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Abstract

Graphs are growing rapidly, along with the number of distinct label categories associated
with them. Applications like e-commerce, healthcare, recommendation systems, and var-
ious social media platforms are rapidly moving towards graph representation of data due
to their ability to capture both structural and attribute information. One crucial task in
graph analysis is node classification, where unlabeled nodes are categorized into predefined
classes. In practice, novel classes appear incrementally sometimes with just a few labels
(seen classes) or even without any labels (unseen classes), either because they are new or
haven’t been explored much. Traditional methods assume abundant labeled data for train-
ing, which isn’t always feasible. We investigate a broader objective: Graph Class Incremen-
tal Learning under Weak Supervision (GCL), addressing this challenge by meta-training on
base classes with limited labeled instances. During the incremental streams, novel classes
can have few-shot or zero-shot representation. Our proposed framework GOTHAM effi-
ciently accommodates these unlabeled nodes by finding the closest prototype representa-
tion, serving as class representatives in the attribute space. For Text-Attributed Graphs
(TAGs), our framework additionally incorporates semantic information to enhance the rep-
resentation. By employing teacher-student knowledge distillation to mitigate forgetting,
GOTHAM achieves promising results across various tasks. Experiments on datasets such
as Cora-ML, Amazon, and OBGN-Arxiv showcase the effectiveness of our approach in han-
dling evolving graph data under limited supervision. The code implementation is available
here: https://encr.pw/uY0e2

1 Introduction

Graph-structured data are ubiquitously used in many real-world applications, such as citation graphs (Cum-
mings & Nassar, 2020; Tang et al., 2008), biomedical graphs (Subramanian et al., 2005; Zhai et al., 2023),
circuit optimization (Shahane et al., 2023; Hakhamaneshi et al., 2023) and social networks (Qi et al., 2012).
Recently, Graph Neural Networks (GNNs) have been proposed (Cao et al., 2016; Subramanian et al., 2005;
Henaff et al., 2015; Xu et al., 2019; Kipf & Welling, 2017; Veličković et al., 2018; Hamilton et al., 2017) to
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model graph-structured data by leveraging the structural and attributed information along the graph. As a
central task in graph machine learning, node classification (Wang et al., 2020b; Xhonneux et al., 2020; Wang
et al., 2021b; Zhu et al., 2021) has achieved remarkable progress with the rise of GNNs. While these methods
concentrate on static graphs to classify unlabeled nodes into predetermined classes, real-world graphs are
dynamic. In practice, graphs grow (You et al., 2022; Lu et al., 2022; Tan et al., 2022) rapidly incorporating
nodes and edges belonging to novel classes incrementally. For example, (1) think of a biomedical graph. Each
node represents a rare disease category, and edges show how these diseases relate to each other. As new
disease categories emerge, they are gradually added to this graph. Such methods significantly aid the drug
discovery process. (2) For food delivery systems nodes correspond to various zip codes and the edges indicate
the spatial distances between them. As the company expands its reach, new zip codes are systematically
incorporated into this graph, facilitating efficient supply chain management. GNNs typically require a large
amount of labeled data to learn effective node representations (Ding et al., 2020b; Zhou et al., 2019b). In
practice, catching up with these newly emerging classes is tough, and obtaining extensive labeled data for
each class is even harder. The annotation process can be extremely time-consuming and expensive (Ding
et al., 2022; Guo et al., 2021; Wang et al., 2022c). Naturally, it becomes crucial to empower models to classify
the nodes from: limited labeled classes and those unseen classes having no labeled instances, collectively
referred to as weakly supervised. In this regard, we investigate the problem of Graph Class Incremental
Learning under Weak Supervision (GCL).

Recent studies (Lu et al., 2022; Tan et al., 2022), have delved into a specific aspect of the broader problem,
termed graph few-shot class incremental learning (GFSCIL). This approach operates under the assumption
that the base classes possess abundant labeled instances, while novel classes introduced during streaming
sessions always have representations in the form of k-shots. Additionally, there is a separate line of research
(Wang et al., 2021b; 2023b; Hanouti & Borgne, 2022), focusing on zero-shot node classification. Furthermore,
addressing the issue of limited labeled data availability during base training, which impacts the model’s
generalizability for better node representations during finetuning, is discussed in Wang et al.. Finally,
studies like (Wang et al., 2023a; Wang et al.) address few-shot node classification. Graph data, existing
in a non-Euclidean space with constantly changing network structures, poses unique challenges. Unlike
the progress made in class incremental learning in computer vision, incremental learning in graphs remains
relatively unexplored. Therefore, for developing a framework for GCL the key challenges include: (1) Can
the model learn good node representations with just k-shots for base training classes during finetuning? (2)
Is there a universal framework to address both the GFSCIL problem (classes in novel streams represented by
k-shots) and the GCL task (including classes with no training instances)? and finally, (3) How to prevent
forgetting old knowledge while learning new information?

Sometimes, Less is Plenty. By heuristically sampling the neighborhood corresponding to the k-shot rep-
resentations, our approach extends the support set for each class. These prototypes serve a crucial role
in steering the orientation of both base and novel classes within the graph during streaming sessions. We
adopt the popular meta-learning strategy, called episodic learning (Finn et al., 2017), which has shown great
promise in few-shot learning. We propose Graph Orientation Through Heuristics And Meta-learning
(GOTHAM), an incremental learning framework that effectively addresses all the aforementioned issues.
Finally, the teacher-student knowledge distillation in GOTHAM prevents catastrophic forgetting. The pa-
per is structured into seven sections, focusing on class orientation through prototypes, proposed approach,
experimental analysis, and concluding remarks.

2 Related Work

Continual Graph Learning: The Continual Graph Learning Benchmark (CGLB) (ZHANG et al., 2022)
categorizes tasks in evolving graph structures into Continual Graph Learning (CGL) (Wang et al., 2022a; Xu
et al., 2020; Daruna et al., 2021; Ahrabian et al., 2021; Kou et al., 2020), Dynamic Graph Learning (DGL)
(Galke et al., 2020; Wang et al., 2020a; Yu et al., 2018; Han et al., 2020), and Few-Shot Graph Learning
(FSGL) (Zhou et al., 2019a; Guo et al., 2021; Yao et al., 2020). CGL focuses on mitigating catastrophic
forgetting without relying on past data, DGL captures temporal dynamics with access to historical data,
and FSGL enables rapid adaptation to new tasks using meta-learning. Our work lies at the intersection of
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CGL and FSGL. We review related work on few-shot, zero-shot, and incremental learning for graph-based
tasks, positioning our contributions within this broader framework.

