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ABSTRACT

Meta-learning tries to leverage information from similar learning tasks. In the
commonly-used bilevel optimization formulation, the shared parameter is learned
in the outer loop by minimizing the average loss over all tasks. However, the
converged solution may be compromised in that it only focuses on optimizing on a
small subset of tasks. To alleviate this problem, we consider meta-learning as a
multi-objective optimization (MOO) problem, in which each task is an objective.
However, existing MOO solvers need to access all the objectives’ gradients in each
iteration, and cannot scale to the huge number of tasks in typical meta-learning
settings. To alleviate this problem, we propose a scalable gradient-based solver with
the use of mini-batch. We provide theoretical guarantees on the Pareto optimality or
Pareto stationarity of the converged solution. Empirical studies on various machine
learning settings demonstrate that the proposed method is efficient, and achieves
better performance than the baselines, particularly on improving the performance
of the poorly-performing tasks and thus alleviating the compromising phenomenon.

1 INTRODUCTION

Meta-learning, also known as “learning to learn", aims to enable models to learn more effectively
by leveraging information from many similar learning tasks (Hospedales et al., 2020). In recent
years, meta-learning has received much attention for its fast adaptation to new learning scenarios
with limited data (Kao et al., 2021; Finn et al., 2017; Snell et al., 2017; Lee et al., 2019; Nichol et al.,
2018; Deleu et al., 2022; Rajeswaran et al., 2019; Vilalta & Drissi, 2002). It is usually formulated as
a bi-level optimization problem (Franceschi et al., 2018; Hong et al., 2020), which finds task-specific
parameters in the inner level and minimizes the average loss over tasks in the outer level.

Recently, Wang et al. (2021) reformulate meta-learning as a multi-task learning problem. From this
perspective, minimizing the average loss in the outer level using (stochastic) gradient descent may not
always be desirable. Specifically, it may suffer from the compromising (or conflicting) phenomenon,
in which the converged solution only focuses on minimizing the losses of a small subset of tasks while
ignoring the others (Yu et al., 2020; Liu et al., 2021a; Sener & Koltun, 2018). This compromised
solution may thus lead to poor performance.

To alleviate this problem, we propose reformulating meta-learning as a multi-objective optimization
(MOO) problem, in which each task is an objective. The performance of all tasks (objectives) are
then considered during optimization (Emmerich & Deutz, 2018). A popular class of MOO solvers is
the gradient-based approach (Liu et al., 2021a; Yu et al., 2020; Sener & Koltun, 2018; Navon et al.,
2022; Liu et al., 2021b), with prominent examples such as the multiple-gradient descent algorithm
(MGDA) (Désidéri, 2012; Sener & Koltun, 2018), PCGard (Yu et al., 2020), and CAGard (Liu et al.,
2021a). In each iteration, they find a common descent direction among all objective gradients, instead
of simply optimizing the average performance over all objectives.

Existing gradient-based MOO methods require using gradients from all the objectives. However,
when formulating meta-learning as a MOO problem with each task being an objective, computing all
these gradients in each iteration can become very expensive, as the number of objectives (i.e., tasks)
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can be huge. For example, in 5-way 1-shot classification on the miniImageNet data, the total number
of meta-training tasks is

(
64
5

)
≈ 7× 106.

To address this challenge, we propose a scalable MOO solver by using the improvement function
(Miettinen & Mäkelä, 1995; Mäkelä et al., 2016; Montonen et al., 2018) with the help of mini-batch.
On the other hand, we show that a trivial extension of existing gradient-based MOO methods with
the use of mini-batch does not guarantee Pareto optimality and has poor performance in practice.

Our main contributions are as follows: (i) To alleviate the compromising phenomenon, we reformulate
meta-learning as a multi-objective optimization problem in which each task is an objective; (ii) To
handle the possibly huge number of tasks, we propose a scalable gradient-based solver. (iii) We
provide theoretical guarantees on the Pareto optimality or Pareto stationarity of the converged solution.
(iv) Empirical studies on few-shot regression, few-shot classification, and reinforcement learning
demonstrate that the proposed method achieves better performance, particularly in improving the
performance of the poorly-performing tasks and thus alleviating the compromising phenomenon.

2 BACKGROUND

Multi-Objective Optimization (MOO). In MOO (Marler & Arora, 2004), one aims to minimize1

m ≥ 2 objectives f1(x), . . . , fm(x):

min
x

[f1(x), . . . , fm(x)]. (1)

Definition 2.1. (Global Pareto optimality) (Miettinen, 2012; Mäkelä et al., 2016) x∗ is global Pareto
optimal if there does not exist another x such that fτ (x∗) ≥ fτ (x) for all τ ∈ {1, . . . ,m}, and
fτ ′(x∗) > fτ ′(x) for at least one τ ′ ∈ {1, . . . ,m}.

The Pareto front (PF) is the set of multi-objective values of all global Pareto-optimal solutions.
Definition 2.2. (Pareto stationarity) (Miettinen, 2012; Désidéri, 2012) x∗ is Pareto-stationary if
there exist {uτ}mτ=1 such that ∥

∑m
τ=1 uτ∇xfτ (x)∥ = 0, uτ ≥ 0 ∀τ and

∑m
τ=1 uτ = 1.

Note that global Pareto optimal solutions are also Pareto stationary (Désidéri, 2012). Analogous to
the extension from a stationary point to an ϵ-stationary point (Lin et al., 2020), we extend Pareto
stationarity to ϵ-Pareto stationarity. Obviously, 0-Pareto stationarity reduces to Pareto stationarity.
Definition 2.3. (ϵ-Pareto stationarity). For a given ϵ, x is ϵ-Pareto-stationary iff there exist {uτ}mτ=1
such that ∥

∑m
τ=1 uτ∇xfτ (x)∥ ≤ ϵ, uτ ≥ 0 ∀τ and

∑m
τ=1 uτ = 1.

Definition 2.4. (Improvement function) (Montonen et al., 2018) The improvement function of problem
(1) is: H(x, x′) = maxτ=1...,m {fτ (x)− fτ (x

′)}.

Note that x∗ satisfying x∗ = argminx H(x, x∗) (intuitively, x∗ cannot be further improved) is Pareto
stationary (Montonen et al., 2018). To find x∗, one can perform steepest descent on H:

xs+1 = xs + βd∗, d∗ = argmin
d

H(xs + d, xs) +
λ′

2
∥d∥2, (2)

where xs is the iterate at iteration s, β is the learning rate satisfying H(xs + βd, xs) < H(xs, xs),
and λ′ is a hyper-parameter. It can be shown that when s → ∞, xs is Pareto stationary (Montonen
et al., 2018).

In this paper, we focus on gradient-based MOO methods, including MGDA (Désidéri, 2012; Sener &
Koltun, 2018), PCGard (Yu et al., 2020), and CAGard (Liu et al., 2021a). They assign weights to each
objective’s gradient and find a common descent direction that decreases the losses of all objectives.
For example, MGDA finds the direction g∗(x) =

∑m
τ=1 γ

∗
τ∇xfτ (x) in each iteration, where

{γ∗
τ} = arg min

{γτ}

∥∥∥∑m

τ=1
γτ∇xfτ (x)

∥∥∥2

s.t.
∑m

τ=1
γτ = 1, γτ ≥ 0, ∀τ. (3)

Meta-Learning. Meta-learning aims to achieve good performance with limited data and compu-
tation (Hospedales et al., 2020). Most of them are gradient-based (Nichol et al., 2018; Deleu et al.,
2022; Rajeswaran et al., 2019; Zhou et al., 2019; Shu et al., 2019) or metric-based (Snell et al., 2017;

1Without loss of generality, we consider minimization in this paper.
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Lee et al., 2019; Vinyals et al., 2016). Let T be the set of all m tasks, and w be the shared model
parameter. For a task τ ∈ T , let Dτ be its dataset and Lτ the corresponding loss function. It tries to
obtain task-specific parameter wτ from the shared w as w∗

τ (w). Meta-learning is usually formulated
as the following bilevel optimization problem (Ji et al., 2021):

minw
∑m

τ=1
Lτ (wτ ) s.t. wτ = w∗

τ (w). (4)

The inner subproblem learns the task-specific parameter wτ for each τ , while the outer subproblem
learns w by minimizing the average loss over tasks in T . As m can be very large, usually a
mini-batch B of tasks are uniformly sampled from T , and w is then updated as ws+1 = ws −
β 1

|B|
∑

τ∈B Lτ (w
∗
τ (w)) (Finn et al., 2017).

