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ABSTRACT

Recent advances in training one-step diffusion models typically follow a two-
stage pipeline: first training a teacher diffusion model and then distilling it into
a one-step student model. This process often depends on both the teacher’s score
function for supervision and its weights for initializing the student model. In this
paper, we explore whether one-step diffusion models can be trained directly with-
out this distillation procedure. We introduce a family of new training methods
that entirely forgo teacher score supervision, yet outperforms most teacher-guided
distillation approaches. This suggests that score supervision is not essential for
effective training of one-step diffusion models. However, we find that initializing
the student model with the teacher’s weights remains critical. Surprisingly, the key
advantage of teacher initialization is not due to better latent-to-output mappings,
but rather the rich set of feature representations across different noise levels that
the teacher diffusion model provides. These insights take us one step closer to-
wards training one-step diffusion models without distillation and provide a better
understanding of the roles of teacher supervision and initialization in the distilla-
tion process.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song & Ermon, 2019) have achieved
remarkable success in modeling complex real-world data across a wide range of domains, includ-
ing image synthesis (Rombach et al., 2022; Li et al., 2022), 3D generation (Poole et al., 2022a),
video synthesis (Ho et al., 2022), equivariant modeling (Hoogeboom et al., 2022), and audio gen-
eration (Liu et al., 2023). Typically, diffusion models consist of two processes: a forward noising
process, which gradually perturbs data into a known noise prior (typically Gaussian noise), and a
reverse denoising process, which learns to invert the forward corruption process to generate realistic
data samples from noise. Formally, the forward process is defined over T time steps as a Markov
chain of Gaussian transitions, while the reverse process is parameterized using neural networks that
predict the denoising distribution given the noisy samples.

In classic diffusion models with Gaussian denoising distributions, generating high-quality data sam-
ples typically requires hundreds or thousands of sampling steps, resulting in significant sampling in-
efficiency due to the need for T ≫ 1 NFEs (number of function evaluations) (Ho et al., 2020; Nichol
& Dhariwal, 2021). To address this weakness, various acceleration methods have been proposed to
reduce NFEs during sampling. One class of such approaches leverages advanced numerical solvers
for differential equations, enabling continuous-time approximations of the diffusion process (Song
et al., 2020; Liu et al., 2022; Lu et al., 2022). Another line of work improves the flexibility of the
posterior distribution in the denoising process, either by estimating a more accurate covariance for
the Gaussian distribution (Nichol & Dhariwal, 2021; Bao et al., 2022b;a; Ou et al., 2025) or by
adopting flexible non-Gaussian denoising distributions (Bortoli et al., 2025; Xiao et al., 2021; Yu
et al., 2024). While these techniques can dramatically reduce NFEs from ∼ 103 to around 10–20,
they still fall short of achieving high-quality generation within 5 steps.

Recently, distillation-based methods have emerged as a powerful direction for training diffusion
models, enabling high-quality one-step generation (Zhou et al., 2024). These methods fall into two
categories:
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• Trajectory-based distillation methods (Salimans & Ho, 2022; Berthelot et al., 2023; Song
et al., 2023; Heek et al., 2024; Kim et al., 2024; Li & He, 2024) aim to approximate the full
sampling trajectory by training a student model to amortize multiple intermediate steps.
These methods are motivated by accelerated solvers and typically perform joint training of
the full diffusion model and the distillation process.

• Score-based distillation approaches (Luo et al., 2024; Salimans et al., 2024; Xie et al.,
2024; Zhou et al., 2024) distill the full denoising process of the pre-trained teacher diffu-
sion model into a one-step latent variable model. This distillation process typically involves
minimizing the divergence between the student and teacher models based on their respec-
tive score estimations (Poole et al., 2022a; Wang et al., 2024).

In this paper, we focus on score-based distillation methods and investigate whether a one-step dif-
fusion model can be effectively trained without relying on a pre-trained teacher diffusion model.
In existing distillation approaches, the teacher model is typically used in two key places: (1) the
teacher’s score function is used to estimate the gradient for training the student model, and (2) the
teacher’s weights are used to initialize the student model. The goal of this paper is to investigate
whether it is possible to train a one-step diffusion model without using either the teacher’s score
function or its weight initialization.
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Figure 1: FID comparison of one-
step generation on ImageNet 64×64.
Our method achieves competitive per-
formance to the state-of-the-art method
without the supervision of the teacher
model (EDM)’s score function.

Our main contributions are summarized as follows:

1. We propose a novel distillation method that
eliminates the need for both teacher and student
score estimation during training. Despite this
simplification, our method outperforms most
one-step generation approaches and achieves
competitive performance to the state-of-the-art
methods on image generation tasks without the
supervision of the teacher score function.

2. We further analyze the importance of initializing
the student model with teacher model’s weights
from both the weight-space and function-space
perspectives, providing deeper insights into the
role of teacher weight initialization. This analy-
sis lays the groundwork for future efforts toward
training one-step diffusion models entirely with-
out reliance on a teacher model.

Before introducing our proposed method, we will first establish the background on diffusion models
and score-based distillation methods in the next section.

