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ABSTRACT

Reinforcement learning (RL) has shown significant promise in stock trading. A
typical solution involves optimizing cumulative returns using historical offline
data. However, it may produce less generalizable policies that merely “memorize”
optimal buying and selling actions from the offline data while neglecting the non-
stationary nature of the financial market. We frame stock trading as a specific type
of offline RL problem. Our method, MetaTrader, presents two key contributions.
First, it introduces a novel bilevel actor-critic method that spans both the original
stock data and its transformations. The fundamental idea is that an effective policy
should be generalizable across out-of-distribution data. Second, we propose a
novel variant of conservative TD learning, utilizing an ensemble-based TD target
to mitigate value overestimation, particularly in scenarios with limited offline
data. Our empirical findings across two publicly available datasets demonstrate
the superior performance of MetaTrader over existing methods, including both
RL-based approaches and stock prediction models.

1 INTRODUCTION

Reinforcement learning (RL) has demonstrated promising results in stock trading (Deng et al.,
2016; Jeong & Kim, 2019; Ye et al., 2020; Briola et al., 2021; Liu et al., 2021; Kumar, 2023; Gao
et al., 2023a). Typical approaches initially leverage advanced deep learning techniques to extract
useful features from the noisy market data, e.g., stock prices, trading volumes, and financial news.
Subsequently, these features are used as inputs for RL algorithms, commonly designed to maximize
the expected total payoff within the offline training data. The recent advances of RL-based trading
methods, such as StockFormer (Gao et al., 2023a), have shown superior performance compared to
straightforward combinations of stock prediction approaches (Li et al., 2018; Xu & Cohen, 2018;
Wang et al., 2021; Zheng et al., 2023) with a fixed trading policy, like buying stocks with the highest
predicted future gains and holding them for a specific period.
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Figure 1: A comparison of MetaTrader and exist-
ing RL-based stock trading methods.

However, a questionable part of most existing
methods lies in their direct use of standard RL
within offline datasets (see Figure 1), while ne-
glecting the performance of the learned policy
in out-of-distribution (OOD) scenarios. As the
RL agent cannot further explore the real-world,
rapidly changing financial market, it is prone
to overfitting the historical data and memoriz-
ing the “optimal” offline policy— transactions
yielding the highest profits— although it may
be impractical beyond the scope of the dataset.
This raises a crucial yet under-explored question:
How can we learn more robust trading policies
that can jointly handle the in-domain profits1

and out-of-domain generalizability?

In this paper, we propose MetaTrader, an early study of bilevel optimization of actor-critic methods in
stock trading, which we formulate as a decoupled offline RL problem. The core idea of MetaTrader

1In-domain profit refers to the financial gains achieved by the trading policy when applied to data that shares
the same distribution as the training data (i.e., the historical dataset).
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extends beyond maximizing the expected total payoff on current trajectories. As illustrated in Figure
1, the primary objective includes learning policies that are also effective for OOD stock data.

To achieve this, we improve existing RL traders in two key aspects. One primary contribution of our
work is to enhance the generalization capability of the policy. In practice, we approach this from
both the algorithmic and data perspectives, which are closely intertwined. From the algorithmic
perspective, we propose a new actor-critic method based on bilevel optimization, which has been
shown to effectively bridge the distribution shift between the training and testing domains, facilitating
the generalization of optimized variables to unseen scenarios (Finn et al., 2017). The intuition of
incorporating bilevel gradient updates is to mitigate overfitting to specific historical distribution by
explicitly simulating test samples with OOD market conditions, keeping the model from simply
memorizing the optimal policy based on specific patterns in the training set.

From a data perspective, we propose specific data transformation methods that aim to generate the
simulated OOD test samples for bilevel gradient updates. The data transformation methods are
fundamentally designed from different factorized components of the time series data, including
short-term randomness, long-term trends, and multi-scale correlations.

Another contribution of our work is a novel temporal difference (TD) method based on an ensemble
of transformations of future stock data. This approach aims to make the policies learned from offline
data more conservative to address the value overestimation problem. Specifically, we independently
compute Q-values separately using both the original data and its transformations at future time steps.
We use the minimum Q-value among them as the TD target to supervise value estimation at the
current time step. Unlike previous ensemble-based Q-learning methods, which use the multiple target
Q-networks to compute ensemble value regularization, our method relies on a single target Q-network
and derives the worst-case Q-value through a diverse set of transformed data. We further illustrate the
feasibility of this approach from the perspective of Bellman Equations within our offline RL setup.

Our approach significantly outperforms existing RL-for-finance methods on two stock datasets in
both portfolio returns and Sharpe ratios, showcasing its ability to balance the trading profits and risks.
In summary, this paper presents three contributions:

• We reconsider the rationale behind existing RL-based stock trading approaches, highlighting the
risks of in-domain policy overfitting and the problem of value overestimation.

• We leverage bilevel optimization to enhance the generalizability of offline RL across various data
transformations, thereby enabling adaptation to the non-stationary environment.

• We introduce a novel ensemble-based conservative TD target to overcome value overestimation.

2 PROBLEM DEFINITION

We cast stock trading as a particular offline RL problem. The corresponding Markov decision process
(MDP) can be formulated as an 8-tuple (O,H,Z,A, Ph, Pz, R, γ):

Observation space (O). The raw data includes: (i) oprice
t ∈ RT×|S|×5: Daily open, close, high,

low stock prices, and trading volumes for the previous T days. |S| is the total number of stocks. (ii)
ostat
t ∈ R|S|×K : K technical indicators that reflect the temporal trends of stock prices. (iii) A matrix

that measures the correlations between historical daily closing prices of all stocks.
State space (H, Z). Motivated by the observation that individual buying and selling actions
typically have limited impacts on market dynamics, we explicitly decouple the state space into two
components: S = (H,Z). H is the action-free state space that represents the market data, while Z is
the action-dependent state space that represents our balance sheet. Accordingly, we formulate the
state transition probabilities as Ph(ht+1|ht) and Pz(zt+1|zt, at). The action-free market state ht is
composed of three types of latent states hrelat

t , hlong
t , hshort

t generated from the observation oprice
t , ostat

t
and ocov

t by predictive coding. Please refer to Eq. 1 for details. The action-dependent balance state
zt ∈ R|S|+1 represents the total account balance and holding amount of each trading asset.
Action space (A). We use a continuous action space at ∈ R|S|, where each component represents
the number of shares to buy, hold, or sell for each asset. To simulate real-world trading, we discretize
at into several intervals, such as 100, 200, . . . shares when deploying the agent for testing.
Reward function (R). The immediate reward is defined as the daily portfolio return ratios: rt =
R(ht:t+1, zt:t+1), where zt+1 is dependent on at. γ is the reward discount factor that determines how
much the RL agents care about rewards in the distant future.
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(c) Offline RL for stock trading

Figure 2: A comparison of different problem setups of RL-for-finance methods. Unlike previous
literature, we introduce a novel offline learning setup tailored for non-stationary market data.