By taking each Lτ (w
∗
τ (w)) in (4) as an objective, this can be regarded as a weighted sum in multi-task

learning (Wang et al., 2021). As observed in (Sener & Koltun, 2018; Yu et al., 2020), gradient descent
on this weighted sum can suffer from the compromising phenomenon, in which the loss obtained on
some task τ ′ can be much larger than the losses on the other tasks.

3 SOFT IMPROVEMENT MULTI-OBJECTIVE META-LEARNING (SIMOL)
We take the view of meta-learning as multi-task learning in (Wang et al., 2021) one step further and
consider the meta-learning problem as the following multi-objective optimization (MOO) problem:

minw(L1(w
∗
1(w)), . . . ,Lm(w∗

m(w))), (5)

in which each task corresponds to an objective. This considers all the individual tasks instead
of simply considering the total loss over all tasks (Liu et al., 2021a). Recently, Ye et al. (2021)
also use multi-objective learning into meta-learning. However, their focus is not on addressing
the compromising phenomenon and they do not treat each task as an objective. Instead, besides
minimizing the average task loss in (4), they consider adding some other objectives such as robustness
to adversarial attacks. Moreover, MGDA is still used to find the Pareto optimal solution. However, as
in other gradient-based MOO methods (Yu et al., 2020; Liu et al., 2021a), MGDA requires collecting
gradients from all m objectives in each iteration (as can be seen from its optimization problem (3)).
This is computationally feasible only when there are a small number of objectives.2 When each task
is treated as an objective, the number of objectives can easily be in the millions (as in performing
5-way 1-shot classification on miniImageNet).

Another widely adopted MOO based methods are the Chebyshev methods (Miettinen, 2012; Mao
et al., 2020; Momma et al., 2022), which leverage the weighted Chebyshev problem to find the Pareto
front. However, these methods also cannot handle a huge number of tasks, as the computational
complexity per epoch for these methods is O(m2) , where m is the number of tasks.

To alleviate this problem, one solution is to use only a mini-batch of objectives in each iteration. For
example, when a subset B of objectives is used, MGDA’s optimization problem in (3) becomes:

min{γτ}

∥∥∥∑
τ∈B

γτ∇τ (Lτ (w
∗
τ (w))

∥∥∥2 s.t.
∑

τ∈B
γτ = 1, γτ ≥ 0,∀τ.

However, the descent direction then only considers objectives in B, and the original normalization
constraint

∑m
τ=1 γτ = 1 in (3) is also changed to

∑
τ∈B γτ = 1. The obtained solution may no

longer Pareto optimal. In the following, we demonstrate this by using a simple toy example with two
objectives (f1(x) and f2(x), where x ∈ R2) from (Liu et al., 2021a; Navon et al., 2022).3 As can be
seen from Figure 1, mini-batch MGDA (with a mini-batch of 1) cannot converge to the Pareto front.

3.1 SOFT IMPROVEMENT FUNCTION

In this section, we propose a scalable MOO solver with the use of the improvement function (Mon-
tonen et al., 2018). The proposed solver is agnostic to the number of tasks, while still theoretically
guaranteeing that the solution is Pareto optimal.

Using Definition 2.4, the improvement function for problem (5) is:

H(w,w′) = maxτ=1...,m {Lτ (w
∗
τ (w))− Lτ (w

∗
τ (w

′))} . (6)

2In the meta-learning experiments of (Ye et al., 2021), they only consider two objectives.
3Definitions for f1, f2 and the environment setup are in Appendix A.
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(a) MGDA. (b) mini-batch MGDA. (c) proposed SIMOL.
Figure 1: Convergence on a two-objective toy dataset with mini-batch size 1. The Pareto front is
shown in black.

Consider the optimization problem

maxπ Eτ∼π [Lτ (w
∗
τ (w))− Lτ (w

∗
τ (w

′))] , (7)

where π is a probability density function on τ . The following Lemma shows that (6) and (7) are
equivalent when π is the Dirac delta distribution concentrated on the task corresponding to the
maximum in (6). All the proofs are in Appendix C.
Lemma 3.1. H(w,w′) = maxπ Eτ∼π [Lτ (w

∗
τ (w))− Lτ (w

∗
τ (w

′))].

Using (2) and Lemma 3.1, w can be updated as

ws+1 = ws + βd∗, (8)

d∗ = argmind (maxπ Eτ∼π [Lτ (w
∗
τ (w

s + d))− Lτ (w
∗
τ (w

s))]) +
λ′

2
∥d∥2. (9)

Taking the first-order approximation

Lτ (w
∗
τ (w

s + d)) ≃ Lτ (w
∗
τ (w

s)) +∇wLτ (w
∗
τ (w

s))⊤d, (10)

the minimax theorem (Simons, 1995) can be used to swap the min and max operators in (9), as

(π∗, d∗) = argmaxπ

(
mind Eτ∼π [Lτ (w

∗
τ (w

s + d))− Lτ (w
∗
τ (w

s))] +
λ′

2
∥d∥2

)
. (11)

The following Proposition shows that the inner minimization problem has a closed-form solution.

Proposition 3.2. mind Eτ∼π [Lτ (w
∗
τ (w

s + d))− Lτ (w
∗
τ (w

s))] + λ′

2 ∥d∥
2 =

−1
2λ′ ∥Eτ∼π∇wLτ (w

∗
τ (w))|w=ws∥2, and the optimal d is d∗ = − 1

λ′Eτ∼π[∇wLτ (w
∗
τ (w)|w=ws ].

The expectation in Proposition 3.2 requires sampling tasks from π. An easier alternative is to sample
tasks from the uniform distribution U(·) over the set T of all tasks, and then weighting each sampled
task τ with r(τ) ≡ π(τ)/U(τ). Note that

Eτ∼Ur(τ) =
∑

τ
U(τ)π(τ)/U(τ) =

∑
τ
π(τ) = 1. (12)

We further parameterize r as a neural network rθ with parameter θ. Using Proposition 3.2, we can
then rewrite (11) as

θ∗ = argmax
θ

−1

2λ′ ||Eτ∼Urθ(τ)∇wLτ (w
∗
τ (w))|w=ws ||2 − λ′′

2
(Eτ∼Urθ(τ)− 1)2, (13)

where the last term (with another hyper-parameter λ′′) is a penalty for enforcing the constraint in
(12). For notational simplicity, we denote the objective in (13) by K(θ).

In principle, θ∗ can be obtained from (13) by gradient ascent. However, problem (13) involves an
expectation over tasks. Recall that we have a total of m tasks, and m can be huge. Hence, using all
of them to compute this expectation may not be feasible. Instead, Let B be a mini-batch of k tasks,
and denote the the mini-batched version of the objective in (13) as:

K̃B(θ) ≡
−1

2λ̂′

∥∥∥∥∥ 1

|B|
∑
τ∈B

rθ(τ)∇wLτ (w
∗
τ (w))|w=ws

∥∥∥∥∥
2

− λ̂′′

2

(
1

|B|
∑
τ∈B

rθ(τ)− 1

)2

,
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where λ̂′, λ̂′′ are another set of hyper-parameters (which will be set in Proposition 3.3) corresponding
to λ′, λ′′ in (13). Note that K̃T (θ) = K(θ). Let B be the set of all size-k mini-batches (with k > 1).
The following Proposition bounds the difference between K(θ), the original objective in (13), and
the version 1

|B|
∑

B∈B K̃B(θ) based on mini-batches.

Proposition 3.3. Set λ̂′ = λ′

C1|B| and λ̂′′ = λ′′C1|B|k2. We have:(
K(θ)− 1

|B|
∑

B∈B K̃B(θ)
)2

≤ C2k|B|G1

λ′ + C2k|B|λ′′G2, where C1 ≡

k2

(m−2
k−2)m2

, and C2 ≡
[(

m− 1

k − 1

)
− 1

2

(
m− 2

k − 2

)]
/

(
m− 1

k − 1

)
m2

(
m− 2

k − 2

)
,G1 ≡

1

k|B|
∑
B∈B

∑
τ∈B

∥rθ(τ)∇wLτ (w
∗
τ (w)|w=ws∥2, and G2 ≡ 1

k|B|
∑
B∈B

∑
τ∈B [rθ(τ)− 1]2.