2 BACKGROUND

2.1 DENOISING DIFFUSION MODELS

Let {x(1), . . . , x(N)} denote data samples from the true data distribution pd(x0). Diffusion mod-
els (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song & Ermon, 2019) define a generative process
that transforms samples from a simple Gaussian prior p(xT ) into complex data distributions p(x0)
through a learned denoising process. The model consists of two main components: a forward noising
process and a reverse denoising process.

The forward process defines a Markov chain that progressively adds Gaussian noise to the data:

q(x0:T ) = pd(x0)

T∏
t=1

q(xt|xt−1), (1)

with transition kernels defined as

q(xt|xt−1) = N (xt|
√

1− βt xt−1, βtI), (2)
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where βt ∈ (0, 1) is a pre-specified variance schedule. This process gradually perturbs the data until
it resembles an isotropic Gaussian distribution. The skip distribution at time t can be written as:

q(xt|x0) = N (xt|
√
ᾱtx0, (1− ᾱt)I), (3)

where ᾱt =
∏t
s=1(1 − βs). As T → ∞, the final state xT approximates a standard normal

distribution, i.e., q(xT ) → N (0, I).

The generative process aims to reverse this trajectory. Starting from noise xT ∼ p(xT ) = N (0, I),
the model learns a reverse process to sequentially denoise and reconstruct data samples. Since the
true reverse conditional q(xt−1|xt) is intractable, a common method is to approximate it with a
variational Gaussian distribution:

pθ(xt−1|xt) = N (xt−1|µt−1(xt; θ),Σt−1(xt; θ)), (4)

where the mean function is learned from data and the covariance function can be either
learned (Nichol & Dhariwal, 2021; Ou et al., 2025; Bao et al., 2022a) or chosen to be a fixed
value (Bao et al., 2022b; Ho et al., 2020).

From a score-based perspective, learning the mean function µt−1(xt; θ) is equivalent to learning
the score function ∇xt log q(xt), which represents the gradient of the log-density of the noised data
xt. This score can be approximated using denoising score matching (DSM) (Vincent, 2011; Song
& Ermon, 2019), and transformed into the reverse mean through Tweedie’s Lemma (Efron, 2011;
Robbins, 1992):

µt−1(xt; θ) =
1√

1− βt
(xt + βt∇xt

log pθ(xt)) , (5)

where ∇xt
log pθ(xt) ≈ ∇xt

log q(xt). This establishes a connection between the denoising dis-
tributional perspective and the score estimation perspective of diffusion models. In the following
section, we introduce score-based distillation methods through the lens of divergence minimization.

2.2 SCORE-BASED DISTILLATION METHODS

Score-based distillation methods aim to distill a teacher diffusion model pθ (pre-trained on the true
data distribution pd(x0)) into a one-step implicit generative model (Goodfellow et al., 2014; Huszár,
2017; Zhang et al., 2020):

qθ(x0) =

∫
δ(x0 − gθ(z))p(z)dz, (6)

where δ(·) is the Dirac delta function, p(z) is a standard Gaussian prior for the latent variable z, and
gθ : Z → X is a deterministic neural network that generates data x from the latent variable z in one
step. We emphasize that when the function gθ(·) is not bijective, the model distribution qθ is not
absolutely continuous with respect to the Lebesgue measure. As a result, the corresponding density
function may not be well-defined, and consequently, the KL divergence between qθ(x0) and the data
distribution pd(x0) may also be ill-defined (Arjovsky et al., 2017; Zhang et al., 2020).

Inspired by diffusion models, one can use a set of (scaled) Gaussian convolution kernels K =
{k1, · · · , kT } defined by kt(xt|x0) = N (xt|αtx0, σ2

t I) to define the Diffusive KL divergence
(DiKL) between the model density qθ(x0) and target distribution pd(x0):

DiKLK(qθ(x0)||pd(x0)) ≡
T∑
t=1

w(t)KL(qθ(xt)||pd(xt)), (7)

where w(t) is a positive scalar weighting function that sums to one, and qθ(xt) and pd(xt) are noisy
model density and noisy target density, respectively, defined by

qθ(xt) =

∫
qθ(x0)kt(xt|x0)dx0 and pd(xt) =

∫
pd(x0)kt(xt|x0)dx0. (8)

In this case, the model distribution qθ(xt) is always absolutely continuous, and thus the KL di-
vergence between them is always well-defined. For a single Gaussian kernel, the divergence was
previously known as Spread KL divergence (Zhang et al., 2020; 2019). It is straightforward to show
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Algorithm 1 Score-Based Distillation of One-Step Diffusion Models

Require: Data samples {x(1), . . . , x(N)} ∼ pd(x0)

Stage 1: Train a multi-step teacher diffusion model

1: Train the teacher model’s score network spdψ1
(xt, t) using DSM (Eq. 10) until convergence

Stage 2: Train a one-step student generative model

2: Initialize the one-step generator with the teacher’s score network gθinit(·) ≡ spdψ1
(·, t = tinit)

3: for each training iteration do
4: Estimate the student model’s score by training a score network sqθψ2

(xt, t) using DSM
5: Update the one-step generator gθ with sqθψ2

(xt, t) and spdψ1
(xt, t) using Eq. 12

6: end for

that it is a valid divergence, i.e., DiKLK(qθ||pd) = 0 ⇔ qθ = pd; see Zhang et al. (2020) for a
proof. In addition to the diffusion distillation (Luo et al., 2024; Xie et al., 2024), this divergence has
successfully been used in 3D generative models (Poole et al., 2022b; Wang et al., 2024) and training
neural samplers (He et al., 2024).

