
An Equivalence Between Static and Dynamic Regret
Minimization

Andrew Jacobsen∗

Università degli Studi di Milano
Politecnico di Milano

contact@andrew-jacobsen.com

Francesco Orabona
KAUST

francesco@orabona.com

Abstract

We study the problem of dynamic regret minimization in online convex opti-
mization, in which the objective is to minimize the difference between the cu-
mulative loss of an algorithm and that of an arbitrary sequence of compara-
tors. While the literature on this topic is very rich, a unifying framework for
the analysis and design of these algorithms is still missing. In this paper we
show that for linear losses, dynamic regret minimization is equivalent to static
regret minimization in an extended decision space. Using this simple observa-
tion, we show that there is a frontier of lower bounds trading off penalties due
to the variance of the losses and penalties due to variability of the comparator
sequence, and provide a framework for achieving any of the guarantees along
this frontier. As a result, we also prove for the first time that adapting to the
squared path-length of an arbitrary sequence of comparators to achieve regret
RT (u1, . . . ,uT ) ≤ O(

√
T
∑

t ∥ut − ut+1∥2) is impossible. However, using our
framework we introduce an alternative notion of variability based on a locally-
smoothed comparator sequence ū1, . . . , ūT , and provide an algorithm guarantee-
ing dynamic regret of the form RT (u1, . . . ,uT ) ≤ Õ(

√
T
∑

i ∥ūi − ūi+1∥2),
while still matching in the worst case the usual path-length dependencies up to
polylogarithmic terms.

1 Introduction

This paper introduces new techniques for Online Convex Optimization (OCO), a framework for
designing and analyzing algorithms which learn on-the-fly from a stream of data [14, 51, 5, 31, 6].
Formally, consider T rounds of interaction between the learner and their environment. In each
round, the learner chooses wt ∈ W from a convex feasible set W ⊆ Rd, the environment reveals a
G-Lipschitz convex loss function ℓt : W → R, and the learner incurs a loss of ℓt(wt). The classic
objective in this setting is to minimize the learner’s regret relative to any fixed benchmark u ∈ W:

RT (u) :=

T∑
t=1

(ℓt(wt)− ℓt(u)) .

In this paper, we study the more general problem of minimizing the learner’s regret relative to any
sequence of benchmarks u1, . . . ,uT ∈ W [17, 18]:

RT (u1, . . . ,uT ) :=

T∑
t=1

(ℓt(wt)− ℓt(ut)) .
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This objective is typically referred to as dynamic regret, to distinguish it from the special case where
the comparator sequence is fixed u1 = · · · = uT (referred to as static regret). We focus in particular
on the special case of Online Linear Optimization (OLO), in which ℓt(w) = ⟨gt,w⟩ for some
gt ∈ Rd. Note that OCO problems can always be reduced to OLO via the well-known inequality
ℓt(wt)− ℓt(u) ≤ ⟨gt,wt − u⟩ for gt ∈ ∂ℓt(wt), where ∂ℓt(wt) is the subdifferential set of ℓt at
wt [see, e.g., 36], so throughout this paper we will focus on the OLO setting.

Intuitively, if the sequence of comparators u1, . . . ,uT varies too much, it should be impossible to
achieve low dynamic regret. On the other hand, we know it is possible to achieve sublinear regret
if the sequence of comparators is constant, i.e., u1 = · · · = uT , because this is simply the static
case. Hence, we need a way to quantify the complexity, or variability, of the comparator sequence.
The most commonly used notion of complexity in this regard is the path-length of the comparator
sequence [17, 18], defined as

P
∥·∥
T :=

T∑
t=2

∥ut − ut−1∥ .

It is possible to show that Online Gradient Descent has a dynamic regret of O((D + P
∥·∥
T )G

√
T )

in bounded domains, where D is an upper bound on the diameter of the feasible set and G is the

Lipschitz constant of the losses [51]. This bound was improved to O(

√
DP

∥·∥
T G

√
T ) and shown to

be minimax optimal by Zhang et al. [46].

Notice that the path-length bounds scale with a rather pessimistic constant of D =
supw,w′∈W ∥w −w′∥. A better bound would instead scale with the squared path-length:

P
∥·∥2

T :=

T−1∑
t=1

∥ut − ut−1∥2,

which can be significantly smaller2 than the penalty in the bound above: P ∥·∥2

T ≤ DP
∥·∥
T . How-

ever, guarantees scaling with P ∥·∥2

T are not well understood in general compared with the more
common P

∥·∥
T bounds, and have only been obtained by restricting the comparator sequence to

ut = argminw∈W ℓt(w) or under additional assumptions such as strong-convexity [44, 45, 7].

In this paper, we focus on the challenging case that the domain is unbounded, where recent works

have achieved the dynamic regret Õ
(√

maxt,t′ ∥ut − ut′∥P ∥·∥
T T

)
in the worst case [20, 25, 21, 47].

Of particular interest, Jacobsen and Cutkosky [20], Zhang et al. [47] achieve bounds of the form

RT (u1, . . . ,uT ) ≤ Õ
(√

P
∥·∥
T

∑T
t=1 ∥gt∥

2 ∥ut − ū∥
)
, (1)

which avoids the pessimistic multiplicative penalty of maxt,t′ ∥ut − ut′∥, but results in a coupling
between the gradient and variability penalties. It is unclear if it is possible to obtain a guarantee
which cleanly separates the variability and variance penalties, to achieve dynamic regret scaling as

RT (u1, . . . ,uT ) ≤ O
(√

P
∥·∥2

T

∑T
t=1 ∥gt∥

2

)
. In fact, it is not clear in general how to reason about

potential trade-offs that may result from adapting to different measures of variability.

Contributions. In this paper, we show how to reformulate the dynamic regret miniminization
problem as an equivalent static regret problem (Section 2). This equivalence allows us to use results
for the static regret setting to prove both upper and lower bounds for dynamic regret.

In our first application of this equivalence, we show that the ideal guarantee scaling the with squared

path-length O
(√

P
∥·∥2

T

∑T
t=1 ∥gt∥

2) is not possible in general (Section 3). We do this by proving

2Note that the bound of Zhang et al. [46] trivially implies a squared path-length dependence since P
∥·∥
T ≤√

TP
∥·∥2
T , so one can obtain a bound of O(

√
DP

∥·∥
T G

√
T ) ≤ O(D1/2(P

∥·∥2
T )1/4GT 3/4). However, this

bound is not interesting because it does not remove the dependence on D and it is never better than the existing√
DP

∥·∥
T G

√
T bound.
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a novel lower bound showing that there is a fundamental trade-off between the penalties incurred
due to comparator variability and penalties incurred due to loss variance, leading to a new frontier of
dynamic regret lower bounds.