Corollary 3.3.1. When k ≪ m,
(
K(θ)− 1

|B|
∑

B∈B K̃B(θ)
)2

≤ G1

kλ′ +
G2

k λ′′.

In the experiments, m ≥ 106, k ≈ 102, and G1, G2 ≤ 104. When λ′ ≥ 102, λ′′ ≤ 10−2, we have
1
|B|
∑

B∈B K̃B(θ) ∈ [−103,−1] during training, and (K(θ) − 1
|B|
∑

B∈B K̃B(θ))
2 ≤ 0.2 is small.

Thus, Proposition 3.3 shows that K(θ) can be decomposed into mini-batches as 1
|B|
∑

B∈B K̃B(θ).
This allows us to update θ by SGD over the task mini-batches as:

θs+1 = θs + β′∇θK̃B(θ
s), (14)

where β′ is the learning rate. Similarly, we approximate d∗ by its mini-batch approximation d̃∗ =
− 1

λ′|B| [
∑

τ∈B ∇wLτ (w
∗
τ (w))|w=ws ] and update w as ws+1 = ws + βd̃∗.

The whole procedure, which will be called Soft Improvement Multi-Objective Meta Learning
(SIMOL), is shown in Algorithm 1. Step 4 trains the base learner. In the experiments, we use two
popular meta-learning algorithms: MAML (Finn et al., 2017) and prototypical network (PN) (Snell
et al., 2017). For MAML, the base learner is updated as

w∗
τ (w) = w − α∇wLτ (w). (15)

For the PN, w∗
τ (w) =

1
|Qτ |NC

∑
x∈Qτ

exp(−∥fw(x)−ck∥2)∑
k′ exp(−∥fw(x)−ck′∥2) , where Qτ is the set of query examples

for task τ , NC is the number of classes per epoch, fw is the model with parameter w, ck =
1

|Sk|
∑

(xi,yi)∈Sk
fw(xi), and Sk is the set of examples belonging to class k. Pseudo-codes for

SIMOL-based MAML and PN are shown in Algorithms 2 and 3 of Appendix B, respectively.

Algorithm 1: Soft Improvement Multi-Objective Meta Learning (SIMOL)

Input: T , batch size k, learning rates β and β′ for w, d̃∗ = 0 and θ, respectively.
1 for s = 1, 2, . . . , S do
2 Reset d̃∗ = 0;
3 for τ = 1, 2, . . . , k do
4 obtain rθs(τ)∇wsLτ (w

∗
τ (w

s)) for task τ ;
5 d̃∗ = d̃∗ − rθs(τ)∇wsLτ (w

∗
τ (w

s));

6 ws+1 = ws + β 1
k d̃

∗;
7 θs+1 = θs + β′ −1

2λ̂′∇θs

∥∥ 1
k

∑
τ∈B rθs(τ)∇wLτ (w

∗
τ (w))|w=ws+1

∥∥2 −
∇θs

λ̂′′

2

(
1
k

∑
τ∈B rθs(τ)− 1

)2
;

4 CONVERGENCE ANALYSIS

Lemma 4.1. Define

R(θ, w) ≡ Eτ∼U [⊥ (rθ(τ))[Lτ (w
∗
τ (w)]] + ∆(θ)− λ′′

2
(Eτ∼Urθ(τ)− 1)2, (16)
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where ∆(θ) ≡ − 1
λ′Eτ∼Urθ(τ) ⊥ [(Lτ (w

∗
τ (w) + d∗)− Lτ (w

∗
τ (w))]· ⊥ [Eτ∼Urθ(τ)[Lτ (w

∗
τ (w) +

d∗) − Lτ (w
∗
τ (w))]], and ⊥ is the stop gradient operator.4 Then, ∇wR(θ, w)|w=ws = −d∗, and

∇θR(θ, ws) = ∇θK(θ).

This allows interpreting the updates in (14) and (8) as performing Gradient Descent Ascent
(GDA) (Singh et al., 2000) on (16). Thus, we can leverage game theoretical tools (Lin et al.,
2020) in the analysis.

Let R̃(θ, w;B) ≡⊥ 1
|B|
∑

τ∈B [rθ(τ)][Lτ (w
∗
τ (w)] − 1

|B|λ′

∑
τ∈B rθ(τ)[⊥ [(Lτ (w

∗
τ (w) + d∗) −

Lτ (w
∗
τ (w))]· ⊥

[
1

|B|
∑

τ∈B rθ(τ)[Lτ (w
∗
τ (w) + d∗)− Lτ (w

∗
τ (w))]

]
− λ

2

′′
( 1
|B|
∑

τ∈B rθ(τ) − 1)2

be the mini-batch version of R, and U(B) be the uniform distribution over task mini-batches. The
following Theorem shows that Algorithm 1 converges to an ϵ-Pareto stationary point of (5).
Theorem 4.2. Assume that (i) Lτ (w

∗
τ (·)) is L-smooth and rθ(·) is µ-strongly concave. (ii) The domain

of θ is a convex and bounded set with diameter D > 0, (iii) EB∼U(B)[∇θR̃(θ, w;B)−∇θR(θ, w)] =

0, and EB∼U(B)∥∇θR̃(θ, w,B) − ∇θR(θ, w)∥2 ≤ σ2. Assume the first-order approximation in
(10), and take β = Θ

(
1/D2σ2(L2 + σ2)

)
, β′ = Θ(1/Lσ2). Algorithm 1 converges to an ϵ-Pareto

stationary point of (5) with a rate of O(1/ϵ8). If Lτ (w
∗
τ (w)) is also µ′-convex w.r.t. w and ϵ = 0, the

0-Pareto stationary point is also global Pareto optimal.

Assumption (i) is commonly used in the literature (Collins et al., 2020; Zhou et al., 2021; Finn
et al., 2019); while (ii) and (iii) are from (Lin et al., 2020). Theorem 4.2 shows that the proposed
method can obtain an ϵ-Pareto stationary point (or global Pareto optimal point for convex objectives)
regardless of m, the number of tasks/objectives.
Corollary 4.2.1. Consider the MAML base learner update in (15). Assume that ∇wLτ (w) is Hessian-
Lipschitz continuous, bounded, Lipschitz-continuous, and w is bounded. Then, Algorithm 1 converges
to an ϵ-Pareto stationary point of (5) with a rate of O(1/ϵ8).

Corollary 4.2.1 is an application of Theorem 4.2 revealing that SIMOL with MAML can also
converge to a Pareto point. Convergence of the outer loop is slower than the O(1/ϵ2) rate of standard
MAML (Fallah et al., 2020). However, standard MAML only guarantees convergence to stationary
points of w but not to Pareto-stationary points. Moreover, as will be seen in Section 5.1, empirically,
the proposed method has comparable or even slightly faster convergence speed than MAML and other
meta learning baselines. Besides, most the gradient-based MOO approaches (except CAGrad (Liu
et al., 2021a)) do not provide convergence rate analysis; while CAGrad requires that all task gradients
are available in each epoch, which is very expensive (as will be demonstrated in Section 5.2).

5 EXPERIMENTS

In this section, we perform experiments on few-shot regression (Section 5.1), few-shot classification
(Section 5.2), and reinforcement learning (Section 5.3). All experiments are run on a GeForce RTX
2080 Ti GPU and Intel(R) Xeon(R) CPU E5-2680. Our implementations are based on the popular
open-source meta-learning library Learn2Learn (Arnold et al., 2020).

5.1 FEW-SHOT REGRESSION

Setup. We follow the setup in (Finn et al., 2017; Li et al., 2017). The target function for task τ is
y = aτ sin(x+ bτ ), where aτ and bτ are sampled uniformly from [0.1, 5.0] and [0, π], respectively.
We generate 160, 000 meta-training tasks and 1, 000 meta-testing tasks. A multilayer perceptron
with 2 fully-connected (FC) layers (each of size 32) and ReLU activation is used as meta-learner and
re-weighting network. The re-weighting network uses all mini-batch instances as input. To ensure
that the re-weighting network output is positive, we take the square of its last layer’s output as output.