Without loss of generality, we consider a single Gaussian convolution kernel kt. The gradient of
DiKL with respect to the model parameters θ can be obtained analytically (He et al., 2024):

∇θKL(qθ(xt)||pd(xt)) =
∫
qθ(xt) (∇xt log qθ(xt)−∇xt log pd(xt))

∂xt
∂θ

dxt. (9)

However, neither the noisy model score ∇xt
log qθ(xt) nor the noisy target score ∇xt

log pd(xt)
are directly accessible. In the distillation setting, the noisy target score is provided by a pre-trained
diffusion model, which has been trained using denoising score matching (DSM) (Vincent, 2011).
Specifically, the score network spdψ1

(xt, t) ≈ ∇xt log pd(xt) provides an estimate of the noisy data
score based on access to samples from pd(xt) and the tractable score ∇xt

log kt(xt | x0), which is
learned by

min
ψ1

LDSM(ψ1) =
1

2

∫∫
∥spdψ1

(xt, t)−∇xt log kt(xt|x0)∥22pd(x0)p(xt|x0)dxtdx0. (10)

Regarding the noisy model score ∇xt log qθ(xt), we note that since we can efficiently sample from
the one-step student model qθ(xt), we can approximate its score function using another score net-
work sqθψ2

(xt, t) ≈ ∇xt
log qθ(xt), trained with the DSM loss:

min
ψ2

LDSM(ψ2) =
1

2

∫∫
∥sqθψ2

(xt, t)−∇xt
log kt(xt|x0)∥22qθ(x0)p(xt|x0)dxtdx0. (11)

Thus, the gradient of DiKL with respect to the parameters θ of the student model can be estimated as
follows, a method known as Variational Score Distillation (VSD) (Poole et al., 2022a; Wang et al.,
2024; Luo et al., 2024):

∇θDiKL(qθ(x0)||pd(x0)) ≈
T∑
t=1

w(t)

∫
qθ(xt)

(
sqθψ2

(xt, t)− spdψ1
(xt, t)

)∂xt
∂θ

dxt. (12)

Unlike the teacher score function which remains fixed after pre-training, the noisy model score
∇xt

log qθ(xt) dynamically changes as we update the student model’s parameters θ during training.
Therefore, the score network sqθψ2

(xt, t) ≈ ∇xt
log qθ(xt) needs to be updated every time we update

the student model, which results in an interleaved training procedure as detailed in Algorithm 1.

We observe that training with DiKL typically requires estimating the student model score and using
the teacher score for supervision. In the next section, we propose a method that enables training
one-step diffusion models without relying on student score estimation or teacher score supervision.

3 TRAINING ONE-STEP DIFFUSION WITHOUT SCORE DISTILLATION

We first explore whether a one-step diffusion model can be trained without teacher supervision (i.e.,
without relying on pre-trained teacher score, denoiser, ODE solver, etc.). Starting from Algorithm

4
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Algorithm 2 Score-free Training of One-Step Diffusion Models

Require: Data samples {x(1), . . . , x(N)} ∼ pd(x0)

Stage 1: Train a multi-step teacher diffusion model

1: Train the teacher model’s score network spdψ1
(xt, t) using DSM (Eq. 10) until convergence

Stage 2: Train a one-step student generative model

2: Initialize the one-step generator with the teacher’s score network gθinit(·) ≡ spdψ1
(·, t = tinit)

3: for each training iteration do
4: Estimate the density ratio qθ(xt)/pd(xt) by training a neural network classifier cη(xt, t)
5: Update the one-step generator gθ with cη(xt, t) using Eq. 17 or Eq. 18 or Eq. 19
6: end for

1, we note that the DiKL gradient estimator relies on the score difference, sqθψ1
(xt, t)−spdψ2

(xt, t). To
eliminate the dependency on the teacher’s score function spdψ2

(xt, t), we first observe that the score
difference can be written as the gradient of a log-density-ratio:

∇xt log qθ(xt)−∇xt log pd(xt) = ∇xt log(qθ(xt)/pd(xt)). (13)
Therefore, rather than estimating the two scores separately, we directly estimate the density ratio
between the student and teacher at all noise levels using class-ratio estimation (Sugiyama et al.,
2012; Qin, 1998; Gutmann & Hyvärinen, 2010; Zhang et al., 2022).