Few-Shot Node Classification: Despite several advancements in applying GNNs to node classification
tasks (Kipf & Welling, 2017; Veličković et al., 2018; Hamilton et al., 2017; Wang et al., 2022b), more recently,
many studies (Ding et al., 2020b; Wang et al., 2021a; Zhou et al., 2019b; Wang et al.) have shown that the
performance of the GNNs is severely affected when number of labeled instances are limited. Consequently,
there has been a surge in interest in the area of few-shot node classification. These works are broadly
categorized into two main streams: (1) Optimization based approaches (Zhou et al., 2019b; Huang & Zitnik,
2020; Liu et al., 2021; Lan et al., 2020) and (2) Metric based approaches (Wang et al., 2023a; Wang et al.; Snell
et al., 2017a; Yao et al., 2020). These approaches operate under the strong assumption that information for
all classes is available simultaneously, which renders them ineffective for class incremental learning scenarios.

Zero-Shot Classification: As emerging classes continue to grow in dynamic environments, interest in a
related field called "no-data learning" is surging. However, the existing approaches (Wang et al., 2021b; 2023b;
Hanouti & Borgne, 2022; Lu et al., 2018; Wan et al., 2019b; Song et al., 2018) suffer from two key limitations:
(1) Many of these methods assume access to unlabeled instances of unseen classes during training, limiting
their generalizability and (2) They typically only classify test instances into the set of unseen classes, which
isn’t practical. In computer vision (Verma et al., 2019; Wu et al., 2023), some approaches have addressed
these issues and even integrated incremental learning successfully. However, similar advancements in the
graph domain are lacking.

Class Incremental Learning: also known as lifelong learning has been extensively studied across various
computer-vision tasks (Li & Hoiem, 2018; Rebuffi et al., 2016; Hou et al., 2019). However, these approaches
often assume access to extensive labeled datasets during streaming sessions, which is impractical. Few-
shot class incremental learning (FSCIL) has been introduced in the realms of image classification in (Tao
et al., 2020; Cheraghian et al., 2021). Unlike images, graph data exhibits non-i.i.d characteristics, making
incremental learning more challenging. Most recent works (Lu et al., 2022; Tan et al., 2022) have addressed
the graph few-shot class incremental learning framework. However, a common but naive assumption in these
approaches is the abundant availability of base classes, which often isn’t the case in practice. Our proposed
framework aims to bridge the gap by directly addressing the limitations found in various existing works.

3 Methodology

In this section, we begin by presenting the problem and explaining the key terms related to it. Then, we
introduce some foundational concepts that will help build our formulation. Finally, we outline several crucial
modules and provide detailed explanations for each.

3.1 Problem Statement

We denote an attributed graph as Gt(V t, Et, Xt), where V t = {vt
1, vt

2, . . . , vt
n} is the vertex set and Et ⊆

V t × V t is the edge set. Xt = {x1, x2, . . . , x|V t|} ∈ R|V t|×d, is the node feature matrix where d is the feature
dimension. In the base training stage, we have a base graph Gbase with |Cbase| number of classes. Due
to weak supervision, the number of labeled samples corresponding to Cbase is extremely limited. In the
streaming sessions, evolving graphs are presented {G1, G2, . . . , GT } with {C1, C2, . . . , CT } sets of classes. In
the GFSCIL framework, every streaming session introduces δCi new classes, each represented by k-shots. It
is essential to note that δCi ∩ δCj = ∅ and Ct = Cbase +

∑t
i=1 δCi.

Problem definition: Graph Class Incremental Learning under weak supervision

In each streaming session, Gt introduces δCi new classes, which are divided into two categories: δCi,f and
δCi,z. δCi,f classes, termed as seen classes, have few training instances (typically k-shots), while δCi,z classes,
referred to as unseen classes lack any training instances. During the streaming session, we encounter both
δCi,f and δCi,z classes, forming the class set denoted as Ct = Ct,S ∪ Ct,U , where S stands for seen classes
and U denotes unseen classes at time "t". Specifically, Ct,S = Cbase +

∑t
i=1 δCi,f and Ct,U =

∑t
i=1 δCi,z.

Additional information, in terms of class semantics descriptions (CSDs), is provided for all the classes. The
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Figure 1: Graph Class Incremental Learning under Weak Supervision:(A) In the base graph Gbase,
the base classes Cbase have extremely limited labeled instances.(B) In the streaming sessions, graph Gt has
Ct number of classes. Depending upon the availability of the training instances, the classes are further
classified as Ct,S (seen classes) and Ct,U (unseen classes). Seen classes are represented with k-shots, along
with semantic attributes (CSDs). For unseen classes, only CSD information is available. The goal, is to
classify the unlabeled instances into Ct classes encountered so far (Lu et al., 2022; Tan et al., 2022).

CSD matrix is denoted as As = {as1, as2, . . . , asCt} = AS
s ∪ AU

s , with each row containing description of a
class. Class semantics descriptions (CSDs) have been extensively studied in Wang et al. (2023b); Hanouti
& Borgne (2022); Wang et al. (2021b); Ju et al. (2023). Throughout the paper, we interchangeably refer
to "class semantics descriptions (CSDs)" and "semantic attributes". The goal is to classify all the unlabeled
nodes (belonging to both seen and unseen classes) into Ct classes encountered so far.

Labeled training instances are called "support sets" (S), while unlabeled testing instances are termed "query
sets" (Q). Unseen classes, which lack training instances, have their unlabeled instances presented only during
inference.

3.2 Preliminaries: Label smoothness and Poisson Learning (Random walk perspective)

To enhance classification accuracy in scenarios with extremely low labeled data, leveraging additional samples
is crucial. Semi-supervised learning, which combines labeled and unlabeled data, has shown significant
improvements by utilizing the topological structure of the data (Zhu et al., 2003; Zhou & Schölkopf, 2004;
Zhou et al., 2003). Methods such as Poisson learning (Calder et al., 2020) have further extended the
concept by incorporating structure-based information on graphs through random walks. The underlying
assumption is that samples that are close to each other can potentially share similar classes. Previous
research (Solomon et al., 2014; Belkin et al., 2006; Kalofolias, 2016), has emphasized the importance of the
smoothness assumption for label propagation in scenarios with extremely low label rates. These findings form
the basis of our proposed approach, which extends support sets through random walks without requiring
extensive labeled nodes. This extended support set enhances the representation of prototypes for each class,
leading to improved classification performance.