The backbone meta-learning algorithm is MAML (Finn et al., 2017). We use Adam (Kingma & Ba,
2014), with an initial learning rate of 0.01, to update the base learners for 5 steps in the inner-loop.
For the outer-loop, we compare (i) minimizing the (single objective) of overall task loss as in MAML;
versus performing MOO with (ii) mini-batch MGDA (Désidéri, 2012; Ye et al., 2021), (iii) mini-batch
CAGrad, using the same hyper-parameters as in (Liu et al., 2021a), (iv) mini-batch PCGrad, using the

4The stop gradient operator satisfies ⊥ (h(x)) = h(x), ∇x ⊥ (h(x)) = 0, where h(·) is any differentiable
function.
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same hyper-parameters as in (Yu et al., 2020), (v) the proposed SIMOL, and (vi) updating of (6) with
a mini-batch version of the improvement function in (6). Hyperparameters for MAML, mini-batch
MGDA, and mini-batch CAGrad follow (Finn et al., 2017), while that for the proposed SIMOL are in
Appendix D.

The mini-batch size is 16. We do not compare with the batch versions of MGDA/CAGrad, as
computing all task gradients takes very large memory and time. The initial learning rate for the outer
loop is 0.001. The experiment is repeated three times with different random seeds. For performance
evaluation, we use the mean-squared-error (MSE) over all meta-testing tasks. We also report the
worst-10% MSE, which is the average MSE for the 10% worst-performing meta-testing tasks.

Results. Table 1 shows the MSE and its 95% confidence interval (computed as in (Finn et al., 2017;
Li et al., 2017)). As can be seen, SIMOL consistently outperforms MAML, and the mini-batch
versions of MGDA, CAGrad, PCGrad and improvement function in terms of both the overall and
worst-10% MSEs. Indeed, the mini-batch versions of MGDA, CAGard, PCGrad and improvement
function are even worse than the original MAML. Figure 2 shows the convergence of MSE with the
number of training epochs. As can be seen, SIMOL converges slightly faster than the other baselines.

Table 1: MSE (with 95% confidence interval) for few-shot regression. The best results are in bold.
The ∗ denotes that the improvement over the second-best is statistically significant (at a significance
level of 0.1 using the paired t-test).

overall worst-10%
5-shot 2-shot 5-shot 2-shot

min average loss (MAML) 0.43± 0.11 1.70± 0.11 2.13± 0.21 7.75± 0.48
mini-batch MGDA 0.60± 0.02 1.73± 0.10 2.62± 0.10 7.04± 0.51
mini-batch CAGrad 1.90± 0.24 1.82± 0.44 8.18± 0.63 8.23± 2.33
mini-batch PCGrad 1.89± 0.12 1.80± 0.11 6.64± 0.47 7.73± 0.54

mini-batch improvement function 0.69± 0.03 1.79± 0.09 2.63± 0.21 8.23± 0.36
SIMOL 0.34* ± 0.04 1.24* ± 0.08 1.69* ± 0.18 5.66* ± 0.33

(a) 5-shot. (b) 2-shot.
Figure 2: Convergence of MSE with the number of training epochs.

5.2 FEW-SHOT IMAGE CLASSIFICATION

Setup. In this section, we perform 5-way-1-shot and 5-way-5-shot classification on the miniIma-
geNet (Ravi & Larochelle, 2016) and tieredImageNet data (Ren et al., 2018). Following (Finn et al.,
2017), we split the miniImageNet dataset into a meta-training set with 64 classes, a meta-validation
set with 16 classes, and a meta-testing set with 20 classes. The total number of meta-training tasks
is
(
64
5

)
≈ 7.6× 106. Similarly, as in (Zhou et al., 2019), we split the tieredImageNet dataset into a

meta-training set with 351 classes, a meta-validation set with 97 classes, and a meta-test set with
160 classes. The total number of meta-training tasks is

(
351
5

)
≈ 4.3× 1010. For both datasets, we

randomly select 1, 000 meta-testing tasks for evaluation.

We use two backbone meta-learning algorithms, MAML and prototypical network (PN) (Snell et al.,
2017), with hyper-parameters following the original papers. Following (Finn et al., 2017; Li et al.,
2017; Zintgraf et al., 2019), we use the CNN45 (LeCun et al., 2015) as the meta-learner, and a CNN4

5The CNN4 consists of four 3× 3 convolution networks with batch normalization, 2× 2 max-pooling and a
ReLU activation layer.
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with a 3-layer FC as the reweighting network. The optimizer is Adam. The learning rates for the
meta networks are 0.003 for MAML-based methods and 0.001 for PN-based methods, respectively.
The learning rate of the reweighting network is 0.08 for SIMOL and 0.0008 for SIMOL+PN. The
mini-batch size is 32. More details on the hyperparameters are in Appendix D.

The proposed SIMOL is compared with (i) minimizing the overall task loss as in standard MAML,
(ii) mini-batch MGDA, and (iii) mini-batch CAGrad. We also compare with MAML variants
including (iv) Reptile (Nichol & Schulman, 2018), (v) FOMAML (Finn et al., 2017), (vi) Meta-
MinibatchProx (Zhou et al., 2019), (vii) TSA-MAML (Zhou et al., 2021), (viii) IMAML (Rajeswaran
et al., 2019)) (ix) MTL (Wang et al., 2021), a multi-task learning based maml approach, and the
standard prototypical network (Snell et al., 2017). The evaluation metrics are similar to those in
Section 5.1, but with accuracy instead of MSE. Experiments are repeated three times with different
random seeds.

Results. Tables 2 and 3 show the meta-testing accuraccies and 95% confidence intervals on mini-
ImageNet and tieredImageNet, respectively. For MAML and its variants, SIMOL consistently
outperforms all the other baselines in terms of both the overall and worst-10% accuracies. The same
is also observed on the meta-learning algorithm prototypical network. This demonstrates that SIMOL
is useful for both gradient-based and metric-based meta-learning approaches.

Note that (mini-batch) MGDA and CAGrad do not perform good in terms of both overall and worst-
10% accuracies, showing that they cannot be straightforwardly extended to the use of mini-batch. On
the other hand, the batch versions of MGDA and CAGrad are computationally impractical. Table 4
compares the per-epoch running time in training stage of standard MAML, SIMOL, and batch MGDA
and CAgrad. Experiment is performed on 5-way-5-shot classification with the MAML algorithm on
miniImageNet. As can be seen, while SIMOL has comparable per-epoch running time as MAML,
batch MGDA and CAgrad are much more computationally expensive (around 432, 000 times slower).

Table 2: 5-way classification accuracies on miniImageNet (with 95% confidence interval). Results of
Reptile, FOMAML, and Meta-MinibatchProx are from (Zhou et al., 2019), IMAML from (Deleu
et al., 2022), and TSA-MAML from (Zhou et al., 2021). Results not reported in the original papers
are denoted “-”. The best results are in bold.

overall worst-10%
1-shot 5-shot 1-shot 5-shot

(MAML) min average loss 49.24± 0.78 62.13± 0.72 13.33± 1.07 41.71± 1.02
mini-batch MGDA 46.08± 0.78 60.15± 0.41 10.60± 1.33 39.67± 0.55
mini-batch CAGrad 44.67± 0.75 60.05± 0.67 11.33± 1.12 40.01± 0.88

SIMOL 50.62* ± 1.39 65.83* ± 0.86 14.99* ± 1.72 44.81*± 0.58
(MAML Reptile 47.07± 0.26 62.74± 0.37 - -
variants) FOMAML 45.53± 1.58 61.02± 1.12 - -

IMAML 49.30± 1.88 59.77± 0.41 - -
Meta-MinibatchProx 48.51± 0.92 64.15± 0.92 - -

TS-MAML 48.44± 0.91 65.52± 0.68 - -
MTL 49.87 ± 0.41 65.81 ± 0.33 13.64 ± 1.45 43.42 ± 0.47

(PN) Standard 48.25± 0.95 65.29± 0.48 13.10± 1.32 45.03± 0.69
SIMOL 50.45*± 0.93 66.67* ± 0.47 15.00* ± 1.21 46.27* ± 0.70

5.3 REINFORCEMENT LEARNING

In this experiment, experiments are performed on the HalfCheetach-Dir and Walker-Dir environments
in Mujoco (Todorov et al., 2012). In both environments, each task corresponds to a random direction
in the XY-plane, and the agent (Walker/ HalfCheetach) learns to run in that direction as far as possible.
The reward is the average velocity minus control costs. We again use MAML as the meta-learning
algorithm, and the base reinforcement learning algorithm is vanilla policy gradient (VPG) (Sutton
et al., 1999). Following (Rothfuss et al., 2018), the policy network has two 64× 64 FC layers with
tanh activation, while the critic is a linear state-value function whose parameters are obtained by
minimizing least-square. The re-weighting network has two 64× 64 FC layers with ReLU activation.
Following (Zintgraf et al., 2019), we use MAML as the baseline.