3.1 CLASS-RATIO ESTIMATION

We first denote distributions qθ(xt) and pd(xt) as two conditional distributions m(xt|y = 0) and
m(xt|y = 1), respectively, where y = 0 indicates samples from the student model qθ(xt) and y = 1
indicates data samples from pd(xt). With Bayes’ rule, we can transform the density ratio estimation
problem into a binary classification problem:

qθ(xt)

pd(xt)
≡ m(xt|y = 0)

m(xt|y = 1)
=
p(y = 0|xt)���m(xt)

����p(y = 0)

/p(y = 1|xt)���m(xt)

����p(y = 1)
=
p(y = 0|xt)
p(y = 1|xt)

, (14)

where the mixture distribution is defined as
m(x) ≡ m(xt|y = 1)p(y = 1) +m(xt|y = 0)p(y = 0), (15)

and the Bernoulli prior distribution p(y) is simply set as a uniform prior p(y = 1) = p(y = 0) = 0.5.
In practice, we sample a batch of data from pd(xt) and assign them the label y = 0, and sample
an equal number of samples from qθ(xt), assigning them the label y = 1. We then train a neural
network classifier cη(xt, t), conditioned on the diffusion time t, to estimate the probability that a
given input xt belongs to class y = 1. The optimal classifier approximates the posterior probability
c∗(xt, t) = p(y = 1 | xt, t). In this case, the log-density ratio can be estimated as

∇xt
log

qθ(xt)

pd(xt)
≈ ∇xt

log
1− cη(xt, t)

cη(xt, t)
= ∇xt

logit(1− cη(xt, t)). (16)

Estimating the density ratio in the noisy space has the advantage of increasing the overlap between
the supports of the two distributions, thereby stabilizing the training process.

Importantly, our method does not require any forms of teacher score supervision, as it avoids the
need of using the teacher score sqθψ1

(xt, t) to approximate the noisy data score ∇xt
log pd(xt). Fur-

thermore, compared to VSD, our approach employs a single class-ratio estimator, which is more
memory-efficient and consistent than the two independently trained score networks sqθψ1

and spdψ2

used in the original VSD loss (Equation 12).

3.2 CLASS-RATIO GRADIENT ESTIMATORS FOR TRAINING ONE-STEP DIFFUSION MODELS

We can then obtain a new gradient estimator for DiKL by applying our class-ratio estimator to
Equation 9:

∇θDiKL(qθ(x0)||pd(x0)) ≈
T∑
t=1

w(t)

∫
qθ(xt)∇xt

logit(1− cη(xt, t))
∂xt
∂θ

dxt. (17)
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In addition to the DiKL, we can use the learned classifier function cη to obtain a family of gradient
estimators for alternative training objectives. For instance, replacing the logit function with the
logarithm function yields an objective that minimizes the probability of generated samples being
classified as fake. This formulation aligns with GAN (Goodfellow et al., 2014; Nowozin et al.,
2016) across different diffusion time steps, which is equivalent to minimizing the Diffusive Jensen-
Shannon (DiJS) divergence:

∇θDiJS(qθ(x0)||pd(x0)) ≈
T∑
t=1

w(t)

∫
qθ(xt)∇xt

log(1− cη(xt, t))
∂xt
∂θ

dxt. (18)

Alternatively, rather than minimizing the probability of the generated images being fake as used in
GAN, one can also maximize the probability of them being real. This approach is referred to as
Diffusive Realism Maximization (DiRM), which has the following gradient estimator:

∇θDiRM(θ) ≈ −
T∑
t=1

w(t)

∫
qθ(xt)∇xt

log cη(xt, t)
∂xt
∂θ

dxt. (19)

The overall training procedure of our proposed framework is summarized in Algorithm 2. Notably,
the DiRM objective—maximizing the likelihood of being real—also mirrors the non-saturating
GAN formulation (Goodfellow et al., 2014), which is known to provide more stable gradients for the
generator compared to the original minimax objective. In principle, once the density ratio is avail-
able, any ratio-based divergence measure—such as an f -divergence—can be employed to formulate
a learning criterion for diffusion distillation. This is reminiscent of the f -GAN framework (Nowozin
et al., 2016): we will discuss the connection between our proposed method and GAN-based ap-
proaches in the next section.

4 RELATED WORK

Estimating density ratios is central to many GAN variants (Goodfellow et al., 2014; Nowozin et al.,
2016). In classic GANs, the discriminator implicitly estimates the density ratio between real and
model distributions. However, for high-dimensional image modeling tasks, both data and model dis-
tributions are supported on low-dimensional manifolds and are therefore not absolutely continuous,
rendering their densities and the density ratio ill-defined. This further causes the Jensen-Shannon
(JS) divergence to be ill-defined and contributes to GAN training instability (Arjovsky & Bottou,
2017; Arjovsky et al., 2017; Mescheder et al., 2018; Roth et al., 2017). To address this, Arjovsky
et al. (Arjovsky et al., 2017) proposed to replace the JS divergence with the Wasserstein-1 distance,
which can yield meaningful gradients even when the distributions are disjoint. However, training
Wasserstein GANs requires enforcing a 1-Lipschitz constraint on the critic, which is challenging
in practice and has been approximated using heuristics such as weight clipping (Arjovsky et al.,
2017), gradient penalties (Gulrajani et al., 2017), and spectral normalization (Miyato et al., 2018).
Despite its theoretical appeal, the divergence minimized in practice often differs from the idealized
objective (Mescheder et al., 2018), and that stable GAN training relies more on regularization (e.g.,
gradient penalties) than on strict divergence minimization (Fedus et al., 2017). Adding Gaussian
noise to real and fake samples has been proposed as a way to ensure distributions are fully sup-
ported, making the density ratio well-defined (Sønderby et al., 2016; Roth et al., 2017; Nowozin
et al., 2016; Zhang et al., 2020). This model-agnostic approach requires no architectural changes
but hinges on choosing an effective noise level—something hard to fix throughout training.