A mixed offline RL setup. Unlike standard offline RL setups, as shown in Figure 2, we specify
the state space as partially offline. This means that (i) we can only access limited market dynamics
with unknown Ph, (ii) we assume known action-dependent dynamics denoted by Pz , and (iii) we can
explore different actions to collect reward feedback with a pre-defined reward function. Offline RL
commonly faces challenges related to bootstrapping from out-of-distribution states, often leading
to overly optimistic value function estimates. In contrast, our decoupled MDP allows for the online
expansion of action-free states ht using carefully designed data transformation methods. Furthermore,
our formulation facilitates an ensemble-based TD method for conservative value estimation.

3 METHOD

3.1 REVISITING RL-BASED STOCK TRADING

We use the recent work of StockFormer (Gao et al., 2023a) as an example. Despite its state-of-the-art
performance, a potential drawback lies in the straightforward use of conventional RL methods for
offline data. StockFormer has three network branches fψ1,2,3

(·) to extract the cross-stock relational
features hrelat

t ∈ R|S|×D, the long-term predictive features hlong
t ∈ R|S|×D, and the short-term

predictive features hshort
t ∈ R|S|×D from the stock data ot = [oprice

t−H+1:t, o
stat
t−H+1:t, o

cov
t−H+1:t] in the

past H days. D represents the dimension of the hidden features per stock. The feature extraction
module is frozen during policy optimization. These features are used as the input states of the Soft
Actor-Critic (SAC) algorithm (Haarnoja et al., 2018):

States: hrelat
t = fψ1

(ot), hlong
t = fψ2

(ot), hshort
t = fψ3

(ot),

Actor: at ∼ πθ(h
relat
t , hlong

t , hshort
t , zt), Critic: qt ∼ Qϕ(h

relat
t , hlong

t , hshort
t , zt, at),

(1)

where zt ∈ R|S|×1 represents the holding amount of all trading assets at a certain time step. Our
approach follows the basic network architectures of StockFormer, including the feature extraction
module fψ1,2,3 , the actor module πθ, and the critic module Qϕ.

A notable concern in previous RL-based stock trading methods, such as StockFormer, is that the
RL agent is trained exclusively on maximizing the total payoff within a specific in-domain offline
dataset. This approach carries the risk of overfitting the optimal trading behaviors in a fixed dataset,
potentially resulting in impractical policies for the unobserved dynamics of a non-stationary market
in the future. In summary, there are two primary challenges when deploying RL agents trained on
offline datasets to non-stationary financial markets: Challenge 1: Enhancing the performance of
the policy in OOD scenarios. Challenge 2: Addressing the value overestimation issues commonly
present in offline RL. In the subsequent Section 3.2 and Section 3.3, we delve into the technical
details of MetaTrader, offering solutions to these challenges, respectively.

3.2 BILEVEL REINFORCEMENT LEARNING ACROSS TRANSFORMED DATA

To improve the generalization ability of the learned policy to scenarios of non-stationary financial
markets, we propose a bilevel RL paradigm (see Figure 3), which concurrently considers in-domain
rewards and potential profits for OOD data. To simulate the OOD scenarios, we first split the offline
dataset chronologically into subsets, and then generate fictitious data with carefully-crafted data
transformation techniques. The entire training scheme involves two phases: (i) OOD policy learning
and (ii) in-distribution model finetuning, as illustrated in Alg. 1 and Alg. 2 respectively.

Subsets construction by data slicing. Initially, considering the explicit temporal and cyclical
patterns present in raw stock data, we partition the entire offline training set into subsets referred to
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Figure 3: The bilevel learning scheme of MetaTrader based on transformed data.

as {Dm}M+M ′

m=1 . As shown in Figure 3, M represents the number of subsets used in the process of
OOD policy learning, and M ′ corresponds to in-distribution model finetuning. These subsets are then
separated into sequences of 64 days, approximating the number of trading days in a quarter of a year.

Subsets construction by data transformation. We believe that the use of stock transformation
techniques to expand the offline training data is pivotal for enhancing the model’s generalization
capabilities. Specificially, we treat stock market data as multivariate time series, those dynamic
patterns can be typically viewed as a combination of three components: short-term randomness, long-
term trends, and multi-scale seasonal patterns. Accordingly, we introduce three data transformation
methods {Fn}N=3

n=1 to simulate OOD yet plausible market changes that have not been included in the
training set, with each method focusing on one of the three dynamic components:

• F1: At each time step, we select the Top-10% stocks (yellow bars in Figure 4) with the highest
daily gains in prices and invert the growth rate to declines (blue bars). It simulates the effects of
unexpected events on individual stocks (i.e., short-term randomness). Based on this, our bilevel
learning scheme mitigates overfitting to stocks that perform well only within training periods.

• F2: We reverse the overall trends of the stock price. By simulating varying market conditions
influenced by long-term disruptions, it evaluates the policy’s robustness in such scenarios.

• F3: We downsample the original time series by four. It scales the seasonal patterns of the market,
enabling the model to capture multi-scale correlations between the stock changes.

By applying {Fn}Nn=1, we expand the subset collections for OOD policy learning to {Dm,n}M,N
m=1,n=0,

where we use n = 0 to denote the original data. We provide more details in Appendix A.

Real stock data

Price Price

Price

Time

Price
Chronologically reversed

Time

Time Time

Real stock data

Price Price

Price

Time

Price
Chronologically reversed

Time

Time Time

Figure 4: An example of stock data transformation. See text for details.

Out-of-distribution policy learning. Based on different partitions/transformations of the original
data, we perform cross-set policy learning using a bilevel optimization scheme, as shown in Alg. 1.
We first sample training subsets randomly: {Di}Ki=1 ∼ {Dm,n}M,N

m=1,n=0. The goal of the inner-loop
optimization step is to derive a hypothetical RL gradient aimed at maximizing the in-distribution
profits within each subset. In the outer-loop optimization step, our model diverges from previous
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meta-learning approaches by conducting bilevel gradient updates across each pair of distinct subsets.
In Lines 10–12 in Alg. 1, we evaluate the hypothetical model parameters {ϕ′

k,j , θ
′
j} that are learned

from subset j on the data split Bi from subset i. The goal is to update model parameters to enhance
the robustness of the policy to OOD data. In line with SAC, we incorporate double Q-networks Qϕ1,2

as well as the corresponding target networks Qϕ̄1,2
with moving-average parameters. We will delve

into the inner-loop critic loss LQ, the outer-loop critic loss L′
Q, and the actor loss Lπ in Section 3.3.