3.3 Prototype representation

Definition: The prototype of a class corresponds to a representative embedding vector which captures the
overall characteristics of a class in the attribute space. Prototype representation has been extensively studied
across various works (Snell et al., 2017b; Rebuffi et al., 2017; Lu et al., 2022; Tan et al., 2022) in the domain
of few-shot representation learning.
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The foundational works, (Snell et al., 2017b; Rebuffi et al., 2017) suggested using the mean of the support
samples for prototype representation. Building upon this foundation, subsequent studies (Lu et al., 2022; Tan
et al., 2022) introduced attention-based prototype generation techniques. These approaches were designed
to address challenges such as class imbalance and mitigate biases arising from noisy support sets. Recent
studies (Wang et al.; 2023a) highlighted the importance of neighborhood sampling techniques, such as Poisson
learning and personalized page rank (PPR), to obtain a more informed support set.

Figure 2: Prototype representation: For the GFSCIL task, we propose representing prototypes (Pc,S)
using the averaged extended support set, as illustrated in (i). As demonstrated in (ii), we integrate semantic
attributes (CSDs) to enhance the prototypes (P c,S) in TAGs. For GCL tasks with classes having no training
instances, the semantic attributes (CSDs) are encoded as prototypes (P c,U ).

However, these approaches (Snell et al., 2017b; Rebuffi et al., 2017; Lu et al., 2022; Tan et al., 2022; Wang
et al.; 2023a) suffer due to the weak supervision setting. Hence, we additionally leverage the label smoothness
principle to gather the local neighborhood of the support nodes. The extended support set contains the
labeled support nodes and the unlabeled neighbors gathered through random walks. The final node set for
a class can be represented as Sx,C = SC ∪ VC , where SC , corresponds to nodes with labels and VC is the
sampled unlabeled node set for class C belonging to the seen classes. The prototype thus obtained will be
the average of the embeddings of all the nodes within the extended support set Sx,C represented as:

PC,S := 1
|Sx,C |

|Sx,C |∑
i=1

GNNθ (vi) (1)

where, GNNθ (vi) corresponds to embeddings of the node vi, which are generated by aggregating information
from its neighbors. Refer to Figure 2(i) for further details. In Text Attributed Graphs (TAGs), refer to
Figure 2(ii), we enhance the prototype representation by incorporating semantic attributes associated with
each class. The semantic loss, which will be elaborated upon later, facilitates the integration of attribute
and semantic space. The encoded semantic attributes MLPϕ (asC), for the same seen class C are merged
with the original prototype to obtain the new prototype representation: P̄C,S = PC,S+MLPϕ(asC )

2 . For the
GFSCIL framework, the prototype set will consist of PS = {PC,S , P̄C,S}, depending on the type of graph
used as input. For a class Ĉ, with no training examples (where Ĉ ∈ Ct,U ), we rely on additional information
in the form of semantic attributes. Refer to Figure 2(iii) for further insights into this representation. The
prototype representation for such unseen classes is: P̄Ĉ,U = GNNθ

(
asĈ

)
, where GNNθ

(
asĈ

)
, represents the

vector representation of the semantic attributes, where each attribute connects only to itself (self-loop) in
its adjacency. In the GCL scenario, the prototype representation set is denoted as P̄ = {P̄C,S , P̄Ĉ,U }.

3.4 Transferable Metric Space Learning

Graphs constantly change, posing a challenge in how different node classes are positioned in metric space.
As information for all classes isn’t available at once, it is crucial to establish a criteria to prevent overlap
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between old and novel classes. Additionally, distinguishing novel classes as seen or unseen adds another layer
of complexity, especially when some classes have very few samples while others appear only during inference.
To address these challenges, the model is trained using the following loss functions:

Intra-class clustering loss: The goal here is to group instances that belong to the same class together.
Several data augmentation strategies have been suggested previously (Li et al., 2018; Verma et al., 2020; Ding
et al., 2018; Qiu et al., 2020), which generate consistent samples without affecting the semantic label. How-
ever, in few-shot scenarios, these methods can introduce bias by generating samples that do not fully capture
the true distribution of the class. To avoid this, we take a simpler approach: sampling the neighborhood
of the original node to obtain a correlated view. In our case, the original nodes correspond to the labeled
k-shot representative nodes for each seen class. Neighbor nodes are sampled with the approach discussed
in section: 3.2. The class prototype is responsible for grouping these nodes, employing the clustering loss
defined as:

Lcls,S := 1
|Ct,S |

∑
j∈Ct,S

∑
i∈nj

max(∥GNNθ (vi) − Pj,S∥−γ, 0)∑
k∈nj

max(∥GNNθ (vk) − Pj,S∥−γ, 0)

 (2)

Here, Ct,S refers to the set of seen classes encountered up to the current streaming session at a time "t".
The number of samples for each class from the extended support set is represented by "nj". The parameter
"γ" defines the boundary from the prototype. Samples for a certain class are encouraged to stay within this
boundary. The max(.) function ensures that only samples outside the boundary contribute to the loss.

Inter-class segregation loss: Unlike existing augmentation strategies (Li et al., 2018; Verma et al., 2020;
Ding et al., 2018; Qiu et al., 2020), which generate correlated pairs within a class, we do not rely on explicitly
sampling negative pairs. Instead, we promote class separability by leveraging representative embedding
vectors, known as class prototypes. These prototypes enhance dissimilarity between samples from different
classes, preventing class overlap among all classes (Ct) encountered up to the current streaming session at
time "t". The segregation loss is defined as follows:

Lseg := −1
|Ct|

∑
j∈Ct

∑
p∈Ct,p̸=j

log∥P̄j − P̄p∥ (3)

Here, Ct = {Ct,S ∪ Ct,U } is the set of all classes, including both seen and unseen classes. Similarly, the
prototypes belong to the prototype representation set P̄ = {P̄C,S , P̄Ĉ,U }. This loss function applies to both
seen and unseen classes.

Semantic manipulation loss: Each modality offers a unique perspective on class representation, con-
tributing to a more comprehensive view of prototypes. While extensively explored in the image domain
(Zhang et al., 2023; Xing et al., 2019; Xu & Le, 2022; Guan et al., 2021), graphs provide an additional
advantage by incorporating structural information (orientation) associated with each class within the graph.
Class-semantic descriptors (CSDs) or semantic attributes, derived from class names and descriptions, are
encoded and represented as MLPϕ (asC) for C ∈ Ct,S . The objective is to align the encoded semantics with
the prototypes of the seen classes. The corresponding loss function is expressed as follows:

Lsem,S :=
∑

j∈Ct,S

∥MLPϕ (asj) − Pj,S∥ (4)

This loss function is responsible for integrating the attribute and semantic space. The newly learned semantic
embeddings are later merged to obtain a new prototype representation (discussed previously). This loss
function is specifically applied only to seen classes.