Figure 3 shows the convergence of the accumulated reward with the number of training iterations. As
can be seen, SIMOL consistently outperforms MAML. Moreover, the convergence of MAML is less
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Table 3: 5-way classification accuracies on tieredImageNet (with 95% confidence interval).

overall worst-10%
1-shot 5-shot 1-shot 5-shot

(MAML) min average loss 50.58± 1.44 69.33± 0.74 11.60± 1.96 46.95± 1.14
mini-batch MGDA 22.92± 1.04 53.41± 0.74 7.12± 2.11 32.79± 0.88
mini-batch CAGrad 49.04± 0.93 65.43± 0.73 11.40± 1.97 42.63± 0.95

SIMOL 51.42* ± 1.50 70.13* ± 0.74 12.00* ± 1.95 47.51* ± 1.46

(MAML Reptile 49.12± 0.43 65.99± 0.42 - -
variants) FOMAML 45.53± 1.58 61.02± 1.12 - -

IMAML 38.54± 1.37 60.24± 0.76 - -
Meta-MinibatchProx 50.14± 1.37 68.30± 0.91 - -

TS-MAML 48.82± 0.88 67.82± 0.72 - -
MTL 51.02 ± 0.46 66.47 ± 0.39 13.60 ± 1.59 49.45 ± 0.58

(PN) Standard 47.63± 0.93 68.92± 0.52 14.40± 1.25 46.67± 0.78
SIMOL 50.09* ± 0.96 71.51* ± 0.79 15.10* ± 1.20 49.85* ± 0.79

stable, as also reported by (Rothfuss et al., 2018). On the other hand, the convergence of SIMOL is
smoother and more stable.

(a) HalfCheetah-Dir (b) Walker-Dir

Figure 3: Returns for SIMOL-VPG and MAML-VPG. Results are averaged over 3 trials.

5.4 ABLATION STUDY

In this experiment, we use the setup in Section 5.1, and vary the number of FC layers in SIMOL’s
meta-learner. The number of training epochs is always fixed to 10, 000. Table 5 shows the MSE’s on
2-shot regression. as can be seen, the use of 2 FC layers has the best overall MSE and worst-10%
MSE. the deeper networks may not be sufficiently trained with the fixed number of training epochs,
leading to worse performance.

Table 4: Per-epoch running time for 5-way 5-
shot classification on miniImageNet.

MAML SIMOL batch MGDA batch CAGrad

2.0 sec 2.3 sec 6.9 days 5.6 days

Table 5: Performance for SIMOL with different
numbers of layers in 2-shot regression.

#layers overall MSE worst-10 % MSE

2 1.24± 0.08 5.66± 0.33
3 1.36± 0.09 6.01± 0.38
4 1.42± 0.08 6.22± 0.34

6 CONCLUSION

In this paper, we propose to avoid the compromising phenomenon in meta-learning by reformulating
it as a multi-objective optimization (MOO) problem, in which each task is an objective. However,
current gradient-based MOO solvers cannot scale to a large number of objectives. With the use of
improvement function and mini-batch, we propose a scalable gradient-based solver with theoretical
guarantees to Pareto-optimality. Empirical studies on few-shot regression, few-shot classification, and
reinforcement learning demonstrate that the proposed method is efficient, and has good generalization
in terms of both overall performance and performance on the poorly-performing tasks.
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A TOY EXAMPLE

The definitions of f1 and f2 are:

f1(x) = c1(x)l1(x) + c2(x)g1(x),

f2(x) = c1(x)l2(x) + c2(x)g2(x),

where

l1(x) = log (max (|0.5 (−x1 − 7)− tanh (−x2)| , 0.000005)) + 6,

l2(x) = log (max (|0.5 (−x1 + 3)− tanh (−x2) + 2| , 0.000005)) + 6,

g1(x) =
(
(−x1 + 7)

2
+ 0.1 ∗ (−x2 − 8)

2
)
/10− 20,

g2(x) =
(
(−x1 − 7)

2
+ 0.1 ∗ (−x2 − 8)

2
)
/10− 20,

c1(x) = max(tanh(0.5x2), 0),

c2(x) = max(tanh(−0.5x2), 0).

For mini-batch MGDA, and SIMOL the probability to sample task 1 is 2/3 and 1/3 for task 2. The
learning rates for MGDA and mini-batch MGDA are both 0.01. The learning rate for SIMOL’s
meta-learner is 0.01, while that for its re-weighting network is 0.1. Note that the meta-learner and
the re-weighting network are represented by learnable vectors.

B PSEUDO-CODES

Algorithms 2 and 3 show the pseudo-codes for SIMOL-based MAML and PN, respectively. The key
differences between SIMOL and MAML/PN are highlighted in blue.

Algorithm 2: SIMOL for MAML.
Input: T , and total epoch S. B is the batch size, β and β′ are learning rates for w and θ. α is the

learning rates for inner loop.
1 for epoch s = 1, 2, 3, . . . , S do
2 Sample tasks 1, 2, . . . B;
3 for Every task τ do
4 Receive rθs(τ);
5 Compute adapted parameters with gradient descent w∗

τ (w) = ws − α∇wLτ (w
s);

6 ws+1 = ws − βs 1
B

∑B
τ=1 rθs(τ)∇wLτ (w

∗
τ (w));

7 θs+1 = θs + β
′sK̃(θ,B);

Algorithm 3: SIMOL for PN.
1 for epoch s = 1, 2, 3, . . . , S do
2 Sample tasks 1, 2, . . . B;
3 for Every task τ do
4 for Every class c do
5 Select the support Sc

τ and query set Qτ ;
6 Compute prototype cτ = 1

NC

∑
(xi,yi)∈Sc

τ
fθ (xi);

7 Calculate w∗
τ (w) =

1
|Qτ |NC

∑
x∈Qτ

exp(−∥fw(x)−ck∥2)∑
k′ exp(−∥fw(x)−ck′∥2) ;

8 Receive rθs(τ);

9 ws+1 = ws − βs 1
B

∑B
τ=1 rθs(τ)∇wLτ (w

∗
τ (w));

10 θs+1 = θs + β
′sK̃(θ,B);
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C PROOFS

C.1 PROOF OF LEMMA 3.1

Proof. Note that

max
τ=1...,m

{Lτ (w
∗
τ (w))− Lτ (w

∗
τ (w

′))} =
∑
τ

p(τ)Lτ (w
∗
τ (w))− Lτ (w

∗
τ (w

′)),

where

p(τ) =

{
1 τ = argmaxτ Lτ (w

∗
τ (w))− Lτ (w

∗
τ (w

′))

0 otherwise
.

First, we have

max
π(τ)

Eπ(τ) [Lτ (w
∗
τ (w))− Lτ (w

∗
τ (w

′))] −
∑
τ

p(τ)Lτ (w
∗
τ (w))− Lτ (w

∗
τ (w

′)) ≥ 0.

This can be done by setting π(τ) = p(τ). Next, we show that

max
π(τ)

Eπ(τ) [Lτ (w
∗
τ (w))− Lτ (w

∗
τ (w

′))] −
∑
τ

p(τ)Lτ (w
∗
τ (w))− Lτ (w

∗
τ (w

′)) ≤ 0.