Our second application is to provide a framework for achieving any of the variance/variability trade-
offs along the lower bound frontier, up to polylogarithmic terms (Section 4). Our framework allows
us to develop dynamic regret algorithms by simply choosing suitable dual-norm pairs (∥·∥ , ∥·∥∗) in
the static regret problem. Along with our matching lower bound, this framework provides a concrete
way to reason about different measures of comparator variability and the trade-offs they entail, and to
design algorithms achieving those trade-offs.

While our lower bound demonstrates that the ideal squared path-length guarantee cannot be achieved,
using our framework we show that it is possible to achieve an alternative guarantee that scales with

P̄ ∥·∥2

(u1, . . . ,uT ) ≈
∑
i

∥∥∥ū(τ)
i − ū

(τ)
i+1

∥∥∥2
2
,

where ū(τ)
i is a local average of the comparator sequence at a timescale of τ (see Section 4.1). Similar

to P ∥·∥2

T , this variability measure maintains the property that it matches the worst-case guarantees

based on path-length up to polylogarithmic terms, i.e., P̄ ∥·∥2

T ≤ Õ(maxt,t′ ∥ut − ut′∥P ∥·∥
T ). These

are the first guarantees for general OCO that fully decouple the variance and variability penalties for
dynamic regret without explicitly incurring pessimistic maxt,t′ ∥ut − ut′∥ penalties.

Related Work. Our approach is inspired by the Haar OLR algorithm of Zhang et al. [47]. In that
work, dynamic regret is approached by interpreting the comparator sequence as a high-dimensional
“signal” which is decomposed into a frequency domain representation using a dictionary of features.
Then, for each feature vector in the dictionary, a 1-dimensional parameter-free [32, 28] algorithm is
used to learn how well that feature correlates with the losses. This allows one to compete with an
arbitrary comparator sequence, so long as it can be represented in terms of the chosen dictionary
of features. We take a similar but slightly more general approach. Our framework also represents
the comparator sequence as a high-dimensional signal, but we instead use this signal to define an
equivalent static regret problem, a perspective that allows us design algorithms for dynamic regret by
simply choosing suitable dual-norm pairs.

Other prior works in the general OCO setting have also studied various alternative forms of variability
such as the temporal variability

∑T−1
t=1 supw∈W |ℓt(w)− ℓt+1(w)| [3, 22, 4] or deviation of the

comparator from a given dynamical model
∑T−1

t=1 ∥ut − Φt(ut−1)∥ [16]. Alternative variance
penalties have also been studied in the dynamic setting, such as the small-loss penalties

∑T
t=1 ℓt(ut)

or gradient variation penalties
∑T

t=1 supw∈W ∥∇ℓt(w)−∇ℓt+1(w)∥ [15, 49, 21, 50]. It is also
possible to achieve a smaller regret with stronger assumptions on the losses [2]. It is important to
note however that almost all prior works, with the exception of Jacobsen and Cutkosky [20], Luo
et al. [25] and Zhang et al. [47], study dynamic regret only in the easier bounded domain setting.

There is also an often ignored connection between measures of comparator variability and the function
classes studied in non-parametric regression. In particular, considering the case that the losses are
ℓt(x) = (x− ut)

2, then the sequence of comparators u1, . . . , uT with bounded path length CT and
bounded squared path length (C ′

T )
2 corresponds to the sequence with discrete total variation bounded

by CT and the discrete Sobolev class with bound C ′
T , respectively. In this setting, the minimax rates

are known [24, 35] and Koolen et al. [24] obtain the minimax regret for the Sobolev classes, while
Baby and Wang [1] for both classes with slightly stronger assumptions. However, these results are
not directly related to this paper because we consider linear losses.

Notations. We will use the following definitions and notations. The elements of a matrix A ∈
Rn×m are denoted by Aij for i = 1, . . . , n and j = 1, . . . ,m. Similarly, the elements of a vector
u ∈ Rd are ui for i = 1, . . . , d. The Kronecker product of matrices A ∈ Rm×n and B ∈ Rp×q is
the block matrix defined by

A⊗B :=

(
A1,1B . . . A1,nB

.

.

.
. . .

.

.

.
Am,1B . . . Am,nB

)
.
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Algorithm 1: Dynamic-to-Static Reduction

Input Domain W ⊆ Rd, Online Learning Algorithm A with domain WT

for t = 1 : T do
Get w̃t = (w

(1)
t , . . . ,w

(T )
t ) ∈ WT from A

Play wt = w
(t)
t ∈ W and observe gt ∈ ∂ℓt(wt)

Pass g̃t = et ⊗ gt = (0⊤
d , . . . ,0

⊤
d , g

⊤
t︸︷︷︸

indices i∈[d(t−1)+1,dt]

,0⊤
d , . . . )

⊤ ∈ WT to A

end

We let et denote the tth standard basis vector of RT and Id is the d× d identity matrix. For a square
matrix A, Diag (A) is the diagonal matrix that contains the elements of the diagonal of A. For
a positive definite matrix M , we define the weighted norm ∥x∥M :=

√
⟨x,Mx⟩. For a matrix

A ∈ Rm×n, we denote its Frobenius norm by ∥A∥F :=
√∑m

i=1

∑n
j=1A

2
i,j . The vec operator is

the mapping defined by stacking the columns of a matrix A in a vector. We will denote by ∥A∥p,p
the entry-wise p-norm of A, i.e., ∥A∥p,p := ∥vec(A)∥p.

2 A dynamic-to-static reduction

In this section, we present a general reduction from dynamic regret to static regret. The key idea is to
embed the comparator sequence in a high dimensional space WT , where T is the number of rounds,
so that competing with a fixed comparator ũ ∈ WT in this high-dimensional space is equivalent to
competing with a sequence of comparators in the original space W . In this way, we can reduce the
problem of minimizing the dynamic regret to the one of minimizing the static regret.

Our reduction is shown in Algorithm 1. We simply embed the linear losses gt in a high-dimensional
space by setting

g̃t = et ⊗ gt = (0⊤
d , . . . ,0

⊤
d , g

⊤
t︸︷︷︸

Indices ∈[d(t−1)+1,dt]

,0⊤
d , . . . ,0

⊤
d )

⊤, (2)

where et ∈ RT is the tth standard basis vector of RT and 0d ∈ Rd denotes the vector of zeros. We
pass these losses to the online learning algorithm A, which predicts with a vector w̃t ∈ WT . Finally,
we set wt ∈ Rd equal to the tth “component” of w̃t, and play wt.

We show that the dynamic regret of the resulting algorithm will be equal to the static regret of
the algorithm A. In particular, for any sequence u⃗ = (u1, . . . ,uT ) in W we will denote the
concatenation of u⃗ into a single vector in WT as

ũ =
∑T

t=1et ⊗ ut = (u⊤
1 , . . . ,u

⊤
T )

⊤ . (3)

Then, the following proposition shows that the dynamic regret of Algorithm 1 w.r.t any sequence
u⃗ = (u1, . . . ,uT ) is equal to the static regret of A w.r.t ũ.