Diffusion GAN (Wang et al., 2023) addresses the challenge of selecting a fixed noise level by intro-
ducing a diffusion-inspired noise schedule that gradually increases noise in tandem with the model’s
learning capacity. While this represents the most closely related work to ours, our approach differs
in several important aspects. First, diffusion GAN stabilizes training using a StyleGAN-based gen-
erator (Karras et al., 2024), which is implicitly trained progressively from low to high resolutions
while keeping the network topology fixed. In contrast, our method does not rely on a specialized
generator architecture or progressive resolution training. Instead, we adopt a generic U-Net archi-
tecture, resulting in a simpler and more broadly applicable framework. Additionally, we do not
use common GAN-specific training tricks such as gradient penalties or spectral normalization. Our
method provides a clean framework for training one-step diffusion models yet still achieves stable
convergence, demonstrating robustness without any additional regularization tricks during training.
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(a) CIFAR-10 (b) ImageNet 64×64

Figure 2: Visualization of sample images generated by DiJS.

Finally, unlike traditional GANs, our framework is no longer adversarial in the strict sense: our
generator’s performance is not dependent on the convergence of a discriminator, which simplifies
the training process and mitigates common issues arising from adversarial dynamics (e.g., GANs
require a careful balancing between discriminator and generator training).

Because our method does not rely on discriminators, gradient penalties, or adversarial training,
we are estimating and minimizing the DiJS divergence—a divergence that remains well-defined
even when traditional density ratios remain undefined. This leads to a conceptually cleaner training
objective which avoids the complexities and instabilities associated with adversarial min-max opti-
mization. In the next section, we will demonstrate the effectiveness of our method by applying it to
train one-step diffusion models for image generation.

5 IMAGE GENERATION EXPERIMENTS

We evaluate the performance of our method by training one-step generative models on two standard
settings: unconditional generation on the CIFAR-10 (32×32) (Krizhevsky et al., 2009) and class-
label-conditioned generation on the ImageNet (64×64) (Deng et al., 2009). Our implementation
builds upon the EDM codebase (Karras et al., 2022) and uses the official pre-trained EDM models
as teacher models for both datasets. Experiments are conducted on 4 NVIDIA H100 80GB GPUs.

Our one-step student model adopts the same neural network architecture as the teacher model. We
use the variance-exploding (VE) noise schedule to define the DiKL divergence for training the stu-
dent model. Our class-ratio estimator cη(xt, t) is implemented using the encoder portion of a U-Net
to produce a scalar output. This network is approximately half the size of the full U-Net used for
score estimation, leading to improved training and memory efficiency. The one-step generator gθ(z)
is initialized with pre-trained EDM weights from the teacher model with diffusion time tinit = 2.5
fixed throughout training and sampling. We follow standard hyperparameter settings for training
generative models on CIFAR-10 and ImageNet. Specifically, we set the learning rate to 10−5, use
the weight function w(t) = σ2

t , and employ non-leaky data augmentation (Karras et al., 2020) for
both datasets. For CIFAR-10, we use a batch size of 64 and an EMA decay rate of 0.5. For Ima-
geNet, all training configurations are set to be the same as those described in Karras et al. (2022).

Interestingly, we observe that performing multiple gradient updates for the class-ratio estimator in
each training iteration can accelerate convergence (i.e., reducing the number of training iterations for
the student model) without destabilizing the training process, which is distinct from GANs where a
careful balancing between the training steps for the discriminator and generator is required for stable
training. However, such strategies often increase the overall wall-clock time for training. Hence,
we adopt a single-step update strategy for the class-ratio estimator throughout our experiments,
consistent with previous works (Luo et al., 2024; Zhou et al., 2024); we leave multi-step class-ratio
estimation for future work.
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Table 1: Unconditional models on CIFAR10.