Knowledge refinement through experience: As the graph evolves incrementally, the learner model
may tend to forget previously learned information when exposed to new knowledge, leading to catastrophic
forgetting. To address this, it’s crucial to preserve the previously acquired knowledge while integrating new
information. This process is known as knowledge distillation. Among various techniques (Zhang et al., 2020;
Rezayi et al., 2021; Feng et al., 2022), we opt for the teacher-student approach. The teacher model distills
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both attribute and semantic information using the following loss function:

Lemb,S = 1
nC(t−1),S

∑
i∈n

C(t−1),S

∥∥∥GNNteacher
θ (vi) − GNNstudent

θ (vi)
∥∥∥ (5)

Lalign,S = 1
|C(t−1),S |

∑
j∈C(t−1),S

1 −
MLPteacher

ϕ (asj) · MLPstudent
ϕ (asj)∥∥∥MLPteacher

ϕ (asj)
∥∥∥ ∥∥∥MLPstudent

ϕ (asj)
∥∥∥

 (6)

The total loss is: LKD,S := λ1 · Lemb,S + λ2 · Lalign,S . For the GFSCIL problem, where text attributes are
not available, knowledge distillation is solely performed across the node-embeddings (attribute information).
This loss function applies only to seen classes.

4 Understanding Prototype Distortion in Evolving Graphs

Although we introduce various components to maintain model performance in a continual learning setup
with class increments, the key question remains: Can prototype representations truly be preserved across
evolving data streams? The answer depends on how well GNNs can express and adapt these prototypes
as the graph evolves. In this subsection, we evaluate the stability of prototype representations within an
evolving graph.

GNNs suffer from representation distortion over time Liang et al. (2018); Wu et al. (2022); Lu et al. (2023),
leading to gradual performance degradation. This shift can result from the continuous addition of nodes and
edges, structural changes, new feature introductions, or the emergence of new classes. Additionally, the lack
of labeled data further increases the challenge. As shown in Figure 5, our experimental evaluations confirm
this trend—model performance steadily declines as novel classes are introduced over incremental stages. To
better understand this degradation, we build on insights from Lu et al. (2024), and extend the concept of
representation distortion to prototype distortion in our case. Before presenting the results, we first outline
the following assumptions:

Assumptions: We consider an initial graph Gbase = (V 0, E0, X0) with n nodes. (1) The feature matrix
X0 follows a continuous probability distribution over Rn×d. (2) At each time step t, new nodes belonging to
classes indexed as δCt are added, connecting to existing nodes with a positive probability while preserving
existing edges. In citation networks, for instance, the new papers cite existing ones, maintaining stable
relationships. Over time, emerging research fields introduce papers from previously unseen domains. (3)
The feature matrix XδCt has a zero mean conditioned on prior graph states, i.e., E[XδCt |G0, ..., Gt−1] =
0d, ∀t ≥ 1 This follows a common assumption in deep learning models.

We specifically examine the prototypes corresponding to the classes in ∆C = Ct ∩ Ct+1, representing the
shared classes between consecutive time steps obtained through the GNN parameterized by θ. We define the
expected distortion for prototype Pi at time t as the expected difference between its representation at time
t and t + 1, given by: ∆(Pi, δt) = E

[
∥Pi(t + 1) − Pi(t)∥2]

, where ∆(Pi, δt) denotes the expected distortion
of prototype Pi over the time interval δt.

Theorem: If θ represents the vectorized parameter set {(aj , Wj , bj)}N
j=1, where each coordinate θi is drawn

from the uniform distribution U(θ∗
i , ξ) centered at θ∗

i (optimal parameters), the expected deviation ∆(Pi, δt)
due to the perturbed GNN model at time t ≥ 0 for prototype Pi, where i ∈ ∆C, is lower bounded by:

∆(Pi, δt) ≥ E

(
1

dt+1(Pi)
− 1

dt(Pi)

)2 ∑
k∈Nt(Pi)

∥xk∥2

 (7)

where the set Nt(Pi), denotes the neighborhood comprising the extended support set of the prototype Pi

and dt(Pi), dt+1(Pi) refers to degree information at respective time steps. The proof of the theorem can be
found in the Appendix.
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Remark: Under the ever-growing assumption, distortion is unavoidable, and Theorem confirms that the
expected distortion of the model output increases strictly over time. This effect is particularly pronounced
for large-width models, emphasizing the inherent trade-off in continuously evolving systems.

5 Proposed Algorithm

In this section, we present our proposed framework: Graph Orientation Through Heuristics And
Meta-learning (GOTHAM). At any given time t, we have a graph Gt as input, where the total classes
Ct = Ct,S ∪ Ct,U encompass both the seen (few shots) and the unseen (zero shots) class representation. The
choice of framework type depends on the input, as illustrated in Figure 3. Based on the input, the following
procedure is used to perform the node classification:

(1) Episodic Learning: Based on the choice of framework, tasks (T ) are sampled for the corresponding
graph Gt. Each task T i ∼ p(T ), drawn from the task distribution, consists of an extended support set
(Si

x) and a query set (Qi) required for episodic learning. Episodic learning, which has demonstrated great
promise in the area of few-shot learning (Rebuffi et al., 2017; Tan et al., 2022; Huang & Zitnik, 2020;
Vinyals et al., 2016; Zhou et al., 2019b), involves sampling tasks and learning from them, rather than
directly training and then fine-tuning over batches of data. (2) Prototype representation: For each
support set (Si

x), prototypes are generated for all the classes. If the class set Ct contains samples only
from the seen classes (i.e. Ct = Ct,S), the prototype set will be PS and the problem becomes a GFSCIL
setting. Furthermore, if TAGs are given as an input, which offer additional semantic attribute information,
it results in a new prototype representation. For the GCL setting where Ct = Ct,S ∪ Ct,U , the prototype
representation set is denoted as P̄ = {P̄C,S , P̄Ĉ,U }. (3) Meta-learning and Finetuning: After obtaining
prototypes, meta-training is performed using a combination of loss functions. In the GFSCIL scenario
without TAGs, the model is trained using clustering loss and separability loss. With TAGs in both GFSCIL
and GCL settings, semantic loss is also incorporated. The corresponding meta-training loss is defined as:
Ltrain := α1 · Lcls,S + α2 · Lseg + α3 · Lsem,S . Meta-learning is performed on the base graph. Once the
model is trained on the support set (Si

x), its performance is validated on the corresponding query set (Qi).
The model is then frozen and used for meta-finetuning. During meta-finetuning, the loss is defined as:
Lfinetune := α1 · Lcls,S + α2 · Lseg + α3 · Lsem,S + α4 · LKD,S . (4) Knowledge distillation: During
finetuning, knowledge distillation preserves previously learned class representations. The corresponding loss
is defined as: LKD,S := λ1 · Lemb,S + λ2 · Lalign,S . (5) Node classification: For any graph Gt as input at
time t, the model ultimately performs Ct-way node classification.