Proposition 1. Let W ⊆ Rd and let A be an online learning algorithm with domain WT . Then, for
any sequence u⃗ = (u1, . . . ,uT ) ∈ WT , Algorithm 1 guarantees

RT (u⃗) =

T∑
t=1

⟨gt,wt − ut⟩ =
T∑

t=1

⟨g̃t, w̃t − ũ⟩ =: RSeq
T (ũ) .

Proof. The proof is immediate from Equations (2) and (3). In fact, observe that the cumulative loss
of the comparator sequence is precisely

T∑
t=1

⟨gt,ut⟩ =

〈(
g1

.

.

.
gT

)
,

(
u1

.

.

.
uT

)〉
=

〈
T∑

t=1

et ⊗ gt,

T∑
t=1

et ⊗ ut

〉
=

〈
T∑

t=1

g̃t, ũ

〉
.

We get a similar relationship for the algorithm’s cumulative loss. Hence, we have RT (u⃗) =∑T
t=1 ⟨gt,wt − ut⟩ =

∑T
t=1 ⟨g̃t, w̃t − ũ⟩ = RSeq

T (ũ).
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Remark 1. It is important to note that the regret equivalence holds in the context of linear losses.
However, our reduction can still be leveraged for arbitrary convex losses by first applying the standard
reduction to OLO:

∑T
t=1 ℓt(wt)− ℓt(ut) ≤

∑T
t=1 ⟨gt,wt − ut⟩ = RSeq

T (ũ) for gt ∈ ∂ℓt(wt).

While our reduction is exceptionally simple, its utility should not be understated. Proposition 1 is a
regret equivalence — we lose nothing by taking this perspective, yet it allows us to immediately apply
all the usual techniques and approaches from the static regret setting. For instance, given any dual
norm pair (∥·∥ , ∥·∥∗), it is well-understood how to develop algorithms which adapt simultaneously
to the comparator norm ∥ũ∥ and to the gradient variance

∑T
t=1 ∥g̃t∥

2
∗ to guarantee

RT (u1, . . . ,uT ) = RSeq
T (ũ) ≤ Õ

(
∥ũ∥

√∑T
t=1 ∥g̃t∥

2
∗

)
.

Such algorithms are commonly referred to as “parameter-free”, or “comparator adaptive”, because
they achieve this adaptation by completely removing the parameter that depends on the unknown
comparator ũ [e.g., 26, 27, 32, 9, 12, 20, 8, 21, 48]. In this way, we have effectively reduced the
problem of minimizing dynamic regret to the problem of selecting a dual-norm pair (∥·∥ , ∥·∥∗)
that meaningfully measures the “difficulty” of the sequence in ũ and the losses g̃t. In particular,
(∥·∥ , ∥·∥∗) should be chosen with the following considerations in mind:

1. ∥ũ∥ should produce a meaningful measure of variability of the comparator sequence
u1, . . . ,uT . For instance, we will show in Proposition 2 that the squared path-length
arises from a particular weighted norm applied to ũ.

2. ∥g̃t∥∗ should not “blow up”. Ideally ∥g̃t∥∗ should match the magnitude of the true losses
gt up to polylog factors.

3. (∥·∥ , ∥·∥∗) should be chosen with computational considerations in mind. For instance,
to apply an FTRL-based algorithm to the losses g̃t ∈ RdT , efficient implementation will
typically require ∥·∥∗ to have sparse subgradients. In general, an ideal dual-norm pair should
facilitate updating only O(log T ) variables at a time, so as to match the O(d log T ) per-step
computation enjoyed by existing dynamic regret algorithms. We will see one such example
in Section 4.1.

In the next section, we show that there is in fact a fundamental trade-off between the penalties induced
by the dual-norm pair (∥·∥ , ∥·∥∗), creating a tension between the first two considerations.

3 Lower bounds for unconstrained dynamic regret

In the static regret setting, there is a well-known trade-off between the way in which we measure the
complexity of the comparator u and the way in which we measure the complexity of the linear losses
gt. For example, in Online Mirror Descent [29, 42] one can get a regret guarantee that depends on
the maximum diameter of the feasible set with respect to a norm ∥ · ∥, while the linear losses are
measured using the dual norm ∥ · ∥∗. The equivalence in Proposition 1 suggests that a similar tension
exists for the dynamic regret.

Given the structure of our reduction, it makes sense to focus on the weighted norms ∥·∥M and
∥·∥M−1 , where M is a symmetric positive definite matrix. In particular, the next theorem shows
that there is a fundamental trade-off between a variability penalty ∥ũ∥M and a variance penalty
G2 Tr(M−1) related to the losses. The proof is provided in Appendix A.1 and it is based on a lower
bound to the tail of Rademacher chaos of order 2.
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Theorem 1. Let the number of rounds T ≥ T0, where T0 is a universal constant. Let A be an
online learning algorithm, and suppose A guarantees RT (0) ≤ GϵT for any sequence of linear
losses g1, . . . , gT ∈ R satisfying |gt| ≤ G. Let M−1 ∈ RT×T be any symmetric positive definite

matrix, denote M̃
−1

:= M−1 − Diag
(
M−1

)
and VT := Tr(M−1) + ∥M̃

−1
∥F . Suppose that

∥M̃
−1

∥2F ≥ T
2 maxi

∑
j(M̃

−1
ij )2. Then, for any P satisfying T0 ≤ log2

√
PVT

2ϵT
≤ T , there is a

sequence of losses g1, . . . , gT ∈ R, and ũ = (u1, . . . , uT )
⊤ ∈ RT satisfying ∥ũ∥M =

√
P such

that we have

RT (u1, . . . , uT ) ≥ Ω

GϵT +G

√
P

[
Tr(M−1) +

∥∥∥M̃−1
∥∥∥
F
log

1
2
2

√
PVT
2ϵT

] .

Let us first briefly discuss the conditions on M . First, note that the restriction that M be pos-
itive definite and symmetric simply specifies that ∥·∥M defines a valid norm. The condition on

∥M̃
−1

∥F = ∥M−1 − Diag
(
M−1

)
∥F is less straight forward to interpret, but it essentially states

that the total “variance” of M̃
−1

is at least as much as that of any of its columns. on a technical level
this assumption leads to the restriction that P satisfies log2

(√
PVT /2ϵT

)
≤ T . This is a natural re-

striction which encodes the fact that if P is too large relative to T (i.e., when log2(
√
PV /2ϵT ) ≥ T ),

one can ensure “low” regret by simply playing wt = 0 on every round:

RT (u⃗) = −
∑T

t=1 ⟨gt,ut⟩ ≤ max
t

∥ut∥GT ≤ Gmax
t

∥ut∥ log2
(√

PVT /2ϵ
)
,

and hence the only lower bounds in such settings are trivial ones and it suffices to consider only
P satisfying log

(√
PVT /2ϵ

)
≤ T . We will see in Proposition 2 that the matrix that produces the

squared path-length satisfies this condition, and it can be seen that symmetric matrices with equal
column sums (as is the case in Proposition 3) satisfy this condition as well.