This is established since

max
π(τ)

Eτ∼π(τ) [Lτ (w
∗
τ (w))− Lτ (w

∗
τ (w

′))]−
∑
τ

p(τ)Lτ (w
∗
τ (w))− Lτ (w

∗
τ (w

′))

≤
∑
τ

[π(τ)− p(τ)] [Lτ (w
∗
τ (w))− Lτ (w

∗
τ (w

′))]

= [π(τ ′)− 1] [Lτ ′(w∗
τ ′(w))− Lτ ′(w∗

τ ′(w′))] +
∑

τ∈{1,...,m}\τ ′

[π(τ)] [Lτ (w
∗
τ (w))− Lτ (w

∗
τ (w

′))]

(a)

≤ [π(τ ′)− 1] [Lτ ′(w∗
τ ′(w))− Lτ ′(w∗

τ ′(w′))] +
∑

τ∈{1,...,m}\τ ′

[π(τ)] [Lτ ′(w∗
τ ′(w))− Lτ ′(w∗

τ ′(w′))]

≤ π(τ ′) [Lτ ′(w∗
τ ′(w))− Lτ ′(w∗

τ ′(w′))] +
∑

τ∈{1,...,m}\τ ′

[π(τ)] [Lτ ′(w∗
τ ′(w))− Lτ ′(w∗

τ ′(w′))]

− [Lτ ′(w∗
τ ′(w))− Lτ ′(w∗

τ ′(w′))]

= [Lτ ′(w∗
τ ′(w))− Lτ ′(w∗

τ ′(w′))]− [Lτ ′(w∗
τ ′(w))− Lτ ′(w∗

τ ′(w′))]

= 0,

where τ ′ = arg max
τ=1...,m

{Lτ (w
∗
τ (w))− Lτ (w

∗
τ (w

′))}. (a) is due to the fact that

[Lτ ′(w∗
τ ′(w))− Lτ ′(w∗

τ ′(w′))] ≥ [Lτ (w
∗
τ (w))− Lτ (w

∗
τ (w

′))] ,∀τ based on the property of τ ′.
Therefore, we have

[Lτ ′(w∗
τ ′(w))− Lτ ′(w∗

τ ′(w′))] ≥ [Lτ (w
∗
τ (w))− Lτ (w

∗
τ (w

′))]

and
[Lτ ′(w∗

τ ′(w))− Lτ ′(w∗
τ ′(w′))] ≤ [Lτ (w

∗
τ (w))− Lτ (w

∗
τ (w

′))] .

Thus,

max
τ=1...,m

{Lτ (w
∗
τ (w))− Lτ (w

∗
τ (w

′))} = max
π(τ)

Eτ∼π(τ) [Lτ (w
∗
τ (w))− Lτ (w

∗
τ (w

′))] .

C.2 PROOF OF PROPOSITION 3.2

Proof. Using the first-order Taylor expansion,

argmin
d

EU(τ)[rθ(τ)[Lτ (w
∗
τ (w

s + d))− (Lτ (w
∗
τ (w

s))] +
λ′

2
∥d∥2

= argmin
d

EU(τ)

[
rθ(τ)

[
∇wLτ (w

∗
τ (w

s))⊤d
]]

+
λ′

2
∥d∥2. (17)
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Taking the derivatives w.r.t. d,

∇dEU(τ)

[
rθ(τ)

[
∇wLτ (w

∗
τ (w

s))⊤d
]]

+
λ′

2
∥d∥2 = EU(τ)[rθ(τ)[∇wLτ (w

∗
τ (w

s))]] + λ′d.

Setting the above to zero, we have EU(τ)[rθ(τ)∇wLDτ
(w∗

τ (w
s))] + d = 0, and

d∗ =
−1

λ′ EU(τ)[rθ(τ)[∇wLτ (w
∗
τ (w

s))]].

Putting d∗ back to the objective in (17), we have:

Eτ∼Urθ(τ)[Lτ (w
∗
τ (w

s + d))− Lτ (w
∗
τ (w

s))] +
λ′

2
∥d∥2

=
[
Eτ∼Urθ(τ)∇wLτ (w

∗
τ (w))|⊤w=wsd

]
+

λ′

2

∥∥∥∥− 1

λ′Eτ∼π[∇wLτ (w
∗
τ (w)|w=ws ]

∥∥∥∥2
= ⟨Eτ∼Urθ(τ)∇wLτ (w

∗
τ (w))|⊤w=ws , d⟩+

1

2λ′ ∥Eτ∼π[∇wLτ (w
∗
τ (w)|w=ws ]∥2

= − 1

λ′ ⟨Eτ∼Urθ(τ)∇wLτ (w
∗
τ (w))|⊤w=ws ,Eτ∼Urθ(τ)∇wLτ (w

∗
τ (w))|⊤w=ws⟩

+
1

2λ′ ∥Eτ∼π[∇wLτ (w
∗
τ (w)|w=ws ]∥2

=
−1

λ′ ∥Eτ∼π[∇wLτ (w
∗
τ (w)|w=ws ]||2.

Next, we have the following two Lemmas.

Lemma C.1. When Lτ (w
∗
τ (w

s + d)) ≈ Lτ (w
∗
τ (w

s) +∇wLτ (w
∗
τ (w

s))⊤d, Eq. (9) is convex w.r.t.
d and concave. w.r.t. rθ(τ).

Proof. Putting Lτ (w
∗
τ (w

s + d)) ≈ Lτ (w
∗
τ (w

s) +∇wLτ (w
∗
τ (w

s))⊤d into Eq. (9), we have:

min
d

max
r(τ)

EU(τ)[r(τ)[Lτ (w
∗
τ (w

s + d))− (Lτ (w
∗
τ (w

s))] +
λ′

2
∥d∥2 − λ′′

2
(EU(τ)[r(τ)] − 1)2]

= min
d

max
r(τ)

EU(τ)[r(τ)[Lτ (w
∗
τ (w

s)) +∇wLτ (w
∗
τ (w

s))⊤d− (Lτ (w
∗
τ (w

s))]

+
λ′

2
∥d∥2 − λ′′

2
(EU(τ)[r(τ)] − 1)2].

For ∇wLτ (w
∗
τ (w

s))⊤d + λ′

2 ||d||
2, since ∇wLτ (w

∗
τ (w

s))⊤d is both convex and concave w.r.t. d,
and λ′

2 ||d||
2 is convex w.r.t. d. Then, ∇wLτ (w

∗
τ (w

s))⊤d+ λ′

2 ∥d∥
2 is convex w.r.t d. Thus, the sum

of two convex functions ∇wLτ (w
∗
τ (w

s))⊤d + λ′

2 ∥d∥
2 is convex w.r.t. d. Thus, Eq. (9) is convex

w.r.t. d. Similarly, since −λ′′

2 (EU(τ)[rθ(τ)] − 1)2 is concave w.r.t. rθ(τ). Therefore, Eq. (9) is also
concave w.r.t. rθ(τ).

Lemma C.2. When Lτ (w
∗
τ (w

s + d)) ≈ Lτ (w
∗
τ (w

s) +∇wLτ (w
∗
τ (w

s))⊤d,

min
d

max
rθ(τ)

EU(τ)[rθ(τ)[Lτ (w
∗
τ (w

s + d))− Lτ (w
∗
τ (w

s))] +
λ′

2
∥d∥2 − λ′′

2
(Ep[rθ(τ)] − 1)2]

= max
rθ(τ)

min
d

EU(τ)[rθ(τ)[Lτ (w
∗
τ (w

s + d))− Lτ (w
∗
τ (w

s))] +
λ′

2
∥d∥2 − λ′′

2
(Ep[rθ(τ)] − 1)2].

Proof. The above equation is established by the minimax theorem (Simons, 1995) when Eq. (9) is
convex w.r.t. d and concave w.r.t. rθ(τ). This holds by using Lemma C.1.
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Lemma C.3. If every B ∈ B is a set consists of a unique selection of k (m > k > 1) tasks out of m
(the total number of tasks) tasks without replacement. For any continuous function f(·), we have:

[
1

m

m∑
τ=1

f(τ)

]2
= C1

∑
B∈B

[∑
τ∈B

f(τ)

]2
− C2

∑
B∈B

∑
τ∈B

[f(τ)]2,

where C1 = k2

(m−2
k−2)m2

, C2 =
[(

m−1
k−1

)
− 1

2

(
m−2
k−2

)]
/
(
m−1
k−1

)
m2
(
m−2
k−2

)
.

Proof. Note that

[
1

m

m∑
τ=1

f(τ)

]2
(a)
=

∑
τ ′

∑
τ

1(τ, τ ′)f(τ)f(τ ′)

(b)
=

1(
n−2
B−2

) ∑
B∈B

∑
τ ′∈B

∑
τ∈B

1(τ, τ ′)f(τ)f(τ ′)−
[(

n− 1

B − 1

)
− 1

2

(
n− 2

B − 2

)]∑
τ∈T

f(τ)2

=
1(

n−2
B−2

)
∑
B∈B

∑
τ ′∈B

∑
τ∈B

1(τ, τ ′)f(τ)f(τ ′)−

[(
n−1
B−1

)
− 1

2

(
n−2
B−2

)](
n−1
B−1

) ∑
B∈B

∑
τ∈B

f(τ)2


=

1(
n−2
B−2

)
m2

∑
B∈B

[
∑
τ∈B

f(τ)]2 −

[(
n−1
B−1

)
− 1

2

(
n−2
B−2

)](
n−1
B−1

)
m2

∑
B∈B

∑
τ∈B

f(τ)2


= C1[

∑
B∈B

[∑
τ∈B

f(τ)

]2
− C2

∑
B∈B

∑
τ∈B

[f(τ)]2.