Algorithm 1 GOTHAM III.o
1: Input: Gt, As, Ct

2: Output: Label prediction on query nodes in Qi ∈ T i

3: # Initialise θ, ϕ; Sample T i ∼ p(T )
4: Base Training (t = 0, Ct = Cbase)
5: for T i = {Si

x ∪ Qi} ∈ Cbase:
6: Prototype (P̄Cbase,S) using eq:1
7: Compute Ltrain on Si

x

8: Obtain node labels for Qi

9: Update θ, ϕ using gradient descent
10: end
11: # Freeze the trained model
12: Finetuning (t > 0, Ct = Cbase +

∑t

i=1 δCi)
13: # Load pre-trained model; Perform knowledge distillation
14: for T i = {Si

x ∪ Qi} ∈ Ct:
15: Prototype (P̄Ct ) using eq:1
16: Compute Lfinetune on Si

x

17: Obtain node labels for Qi

18: Update θ, ϕ using gradient descent
19: end
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Figure 3: GOTHAM III.o: At any time t, the framework uses the graph Gt as input. The total classes are
Ct = Ct,S ∪ Ct,U . The steps are: (1) Create tasks (T ) with support sets (S) and query sets (Q) for episodic
learning. (2) Obtain prototype representations for each support set (Si

x). (3) Apply loss functions. (4) Use
knowledge distillation to transfer knowledge from the teacher model to the student model. (5) Perform node
classification.

6 Experiments

Datasets: We assess the performance of our proposed framework, GOTHAM, on three real-world datasets-
Cora-ML, Amazon, and OBGN-Arxiv. We summarize the statistics of the datasets in Table 1. For more
details about the dataset refer to the Appendix.

Table 1: Statistics of datasets used in the experiments
Dataset Nodes Features Classes Class Labels Tasks
Cora-ML 2,708 1,433 7 Neural Network, Rule Learning,

Reinforcement Learning, Probabilistic
Methods, Theory, Genetic Algorithms,

Case-based

GFSCIL, GCL

Amazon 13,752 767 10 Label names Unavailable GFSCIL
OBGN-Arxiv 169,343 128 40 Arxiv cs na, Arxiv cs mm, Arxiv cs lo,

Arxiv cs cy, Arxiv cs cr, Arxiv cs dc,
Arxiv cs hc, Arxiv cs cv, Arxiv cs ai, ...

GFSCIL, GCL

Experiment settings: We partition the dataset into base stage and multiple streaming sessions respectively.
We assess our framework across two main problem settings: (1) Graph Few-shot Class Incremental Learning
(GFSCIL) and (2) Graph Few-shot Class Incremental Learning under Weak Supervision (GCL). Cora-ML
and OBGN-Arxiv are Text-Attributed Graphs (TAGs), enriched with semantic attributes. We generate
semantic attributes/ Class Semantics Descriptors (CSDs) using "word2vec" (Mikolov et al., 2013), which
transform textual descriptors into word embeddings. To simplify computation, we utilize Label-CSDs (Wang
et al., 2021b). Initially, we evaluate all datasets under the GFSCIL setting. For the Cora-ML and Amazon
dataset, we choose five classes as the novel classes and keep the rest as base classes, and adopt 1-way, 5-shot
setting, which means we have 6 sessions (1 base sessions + 5 novel sessions). For the OBGN-Arxiv dataset, we
keep ten classes as base classes and the rest as novel, employing a 3-way, 10-shot setting (totaling 11 sessions).
Our framework seamlessly integrates semantic attribute information in Cora-ML and OBGN-Arxiv. Finally,
we assess our framework under the GCL setting, focusing on Cora-ML and OBGN-Arxiv to demonstrate its
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effectiveness. During each streaming session, one class is designated as zero-shot, lacking training instances.
Unlabeled instances for these classes are only available during inference. All the experiments are performed
five times to ensure reproducibility. The top results are highlighted in bold, while the second best ones are
underlined.

Baseline methods: In the GFSCIL setting, we benchmark our results against several state-of-the-art frame-
works for few-shot class incremental learning and few-shot node classification, including: Meta-GNN (Zhou
et al., 2019b), GPN (Ding et al., 2020a), iCaRL (Rebuffi et al., 2017), HAG-Meta (Tan et al., 2022), Ge-
ometer (Lu et al., 2022) and CPCA (Ren et al., 2023). Unlike previous methods, during base training, we
provide only a limited number (5- shots for Cora-ML and Amazon and 10-shots for OBGN-Arxiv) of labeled
instances for each class. In streaming sessions, novel classes receive k-shot representations. In the GCL
setting, where novel classes have both few-shot and zero-shot representations, we compare against zero-shot
learning frameworks with inductive learning as baselines. These approaches include DCDFL (741, 2024),
GraphCEN (Ju et al., 2023), (CDVSc, BMVSc, WDVSc) (Wan et al., 2019a) and Random guess, introduced
as a naive baseline. Unlike the traditional approach, the seen classes have only limited labeled instances (5-
shots for Cora-ML and 10-shots for OBGN-Arxiv) available for training, and unseen classes have semantic
attributes only. Under the GCL setting, the unlabeled instances will be classified into Ct classes encountered,
resembling a generalized zero-shot with inductive learning framework. A detailed summary of the baseline
methods and hyper-parameters employed is available in the Appendix.

Graph Few-shot Class Incremental Learning (GFSCIL): We conducted experiments on the Amazon
dataset, focusing on the GFSCIL problem as previously described. The results, detailed in Table 2, show
an average improvement of around 6% across various streams. Visualizing the class prototypes generated
by the GOTHAM framework reveals distinct separations among classes across streams, ensuring consistent
performance.

Table 2: GFSCIL setting: (Left) Model performance (%) on the Amazon dataset under GFSCIL setting.
(Right) Visualization of class prototypes for the Amazon dataset across different streaming sessions.

Amazon (1-way 5-shot GFSCIL setting)
Stream Base S1 S2 S3 S4 S5

Meta-GNN 99.60 86.33 82.43 77.75 70.82 67.94
GPN 93.56 85.23 74.88 73.40 66.17 63.36

iCaRL 66.20 47.33 39.13 35.75 29.84 29.66
HAG-Meta 95.43 88.76 75.67 69.56 67.21 61.86

GEOMETER 95.44 90.05 77.36 74.27 73.08 74.36
CPCA 95.37 87.88 83.72 77.13 76.37 69.32

GOTHAM I.o 96.61 90.91 88.89 84.55 78.82 73.81
%gain -03.00 00.00 06.17 08.74 03.20 00.00

We extend our experiments to the Cora-ML and OBGN-Arxiv datasets, both Text-Attributed Graphs
(TAGs) enriched with semantic attributes. Following the previously outlined experimental conditions,
GOTHAM achieved an average improvement ranging from 6.4% to 13.5% over the baseline methods. We
explored two variants of the framework: GOTHAM I.o, which solely relies on feature-based information, and
GOTHAM II.o, which integrates semantic attributes. Table 3 demonstrates that incorporating semantic
attributes in GOTHAM II.o notably enhances performance for both datasets.