The result of Theorem 1 shows that there is a frontier of lower bounds which trade off penalties related
to variability of the comparator sequence and penalties related to the variance of the subgradients.
That is, one can not guarantee a small variability penalty in all situations without also accepting
a large subgradient variance penalty. The next proposition shows that i) the squared path-length
can be represented by a particular choice of the weighted norm ∥ũ∥M , and ii) the fundamental
tension between ∥ũ∥M and its corresponding variance penalty Tr(M−1) prevents any algorithm

from attaining the ideal variability dependence of ∥ũ∥M =
(√∑T−1

t=1 ∥ut − ut+1∥2
)

. In fact,

the corresponding variance penalty is G2 Tr(M−1) = O(G2T 2), resulting in a vacuous guarantee.
Proof of the proposition can be found in Appendix A.2.
Proposition 2. (Adapting to Squared Path-length Requires Superlinear Regret) Define the finite-
difference operator Σ ∈ RT as the matrix with entries

Σij =


1 if i = j

−1 if i = j − 1

0 otherwise
.

Let S = Σ⊤Σ and M = S⊗ Id. Then, M satisfies the assumptions of Theorem 1 and

∥ũ∥2M = ∥uT ∥22 +
T−1∑
t=1

∥ut − ut+1∥22 and Tr
(
M−1

)
=
T (T + 1)

2
.

Proposition 2 shows that adapting to the squared path-length of an arbitrary comparator sequence
necessarily requires incurring a linear penalty, so adapting to the squared path-length is impossible
without facing a vacuous guarantee. However, we will show in Section 4.1 that it is possible to adapt
to a measure of variability which is similar in spirit to the squared path-length, yet only incurs a
Tr(M−1) = O(log T ) variance penalty.
Remark 2. The matrix M in Proposition 2 uniquely exposes the the squared path-length up to the
bias term ∥uT ∥2. Such a bias term must appear because in the static regret setting, wherein u1 =
. . . = uT = u, the variability measure ∥·∥M must still reduce to a dependence on ∥u∥, otherwise
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Algorithm 2: Dynamic regret OLO through 1-dimensional reduction [9]

Input 1-d Parameter-free OLO algorithm A, positive definite symmetric matrix M ∈ RdT×dT

Initialize θ̃1 = ṽ1 = 0 ∈ RdT , V1 = 0
for t = 1 : T do

Get βt ∈ R from A
Play w̃t = βtṽt and observe g̃t
Send ⟨ṽt, g̃t⟩ to A as the tth loss

Set θ̃t+1 = θ̃t −M−1g̃t

Set Vt+1 = Vt + ∥g̃t∥
2
M−1

Set ṽt+1 = θ̃t+1√
Vt+1

[
1 ∧

√
Vt+1

∥θ̃t+1∥
M−1

]
// (Projected) Scale-free FTRL update

end

the guarantee would violate existing Ω̃(∥u∥
√
T ) lower bounds for static regret. More generally, we

show in Appendix A.3 that any other choice of bias would similarly lead to Tr
(
M−1

)
≥ Ω(T 2),

so Proposition 2 along with our lower bound in Theorem 1 are sufficient to show that adapting to
squared path-length requires accepting a vacuous guarantee.

4 Dynamic regret for unconstrained OLO via weighted norms

So far, we’ve seen that there exists a frontier of lower bounds trading off a variability penalty, measured
by ∥ũ∥M , and a loss variance penalty, measured by Tr(M−1), and that the tension between these
two quantities makes it impossible to adapt to the squared path-length of the comparator sequence
without accepting a vacuous regret guarantee. A natural next question is whether there are choices
of M which lead to a more favorable trade-off of these two quantities. In this section, we provide
a simple framework for achieving lower bounds along the frontier described by Theorem 1, and
an instance which successfully achieves an improved variance/variability trade-off. The guarantees
on the lower bound frontier can be achieved using any parameter-free algorithm along with the
1-dimensional reduction of Cutkosky and Orabona [9] to extend the algorithm to dual-norm pair
(∥·∥M , ∥·∥M−1). The generic procedure is summarized in Algorithm 2 for convenience.

Theorem 2. Let S ∈ RT×T be a symmetric positive definite matrix, M = S ⊗ Id, and ϵ > 0.
There is an algorithm A such that for any g1, . . . , gT ∈ Rd satisfying ∥gt∥2 ≤ G for all t and any
sequence u⃗ = (u1, . . . ,uT ) ∈ RdT , the dynamic regret is bounded as

RT (u⃗) ≤ O

Gϵ+ ∥ũ∥M

√VT log

(
∥ũ∥M

√
VT

Gϵ
+ 1

)
∨G log

(
∥ũ∥M

√
VT

ϵG

) ,

where VT =
∑T

t=1 ∥g̃t∥
2
M−1 and G = G

∥∥S−1
∥∥
∞,∞.

For the proof, we will need the following technical lemma.

Lemma 1. Let S ∈ RT×T be a symmetric positive definite matrix and let M = S ⊗ Id. For
t = 1, . . . , T , let gt ∈ Rd and let g̃t = et ⊗ gt. Then, we have ∥g̃t∥

2
M = ∥gt∥

2
2 Stt.

Proof. Using the mixed-product property (A⊗B)(C ⊗D) = AC ⊗BD and the transpose property
(A⊗B)⊤ = A⊤ ⊗B⊤ of the Kronecker product, we have that

⟨g̃t,Mg̃t⟩ = ⟨et ⊗ gt, [S⊗ Id] et ⊗ gt⟩ = ⟨et ⊗ gt,Set ⊗ gt⟩ = (e⊤t ⊗ g⊤
t )(Set ⊗ gt)

= e⊤t Set ⊗ g⊤
t gt = Stt ∥gt∥

2
.

Proof of Theorem 2. Applying Proposition 1, we have RT (u⃗) =
∑T

t=1 ⟨g̃t, w̃t − ũ⟩ = RSeq
T (ũ).

Since M is symmetric and positive definite, (∥·∥M , ∥·∥M−1) is a valid dual-norm pair. By Lemma 1,
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we have ∥g̃t∥
2
M−1 = ∥gt∥

2
2 S

−1
tt ≤ G2

∥∥S−1
∥∥
∞,∞ := G2. Hence, let A be any algorithm which

guarantees a parameter-free regret w.r.t. (∥·∥ , ∥·∥∗) on losses satisfying ∥g̃t∥M−1 ≤ G. Note that
any parameter-free algorithm can be extended to handle arbitrary dual-norm pairs by leveraging the
one-dimensional reduction of Cutkosky and Orabona [9, Section 3], that reduces the OLO problem to
a unconstrained 1d problem plus an OLO problem in the unitary ball defined by the primal norm. For
instance, applying Jacobsen and Cutkosky [20, Algorithm 1] with the one-dimensional reduction one
can easily show (see details in Appendix B.1)

RT (u⃗) ≤ O

Gϵ+ ∥ũ∥M

√VT log

(
∥ũ∥M

√
VTΛT

Gϵ
+ 1

)
∨G log

(
∥ũ∥M

√
VTΛT

ϵG

) ,

where VT =
∑T

t=1 ∥g̃t∥
2
M−1 and ΛT = log2(

∑T
t=1 ∥g̃t∥

2
M−1 /G2) ≤ O(log2 T ).

Note in particular that by Lemma 1, we have
∑T

t=1 ∥g̃t∥
2
M−1 =

∑T
t=1 S

−1
tt ∥gt∥

2 ≤ G
∑T

t=1 S
−1
tt =

GTr(S−1), so this bound matches the lower bound from Section 3, up to polylogarithmic terms.3
Thus, any valid choice of M will be on the lower bound frontier of Section 3.