In-distribution model finetuning. Due to the non-stationary nature of the time-evolving market,
finetuning MetaTrader on recent training data close to the test set can enhance its final performance.
In Alg. 2, we continue to employ the bilevel optimization scheme within each training subset. We
first draw subsets from the buffer of raw data, such that {Di}Ki=1 ∼ {Dm,n=0}M+M ′

m=M+1. Notably, we
exclusively use the original data to eliminate the unexpected noise introduced by the transformed
data. Furthermore, it is essential to note that during the finetuning phase, we perform the inner-loop
and outer-loop gradient steps on separate data batches, Btr

i and Bts
i , sampled from the same subset Di.

The rationale behind this is to facilitate the adaptation of the model to nearby market dynamics.

Algorithm 1 OOD Policy Learning
Input: Expanded datasets {Dm,n}M,N

m=1,n=0

Parameters: α1, α2, η1, η2
1: Randomly initialize model parameters θ, ϕ1, ϕ2

2: for T1 steps do
3: Sample datasets {Di}Ki=1 ∼ {Dm,n}
4: for each Di ∈ {Di}Ki=1 do
5: Sample a batch of data Bi ∼ Di

6: ϕ′
1,i ← ϕ1 − η1∇ϕ1LQ (Bi; ϕ1)

7: ϕ′
2,i ← ϕ2 − η1∇ϕ2LQ (Bi; ϕ2)

8: θ′i ← θ − α1∇θLπ

(
Bi; θ, ϕ

′
1,i

)
9: end for

10: ϕ1 ← ϕ1 − η2
∑

i

∑
j

[
∇ϕ1L′

Q

(
Bi; ϕ

′
1,j

)]
11: ϕ2 ← ϕ2 − η2

∑
i

∑
j

[
∇ϕ2L′

Q

(
Bi; ϕ

′
2,j

)]
12: θ ← θ − α2

∑
i

∑
j

[
∇θLπ

(
Bi; θ

′
j , ϕ

′
1,j

)]
13: end for

Algorithm 2 In-Distribution Model Finetuning

Input: Datasets {Dm,n=0}M
′

m=M+1 of real stock data
Parameters: α1, α2, η1, η2
1: Obtain the pretrained θ, ϕ1, ϕ2 from Alg. 1
2: for T2 steps do
3: Sample datasets {Di}Ki=1 ∼ {Dm,0}M

′
m=M+1

4: for each Di ∈ {Di}Ki=1 do
5: Sample disjoint data batches Btr

i ,Bts
i ∼ Di

6: ϕ′
1,i ← ϕ1 − η1∇ϕ1LQ (Btr

i ; ϕ1)
7: ϕ′

2,i ← ϕ2 − η1∇ϕ2LQ (Btr
i ; ϕ2)

8: θ′i ← θ − α1∇θLπ

(
Btr

i ; θ, ϕ
′
1,i

)
9: end for

10: ϕ1 ← ϕ1 − η2
∑

i

[
∇ϕ1LQ

(
Bts

i ; ϕ
′
1,i

)]
11: ϕ2 ← ϕ2 − η2

∑
i

[
∇ϕ2LQ

(
Bts

i ; ϕ
′
2,i

)]
12: θ ← θ − α2

∑
i

[
∇θLπ

(
Bts

i ; θ
′
i, ϕ

′
1,i

)]
13: end for

3.3 ENSEMBLE-BASED CONSERVATIVE TD LEARNING

Within the aforementioned bilevel learning framework, we formulate the actor’s objective function
Lπ as minθ Est

[
DKL(πθ(ât|st) ∥ exp(Qϕ1

(st, ât))/Zϕ1
(st))

]
, where Zϕ1

is a normalization factor.
For the critic loss, we introduce a novel TD method to mitigate the value overestimation issue
inherent in offline RL. In Alg. 1, the training objectives of Qϕ1,2 , including the inner-loop LQ and the
outer-loop L′

Q, can be formulated as minϕk
E(st,at)

[
1/2(Qϕk

(st, at)− Q̂(st, at))
2
]
, where Qϕk

(·)
represents the TD estimate of the critic k at timestamp t, and Q̂(·) represents the corresponding
TD target. We here denote st = [ht, zt] and ht = [hrelat

t , hlong
t , hshort

t ] (see Eq. 1). In the inner-loop
gradient step, we formulate the TD target as

Q̂(st, at) = rt + γ
[
− λ log πθ(ât+1 | st+1) + min

k=1,2
(Qϕ̄k

(st+1, ât+1))
]
, (2)

where ât+1 is generated by πθ (· | st+1), rt is computed based on {ht:t+1, zt, at}, and Qϕ̄k
is the

next-step Q-value from each target Q-network. In the outer-loop gradient step in Alg. 1, we further
incorporate an ensemble of TD targets in L′

Q derived from the transformed data:

Q̂′(st, at) = rt + γ
[
− λ log πθ(ât+1 | st+1)

+ min
k=1,2

min
n=1:N

(
Qϕ̄k

(st+1, ât+1), Qϕ̄k
(s

(n)
t+1, â

(n)
t+1)

)]
,

(3)

where s(n)t+1 is obtained from the transformed data by {Fn}Nn=1 and â
(n)
t+1 is generated by πθ(· | s(n)t+1).

While the mathematical expressions of our method and other existing methods appear similar,
significant differences exist in the network model and data input. Notably, existing ensemble-based
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Q-learning methods (An et al., 2021; Lee et al., 2022; Wu et al., 2022) typically utilize multiple
target Q-networks (with separate model parameters) and compute ensemble value regularization by
exploiting the implicit diversity among these Q-networks. In contrast, our approach relies on a single
target Q-network and derives the worst-case Q-value by leveraging the explicit diversity introduced
through transformed data. Please refer to the Appendix G for more details.

We here demonstrate the feasibility of the ensemble-based TD method from the aspect of Bellman
Equations. In SAC, the soft Q-value is computed iteratively, starting from any Q-function and repeat-
edly applying a Bellman backup operator Uπ given by UπQ(st, at) = rt + γ Est+1∼P [V

π(st+1)],
where V π(st) = Eat∼π[Q(st, at) − log π(at | st)] is the soft state value function for policy π. In
our offline RL setup, the state transitions can be decoupled as Ph(ht+1|ht) with stochastic, unknown
action-free transitions and Pz(zt+1|zt, at) with deterministic, known dynamics. For a transformed
data trajectory starting from an original data point, τ = (ht, zt, at, h̃t+1, zt+1, ãt+1, . . .), where ht is
encoded from the original offline data ot, h̃t+1 is encoded from the transformed data from ot+1, and
zt+1 is obtained from Pz(zt+1|zt, at), we derive the following Bellman Equations:

UπQ(st, at) = Eτ
[
(rt + γr̃t+1 + γ2r̃t+2 + . . .) | π, st

]
= Eτ

[
rt | π, st

]
+ γ Eτ

[
(r̃t+1 + γr̃t+2 + . . .) | π, st

]
= rt + γ Eh̃t+1∼PAug,zt+1∼Pz

Eτ
[
(r̃t+1 + . . .) | π, s̃t+1

]
= rt + γ Eh̃t+1∼PAugV

π(s̃t+1),

(4)

where r̃t = R(h̃t:t+1, zt:t+1), st = (ht, zt), and s̃t = (h̃t, zt). Notably, Eq. 4 is valid only if
the transformation from ht to h̃t+1 is independent of at and also independent of the deterministic
transitions of the other state branch Pz(zt+1|zt, at). This Bellman Equation supports the feasibility
of the proposed TD method in Eq. 3, which computes the TD estimate based on the current-step
original data while computing the TD targets based on the next-step transformed data.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate MetaTrader using the following datasets adopted from StockFormer (Gao et al., 2023a):

• CSI-300 dataset: This dataset is collected from the CSI-300 Composite Index with 88 stocks. It
ranges from 01/17/2011 to 04/01/2022, and is divided into training and test splits with 1,936 and
785 trading days respectively.