Table 3: GFSCIL with semantics: Node classification accuracy (%) in the GFSCIL setting- leveraging se-
mantic attributes for enhanced class representation on Cora-ML and OBGN-Arxiv datasets with GOTHAM.

Cora-ML (1-way 5-shot GFSCIL setting)
Stream Base S1 S2 S3 S4 S5

Meta-GNN 100 79.19 61.37 60.40 51.51 36.76
GPN 95.58 91.89 77.95 68.57 70.53 62.53

iCaRL 93.00 69.13 53.81 47.20 42.86 38.60
HAG-Meta 96.08 87.81 73.96 70.12 66.19 60.17

GEOMETER 96.46 89.91 77.58 70.20 54.50 62.76
CPCA 97.67 90.68 77.38 75.38 69.50 59.86

GOTHAM I.o 100 90.15 87.83 83.66 76.56 75.03
GOTHAM II.o 100 91.43 88.69 84.00 76.92 72.40

%gain 00.00 00.00 13.78 11.43 09.06 19.55

OBGN-Arxiv (3-way 10-shot GFSCIL setting)
Stream Base S1 S2 S6 S9 S10

Meta-GNN 76.60 66.10 57.38 36.55 29.77 28.82
GPN 78.38 68.21 57.88 35.77 28.78 30.12

iCaRL 62.80 39.54 35.22 21.97 15.68 16.45
HAG-Meta 77.17 68.19 58.22 37.13 28.28 24.68

GEOMETER 80.08 70.68 61.07 38.13 29.65 26.22
CPCA 69.71 56.96 50.39 33.35 25.76 24.88

GOTHAM I.o 72.33 59.94 47.84 30.31 25.12 25.44
GOTHAM II.o 82.91 70.20 60.26 40.53 31.38 32.38

%gain 03.53 00.00 00.00 06.29 05.41 07.50

Graph Class Incremental Learning under Weak Supervision (GCL): In a broader problem setting
where novel classes have both few-shot and zero-shot representation, we conducted extensive experiments
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on the Cora-ML and OBGN-Arxiv datasets. The results in Table 4 indicate an average improvement of 7%
to 54% across various streams over the baselines, showcasing the effectiveness of our framework.

Table 4: GCL setting: Node classification accuracy (%) on the OBGN-Arxiv dataset under the GCL
setting. In each streaming session, one class is designated as zero-shot, lacking any training examples.

OBGN-Arxiv (2-way 10-shot, 1-way 0-shot GCL setting)
Stream Base S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Random guess 18.10 14.62 12.50 09.47 08.64 08.00 06.43 05.81 05.59 04.86 05.00
CDVSc 68.35 50.86 43.02 37.68 29.28 26.03 22.12 19.78 15.33 11.48 10.73
BMVSc 68.38 51.54 44.28 36.78 30.30 27.22 21.98 20.12 19.78 10.56 09.34
WDVSc 67.22 50.98 45.02 35.78 29.54 26.77 21.67 18.34 16.88 11.56 07.86

GraphCEN 77.13 62.37 51.76 38.42 28.92 18.80 15.36 10.56 08.92 08.56 06.53
DCDFL 64.66 53.42 45.06 32.76 30.48 30.57 28.44 25.89 24.18 22.00 19.62

GOTHAM III.o 82.91 68.11 59.90 47.68 43.67 43.31 38.76 36.41 34.62 32.55 30.28
%gain 07.49 09.20 15.73 24.10 43.27 41.67 36.29 40.63 43.20 47.95 54.33

Ablation Study: We conducted a detailed analysis of our framework across three different aspects: (A)
Contribution of different loss functions: Various loss functions contribute differently to optimal model
performance. For this analysis, we selected the Cora-ML dataset, and the corresponding plot is available in
Figure 4 (A). (B) Support set sampling: We categorized the dataset into small, moderate, and large-sized
graphs. To ensure generalizability across other datasets, we performed support set sampling using k-hop
random walks, with the ideal hop length observed between 2-4 hops from the labeled nodes. Refer to Figure
4 (B) for more details. (C) GNN backbones: We examined the role of different GNN architectures within
the GOTHAM framework for the Cora-ML and Amazon datasets. Interestingly, performance remained
consistent across different architectures, indicating model-agnostic behavior. Refer to Figure 4 (C) for more
details.

Figure 4: (A) Contribution of different loss functions on the Cora-ML dataset. (B) Support set sampling:
determining ideal random-walk length. (C) Different GNN backbones on Cora-ML and Amazon datasets.
(A) and (C) displays performance vs streaming sessions, while (B) shows performance vs random-walk length.

Figure (5) presents a detailed analysis of the Graph Class Incremental Learning under Weak Supervision
(GCL) setting, showcasing the performance of our model across different variants of GOTHAM for various
tasks on the Cora-ML and OBGN-Arxiv datasets. The plots offer an overview of GOTHAM’s performance
across different representations encountered during few-shot and zero-shot learning scenarios. Notably, the
model maintains consistent performance even when faced with a heavy influence of unseen classes during
streaming sessions. To simplify understanding: the experimental setup for base training remains consistent
throughout. During streaming sessions, where we adopt an n-way, k-shot strategy, we experiment with
different values of n while setting k to zero.

7 Conclusion

In this study, we introduced GOTHAM, a class incremental learning framework designed for weakly super-
vised settings. We initially addressed the GFSCIL problem setting, where access to labeled data during
base training is limited. Our experiments highlighted the advantages of incorporating semantic attributes
for Text-Attributed Graphs (TAGs). We then expanded our scope to a broader objective, Graph Class
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Figure 5: Performance analysis of GOTHAM framework on OBGN-Arxiv and Cora-ML datasets. (Left):
GCL with a 3-way k-shot setting shows consistent performance, even in zero-shot learning cases. (Right):
GCL with the 1-way k-shot setting on Cora-ML.