(a) is due to the multinomial theorem (Bolton, 1968) and 1(τ, τ ′) =
{
2 τ ̸= τ ′

1 otherwise
. (b) is due to the

fact that every task τ has occurred exactly
(
n−1
B−1

)
times, and every tuple (τ, τ ′) has occurred exactly(

n−2
B−2

)
times.

Lemma C.4. If every B ∈ B is a set consists of a unique selection of k (m > k > 1) tasks out of m
(the total number of tasks) tasks without replacement. Let g(τ) = [g1(τ), g2(τ), . . . , gm(τ)], where
gi(·)’s are continuous functions. We have

∥∥∥∥∥ 1

m

m∑
τ=1

g(τ)

∥∥∥∥∥
2

= C1

∑
B∈B

∥∥∥∥∥∑
τ∈B

g(τ)

∥∥∥∥∥
2

− C2

∑
B∈B

∑
τ∈B

∥g(τ)∥2,

where C1 = k2

(m−2
k−2)m2

, and C2 =
[(

m−1
k−1

)
− 1

2

(
m−2
k−2

)]
/
(
m−1
k−1

)
m2
(
m−2
k−2

)
.

Proof. Observe that ∥g(τ)∥2 =
∑

i gi(τ)
2. The remaining follows from Lemma C.3.
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Proof. (of Proposition 3.3) Using Lemmas C.3 and C.4, we have:

K̃T (θ)−
1

|B|
∑
B

K̃B(θ)

=
∑
B∈B

[
−3C1

2λ′ +
3

2λ′|B|

]
||d̃∗||2 −

∑
B∈B

[
λ′′C1 −

λ′′

|B|k2

](∑
τ∈B

(rθ(τ)− 1)

)2

−C2

[∑
B∈B

∑
τ∈B

(
− 1

λ̂′
||rθ(τ)∇wLτ (w

∗
τ (w))|w=ws ||2 − λ̂′′[rθ(τ)− 1]2

)]

=

[∑
B∈B

∑
τ∈B

(
−C2

1

λ′ ∥rθ(τ)∇wLτ (w
∗
τ (w))|w=ws∥2 − C2λ

′′[rθ(τ)− 1]2
)]

,

where d̃∗ := 1
|B|

∑
B∈B

rθ(τ)∇wLτ (w
∗
τ (w))|w=ws . Recall λ̂′ and λ̂′′ are defined in Sec. 3. Then,

(K̃T (θ)−
1

|B)
∑
B

K̃B(θ))
2 (18)

≤

([(
−C2k|B|

λ′
1

k|B|
∑
B∈B

∑
τ∈B

||rθ(τ)∇wLτ (w
∗
τ (w))|w=ws ||2 (19)

+C2k|B|λ′′ 1

k|B|
∑
B∈B

∑
τ∈B

[rθ(τ)− 1]2

)])2

(20)

≤ C2k|B|G1

λ′ + C2k|B|λ′′G2. (21)

By noting that K̃T (θ) is exactly K(θ), we obtain the first claim.

Regarding the second claim, note that when m is large,

C2k|B| =
k
[(

m−1
k−1

)
− 1

2

(
m−2
k−2

)] (
m
k

)(
m−1
k−1

)
m2
(
m−2
k−2

)
≈

k
(
m−1
k−1

)(
m
k

)(
m−1
k−1

)
m2
(
m−2
k−2

) =
k
(
m
k

)
m2
(
m−2
k−2

)
=

k
(
m−1
k−1

)
m
k

m2
(
m−2
k−2

) =
k
(
m−2
k−2

)
m
k

m−1
k−1

m2
(
m−2
k−2

)
=

m− 1

(k − 1)m
≈ 1

k − 1
.

The first approximation is due to the fact that
(
m−1
k−1

)
≫ 1

2

(
m−2
k−2

)
. The third and forth equations are

due to the property of combinatorics (
(
m
k

)
= m

k

(
m−1
k−1

)
). Putting 1

k−1 back into Eq. (18), we obtain
the results.

C.3 PROOF OF LEMMA 4.1

Proof. We have:

∇θR(θ, w) = ∇θ∆(θ)−∇θ
λ′′

2
(Eτ∼Urθ(τ)− 1)2

= − 1

λ′Eτ∼U∇θrθ(τ) ⊥ [(Lτ (w
∗
τ (w) + d∗)− Lτ (w

∗
τ (w))]

⊥ [Eτ∼Urθ(τ)[Lτ (w
∗
τ (w) + d∗)− Lτ (w

∗
τ (w))]]

= ∇θ∥Eτ∼U∇θrθ(τ)∇wLτ (w
∗
τ (w)|w=ws ||2 −∇θ

λ′′

2
(Eτ∼Urθ(τ)− 1)2

= ∇θK(θ).
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Also notice that:

∇wR(θ, w)

= Eτ∼U [⊥ (rθ(τ)) [∇wLτ (w
∗
τ (w)]] +∇w∆(θ)−∇w

λ′′

2
(Eτ∼Urθ(τ)− 1)2]

= Eτ∼Urθ(τ)[∇wLτ (w
∗
τ (w))].

Therefore, ∇wR(θ, w)|w=ws
= −d∗.

C.4 PROOF OF THEOREM 4.2

Definition C.5. (Weak Global Pareto Optimality) (Mäkelä et al., 2016) A solution x∗ of problem
(5) is weakly global Pareto optimal if there does not exist another x such that fτ (x∗) ≥ fτ (x) for
τ ∈ {1, . . . ,m}.
Theorem C.6. (Theorem 5 in (Miettinen & Mäkelä, 1995)) For a multi-objective optimization problem
min
w

[f1(w), f2(w), . . . , fm(w)] and its corresponding improvement function H (w,w∗). A necessary

condition for w∗ ∈ Rn to be weakly global Pareto optimal is that w∗ = argminw H(w,w∗).
Moreover, if fi(w) is convex ∀i, then it is a sufficient condition.

We observe the following.

1) By replacing fτ = Lτ ◦ w∗
τ (w),∀τ , the above theorem can be directly applied to the MAML

setting.

2) f in our setting can be a neural network. Thus, the convexity condition for fτ (w) can be hard to
satisfy. Here, we give the a more relaxed version of the above theorem:
Theorem C.7. w∗ := argminwH (w,w∗) is Pareto stationary.

Proof. Using Theorem 2 in (Miettinen & Mäkelä, 1995), we have

∂wH (w,w∗) ⊂ conv
⋃

i ∂w (fi(w)− fi (w
∗)), where ∂ is reloaded as sub-gradient, and conv is the

convex set.

Note that 0 ∈ ∂wH (w,w∗) due to the fact that the element in the convex set of the union of sub-
gradients is still a sub-gradient, and for w ∈ {w|0 ∈ ∂wH (w,w∗)}, the sub-gradient ∂wH (w,w∗)
is zero.

Then, we always have
∑

i wi∂w (fi(w)− fi (w
∗)) = 0,

∑
i wi = 1, based by definition of a

convex set, where wi ∈ [0, 1],∀i is a real number. By simplifying the above term, we have∑
i wi∂ (fi(w)− fi (w

∗)) =
∑

i wi∂wfi(w) = 0. which is exactly the definition of Pareto sta-
tionary point.

We now show convergence of Algorithm 1.

Lemma C.8. In each epoch s of Algorithm 1, set λ̂′′ =

{
0 Ep[rθ(τ)] = 1

∞ otherwise
, we have:

H(ws + d,ws) ≤ H(ws, ws) .

When equality holds, ws is a stationary point.

Proof. By Lemma C.2, the solutions of

maxθ mind EU(τ)[rθ(τ) [Lτ (w
∗
τ (w

s + d))− Lτ (w
∗
τ (w

s))] + λ̂′

2 ||d||
2 − λ̂′′

2 (Ep[rθ(τ)] − 1)2]

are the same as those from

mind maxθ EU(τ)[rθ(τ) [Lτ (w
∗
τ (w

s + d))− Lτ (w
∗
τ (w

s))] + λ̂′

2 ||d||
2 − λ̂′′

2 (Ep[rθ(τ)] − 1)2].