• NASDAQ-100 dataset: This dataset contains 86 NASDAQ stocks and is collected from Yahoo
Finance. It ranges from 01/17/2011 to 04/01/2022, with a training set of 2,002 trading days and a
test set of 819 trading days.

On both datasets, we leverage two training and evaluation setups:

• Offline evaluation: We conduct in-distribution model finetuning on the last-year data within the
training set, i.e., 01/04/2018—12/31/2018. The test period is 04/01/2019—04/01/2022.

• Online adaptation: We conduct finetuning on-the-fly over the streaming test data. Specifically, the
test set is divided into three equal-length periods. We finetune the model using the previous test
split before evaluating it using the next split. Please refer to Appendix B for more details.

We mainly use the following models for comparison:

• Market benchmarks, including the CSI-300 Index and the NASDAQ Composite Index.

• RL trading methods, including FinRL (Liu et al., 2021), SARL (Ye et al., 2020), and Stock-
Former (Gao et al., 2023a).

• Offline RL methods, including CQL (Kumar et al., 2020) and IQL (Kostrikov et al., 2021).

• Stock prediction models, including HATR (Wang et al., 2021), Relational Ranking (Feng et al.,
2019), AutoFormer (Wu et al., 2021), and FactorVAE (Duan et al., 2022). We use the buy-and-hold
strategy for the stock prediction methods, i.e., buying the stock which has the highest estimated
return in the next 5 days and selling it 5 days later.

6
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Table 1: Offline evaluation results. We use cumulative return (CR), annualized return (AR), and
Sharpe ratio (SR) as evaluation metrics. Please refer to Appendix C for their detailed definitions.

Method CSI-300 NASDAQ-100
CR↑ AR↑ SR↑ CR↑ AR↑ SR↑

Market benchmark 0.08 0.02 0.23 0.99 0.26 0.98
HATR -0.05 -0.02 0.06 0.10 0.03 0.25
Relational Ranking -0.13 -0.05 -0.05 0.79 0.22 0.75
AutoFormer -0.08 -0.03 0.02 -0.28 -0.10 -0.27
FactorVAE 0.96 0.25 1.25 0.90 0.24 0.77

SARL 1.06±0.14 0.27±0.03 0.98±0.08 1.03±0.20 0.27±0.04 0.80±0.09
CQL 0.64±0.07 0.18±0.02 0.75±0.05 0.77±0.12 0.21±0.02 0.76±0.06
IQL 1.02±0.10 0.26±0.02 0.94±0.06 0.92±0.09 0.24±0.02 0.87±0.04
FinRL-SAC 0.83±0.05 0.22±0.01 0.92±0.04 0.37±0.05 0.11±0.01 0.54±0.04
FinRL-DDPG 0.58±0.15 0.16±0.04 0.73±0.12 0.91±0.11 0.24±0.02 0.75±0.05
StockFormer 1.24±0.10 0.31±0.02 1.20±0.06 0.98±0.07 0.26±0.02 0.93±0.04

MetaTrader w/o finetune 1.27±0.08 0.31±0.02 1.21±0.05 1.08±0.07 0.28±0.02 0.92 ± 0.05
MetaTrader 1.44±0.07 0.35±0.02 1.35±0.08 1.30±0.08 0.32±0.02 1.11±0.04

Table 2: Online adaptation results. We divide the entire test set into three equal-length splits and
progressively finetune the models throughout the streaming test set.

Method CSI-300 NASDAQ-100
CR↑ AR↑ SR↑ CR↑ AR↑ SR↑

Market benchmark 0.08 0.02 0.23 0.99 0.26 0.98
FactorVAE-Finetune 1.07 0.27 1.32 1.02 0.26 0.84
StockFormer-Finetune 1.46±0.05 0.35±0.01 1.37±0.05 1.26±0.08 0.31±0.02 1.03±0.09
MetaTrader 1.84±0.03 0.42±0.01 1.61±0.03 1.58±0.03 0.37±0.01 1.47±0.04

For the online adaptation setup, our main comparison is between MetaTrader, FactorVAE-Finetune,
and StockFormer-Finetune, which are also continuously finetuned over the streaming test data. All
compared models are experimented with market transaction costs. Unless otherwise specified, the
results of the RL methods are averaged across three random training seeds. Additionally, please refer
to Appendix D for the details of the training hyperparameters.

4.2 MAIN RESULTS

Offline evaluation results. Table 1 present the quantitative results of MetaTrader for offline
evaluation. MetaTrader outperforms all stock prediction and RL methods in both cumulative return
and Sharpe ratio. In particular, it outperforms FactorVAE by 50% (1.44 vs. 0.96) in CR and by 8%
(1.35 vs. 1.25) in SR on the CSI dataset, and by 44.4% (1.30 vs. 0.90) and 44.1% (1.11 vs. 0.77)
on the NASDAQ dataset. As indicated by the investment risk metric, namely the Sharpe ratio, the RL
methods tend to make more profitable but riskier investments than the stock prediction models. This
is achieved by employing bilevel policy learning, which prevents the policy from overfitting to the
offline data. We also evaluate the common techniques to improve the robustness of offline RL agents
in out-of-distribution data. We find that MetaTrader outperforms CQL and IQL by large margins.

Online adaptation results. Figure 5 and Table 2 present the quantitative comparisons under the
online adaptation setup, in which we continuously finetune all compared models on the streaming test
data. As we can see, MetaTrader presents a remarkable advantage against other approaches, including
the state-of-the-art stock prediction model (i.e., FactorVAE) and RL-based stock trading method
(i.e., StockFormer). On the CSI dataset, it improves StockFormer-Finetune by 26% (1.46 → 1.84)
in cumulative return and by around 18% (1.37 → 1.61) in Sharpe ratio. On the NASDAQ dataset,
MetaTrader improves StockFormer-Finetune by over 25% (1.26 → 1.58) in cumulative return and
by around 43% (1.03 → 1.47) in Sharpe ratio. In conclusion, MetaTrader performs well in online
adaptation, which aligns with real trading scenarios.