4.1 Trading-off Variance and Variability

Leveraging the algorithm characterized by Theorem 2, we now show that it is indeed possible to
choose M such that

∑T
t=1 ∥g̃t∥

2
M−1 is only O(log (T )

∑T
t=1 ∥gt∥

2
), in exchange for a variability

penalty which is still similar in spirit to the squared path-length.

Inspired by the Haar OLR algorithm of [47], we apply Theorem 2 using S = HnH
⊤
n , where Hn is

the unnormalized Haar basis matrix of order n = ⌈log2 T ⌉. The Haar wavelet transform and its basis
matrix are common tools in the signal processing literature; we recall the basic definitions and facts
for convenience in Appendix B.2. With this choice, we have the following bounds on ∥ũ∥M and
∥g̃t∥

2
M−1 . The proof can be found in Appendix B.3.

Proposition 3. Let n = log2 T and Hn be the unnormalized Haar basis matrix of order n. For
any τ ∈

{
2i : i = 0, . . . , log2 T

}
, let Nτ = T/τ and let I(τ)

1 , . . . , I(τ)
Nτ

be a partition of [T ] into

intervals of length τ . Define the average comparator in interval I(τ)
i to be ū

(τ)
i = 1

τ

∑
t∈I(τ)

i
ut,

and define the squared path-length at time-scale τ < T to be

P̄ (u⃗, τ) :=

Nτ/2∑
i=1

∥∥∥ū(τ)
2i−1 − ū

(τ)
2i

∥∥∥2
2
,

and P̄ (u⃗, T ) =
∥∥∥ū(T )

1

∥∥∥2
2
= ∥ū∥22. Then, setting S = [HnH

⊤
n ]

−1 and M = S⊗ Id, we have

∥ũ∥2M ≤ ∥ū∥22 +
1

4

log2(T )∑
i=0

P̄ (u⃗, 2i) ≤ ∥ū∥22 +
1

4
log (T )max

τ
P̄ (u⃗, τ),

∥g̃t∥
2
M−1 = ∥gt∥

2
2 (1 + log T ) .

Summarizing, by applying Algorithm 1 with S = [HnH
⊤
n ]

−1 we ensure regret

RT (u⃗) ≤ Õ


√√√√√
∥ū∥22 +max

τ

Nτ/2∑
i=1

∥∥∥ū(τ)
2i+1 − ū

(τ)
2i

∥∥∥2
2

 T∑
t=1

∥gt∥
2
2

 .

This is the first fully decoupled guarantee for general dynamic regret which incurs no pessimistic
multiplicative penalties of the form maxt,t′ ∥ut − ut′∥. That is, the terms depending on the com-
parators and the terms depending on the gradients appear in separate sums. Moreover, observe that

3Note that the lower bound is stated for d = 1, in which case Tr(S−1) = Tr(M−1).
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this measure of variability can immediately be related to the more standard (first-order/non-squared)
path-length using the local averaging lemma of Zhang et al. [47] (Lemma D.7). We have

∥ũ∥2M ≤ ∥ū∥22 +
log2 T

4
max

τ

Nτ/2∑
i=1

∥∥∥ū(τ)
2i−1 − ū

(τ)
2i

∥∥∥2
2
≤ Õ

D̄2 +max
τ

D̄

Nτ/2∑
i=1

∥∥∥ū(τ)
2i−1 − ū

(τ)
2i

∥∥∥
2


≤ Õ

(
D̄2 + D̄

T−1∑
t=1

∥ut − ut+1∥2

)
≤ Õ

(
D̄2 + D̄PT

)
,

where D̄ = maxτ,i

∥∥∥ū(τ)
i − ū

(τ)
i+1

∥∥∥ ≤ maxi,j ∥ui − uj∥. Thus, applying Algorithm 1 with dual-
norm pair (∥·∥H−⊤

n H⊤
n
, ∥·∥HnH⊤

n
) still guarantees worst-case regret

RT (u⃗) ≤ Õ
(
∥ũ∥H−⊤

n H−1
n

√∑T
t=1 ∥g̃t∥

2
HnH⊤

n

)
≤ Õ

(√(
∥ū∥22 + D̄PT

)∑T
t=1 ∥gt∥

2
2

)
,

which matches the guarantees of prior works, up to polylogarithmic terms.

Importantly, with M = H−⊤
n H−1

n ⊗ Id the dual-norm pair (∥·∥M , ∥·∥M−1) leads to updates
that can be implemented efficiently, in requiring only O(log T ) variables to be updated on each
round. This is because the Haar basis matrices are locally supported — the columns of Hn =(
h(1) . . . h(T )

)
∈ RT×T form an orthogonal basis with the property that for any t, [h(i)]t ̸= 0

for only 1 + log2 T indices i (see Proposition 5). Hence, (H⊤ ⊗ Id)g̃t = (H⊤ ⊗ Id)(et ⊗ gt) =

(H⊤et) ⊗ gt, is a block vector with only 1 + log2 T active blocks, requiring that we update only
O(d log T ) indices to maintain each of the variables needed to implement Algorithm 2. We provide
the full details of this computation in Appendix B.4, which we summarize below in Proposition 4.

Proposition 4. The algorithm characterized by applying Theorem 2 with S = [HnH
⊤
n ]

−1 can be
implemented with O (d log T ) per-round computation.

5 Recovering Variance-Variability Coupling Guarantees

Our main focus throughout the paper has been on designing algorithms that achieve a regret bounds
of the form RT (u⃗) ≤ O

(√
f(u1, . . . ,uT )V (g1, . . . , gT )

)
for some functions f and V , which

cleanly separates the penalties associated with difficult loss sequences from the penalties associated
with difficult comparator sequences. However, the first works to achieve unconstrained dynamic
regret guarantees uncovered guarantees of a slightly different form, containing a gradient-comparator
correlation penalty:

RT (u⃗) ≤ Õ


√√√√T−1∑

t=1

∥ut − ut+1∥
T∑

t=1

∥gt∥
2 ∥ut − ū∥︸ ︷︷ ︸

Variance/Variability coupling

 , (4)

for some reference point ū [20, 47]. Guarantees of this form allow some degree of coupling between
the variability and variance penalties. This can be appealing in certain situations. For instance,
guarantees of the form above have the appealing property that the variance penalty completely
disappears on any rounds where the comparator ut matches the reference point ū. This can be a very
powerful property when one has a priori access to a benchmark model (represented by ū) which
can be expected to predict well on average, so that we accumulate the variance penalties only when
facing atypical/unexpected conditions.