Incremental Learning under Weak Supervision (GCL), where novel classes have both a few-shot and zero-
shot representation. Through extensive experiments, we conclusively established the generalizability and
effectiveness of our framework across diverse tasks.
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9 Appendix

9.1 Datasets

We assess the performance of our proposed framework, GOTHAM, on three real-world datasets- Cora-ML,
Amazon, and OBGN-Arxiv. The detailed description is in Table 5:

Table 5: Statistics of datasets used in the experiments
Dataset Nodes Features Classes Class Labels Tasks
Cora-ML 2,708 1,433 7 Neural Network, Rule Learning,

Reinforcement Learning, Probabilistic
Methods, Theory, Genetic Algorithms,

Case-based

GFSCIL, GCL

Amazon 13,752 767 10 Label names Unavailable GFSCIL
OBGN-Arxiv 169,343 128 40 Arxiv cs na, Arxiv cs mm, Arxiv cs lo,

Arxiv cs cy, Arxiv cs cr, Arxiv cs dc,
Arxiv cs hc, Arxiv cs cv, Arxiv cs ai, ...

GFSCIL, GCL

Cora-ML (Bojchevski & Günnemann, 2017): This is an academic network of machine learning papers. The
dataset contains 7 classes, with each node representing a paper and each edge representing a citation between
papers.

Amazon (Hou et al., 2020): This dataset represents segments of the Amazon co-purchase e-commerce
network. Each node is an item, and each edge denotes a co-purchase relationship by a common user. Node
features are bag-of-words encoded product reviews, and class labels correspond to product categories.

OBGN-Arxiv (Subramanian et al., 2005): This dataset is a directed graph representing the citation network
of Computer Science arXiv papers indexed by MAG. Each node is an arXiv paper, and each directed edge
indicates a citation from one paper to another. Each paper has a 128-dimensional feature vector, created by
averaging the embeddings of words in its title and abstract.

9.2 Baseline methods

In the GFSCIL setting, we benchmark our results against several state-of-the-art frameworks for few-shot
class incremental learning and few-shot node classification, including:

9.2.1 Few-shot node classification

Meta-GNN (Zhou et al., 2019b): Meta-GNN addresses few-shot node classification in graph meta-learning.
It learns from numerous similar tasks to classify nodes from new classes with few labeled samples. Meta-GNN
is versatile and can be easily integrated into any state-of-the-art GNN.

Graph Prototypical Network (GPN) (Ding et al., 2020a): GPN is an advanced method for few-shot
node classification. It uses graph neural networks and meta-learning on attributed networks for metric-based
few-shot learning.

9.2.2 Class incremental learning

Incremental classifier and representation learning (iCaRL) (Rebuffi et al., 2017): iCaRL is a class-
incremental method for image classification. We enhance it by replacing the feature extractor with a two-layer
GAT network.

Hierarchical-Attention-based Graph Meta-learning (HAG-Meta) (Tan et al., 2022): HAG-Meta fol-
lows the graph pseudo-incremental learning approach, allowing the model to learn new classes incrementally
by cyclically adopting them from base classes. It also tackles class imbalance using hierarchical attention
modules.
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Graph Few-Shot Class-Incremental Learning via Prototype Representation (Geometer)(Lu
et al., 2022): Geometer predicts a node’s label by finding the nearest class prototype in the metric space
and adjusting the prototypes based on geometric proximity, uniformity, and separability of novel classes. To
address catastrophic forgetting and unbalanced labeling, it uses teacher-student knowledge distillation and
biased sampling.

Class Prototype Construction and Augmentation (CPCA) (Ren et al., 2023): CPCA is a method
that constructs class prototypes in the embedding space to capture rich topological information of nodes
or graphs, representing past data for future learning. To enhance the model’s adaptability to new classes,
CPCA uses class prototype augmentation (PA) to create virtual classes by combining current prototypes.

In the GCL setting, where novel classes have both few-shot and zero-shot representations, we compare against
zero-shot learning frameworks with inductive learning as baselines. These approaches include:

9.2.3 Zero-shot learning

DCDFL (741, 2024): In DCDFL, a model for zero-shot node classification captures dependencies and learns
discriminative features. It uses a relation-aware network to leverage long-range dependencies between nodes
and employs a domain-invariant adversarial loss to reduce domain bias and promote domain-insensitive
feature representations. Additionally, it enhances the representation by utilizing inter-class separability
within the metric space.

GraphCEN (Ju et al., 2023): GraphCEN constructs an affinity graph to model class relations and uses
node- and class-level contrastive learning (CL) to jointly learn node embeddings and class assignments. The
two levels of CL are optimized to enhance each other.

(CDVSc, BMVSc, WDVSc) (Wan et al., 2019a): Based on the observation that visual features of test
instances form distinct clusters, a new visual structure constraint on class centers for transductive ZSL
is proposed to improve the generality of the projection function and alleviate domain shift issues. Three
strategies—symmetric Chamfer distance, bipartite matching distance, and Wasserstein distance—are used
to align the projected unseen semantic centers with the visual cluster centers of test instances.

Random guess: Randomly guessing an unseen label, introduced as a naive baseline.

9.3 Parameter settings

In our proposed framework, various sets of hyper-parameters are involved. These are summarized in Table 6
below. The code implementation is available here: https://encr.pw/uY0e2

Table 6: Parameter settings
Parameter Value Parameter Value

word2vec 512 {α1, α2, α3} {1, 0.25, 1}
meta_lr {1e−3, 1e−5} Hidden layer (MLP) 512

Random walk {2, 3, 4} Hidden channels (GNNs) 512
ft_lr {1e−3, 1e−5} Out channels (MLP) 512

Boundary (γ) 0.01 Out channels (GNNs) 512
weight decay 5e−3 {λ1, λ2} {1, 1}

9.4 Proof of Prototype Distortion in Evolving Graphs

Proof. The prototype Pi for a given class at any time t is defined by Equation (1) in the manuscript. It
represents an aggregation of embeddings from all nodes in its extended neighborhood. For simplicity, we
refer to the prototype Pi as the super-node i, and its corresponding extended support set as its neighborhood
Nt(i) at time t. The embeddings are obtained as the output of the GNN model. Equivalently, the super-node
i can be expressed as ft(i; θ), which represents its embedding vector at any time t ≥ 0.
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To maintain a consistent notation throughout the manuscript, we reframe the previously defined GNN
embeddings for a node vi, denoted as GNNθ(vi), as ft(i; θ) when referring to the embedding of the super-
node i. Therefore we have,

ft(i; θ) =
N∑

j=1
ajσ

 1
dt(i)

∑
k∈Nt(i)

x⊤
k Wj + bj

 (8)

Thus, the expected loss of the parameter θ∗ on the node i at time t is

∆(Pi, δt) = E
[
(ft+1(i; θ) − ft(i; θ))2

]
(9)

= E


 N∑

j=1
aj

σ

 1
dt+1(i)

∑
k∈Nt+1(i)

x⊤
k Wj + bj

 − σ

 1
dt(i)

∑
k∈Nt(i)

x⊤
k Wj + bj

2
 (10)