Solving θ, the above minimax problem degenerates to

min
d

max
τ=1...,m

[Lτ (w
∗
τ (w

s + d))− Lτ (w
∗
τ (w

s))] +
λ̂′

2
∥d∥2.
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Note that the above optimization problem is exactly mind H(ws + d,ws) + λ̂′

2 ||d||
2, where d is

the steepest descent direction. Then, due to the property of steepest descent direction, we always
have H(ws + d,ws) ≤ H(ws, ws), and equality holds iff ||d||2 = 0, where ws a stationary point
according to the definition.

Lemma C.9. Algorithm 1 converges to a Pareto stationary point. Moreover, if Lτ (w
∗
τ (w)) is convex,

Algorithm 1 converges to a global weak Pareto optimal point.

Proof. From Lemma C.8, the sequence {H(ws+d,ws, ws+1
1:m , ws

1:m)}s is decreasing. Also obviously,
H(ws + d,ws, ws+1

1:m , ws
1:m) has a lower bound. Thus, using the monotone convergence theorem,

Algorithm 1 converges. Using Theorem C.7, it is Pareto stationary. Together with Theorem C.6, it is
global Pareto optimal if Lτ (w

∗
τ (w)) is convex.

Lemma C.10. (i) If Lτ (w
∗
τ (w + d)) is L-smooth and µ′-convex w.r.t. w and d, and rθ(τ) is µ-

concave, rθ(τ) and Lτ (w
∗
τ (w

s+1)) are bounded (i.e., rθ(τ) ≤ Cmax and Lτ (w
∗
τ (w

s+1)) ≤ C ′
max),

then R(θ, w) is L+ Cmaxµ
′ convex w.r.t. w and 2L-smooth w.r.t. w, θ and C ′

maxµ concave w.r.t. θ.

(ii) If Lτ (w
∗
τ (w + d)) is L-smooth w.r.t. w and d, and rθ(τ) is µ-concave, then R̃(θ, w,B) is

L-smooth w.r.t. w, θ, and C ′
maxµ-concave w.r.t. θ.

Proof. For claim (i), we first prove that for any differentiable functions f, g, ⊥ [f(x)] ⊥ [g(x)] is
0-smooth and convex w.r.t. x. Note that

||∇x ⊥ [f(x)]⊥ [g(x)] − ∇x′ ⊥ [f(x′)]⊥ [g(x′)] ||2 = 0

due to the property of the stop gradient operator. Thus,

⊥ [f(x)]⊥ [g(x)]− ⊥ [f(x′)]⊥ [g(x′)] = −∇x′(⊥ [f(x′)]⊥ [g(x′)])(⊥ [f(x)] ⊥ [g(x)]) = 0.

For convexity, by using the property of 0-smoothness, we have

⊥ [f(x′)]⊥ [g(x′)]− ⊥ [f(x)]⊥ [g(x)] ≥ ∇x′(⊥ [f(x′)]⊥ [g(x′)])(⊥ [f(x)]⊥ [g(x)]).

Thus, ⊥ [f(x)] ⊥ [g(x)] is convex due to the definition of convexity. Therefore, ⊥ [f(x)] ⊥ [g(x)]
is also 0-smooth and convex w.r.t. x.

A direct application of the above, we obtain ⊥ [f(x)] is 0-smooth and convex w.r.t. x by setting
g(x) ≡ 1.

Using the above, we have ⊥ [(Lτ (w
∗
τ (w) + d) − Lτ (w

∗
τ (w))], ⊥ [Eτ∼Urθ(τ)[Lτ (w

∗
τ (w) +

d∗) − Lτ (w
∗
τ (w))]], ⊥ [(LDT

(w∗
T (w) + d∗) − LDT

(w∗
T (w))]] ⊥ ET∼Urθ(T )[LDT

(w∗
T (w) +

d∗) − LDT
(w∗

T (w))] are also 0-smooth and convex. Therefore rθ(T ) ⊥ [(LDT
(w∗

T (w) + d∗) −
LDT

(w∗
T (w))]] ⊥ [ET∼Urθ(T )[LDT

(w∗
T (w) + d∗)− LDT

(w∗
T (w))]] is convex and L-smooth (as

L ≥ 0).

Also, we have ⊥ (rθ(τ))[Lτ (w
∗
τ (w)]] is Cmaxµ

′-convex and L-smooth due to our assumption.

Then, Eτ∼U [⊥ (rθ(τ))[Lτ (w
∗
τ (w)]] is Cmaxµ

′-convex and L-smooth since the addition of convex
functions implies Eτ∼U [⊥ (rθ(τ))[Lτ (w

∗
τ (w)]] is Cmaxµ

′-convex, and the adding of smooth func-
tions implies Eτ∼U [⊥ (rθ(τ))[Lτ (w

∗
τ (w)]] is L-smooth, and taking the average does not affect the

results. Thus, R(θ, w) is Cmaxµ
′-convex and L-smooth.

For rθ, since −λ′

2 ∇θ(Ep[rθs(τ)] − 1)2 +∆(θ) is concave, ∆(θ) is 2µC ′
max-concave. Then ∆(θ)−

λ′′

2 ( 1
B

∑
τ [rθ(τ)] − 1)2 is also C ′

maxµ-concave. Thus R(θ, w) is C ′
maxµ-concave.

The proof of claim (ii) is similar.

Proof. (of Theorem 4.2) Recall Lemma C.10 on the properties of convex and smooth for R̃. Combine
it with the assumptions in Theorem 4.2, and use Theorem 4.9 in (Lin et al., 2020), we obtain the
bound of O( 1

ϵ8 ) when B = 1.

When B > 1, note that using Lemma A.2 in (Lin et al., 2020), we have:

E

∥∥∥∥∥ 1

B

B∑
i=1

R̃(θ, w,B)

∥∥∥∥∥
2
 ≤ ∥∇wR(θ, w)∥2 + σ2

B
.
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Therefore, let σ2′ = σ2

B and use Theorem 4.9 in (Lin et al., 2020) shows the bound of O( 1
ϵ8 ).

The remaining part that the fixed point w of maxθ R̃(θ, w,B) is global Pareto optimal (resp. Pareto
stationary) can be obtained by using Lemma C.9, which says that the fixed point of Algorithm 1 is
global Pareto optimal (resp. Pareto stationary).

Finally, we show that using SIMOL on MAML can guarantee convergence.

Proof. (of Corollary 4.2.1) First, we show that if ∇wLτ (w) is Hessian-Lipschitz continuous, bounded
and Lipschitz-continuous, and ∥w∥ is bounded, then w∗

τ (w) is also Hessian-Lipschitz continuous,
bounded and Lipschitz-continuous. Note that

∥∇2
ww

∗
τ (w)−∇2

w′w∗
τ (w

′)∥ = α∥∇2
w(∇wLτ (w))−∇2

w′(∇w′Lτ (w
′))∥,

∥∇ww
∗
τ (w)−∇w′w∗

τ (w
′)∥ = α∥∇w(∇wLτ (w))−∇w′(∇w′Lτ (w

′))∥,
∥w∗

τ (w)∥ = ∥w − α∇wLτ (w)∥ = ∥w∥+ α∥∇wLτ (w)∥.

It is easy to see that w∗
τ (w) is also Hessian-Lipschitz continuous, bounded and Lipschitz continuous.

Applying Lemma 3 in (Collins et al., 2020), we obtain that Lτ (w
∗
τ (w)) is C-smooth, where C is

positive. Then setting C = L and using Theorem 4.2, we get the desire result.

D HYPER-PARAMETER SELECTION OF SIMOL

For the few-shot regression experiment (section 5.1), the regularization parameters λ̂′, λ̂′′ are selected
from {0.001, 0.01, 0.1, 1}, and learning rate β′ is selected from {0.01, 0.03, 0.1, 0.3, 1} based on the
validation set.

For the few-shot classification experiments (section 5.2), we use the λ̂′, λ̂′′) combination selected from
few-shot regression, while the learning rate β′ is selected from {0.0003, 0.0008, 0.01, 0.03, 0.08, 0.1}
for the 1-shot miniImageNet task based on the validation set. this is then also used in the other few-shot
classification experiments.
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