METHOD NFE (↓) FID (↓) IS (↑)
Teacher model

EDM (Karras et al., 2022) 35 2.04 9.84
EDM (Karras et al., 2022) 1 8.70 8.49
Training from scratch (w/o teacher)

CT (Song et al., 2023) 1 8.70 8.49
iCT (Song & Dhariwal, 2024) 1 2.83 9.54
iCT-deep (Song & Dhariwal, 2024) 1 2.51 9.76
BCM (Li & He, 2024) 1 3.10 9.45
BCM-deep (Li & He, 2024) 1 2.64 9.67
sCT (Lu & Song, 2025) 1 2.85 -
Diffusion-GAN (Wang et al., 2023) 1 3.19 -
IMM (Zhou et al., 2025a) 1 3.20 -
Distillation w/ teacher init. & supervision

Progressive Distillation (Salimans & Ho, 2022) 1 8.34 8.69
DSNO (Zheng et al., 2023) 1 3.78 -
TRACT (Berthelot et al., 2023) 1 3.78 -
CD (Song et al., 2023) 1 3.55 9.48
CTM (w/ GAN) (Kim et al., 2024) 1 1.98 -
CTM (w/o GAN) (Kim et al., 2024) 1 ¿5.0 -
sCD (Lu & Song, 2025) 1 3.66 -
Diff-Instruct (Luo et al., 2024) 1 4.53 -
ECT (Geng et al., 2025) 1 3.60 -
SiD (Zhou et al., 2024) 1 2.03 10.02
SiDA (Zhou et al., 2025b) 1 1.52 10.32
Distillation w/ teacher initialization only

DiRM (ours) 1 4.87 9.85
DiKL (ours) 1 3.81 9.90
DiJS (ours) 1 2.39 9.93

Table 2: Class-label-conditioned models on
ImageNet 64×64.

METHOD NFE (↓) FID (↓)
Teacher model

EDM (Karras et al., 2022) 79 2.44
Training from scratch (w/o teacher)

EDM2-L/XL (Karras et al., 2024) 1 13.0
CT (Song et al., 2023) 1 13.0
iCT (Song & Dhariwal, 2024) 1 4.02
iCT-deep (Song & Dhariwal, 2024) 1 3.25
BCM (Li & He, 2024) 1 4.18
BCM-deep (Li & He, 2024) 1 3.14
sCT (Lu & Song, 2025) 1 2.04
Distillation w/ teacher init. & supervision

Progressive Distillation (Salimans & Ho, 2022) 1 7.88
DSNO (Zheng et al., 2023) 1 7.83
TRACT (Berthelot et al., 2023) 1 7.43
CD (Song et al., 2023) 1 6.20
CTM (w/ GAN) (Kim et al., 2024) 1 1.92
sCD (Lu & Song, 2025) 1 2.44
Diff-Instruct (Luo et al., 2024) 1 5.57
EM Distillation (Xie et al., 2024) 1 2.20
ECT (Geng et al., 2025) 1 2.49
SiD (Zhou et al., 2024) 1 2.02
SiDA (Zhou et al., 2025b) 1 1.35
Distillation w/ teacher initialization only

DiJS (ours) 1 1.54

In Tables 1 and 2, we compare our method to previous methods for training one-step generative mod-
els. To highlight methodological differences, we categorize these approaches into three groups: (1)
training from scratch (e.g., Diffusion-GAN, trajectory-based distillation), (2) training with teacher
initialization and supervision (e.g., using teacher score, denoiser or ODE solvers in the loss), and
(3) training with teacher weight initialization only (our method). We find that our proposed method,
DiJS, achieves competitive one-step generation performance despite not using any teacher score
information, outperforming most state-of-the-art distillation methods that rely on full teacher super-
vision. The only method that outperforms ours is SiDA (Zhou et al., 2025b), which depends on
training data, teacher score supervision, teacher weight initialization, and student score estimation.
In contrast, our method requires only training data, teacher weight initialization, and class-ratio es-
timation. Notably, this eliminates the need for teacher supervision in the training process. Also,
class-ratio estimation is both simpler and more lightweight than student score estimation, as the ra-
tio network is approximately half the size of a full score network. This results in a more streamlined
and memory-efficient training framework.

6 ANALYSIS OF THE ROLE OF TEACHER WEIGHT INITIALIZATION

In the previous section, our one-step student model was initialized with the teacher model’s weights.
We observed that training from random initialization led to mode collapse; see Figure 3c for an
example. One possible explanation is that mode collapse arises from the training objectives (i.e.,
reverse KL or JS divergence), a phenomenon also observed in GAN literature (Goodfellow et al.,
2014). To understand why initializing the student model with the teacher model’s weights prevents
mode collapse in the training process, we investigate the following two hypotheses.

Function Space Hypothesis. Teacher weight initialization provides a more structured latent-to-
output functional mapping, i.e., different locations in the latent space are initially mapped to distinct
images, preventing mode collapse.

This hypothesis originally arose from visualizing initialized samples as shown in Figure 3a, showing
that initialization already induces diverse mappings, with the student model training stage primarily
refining these initializations into sharper images. Somewhat surprisingly, however, we find that
functional initialization alone is insufficient to prevent mode collapse. To show this, instead of
training the teacher model across different diffusion time steps t and selecting a single time step tinit

8
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(a) Single-level DSM Init. (b) Multi-level DSM Init. (c) Collapsed Samples

Figure 3: Visualization of different initializations and collapsed samples on CIFAR-10.

for initialization, we only pre-train the teacher model at the selected time step tinit and use its weight
to initialize the one-step student model. This setup ensures identical latent-to-output mappings for
the student model at initialization as shown in Figure 3b. However, with this initialization, the
student model still exhibits mode collapse early in the student model training stage, which suggests
that the functional mapping perspective alone does not fully explain the mode-collapse issue.