Furthermore, recall that each parameter aj ∼ U(a∗
j , ξ) and each element Wj,k in the weight vector Wj also

satisfies Wj,k ∼ U(W ∗
j,k, ξ). Therefore, the differences aj − a∗

j and Wj,k − W ∗
j,k are all i.i.d. random variables

drawn from distribution U(0, ξ). Therefore, we have

∆(Pi, δt) = E


 N∑

j=1
aj

σ

 1
dt+1(i)

∑
k∈Nt+1(i)

x⊤
k Wj + bj

 − σ

 1
dt(i)

∑
k∈Nt(i)

x⊤
k Wj + bj

2
 (11)

= E

 N∑
j=1

(aj − a∗
j )

σ

 1
dt+1(i)

∑
k∈Nt+1(i)

x⊤
k Wj + bj

 − σ

 1
dt(i)

∑
k∈Nt(i)

x⊤
k Wj + bj

 (12)

+
N∑

j=1
a∗

j

σ

 1
dt+1(i)

∑
k∈Nt+1(i)

x⊤
k Wj + bj

 − σ

 1
dt(i)

∑
k∈Nt(i)

x⊤
k Wj + bj

2
 (13)

= E


 N∑

j=1
(aj − a∗

j )

σ

 1
dt+1(i)

∑
k∈Nt+1(i)

x⊤
k Wj + bj

 − σ

 1
dt(i)

∑
k∈Nt(i)

x⊤
k Wj + bj

2
 (14)

+E


 N∑

j=1
a∗

j

σ

 1
dt+1(i)

∑
k∈Nt+1(i)

x⊤
k Wj + bj

 − σ

 1
dt(i)

∑
k∈Nt(i)

x⊤
k Wj + bj

2
 (15)

The third equality holds by the fact that the differences (aj − a∗
j )’s are all i.i.d. random variables drawn

from the uniform distribution U(0, ξ). Therefore, we have

∆(Pi, δt) ≥ E


∣∣∣∣∣∣

N∑
j=1

(aj − a∗
j )

σ

 1
dt+1(i)

∑
k∈Nt+1(i)

x⊤
k Wj + bj

 − σ

 1
dt(i)

∑
k∈Nt(i)

x⊤
k Wj + bj

∣∣∣∣∣∣
2
 (16)
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Furthermore, since the differences (aj − a∗
j ) are i.i.d. random variables drawn from the distribution U(0, ξ),

we must further have

∆(Pi, δt) ≥ E


∣∣∣∣∣∣

N∑
j=1

(aj − a∗
j )

σ

 1
dt+1(i)

∑
k∈Nt+1(i)

x⊤
k Wj + bj

 − σ

 1
dt(i)

∑
k∈Nt(i)

x⊤
k Wj + bj

∣∣∣∣∣∣
2
 (17)

= E

 N∑
j=1

E
[
(aj − a∗

j )2|At+1, Xt+1
] ∣∣∣∣∣∣σ

 1
dt+1(i)

∑
k∈Nt+1(i)

x⊤
k Wj + bj

 − σ

 1
dt(i)

∑
k∈Nt(i)

x⊤
k Wj + bj

∣∣∣∣∣∣
2


(18)

= ξ2

3 E

 N∑
j=1

∣∣∣∣∣∣σ
 1

dt+1(i)
∑

k∈Nt+1(i)

x⊤
k Wj + bj

 − σ

 1
dt(i)

∑
k∈Nt(i)

x⊤
k Wj + bj

∣∣∣∣∣∣
2
 (19)

Furthermore, the leaky ReLU satisfies that |σ(u) − σ(v)|≥ β|u − v|. The above inequality further implies

∆(Pi, δt) ≥ ξ2

3 E

 N∑
j=1

σ

 1
dt+1(i)

∑
k∈Nt+1(i)

x⊤
k Wj + bj

 − σ

 1
dt(i)

∑
k∈Nt(i)

x⊤
k Wj + bj

2
 (20)

≥ β2ξ2

3 E

 N∑
j=1

 1
dt+1(i)

∑
k∈Nt+1(i)

x⊤
k Wj + bj − 1

dt(i)
∑

k∈Nt(i)

x⊤
k Wj − bj

2
 (21)

≥ β2ξ2

3 E

 N∑
j=1

 1
dt+1(i)

∑
k∈Nt+1(i)\Nt(i)

x⊤
k Wj +

(
1

dt+1(i) − 1
dt(i)

) ∑
k∈Nt(i)

x⊤
k Wj

2
 (22)

≥ β2ξ2

3 E

 N∑
j=1


∣∣∣∣∣∣ 1
dt+1(i)

∑
k∈Nt+1(i)\Nt(i)

x⊤
k Wj

∣∣∣∣∣∣
2

+
(

1
dt+1(i) − 1

dt(i)

) ∑
k∈Nt(i)

x⊤
k Wj


2 (23)

≥ β2ξ2

3 E

 N∑
j=1

(
1

dt+1(i) − 1
dt(i)

)2 ∑
k∈Nt(i)

x⊤
k Wj

2

(24)

Therefore, we have

∆(Pi, δt) ≥ β2ξ2

3 E

 N∑
j=1

(
1

dt+1(i) − 1
dt(i)

) ∑
k∈Nt(i)

x⊤
k Wj

2
 (25)

= β2ξ2

3 E

 N∑
j=1

(
1

dt+1(i) − 1
dt(i)

) ∑
k∈Nt(i)

x⊤
k (Wj − W ∗

j + W ∗
j )

2
 (26)
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= β2ξ2

3 E

 N∑
j=1

(
1

dt+1(i) − 1
dt(i)

) ∑
k∈Nt(i)

x⊤
k (Wj − W ∗

j )

2
 (27)

+β2ξ2

3 E

 N∑
j=1

(
1

dt+1(i) − 1
dt(i)

) ∑
k∈Nt(i)

x⊤
k W ∗

j

2
 (28)

where the last equality comes from the fact that random vectors (Wj −W ∗
j ) are i.i.d. random variables drawn

from the uniform distribution U(0, ξ) and are also independent of the graph evolution process. Therefore,
we have

∆(Pi, δt) ≥ Nβ2ξ2

3 E


(

1
dt+1(i) − 1

dt(i)

) ∑
k∈Nt(i)

x⊤
k (Wj − W ∗

j )

2
 (29)

= Nβ2ξ4

9 E

(
1

dt+1(i) − 1
dt(i)

)2 ∑
k∈Nt(i)

∥xk∥2
2

 (30)

Neglecting the specific activation functions and model details, we can summarize our result as:

∆(Pi, δt) ≥ E

(
1

dt+1(i) − 1
dt(i)

)2 ∑
k∈Nt(i)

∥xk∥2
2


This establishes the desired bound and completes our proof.
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