4.3 MODEL ANALYSES

The effectiveness of data transformation. To assess the true impact of various data transformation
techniques proposed in Section 3.2, we experiment with baseline models that (i) do not incorporate
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(a) CSI-300
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-01

2019-12
-31

2020-09
-30

2021-07
-01

2022-03
-31

(b) NASDAQ-100

Figure 5: The accumulated returns under the online adaptation setup with ten random seeds.

Table 3: Analyses of data transformation techniques used in the out-of-distribution policy learning
phase (Alg. 1). We report the mean results on CSI-300 over three seeds. DT: data transformation

Method CR↑ AR↑ SR↑ Method CR↑ AR↑ SR↑

w/o DT 1.66±0.03 0.385±0.007 1.44±0.02 F3 1.73±0.03 0.398±0.008 1.53±0.04
F1 1.69±0.03 0.390±0.008 1.53±0.03 F1 + F2 1.77±0.02 0.404±0.006 1.59±0.03
F2 1.67±0.03 0.389±0.008 1.50±0.03 F1 + F2 + F3 1.84±0.03 0.417±0.008 1.61±0.03

transformed data in any training phases, and (ii) the ones that only incorporate parts of the data
transformation techniques. We have two observations from Table 3. First, leveraging ANY of the
data transformation methods in the OOD policy learning phase consistently proves beneficial for
the model’s final performance, leading to significant improvements across all three metrics. Second,
using a combination of various transformation techniques results in significant improvements. There
is a notable 10.8% (1.66 → 1.84) increase in cumulative return for online adaptation on CSI-300.

2019-04
-02

2019-12
-05

2020-08
-12

2021-04
-19

2021-12
-24

Figure 6: The disparities between the predicted val-
ues by the critic and the true discounted returns. A
larger disparity indicates a more pronounced value
overestimation. The results are obtained under the
offline evaluation setup on the CSI-300 dataset.

Impact of the ensemble-based conservative
TD method. To assess the effectiveness of
the ensemble-based TD method detailed in
Section 3.3, we implement a baseline model
of MetaTrader that employs the original TD
method from SAC. Table 4 demonstrates the
improvements achieved by our proposed TD
method, with a significant increase of 9.5% in
cumulative return on the CSI-300 dataset and a
6.8% increase on NASDAQ-100.

Can our TD method alleviate value overes-
timation? We compare the value estimation
results with vs. without the ensemble-based TD
method. In Figure 6, we report the discrepan-
cies between the values predicted by the critic
models and true values, determined by the dis-
counted sum of rewards throughout the same
data trajectories. As observed, StockFormer and “MetaTrader w/ original TD” tend to overestimate
the true value function. In contrast, the values estimated by the final “MetaTrader w/ ensemble-based
TD” are notably more accurate and more akin to the true values.

Technical designs in model finetuning. In Alg. 2, we conduct model finetuning on real data
from the recent year, which is close to the testing period, using bilevel gradient updates. First, by
comparing “MetaTrader w/o finetune” with the final MetaTrader from Table 1, we note a decline in
performance without the finetuning phase. It is essential to highlight that the finetuning data is also
included within the dataset during the OOD policy learning process. Furthermore, we explore the
necessity of bilevel optimization and demonstrate why stock transformation is not used during the
in-distribution finetuning phase. As shown in Table 5, compared with directly using the inner-loop
gradients to update the model, leveraging bilevel optimization leads to a 3.4% improvement in the
cumulative return on CSI-300 (1.84 vs. 1.78) and a 12.1% improvement on NASDAQ-100 (1.58 vs.
1.41). Moreover, in Table 5, we can see that incorporating data transformation in the finetuning phase
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Table 4: Ablation studies of the ensemble-based TD target in the out-of-distribution policy learning
phase (Alg. 1). The experiments are conducted under the online adaptation setup.

Method CSI-300 NASDAQ-100
CR↑ AR↑ SR↑ CR↑ AR↑ SR↑

Original 1.68±0.04 0.39±0.01 1.49±0.03 1.48±0.03 0.35±0.01 1.33±0.04
Ensemble-based 1.84±0.03 0.42±0.01 1.61±0.03 1.58±0.03 0.37±0.01 1.47±0.04

Table 5: Ablation studies of the operations in the in-distribution model finetuning phase (Alg. 2),
including the learning scheme with bilevel gradient update and the use of transformed stock data.
The experiments are conducted under the online adaptation setup.

Bilevel Transformed CSI-300 NASDAQ-100
optimization data CR↑ AR↑ SR↑ CR↑ AR↑ SR↑

✗ ✗ 1.78±0.03 0.41±0.01 1.57±0.03 1.41±0.04 0.34±0.01 1.34±0.04
✓ ✗ 1.84±0.03 0.42±0.01 1.61±0.03 1.58±0.03 0.37±0.01 1.47±0.04
✓ ✓ 0.84±0.04 0.23±0.01 0.94±0.05 1.24±0.03 0.31±0.01 1.03±0.05

leads to a clear decline in performance. This is reasonable, as the transformed data may not align
with the recent dynamics patterns close to the test set.

Additional gradient steps for the baselines. As our model is optimized for 30k steps during OOD
policy learning and for 5k steps during model finetuning, we increase the training steps of other
compared models to 35k×2 and 35k×2×K steps respectively, where K corresponds to the number
of sampled subsets in each bilevel optimization step in our method. We can see from Table 6 that after
convergence, continuing training does not yield significant improvements for the baseline models.

Computational costs. In Table 7, we present the total training time and the per-sequence inference
time of the compared models on a single NVIDIA RTX 3090 GPU. Given that our work primarily
focuses on daily-level stock trading, the increased training cost introduced by bilevel optimization is
acceptable, while the inference time adequately meets the efficiency demands in this scenario.

4.4 CHALLENGES IN HANDLING LARGER MARKET DATA

Existing RL-based stock trading methods, such as FinRL, StockFormer, and SARL, primarily conduct
experiments on relatively small-scale datasets. We attribute this limitation to two main factors. From
a data perspective, trading suspensions frequently occur in real-world stock data. Previous studies
often select stocks based on the requirement that the proportion of valid data exceeds a specific
threshold (e.g., 98% in StockFormer) to reduce noise from excessive data interpolation.

From an algorithm perspective, as the stock pool size increases, the action space grows significantly,
making it more challenging for RL methods to manage. If we aim to trade thousands of stocks in
the market, the dimensionality of the action space can be even larger than the number of training
sequences. The difficulty of high-dimensional action space is well-documented in other domains
beyond stock trading (Tavakoli et al., 2018; Saito et al., 2024).

Despite these challenges, we provide experimental results on a larger stock market in Appendix F.1.