Feature Space Hypothesis. Teacher weight initialization provides a rich set of multi-level features
learned when pre-training the teacher diffusion model, which help prevent mode collapse.

Table 3: Performance of one-step models trained by DiJS
with different initializations on various CIFAR subsets.

Initialization method Initialization dataset FID

No initialization - collapsed

Single-level DSM full CIFAR-10 collapsed

Multi-level DSM

10 classes in CIFAR-100 collapsed
50 classes in CIFAR-100 6.20
90 classes in CIFAR-100 6.01
full CIFAR-10 2.39

To verify this hypothesis and isolate
the effects of learned functional fea-
tures, we pre-train the teacher model
on CIFAR-100 while excluding all
classes that overlap with CIFAR-10.
This ensures that images from the
target classes that the student model
aims to generate are absent dur-
ing pre-training, allowing us to fo-
cus solely on the contribution of the
learned features. We train the teacher
model using increasingly larger sub-
sets of CIFAR-100 with (10, 50, 90)
classes, creating a setting with increasing feature diversity. Table 3 shows the performance of our
one-step student model on CIFAR-10 initialized with the weights of teacher models trained on vary-
ing numbers of CIFAR-100 classes. We find that when the teacher model is trained on only 10
classes, mode collapse still occurs. However, as the number of training classes increases, the stu-
dent model no longer collapses, indicating that feature richness plays a crucial role in preventing
mode collapse. Nevertheless, despite mitigating mode collapse, this initialization strategy achieves
an FID of 6.01 when the teacher model is pre-trained on all 90 non-overlapping classes in CIFAR-
100, which is significantly worse than the FID (2.39) obtained when directly using CIFAR-10 as the
pre-training dataset. This suggests that while feature richness is essential for stabilizing training,
functional mapping initialization remains important for achieving higher sample quality.

7 CONCLUSIONS

We studied whether one-step diffusion models can be trained without a pre-trained teacher. To
this end, we introduced score-free training methods based on class-ratio estimation, eliminating the
need for teacher or student score supervision. Our method matched the quality of state-of-the-art
teacher-supervised approaches while reducing complexity and memory usage. It also simplified
GAN-style training by removing adversarial tricks, showing that a single time-conditioned class-
ratio estimator suffices for stable training. A key finding was that while teacher score supervision
is unnecessary, teacher-based weight initialization remains important—not for better mappings, but
for the multi-level features learned across noise levels, which help prevent mode collapse. Future
directions include unsupervised or self-supervised pretraining for rich initializations and extending
the framework to modalities like audio and video.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES
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A VALIDITY OF DIFFUSIVE DIVERGENCE

We follow the original Spread Divergence (Zhang et al., 2020) and provide a simple proof of the
validity of the diffusive KL (DiKL) divergence. The extension to the diffusive Jensen-Shannon
(DiJS) divergence is straightforward. See Zhang et al. (2020) for a generalized proof that includes
cases with non-absolutely continuous distributions and non-Gaussian kernels.

Our goal is to show that for the DiKL defined as

DiKLK(qθ(x0) ∥ pd(x0)) =
T∑
t=1

w(t)KL(qθ(xt) ∥ pd(xt)), (20)

wherew(t) > 0, and the densities qθ(xt) and pd(xt) represent the noisy model and data distributions
respectively, defined as:

qθ(xt) =

∫
qθ(x0) kt(xt | x0) dx0, (21)

pd(xt) =

∫
pd(x0) kt(xt | x0) dx0, (22)

with kt(xt | x0) denoting the transition kernel (e.g., Gaussian noise). Then:

DiKLK(qθ(x0) ∥ pd(x0)) = 0 ⇐⇒ qθ(x0) = pd(x0).

Since w(t) > 0 and the KL divergence is non-negative, it suffices to show that:

KL(qθ(xt) ∥ pd(xt)) = 0 ⇐⇒ qθ(xt) = pd(xt) ⇐⇒ qθ(x0) = pd(x0).

To demonstrate this, assume that kt(ϵ) = N (0, σ2I), and rewrite the noisy densities as convolutions:

qθ(xt) = (qθ ∗ kt)(xt), (23)
pd(xt) = (pd ∗ kt)(xt). (24)

Suppose qθ(xt) = pd(xt). Applying the Fourier transform F , we obtain:

F(qθ ∗ kt) = F(qθ) · F(kt), (25)
F(pd ∗ kt) = F(pd) · F(kt). (26)

Given qθ(xt) = pd(xt), we have:

qθ(xt) = pd(xt) ⇐⇒ F(qθ) ·���F(kt) = F(pd) ·���F(kt) ⇐⇒ F(qθ) = F(pd) ⇐⇒ qθ = pd.

Therefore, KL(qθ(xt) ∥ pd(xt)) = 0 ⇐⇒ qθ(xt) = pd(xt), and thus:

DiKLK(qθ(x0) ∥ pd(x0)) = 0 ⇐⇒ qθ(x0) = pd(x0).

