemy units Properties

Source tasks

2s3z 2 Stalkers,
3 Zealots

2 Stalkers,
3 Zealots heterogeneous & symmetric

2s4z 2 Stalkers,
4 Zealots

2 Stalkers,
4 Zealots heterogeneous & symmetric

3s5z 3 Stalkers,
5 Zealots

3 Stalkers,
5 Zealots heterogeneous & symmetric

Unseen tasks

1s3z 1 Stalkers,
3 Zealots

1 Stalkers,
3 Zealots heterogeneous & symmetric

1s4z 1 Stalkers,
4 Zealots

1 Stalkers,
4 Zealots heterogeneous & symmetric

1s5z 1 Stalkers,
5 Zealots

1 Stalkers,
5 Zealots heterogeneous & symmetric

2s5z 2 Stalkers,
5 Zealots

2 Stalkers,
5 Zealots heterogeneous & symmetric

3s3z 3 Stalkers,
3 Zealots

3 Stalkers,
3 Zealots heterogeneous & symmetric

3s4z 3 Stalkers,
4 Zealots

3 Stalkers,
4 Zealots heterogeneous & symmetric

4s3z 4 Stalkers,
3 Zealots

4 Stalkers,
3 Zealots heterogeneous & symmetric

4s4z 4 Stalkers,
4 Zealots

4 Stalkers,
4 Zealots heterogeneous & symmetric

4s5z 4 Stalkers,
5 Zealots

4 Stalkers,
5 Zealots heterogeneous & symmetric

Table 5: Properties of offline datasets with different qualities. [39]

Task Quality Trajectories Average win rate (%) Average return

3m expert 2000 99.10 19.8929
medium 2000 54.02 13.9869

5m_vs_6m expert 2000 71.85 17.3424
medium 2000 27.51 12.6408

9m_vs_10m expert 2000 94.31 19.6140
medium 2000 41.46 15.5049

2s3z expert 2000 96.02 19.7655
medium 2000 44.65 16.6279

2s4z expert 2000 95.09 19.7402
medium 2000 49.65 16.8735

3s5z expert 2000 95.18 19.7850
medium 2000 31.14 16.3126

14



Table 6: Hyper-parameters of HyGen.

Hyper-parameters Value

hidden layer dimension 64
attention embedding length 128
α 5.0
β 0.001
η 5.0
∥Z∥ 4
number of attention heads N 4
steps of general skill discovery 15000
steps of high-level policy learning 35000
Rstart 1.0
Rend 0.1
linear decay steps 5000
batch size B 32
optimizer Adam
learning rate 0.0005

C Additional Experiments with different skill numbers

The number of general skills, a critical hyper-parameter in HyGen, is recommended to be set equal
to the number of attention heads to align with the self-attention mechanism’s design. To validate
this approach, we conducted experiments within the marine-hard task set, utilizing medium-quality
offline datasets and comparing performance across a fixed number of attention heads with varying
numbers of general skills. Table 7 displays the average test win rates for policies trained with various
general skills counts, each within a configuration of four fixed attention heads and medium data
quality. Results indicate that a general skill count of four yields comparable performances across
most unseen tasks, suggesting that HyGen can effectively abstract latent information from each
attention head into general skills. Conversely, a general skill count that is either too low or too high
compromises generalization to unseen tasks, due to either an overload or a deficit of information
encapsulated within each skill.

Table 7: In the context of zero-shot execution, we assessed the average test win rates of final policies
trained with varying numbers of general skills within a task set configured with 4 fixed attention
heads and medium data quality. These performance evaluations are derived from averages across five
random seeds. For ease of reference, asymmetric task names are abbreviated, with ’5m6m’ denoting
the SMAC map ’5m_vs_6m’.

Task skill num.1 skill num.2 skill num.3 skill num.4 skill num.5 skill num.6 skill num.7 skill num.8

Source Tasks

3m 60.4 ± 7 74.6 ± 11 81.5 ± 16 91.5 ± 11 85.4 ± 4 86.6 ± 11 91.2 ± 3 85.9 ± 10
5m6m 19.8 ± 2 21.1 ± 12 22.2 ± 8 31.6 ± 7 30.9 ± 3 25.6 ± 14 27.5 ± 6 20.7 ± 4

9m10m 58.4 ± 6 56.6 ± 12 73.1 ± 5 79.2 ± 4 73.8 ± 10 74.4 ± 13 64.9 ± 9 72.5 ± 13

Unseen Tasks

4m 46.8 ± 3 78.6 ± 12 73.0 ± 17 91.4 ± 8 88.8 ± 11 81.6 ± 7 81.9 ± 14 73.1 ± 4
5m 64.7 ± 10 80.1 ± 9 90.3 ± 9 96.5 ± 6 96.6 ± 4 87.4 ± 6 81.2 ± 11 83.0 ± 11

10m 61.4 ± 3 63.9 ± 25 84.7 ± 10 96.4 ± 3 96.2 ± 6 92.1 ± 7 93.4 ± 4 91.0 ± 5
12m 44.6 ± 12 60.9 ± 8 77.2 ± 8 81.5 ± 14 74.0 ± 10 74.4 ± 5 72.7 ± 7 66.9 ± 7

7m8m 8.8 ± 3 10.8 ± 3 21.2 ± 6 24.5 ± 9 18.6 ± 6 22.4 ± 4 12.4 ± 8 14.6 ± 3
8m9m 5.8 ± 3 11.6 ± 6 19.0 ± 6 22.3 ± 10 19.1 ± 8 23.1 ± 13 17.7 ± 9 13.1 ± 11

10m11m 15.3 ± 11 38.8 ± 4 35.1 ± 11 47.2 ± 13 29.7 ± 9 32.4 ± 14 27.3 ± 16 27.7 ± 11
10m12m 1.0 ± 1 0.0 ± 0 0.0 ± 0 5.2 ± 2 2.5 ± 5 3.7 ± 3 0.0 ± 0 0.0 ± 0
13m15m 0.0 ± 0 0.0 ± 0 0.0 ± 0 9.3 ± 6 5.6 ± 13 0.0 ± 0 0.0 ± 0 0.0 ± 0

D Additional Results on Ablation Study
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(a) Source Task: 3m (b) Unseen Task: 10m

Figure 6: Average test win rates of HyGen with or without action decoder refinement in the marine-
hard task set with the medium dataset. All experiment results were conducted over five random seeds.

(a) Source Task: 3m (b) Unseen Task: 10m

Figure 7: Average test win rates of HyGen using dynamic, fixed, and no CQL loss scheme in the
marine-hard task set with the medium dataset. All experiment results were conducted over five
random seeds.
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