5 RELATED WORK

There are two primary groups of deep learning-based approaches for portfolio optimization.

The first one leverages the temporal modeling capabilities of existing models to make future pre-
dictions of stock prices (Li et al., 2018; Xu & Cohen, 2018; Feng et al., 2019; Wang et al., 2021;
Duan et al., 2022; Zheng et al., 2023). For stock trading, these methods are usually combined with a
relatively simple trading policy (such as buying stocks predicted to have the highest gains and selling
them at a set time). The second line of work is based on deep reinforcement learning that frames
portfolio optimization as MDPs and makes dynamic decisions on the timing and quantity of the
investment (Deng et al., 2016; Briola et al., 2021; Jeong & Kim, 2019; Liu et al., 2021; Kumar, 2023;
Liu et al., 2022; Gao et al., 2023a). Still, previous attempts have shown that policies, limited by offline
state exploration, tend to remember only the optimal policy from offline data, reducing flexibility
and generalizability. Although our method under the online adaptation has a similar training setup
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Table 6: Results of the compared models with a larger number of optimization steps. The results are
obtained on CSI-300 under the offline evaluation setup over three random seeds.

Method Optim. steps CR↑ AR↑ SR↑ Optim. steps CR↑ AR↑ SR↑

SARL 35k × 2 1.01 0.26 0.95 35k × 64 1.04 0.27 0.99
FinRL-SAC 35k × 2 0.86 0.23 0.94 35k × 64 0.89 0.24 0.93
FinRL-DDPG 35k × 2 0.63 0.18 0.77 35k × 64 0.65 0.18 0.79
StockFormer 35k × 2 1.26 0.31 1.21 35k × 64 1.28 0.32 1.24
MetaTrader 35k 1.44 0.35 1.35 - - - -

Table 7: Computational cost.

Method Training time Inference time per sequence

StockFormer w/ pretrained feature extractors 28min 02s 19.03ms
StockFormer from scratch 55min 03s 19.03ms
MetaTrader w/ pretrained feature extractors 37min 27s 19.06ms
MetaTrader from scratch 64min 28s 19.06ms

to offline-to-online RL (Nair et al., 2020; Zhang et al., 2023; Yu & Zhang, 2023; Zhao et al., 2023),
which is mainly designed to address the high cost of online training, we aim to learn a generalization
strategy under diverse market conditions.

Another group of existing methods related to MetaTrader is the bilevel optimization-based meta-
learning, which has been widely used in few-shot learning (Antoniou et al., 2019; Li et al., 2019;
Triantafillou et al., 2020; Day et al., 2022; Cheng et al., 2023) and domain adaptation (Schmidhuber,
1987; Finn, 2018; Hospedales et al., 2021). In the realm of RL, it has been employed for learning
dynamics models (Sæmundsson et al., 2018; Nagabandi et al., 2019) or directly learning the poli-
cies (Duan et al., 2017; Mishra et al., 2018; Finn et al., 2017; Nagabandi et al., 2019; Gupta et al.,
2018; Humplik et al., 2019; Mitchell et al., 2021; Pong et al., 2022; Tang, 2022; Greenberg et al.,
2023; Gao et al., 2023b; Ma et al., 2023; Wang et al., 2023). These models have already demonstrated
the potential of meta-learning to enhance the generalizability of the RL policy. Unlike previous work,
we specifically tackle the challenges of policy learning with limited and non-stationary financial data.
Accordingly, we propose a new bilevel RL approach to improve the policy’s generalizability and
alleviate the value overestimation issue as well.

6 CONCLUSIONS AND LIMITATIONS

This paper presents MetaTrader, an RL method that formulates stock trading as an offline RL problem
with decoupled MDPs. MetaTrader improves the model’s generalizability to non-stationary stock
data by integrating carefully designed stock augmentation techniques in a bilevel policy learning
framework. Additionally, we proposed a novel TD method with an ensemble-based TD target, which
aims to produce more conservative policies in scenarios with limited data. Experiments on two public
stock datasets demonstrate the effectiveness of MetaTrader compared to existing RL-for-finance
approaches, showcasing its great potential in dealing with rapidly changing market data.

Our approach is trained and validated on daily-level stock trading data, and its effectiveness has been
demonstrated across two datasets through extensive experiments. With an execution time per inference
of approximately 20 milliseconds, our method shows potential applicability in high-frequency
trading scenarios. Moreover, the proposed framework, which initially incorporates specific data
transformation techniques to enhance the datasets and subsequently employs bilevel reinforcement
learning with an ensemble-based TD target, can be considered as a general technique suitable for
various decision-making problems in time series information systems, such as energy load forecasting,
traffic flow management, and healthcare monitoring.

An unresolved problem in this study is the stability of reinforcement learning. In experiments, we
noted that RL-based methods (including SARL, StockFormer, and our approach) typically exhibit
larger standard deviations in performance across multiple training runs with random seeds, compared
to stock prediction methods (e.g., FactorVAE and HATR). This phenomenon is a common difficulty
for the current state of research within this field. To alleviate this issue, we plan to explore robust
reinforcement learning techniques in the future.
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ETHICS STATEMENT

By combining bilevel optimization with reinforcement learning on non-stationary stock data, our
study paves the way for developing intelligent trading agents that can adapt and learn from limited
financial data, improving their decision-making abilities in rapidly changing market conditions.
This advancement is crucial in empowering asset managers and individual investors to make data-
driven decisions that effectively respond to the evolving dynamics of the market. One potential
negative social impact of learning-based stock trading methods is increased economic inequality,
especially when advanced trading strategies are predominantly available to giant institutional investors.
Individual investors might face challenges in competing on an equal footing, potentially limiting their
ability to benefit from financial markets. Addressing this concern involves promoting inclusive access
to the technologies and ensuring that advancements in machine learning benefit a broad spectrum of
market participants.

REPRODUCIBILITY STATEMENT

We prioritize the reproducibility of our work. All results can be reproduced by following the
experimental details presented in Section 4 and Appendix A. We also report all hyperparameters
involved in our method in Appendix D. We will release the code upon paper acceptance.
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A DETAILS OF STOCK DATA TRANSFORMATION

As outlined in Section 3.2, we transform the data in sequences of 64 days in length to construct the
subsets. While the data transformation techniques are briefly illustrated in the main text with Figure 4,
we here present more descriptions of the implementation details.

Consider a specific stock A: It provides an input sequence to the model, in which the daily closing
prices can be denoted as Oclose

F0
= {oclose

0 , oclose
1 , . . . , oclose

63 }. The subsequent prices after this
sequence are oclose

64 , oclose
65 , . . ., and so forth. Accordingly, we have the sequence of growth rate

between daily closing prices for this stock: ∆Oclose
F0

= {0,∆oclose
1 , . . . ,∆oclose

63 }. For example,
oclose
9 = oclose

8 × (1 + ∆oclose
9 ). Without loss of generality, let us assume that its daily growth rate on

the 10-th day (i.e., ∆oclose
9 ) is among the Top-10% within the stock pool.