The prior works achieving a coupling guarantee do so using rather mysterious means. For instance,
the guarantee of Jacobsen and Cutkosky [20] achieves the coupling guarantee almost by coincidence,
as it appears in response to a composite regularizer they add to the update to cancel out certain
unstable terms in the analysis, and the analysis of Zhang et al. [47] recovers a guarantee of a similar
form using a rather difficult analysis of the frequency-domain representation of ũ after projecting
onto the Haar basis vectors. So far there is no unifying explanation of the principles leading to these
sorts of guarantees.
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Our equivalence in Proposition 1 instead shows that guarantees of the form Equation (4) can in-
stead be understood through the lens of reward-regret duality, a standard tool used to design al-
gorithms in the static regret setting. The reward-regret duality states that in order to guarantee
regret of the form RT (u) ≤ f(u) for all u ∈ W , it suffices to design an algorithm that guarantees
−
∑T

t=1 ⟨gt,wt⟩ ≥ f∗(−
∑T

t=1 gt) for any g1, . . . , gT . Using Proposition 1, we immediately have
the following analogous design principle for dynamic regret. Proof is deferred to Appendix C.1.

Theorem 3. Let WealthT := −
∑T

t=1 ⟨g̃t, w̃t⟩ denote the “wealth” of an algorithm A and let
(f, f∗) be a Fenchel conjugate pair. Then A guarantees WealthT ≥ f∗T

(
−
∑T

t=1 g̃t

)
for any

sequence g̃1, . . . , g̃T if and only if RT (u⃗) ≤ fT (ũ) for any sequence u⃗ = (u1, . . . ,uT ) in W ,
where ũ = (u⊤

1 , . . . ,u
⊤
T )

⊤ is the concatenation of the sequence u⃗ into a vector.

So, suppose we would like to design an algorithm that guarantees for any sequence u⃗ = (u1, . . . ,uT )
and any g⃗ = (g1, . . . , gT ) regret of the form

RT (u⃗) ≤
√
fT (ũ)VT (ũ),

for some fT (ũ) and VT (ũ) = VT (ũ; g⃗). Then, since
√
ab = minη≥0

a
2η + η

2 b, any such algorithm

must haveRT (u⃗) ≤ fT (ũ)
2η + η

2VT (ũ) for every η ≥ 0. So, via Proposition 1 and the the reward-regret
duality of Theorem 3, we have that the desired guarantee is equivalent to guaranteeing for all η ≥ 0 a
wealth lower bound of

Wealtht = −
T∑

t=1

⟨g̃t, w̃t⟩ ≥
[
fT (·)
2η

+
η

2
VT (·)

]∗ (
− g̃1:T

)
=
f∗T
(
− 2ηg̃1:T

)
2η

□ 2ηV ∗
T

(
g̃1:T

2η

)
,

where f∗T and V ∗
T are the Fenchel conjugates of fT and VT respectively, and (f1 □ f2) denotes the

infimal convolution [34, 19] of f1 and f2:

(f1 □ f2)(z) = inf {f1(y) + f2(z − y)} .
Thus, the variance/variability coupling guarantees observed in Equation (4) can be interpreted as
achieving wealth lower-bounds for potential functions involving infimal convolution.

The above discussion provides a general characterization of variance/variability coupling guarantees,
though it is admittedly less clear how difficult it is to design algorithms from this perspective due to
the rather complicated potential function that appears. Nonetheless, we believe that this provides a
valuable perspective and insight that could be of general interest. An important direction for future
work is to develop useful tools for working with potential functions of this form.

6 Conclusion

In this paper, we have shown a way to reduce the problem of dynamic regret minimization to the
static one. We proved a novel frontier of lower bounds showing a fundamental trade-off between
penalties on the comparators and penalties on the variance of the gradients. In particular, we have

shown that it is not possible to achieve a guarantee that scales with
√∑T−1

t=1 ∥ut − ut+1∥2 without
incurring a variance penalty of O(GT ). We developed a simple framework for achieving guarantees
along the lower bound frontier, and used it to develop the first algorithm making a non-trivial
variance/variability decoupling guarantee against arbitrary comparator sequences. Our framework is
simple but powerful, allowing one to fully utilize the rich literature of static regret algorithms for
online learning.

We conclude by noting some directions for future work. There is a lot of exciting potential to explore
different measures of variability induced by different choices of the matrix M , as well as going
beyond weighted norms. As mentioned in Section 5, developing a useful toolset for potential functions
involving infimal convolution is an important next-step for developing and understanding guarantees
with a coupled variance/variability penalty, such as Equation (4). Also, our lower bound in Section 3
illustrates the variance-variability trade-off, but achieving the correct logarithmic dependencies proved
to be very challenging — many of the standard tools for proving lower bounds in unconstrained
settings revolve around anti-concentration results that do not readily extend to arbitrary weighted
norms and higher-dimensions. We look forward to exciting development in these future directions.
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A Proofs for Section 3 (Lower bounds for unconstrained dynamic regret)

In this section, we provide proof of our main lower bound result from Section 3. We first introduce a
technical tool from the literature on decoupling theory and a key lemma (Lemma 2). Proof of our
main result is in Appendix A.1.

Consider a function f : [−1, 1]d → R, defined as

f(x) =
∑
i,j

Ai,jxixj ,

Define A the matrix with elements Ai,j . In this section we will use the following notations for
quantities related to a polynomial induced by the quadratic form x 7→ ⟨x,Ax⟩ (see page 6 of
O’Donnell and Zhao [30])

Var[f ] =
∑
i,j

A2
i,j = ∥A∥2F ,

Infi[f ] =

d∑
j=1

(A2
i,j +A2

j,i) .

One of the key difficulties in deriving the lower bound is that squared weighted norms x 7→ ⟨x,Ax⟩
introduce dependencies between the coordinates of x, which breaks the usual lower bound arguments
which rely on anti-concentration of independent Rademacher random variables. Instead, we must
leverage an anti-concentration result that holds for polynomials of random variables.
Theorem 4 (Theorem 3 of Dinur et al. [10]). There is a universal constant C such that the following
holds. Suppose G : {±1}d → R is a polynomial of degree at most 2 and assume Var[g] = 1. Let
t ≥ 1 and suppose that Infi[g] ≤ C−2t−2 for all i ∈ [d]. Then

P {|g(x)| ≥ t} ≥ exp
(
−C2t24 log 2

)
.