B DERIVATION OF ANALYTICAL GRADIENT FOR REVERSE KL

The gradient of reverse DiKL w.r.t. the model parameter θ is given by

∇θDiKLkt(qθ||pd) =
∫
qθ(xt) (∇xt

log qθ(xt)−∇xt
log pd(xt))

∂xt
∂θ

dxt. (27)

The reverse DiKL at time t is defined as

DiKLkt(qθ||pd) =
∫

(log qθ(xt)− log pd(xt)) qθ(xt)dxt. (28)

We first reparameterize xt as a function of z and ϵ:

xt = αtgθ(z) + σtϵt ≡ hθ(z, ϵt), (29)
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where z ∼ p(z) ≡ N (z|0, I) and ϵt ∼ p(ϵt) ≡ N (ϵt|0, I). It then follows that

∇θDiKLkt(qθ||pd) = ∇θ

∫
(log qθ(xt)− log pd(xt)) qθ(xt)dxt

= ∇θ

∫∫∫
(log qθ(xt)− log pd(xt)) δ(xt − hθ(z, ϵt))p(z)p(ϵt)dxtdzdϵ

= ∇θ

∫∫
(log qθ(xt)− log pd(xt)) |xt=hθ(z,ϵt)p(z)p(ϵt)dzdϵ

=

∫ (
∇θ log qθ(xt) +∇xt

log qθ(xt)
∂xt
∂θ

−∇xt log pd(xt)
∂xt
∂θ

)
pθ(xt)dxt

=

∫ (
∇xt

log qθ(xt)
∂xt
∂θ

−∇xt
log pd(xt)

∂xt
∂θ

)
pθ(xt)dxt,

where the last line follows since∫
∇θ log qθ(xt)qθ(xt)dxt =

∫
∇θqθ(xt)dxt = ∇θ

∫
qθ(xt)dxt = ∇θ1 = 0. (30)

This completes the proof.

C CLASS RAITIO ESTIMATION FOR DIJS DIVERGENCE

We define the diffusive Jensen-Shannon (DiJS) divergence between the model distribution qθ(x0)
and the data distribution pd(x0) as:

DiJSK(qθ(x0) ∥ pd(x0)) =
T∑
t=1

w(t) JS(qθ(xt) ∥ pd(xt)), (31)

where w(t) > 0 are positive weights, and the noisy distributions qθ(xt) and pd(xt) are defined via
convolution with a transition kernel kt(xt | x0) (e.g., Gaussian noise):

qθ(xt) =

∫
qθ(x0) kt(xt | x0) dx0, (32)

pd(xt) =

∫
pd(x0) kt(xt | x0) dx0. (33)

The Jensen-Shannon divergence between two distributions q and p is given by:

DiJS(qθ ∥ pd) =
1

2
DiKL(qθ ∥

1

2
(qθ + pd)) +

1

2
DiKL(pd ∥

1

2
(qθ + pd)). (34)

We now derive the gradient of the DiJS divergence with respect to model parameters θ. By the chain
rule:

∇θDiJS(qθ(x0) ∥ pd(x0)) =
T∑
t=1

w(t)∇θJS(qθ(xt) ∥ pd(xt)). (35)

Assume we obtain the optimal classifier c∗(xt, t) ≡ p(y = 1 | xt, t). We follow the GAN
method (Goodfellow et al., 2014) to ignore the second term when the class ratio estimation is opti-
mal, the first term in the JS divergence (involving qθ) gives:

∇θJS(qθ(xt) ∥ pd(xt)) ≈
∫

∇θqθ(xt) log

(
qθ(xt)

m(xt)

)
dxt (36)

=

∫
qθ(xt)∇xt

log

(
qθ(xt)

m(xt)

)
∂xt
∂θ

dxt, (37)

where m(xt) =
1
2 (qθ(xt) + pd(xt)). Using the class-ratio view, we substitute:

qθ(xt)

m(xt)
=

m(xt|y = 0)

m(xt|y = 0) +m(xt|y = 1)
= 1− c∗(xt, t),
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which gives:

∇θDiJS(qθ(x0) ∥ pd(x0)) ≈
T∑
t=1

w(t)

∫
qθ(xt)∇xt

log(1− c∗(xt, t))
∂xt
∂θ

dxt. (38)

If we don’t follow the GAN (Goodfellow et al., 2014) approximation, one can also treat this gradient
estimation as an exact estimation of a DiKL with a mixture target distribution

∇θDiKL

(
qθ||

1

2
(qθ + pd)

)
=

T∑
t=1

w(t)

∫
qθ(xt)∇xt

log(1− c∗(xt, t))
∂xt
∂θ

dxt.

This is also a valid divergence between qθ and pd since qθ = 1
2qθ +

1
2pd ⇐⇒ qθ = pd.
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D ADDITIONAL IMAGE GENERATION RESULTS

Figure 4: Visualization of the samples from the multi-level DSM Initialization
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Figure 5: Visualization of the samples from the single-level DSM Initialization
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Figure 6: Visualization of the collapsed samples
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Figure 7: CIFAR Visualization of the DiJS samples (FID=2.39, IS=9.93)
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Figure 8: ImageNet 64x64 Visualization of the DiJS samples (FID=1.54)
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