In the first transformation method, the price sequence of stock A is transformed into another sequence
denoted by Oclose

F1
= {oclose

0 , oclose
1 , . . . , oclose

8 , o′9, o
′
10, o

′
11, . . . , o

′
63}, where o′9 = oclose

8 × (1−∆oclose
9 ).

We retain the daily price growth rates on other days, such that ∆o′t = ∆oprice
t for t ≥ 10. In particular,

on days when the number of stocks with positive price growth does not reach 10% of the total, only
those stocks with positive growth will have inverted growth rates. It is noteworthy that although
we manipulate the input data by measuring the daily closing prices only, we also transform the
open/high/low prices along with the closing prices, while keeping the original data for the trading
volumes unchanged.

In the second transformation method, the original price sequence of stock A is reversed to construct
another sequence of OF2

= {oclose
63 , oclose

62 , . . . , oclose
0 }.

In the third transformation method, the price sequence is transformed into OF3 =
{oclose

0 , oclose
4 , oclose

8 , . . . , oclose
248 , o

close
252 }.

For transformations F2 and F3, all input data (high/low/volume) will be shifted alongside correspond-
ing price data. For all data transformation methods, we carefully divided the training and test sets
based on dates, ensuring that all transformations were applied exclusively to the training set. This
guarantees no data leakage and ensures a fair comparison among all methods.

B DATASETS

B.1 CSI-300 STOCK DATASET

We follow previous work (Feng et al., 2019; Gao et al., 2023a) to retain the stocks that have been
traded on more than 98% training days since 01/17/2011. If a stock is suspended from trading, we
interpolate the missing training data using the daily changing rate of CSI-300 Composite Index.

For online adaptation, a portion of the test set data is used for in-distribution model finetuning. The
entire test set is divided into three equal periods, each followed by in-distribution model finetuning
before testing. Specifically, for the test period from 04/01/2019 to 04/01/2020, the testing approach is
equivalent to that of the offline setting. For the period from 04/02/2020 to 04/01/2021, we conduct in-
distribution model finetuning using real data from 04/01/2019 to 04/01/2020 before testing. Similarly,
for the test period from 04/01/2021 to 04/02/2022, we conduct in-distribution model finetuning using
real data from 04/02/2020 to 04/01/2021 before testing.

For offline evaluation, we exclusively use the training set for both training and finetuning, and evaluate
the model on the entire test set spanning three years. Specifically, we conduct inner loop optimization
and outer loop optimization with stock transformations using training data from 01/17/2011 to
12/31/2018, and then conduct in-distribution model finetuning using real stock data from 01/04/2018
to 12/31/2018. The model is then evaluated on the complete test set.

B.2 NASDAQ-100 STOCK DATASET

Like in CSI-300, we use the 98% criteria to filter stocks, which derives an investment pool of 86
stocks and then fill in the missing data based on the daily rate of change of the NASDAQ 100 Index.
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We employ both online and offline evaluation setups. For online adaptation, similar to that on
the CSI-300 stock dataset, the entire test set is divided into three equal periods, each followed by
in-distribution model finetuning before testing.

For offline evaluation, we conduct inner loop optimization and outer loop optimization with stock
augmentations using training data from 01/17/2011 to 12/31/2018. We conduct in-distribution model
finetuning using real stock data from 01/02/2018 to 12/31/2018.

B.3 DATA NORMALIZATION

We perform normalization separately for each stock, ensuring that all normalization factors are
specific to the data of the individual stock. For a given stock, all price data (open, close, high, low)
share the same normalization factor. The normalized values can be formulated as

N price
ti =

oprice
ti −min

t
{olow
t }

max
t

{ohigh
t } −min

t
{olow
t }

, (5)

The normalization for volume is expressed as

N volume
ti =

ovolume
ti −min

t
{ovolume
t }

max
t

{ovolume
t } −min

t
{ovolume
t } , (6)

where Nti represents the normalized value, and the superscript "price" refers to the four price data
types: open, close, high, and low.

C METRICS

Cumulative return (CR): This is a measure of the income generated by an investment portfolio
over a specific period. Specifically, it includes the entire test period.

oclose
t ∈ R|S|, z′t = z

(2:|S|+1)
t ∈ R|S|

At = z′t · oclose
t =

|S|∑
i=1

z
′(i)
t · oclose (i)

t , CRt = At/A0 − 1
(7)

where At represents the total asset value at time t and A0 denotes the initial asset value. In practice,
we assume all transactions are executed at the closing price oclose

t .

Annualized return (AR): This is a measure of the investment growth over one year.

AR = CR
d
t
t − 1, (8)

where d represents the total number of trading days in one year.

Sharpe ratio (SR): This is a metric in finance to measure the performance of an investment
compared to a risk-free asset.

SR =
CR−Rf

σp
, (9)

where Rf is the risk-free rate of return. σp is the standard deviation of the portfolio’s excess return.
For our experiments, the risk-free rate used in the analysis is set to 0.

D HYPERPARAMETERS

In Table 8, we provide the hyperparameter details in both the OOD policy learning phase and the
in-distribution model finetuning phase. For the feature extraction module, we adopt the identical
hyperparameters as those employed in StockFormer (Gao et al., 2023a).
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Table 8: Hyperparameters in the OOD policy learning phase and in-distribution finetuning phase.

Notation Hyperparameter Description

η1 0.00001 learning rate of the critic (inner loop)

η2 0.0001 learning rate of the critic (outer loop)

α1 0.00001 learning rate of the actor (inner loop)

α2 0.0001 learning rate of the actor (outer loop)

d1hidden 256 number of MLP channels in the critic

d2hidden 256 number of MLP channels in the actor

B,K 32 batch size, number of sampled subsets per iteration

M 216 number of time period slices

N 3 number of stock augmentation techniques

L 64 length of time period slices

Table 9: Technical Indicators and Descriptions

Technical Indicator Description

macd Moving average convergence divergence

boll_ub Bollinger bands (upper band)

boll_lb Bollinger bands (lower band)

rsi_30 30 periods relative strength index

cci_30 Retrieves the 30 periods commodity channel index

dx_30 Directional index with a window length of 30

close_30_sma 30 periods simple moving average of the close price

close_60_sma 60 periods simple moving average of the close price

E TECHNICAL INDICATORS

The technical indicators mentioned in the paper follow the settings used in StockFormer (Gao et al.,
2023a). Specifically, we use the Stockstats package for data analysis. The technical indicators
employed are listed in Table 9.

F ADDITIONAL RESULTS

F.1 EXPERIMENTAL RESULTS ON LARGER DATASET

We conduct experiments on a larger dataset by expanding the range of CSI stocks and selecting a
dataset containing 587 stocks. We maintain the same experimental setup as in the offline evaluation
and compare our method with several baselines. The results are presented in Table 10.