Using this anti-concentration result, the following key lemma provides a general lower bound on the
wealth obtainable by any algorithm, subject to the weighting imposed by a matrix A.
Lemma 2. Let A be an online learning algorithm, and suppose A guarantees RT (0) ≤ GϵT for
any sequence of linear losses g1, . . . , gT ∈ R satisfying |gt| ≤ G. Let A ∈ RT×T be any symmetric
positive definite matrix, and let B = A− Diag (A). Then, there is a universal constant C > 0 such
that for any 1 ≤ q ≤ ∥B∥F

C
√

2maxi
∑T

j=1 B2
ij

, there is a sequence of losses g1, . . . , gT ∈ R such that

∥∥∥∥∥∥∥
g1...
gT


∥∥∥∥∥∥∥
2

A

≥ G2 [Tr(A) + q ∥A− Diag (A)∥F ]

and

RT (0) ≥ GϵT

[
1− 24C

2q2
]
.

Proof. Let Y1, . . . , YT be independent Rademacher random variables and set gt = GYt, so that
E [RT (0)] = E

[∑T
t=1 gtwt

]
= 0. Then, using the regret equivalence of Proposition 1 and condi-

tioning on any event E with P {E} > 0, we have

0 = E [RT (0)]

= E
[
RT (0)

∣∣∣E]P {E}+ E
[
RT (0)

∣∣∣Ec
]
P {Ec}

≤ E [RT (0)|E ]P {E}+GϵT (1− P {E}) ,
where the last line uses the fact that A guarantees RT (0) ≤ GϵT for any g1, . . . , gT satisfying
|gt| ≤ G for all t. Re-arranging, we have

E
[
RT (0)

∣∣∣E] ≥ GϵT

(
1− 1

P {E}

)
. (5)
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Next, let g̃t = et ⊗ gt for all t and consider the event

E =


∥∥∥∥∥

T∑
t=1

g̃t

∥∥∥∥∥
2

A

=
∥∥(g1, . . . , gT )⊤∥∥2A ≥ Tr(A) + q ∥A− Diag (A)∥F


for some q > 0. We proceed by lower bounding the probability of this event.

Observe that ∥∥∥∥∥
T∑

t=1

g̃t

∥∥∥∥∥
2

A

= G2
∑
i,j

YiYjAij = G2

Tr(A) +
∑
i,j ̸=i

YiYjAij

 .
Denote B = A− Diag (A) and note that f(Y1, . . . , YT ) =

∑
i,j YiYjBij is a polynomial of degree

at most 2 and variance Var[f ] =
∑

i,j B
2
ij = ∥A− Diag (A)∥2F = ∥B∥2F . Moreover, since A is

symmetric we have Infi[f ] =
∑T

j=1B
2
ij + B2

ji = 2
∑T

j=1B
2
ij for any i. It follows that if we let

g(Y ) = f(Y )√
∥B∥2

F

= f(Y )
∥B∥F

, then g is a polynomial of degree at most 2, Var[g] = 1, and for any

i ∈ [T ] we have Infi[g] =
2
∑T

j=1 B2
ij

∥B∥2
F

. Hence by Theorem 4, there is a universal constant C such that

for any 1 ≤ q ≤ ∥B∥F

C
√

2maxi
∑T

j=1 B2
ij

it holds that

P {f(Y ) ≥ q ∥B∥F } = P {g(Y ) ≥ q} ≥ exp
(
−4C2q2 log 2

)
= 2−4C2q2 .

Now observe that P {E} = P {f(Y ) ≥ q ∥B∥F } by construction, so Equation (5) can be bound as

E
[
RT (0)

∣∣∣E] ≥ GϵT

(
1− 1

P {E}

)
= GϵT

(
1− 24C

2q2
)
,

which implies the existence of a sequence g1, . . . , gT ∈ R such that RT (0) ≥ GϵT

[
1− 24C

2q2
]

and∥∥∥∥∥
T∑

t=1

g̃t

∥∥∥∥∥
2

A

≥ G2 [Tr(A) + q ∥B∥F ] = G2 [Tr(A) + q ∥A− Diag (A)∥F ] ,

for any 1 ≤ q ≤ ∥B∥F

C
√

2maxi
∑T

j=1 B2
ij

.

A.1 Proof of Theorem 1

In this section we prove our main lower bound.
Theorem 1. Let the number of rounds T ≥ T0, where T0 is a universal constant. Let A be an
online learning algorithm, and suppose A guarantees RT (0) ≤ GϵT for any sequence of linear
losses g1, . . . , gT ∈ R satisfying |gt| ≤ G. Let M−1 ∈ RT×T be any symmetric positive definite

matrix, denote M̃
−1

:= M−1 − Diag
(
M−1

)
and VT := Tr(M−1) + ∥M̃

−1
∥F . Suppose that

∥M̃
−1

∥2F ≥ T
2 maxi

∑
j(M̃

−1
ij )2. Then, for any P satisfying T0 ≤ log2

√
PVT

2ϵT
≤ T , there is a

sequence of losses g1, . . . , gT ∈ R, and ũ = (u1, . . . , uT )
⊤ ∈ RT satisfying ∥ũ∥M =

√
P such

that we have

RT (u1, . . . , uT ) ≥ Ω

GϵT +G

√
P

[
Tr(M−1) +

∥∥∥M̃−1
∥∥∥
F
log

1
2
2

√
PVT
2ϵT

] .

Proof. Denote A = M−1 and B = A− Diag (A). By Lemma 2, there is a universal constant C
and a sequence g1, . . . , gT ∈ R such that for any 1 ≤ q ≤ ∥B∥F

C
√

2maxi
∑T

j=1 B2
ij

, it holds that

∥∥∥∥∥
T∑

t=1

g̃t

∥∥∥∥∥
2

A

≥ G2 [Tr(A) + q ∥A− Diag (A)∥F ]
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and

RT (0) ≥ GϵT

[
1− 24C

2q2
]
.

Hence, choosing comparator sequence u1, . . . , uT ∈ R to satisfy and ũ = (u1, . . . , uT )
⊤ =

−
√
P

A
∑T

t=1 g̃t

∥∑T
t=1 g̃t∥A

∈ RT , we have ∥ũ∥A−1 = ∥ũ∥M =
√
P and

RT (u1, . . . , uT ) = RT (0)−

〈
T∑

t=1

g̃t, ũ

〉

= G
√
P

∥∥∥∥∥
T∑

t=1

g̃t

∥∥∥∥∥
A

+RT (0)

≥ G
√
P [Tr(A) + q ∥A− Diag (A)∥F ] +RT (0)

≥ GϵT +G
√
P [Tr(A) + q ∥A− Diag (A)∥F ]−GϵT 2

4C2q2 .

Now, for P satisfying T0 := 4C2 ≤ log2

(√
P [Tr(A)+∥B∥F ]

2ϵT

)
≤ T we may choose

q =

√√√√√ log2

(√
P [Tr(A)+∥B∥F ]

2ϵT

)
4C2

.