F.2 RISK EVALUATION BY MAXIMUM DRAWDOWN

In stock trading tasks, achieving high returns should be balanced with risk management. Therefore,
we introduce the maximum drawdown (MDD) metric to evaluate the investment risk of each method,
providing a more comprehensive assessment of their performance, as shown in Table 11.
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Table 10: Offline evaluation results on the expanded dataset with 587 stocks.

Method CR↑ AR↑ SR↑ MDD↓

Market benchmark 0.15 0.05 0.30 0.29
SARL 0.16 0.05 0.28 0.47

FinRL-SAC -0.12 -0.04 -0.03 0.44
StockFormer 0.18 0.06 0.32 0.39
MetaTrader 0.41 0.12 0.60 0.37

Table 11: Maximum drawdown (MDD) results of the offline evaluation
Dataset Market benchmark HATR SARL FinRL-SAC StockFormer Metatrader

CSI-300 0.31 0.51 0.36±0.02 0.30±0.01 0.31±0.02 0.28±0.02
NASDAQ-100 0.28 0.35 0.40±0.01 0.32±0.01 0.32±0.02 0.31±0.00

Table 12: Offline evaluation results on more recent data.

Method CR↑ AR↑ SR↑ MDD↓

Market benchmark -0.08 -0.04 0.02 0.32
SARL -0.13 -0.07 -0.07 0.51

FinRL-SAC 0.04 0.01 0.03 0.49
StockFormer 0.21 0.10 0.46 0.45
MetaTrader 0.32 0.15 0.76 0.44

It can be observed that our method performs the best in terms of the MDD metric among all
reinforcement learning methods. This suggests that our method can learn more robust and high-yield
policies to a certain extent.

F.3 EVALUATION ON MORE RECENT DATA

We used data up to 2022 to ensure a fair comparison with StockFormer (Gao et al., 2023a), which
follows the same training and testing period division. Moreover, we conduct additional experiments
using data beyond 2022. In this experiment, we do not extend the training set range but directly test
on the CSI-300 dataset spanning from 2022-05-01 to 2024-05-01. As shown in Table 12, during this
period, the overall market is weaker than that in the original test set before 2022. Consequently, the
annualized returns of all methods are reduced. Nonetheless, our method consistently outperforms all
baselines, highlighting its potential for profitability even under more challenging market conditions.

F.4 THE EFFECTIVENESS OF FINETUNING OF RL-FOR-FINANCE MODELS

In practical RL-for-finance tasks, the naive fine-tuning approach often fails to enhance model
performance on test data. This is primarily due to overfitting to specific data patterns when finetuning
on more recent data. This is precisely why we propose the bilevel optimization approach for the
RL method. Theoretically, the bilevel optimization scheme can significantly enhance the model’s
generalizability to new data. Similar approaches, known as model-agnostic meta-learning (MAML)
(Finn et al., 2017), have been widely adopted to improve finetuning results in few-shot learning
scenarios. Intuitively, it aims to find well-performed parameter initialization that can be quickly
adapted to a new related task using only a few data and a few gradient steps.

We compare the performance of different RL methods with and without finetuning, using the same
configuration as offline evaluation. We present the CR, PR, SR, and MDD on the CSI-300 dataset in
Table 13. The results are averaged over three random training seeds. Notably in the cumulative return
metric, our bilevel optimization approach significantly improves the finetuning results (by +13.39%),
while the previous RL approaches do not support such effective model finetuning (e.g., by +0.81%
for StockFormer).
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Table 13: A comparison on whether finetuning is performed. We use cumulative return (CR),
annualized return (AR), and Sharpe ratio (SR) as evaluation metrics.

Method Finetune Train from scratch
CR↑ AR↑ SR↑ CR↑ AR↑ SR↑

SARL 1.06±0.14 0.27±0.03 0.98±0.08 1.03±0.13 0.27±0.03 0.89±0.08
CQL 0.64±0.07 0.18±0.02 0.75±0.05 0.69±0.05 0.19±0.01 0.83±0.05
IQL 1.02±0.10 0.26±0.02 0.94±0.06 0.96±0.10 0.25±0.02 0.89±0.04
FinRL-SAC 0.83±0.05 0.22±0.01 0.92±0.04 0.80±0.07 0.22±0.02 0.82±0.05
FinRL-DDPG 0.58±0.15 0.16±0.04 0.73±0.12 0.63±0.13 0.18±0.04 0.77±0.09
StockFormer 1.24±0.10 0.31±0.02 1.20±0.06 1.23±0.09 0.31±0.02 1.18±0.05
MetaTrader 1.44±0.07 0.35±0.02 1.35±0.08 1.27±0.08 0.31±0.02 1.21±0.05

Table 14: Offline evaluation results on different ensemble method.

Method CR↑ AR↑ SR↑ MDD↓

Minimum value 1.17 0.30 1.03 0.34
Mean value 1.10 0.28 0.99 0.33

Ours 1.44 0.35 1.35 0.28

G THE COMPARISON WITH EXISTING ENSEMBLE Q-LEARNING METHODS

The key differences between our conservative TD method and other ensemble-based Q-learning
methods can be summarized as follows:

• Existing methods are based on model diversity: Most existing ensemble-based methods require
multiple Q-networks with identical input data (st+1, at+1) to calculate a conservative TD target:

Q̂′(st, at) = rt + γ
[
− λ log πθ(ât+1 | st+1) + Ψ

k=1,...,M
Qϕ̄k

(st+1, ât+1)
]
, (10)

which significantly increases the model size. For example:
– An et al. (2021) uses the minimum value of multiple parallel Q-networks as the Bellman

target;
– Lee et al. (2022) stabilizes Q-learning by averaging previously learned Q-values as the target;
– Wu et al. (2022) averages all Q-values, excluding those with the highest N −K values.

• Our method is based on data diversity: Our ensemble method is based on original stock data and
its transformations (s(n)t+1, a

(n)
t+1) to calculate a conservative TD target by a single Q-function:

Q̂′(st, at) = rt+γ
[
−λ log πθ(ât+1 | st+1)+ min

k=1,2
min
n=1:N

(
Qϕ̄k

(st+1, ât+1), Qϕ̄k
(s

(n)
t+1, â

(n)
t+1)

)]
.

(11)
This approach leverages transformations of stock data to account for diverse market conditions,
thereby capturing more variability in the decision-making process. We illustrate the feasibility of
our approach from the perspective of Bellman Equations within our offline RL setup in Eq. (4).

We conduct the experiments by replacing the ensemble method in our model with the methods used in
An et al. (2021); Lee et al. (2022), i.e., using the minimum and mean value of five parallel Q-networks
as the Bellman target. As shown in Table 14, our method presents a remarkable advantage against
other methods.
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