Indeed, observe that this choice satisfies 1 ≤ q ≤ ∥B∥F

C
√

2maxi
∑T

j=1 B2
ij

as required:

1 ≤ q =

√√√√√ log2

(√
P [Tr(A)+∥B∥F ]

2ϵT

)
4C2

≤
√

T

4C2
≤

∥B∥F
C
√
2maxi

∑T
j=1B

2
ij

,

where the final inequality uses the assumption ∥B∥2F /2maxi
∑

ij B
2
ij ≥ T

4 . Hence, we have that

GϵT 2
4C2q2 ≤ G

2

√
P [Tr(A) + ∥B∥F ] ≤

G

2

√
P [Tr(A) + q ∥B∥F ],

so that the overall the regret can be lower-bounded as

RT (u1, . . . , uT ) ≥ GϵT +
1

2
G
√
P [Tr(A) + q ∥B∥F ]

= GϵT +
G

2

√√√√P

[
Tr(A) + ∥B∥F

log
1
2
(√

P [Tr(A) + ∥B∥F ]/2ϵT
)

√
T0

]
.

A.2 Proof of Proposition 2

Proposition 2. (Adapting to Squared Path-length Requires Superlinear Regret) Define the finite-
difference operator Σ ∈ RT as the matrix with entries

Σij =


1 if i = j

−1 if i = j − 1

0 otherwise
.

Let S = Σ⊤Σ and M = S⊗ Id. Then, M satisfies the assumptions of Theorem 1 and

∥ũ∥2M = ∥uT ∥22 +
T−1∑
t=1

∥ut − ut+1∥22 and Tr
(
M−1

)
=
T (T + 1)

2
.
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Proof. We first show the properties that ∥ũ∥2F = ∥uT ∥22 +
∑T−1

t=1 ∥ut − ut+1∥22 and

Tr(Σ−1Σ−⊤) =
∑T

t=1

[
Σ−1Σ−⊤

]
tt
=
∑T

t=1 T − t+ 1 = T (T+1)
2 , and show that M satisfies the

conditions of Theorem 1 at the end.

Observe that

(Σ⊗ Id)ũ =


Id −Id 0 0 · · ·
0 Id −Id 0 · · ·
0 0 Id −Id · · ·
...

. . .
0 0 0 · · · Id


u1

...
uT

 =


u1 − u2

u2 − u3

...
uT−1 − uT

uT

 ,

and since (Σ⊤ ⊗ Id)(Σ⊗ Id) = (Σ⊤Σ)⊗ Id = M , we have

∥ũ∥2M =
〈
ũ, (Σ⊤ ⊗ Id)(Σ⊗ Id)ũ

〉
= ⟨(Σ⊗ Id)ũ, (Σ⊗ Id)ũ⟩

= ∥uT ∥22 +
T−1∑
t=1

∥ut − ut+1∥22 .

Using the inverse property of the Kronecker product, we also have

M−1 =
[
Σ⊤Σ⊗ Id

]−1

=
[
Σ⊤Σ

]−1

⊗ Id = Σ−1Σ−⊤ ⊗ Id,

and by Lemma 8 we have that Σ−1 is the upper-triangular matrix of all 1’s, that is, the matrix with
entries

Σ−1
ij =

{
1 if i ≤ j

0 otherwise
,

and likewise, Σ−⊤ is a lower-triangular matrix of 1′s. In other words, for any t we have[
Σ−1Σ−⊤

]
tt
=

T∑
i=1

Σ−1
ti Σ−⊤

it =
∑
i≤t

Σ−1
ti = T − t+ 1 .

So, summing over t we have

Tr(Σ−1Σ−⊤) =

T∑
t=1

[
Σ−1Σ−⊤

]
tt
=

T∑
t=1

T − t+ 1 =
T (T + 1)

2
.

Now we show that M satisfies the conditions of Theorem 1. M = S ⊗ Id = [Σ⊤Σ] ⊗ Id is
clearly symmetric since it is the Kronecker product of two symmetric matrices. Observe that for
any x ̸= 0 ∈ RT we have Σx ̸= 0 by positive definiteness of Σ (Lemma 8) and thus ⟨x,Sx⟩ =
⟨Σx,Σx⟩ > 0. Thus, M = S⊗Id is the Kronecker product of symmetric positive definite matrices,
so M is symmetric positive definite [see, e.g., 38, Chapter 2].

Lastly, let B = Σ−1Σ−⊤ − Diag
(
Σ−1Σ−⊤). We are to show that ∥B∥F ≥ T

2

∑
j B

2
ij for any i.

First observe that calculation of [Σ−1Σ−⊤]tt is generalized to[
Σ−1Σ−⊤

]
ij
=

T∑
k=1

Σ−1
ik Σ−⊤

kj =

T∑
k=1

Σ−⊤
ki Σ−⊤

kj =

j∧i∑
k=1

1 = T −max {j, i}+ 1,

for any i, j, and likewise Bij = T −max {j, i}+1 for i ̸= j and 0 otherwise, from which it is easily
seen that maxi

∑
j B

2
ij =

∑
j B

2
1j , so for any i we have

∑
j

B2
ij ≤

∑
j

B2
1j =

T∑
j=2

(T − j + 1)2 =
1

6
T (2T 2 − 3T + 1) .
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On the other hand,

∥B∥2F =
∑
i

∑
j

B2
ij =

1

6
T 2(T 2 − 1)

=
T

2

T

6
(2T 2 − 2) =

T

2

T

6
(2T 2 − 3T + 3T − 2) ≥ T

2

T

6
(2T 2 − 3T + 1)

≥ T

2

∑
j

B2
ij ,

for any i, where the last line applies the inequality in the previous display.

A.3 Sufficiency of Proposition 2

The choice of M in Proposition 2 uniquely exposes the squared path-length up to the constant offset
term ∥uT ∥2. In this section we demonstrate that the choice of offset term in Proposition 2 does
not make any significant difference for the claim that adapting to the squared path-length requires
incurring a Tr(M−1) ≥ Ω(T 2) penalty, and hence that Proposition 2 is sufficient to demonstrate
that adapting to the squared path-length is not possible without incurring vacuous regret.

To expedite the discussion, we first introduce two technical lemmas, proven in Appendices A.3.1
and A.3.2 respectively.
Lemma 3. Let v ∈ RT be an arbitrary non-zero vector and let B ∈ RT×T be a symmetric matrix
with eigenvalues 0 = λ1(B) < λ2(B) ≤ . . . ≤ λT (B). Then

Tr((B + vv⊤)−1) ≥ ∥v∥2 +
T∑

t=2

1

λt(B)
.

Lemma 4. Let Σ ∈ RT×T denote the finite-difference matrix defined in Proposition 2 and let
M = Σ⊤Σ. Then, for any T > 1, we have

λmax(M
−1) ≤ 9

10
Tr(M−1),

where λmax(M
−1) is the maximal eigenvalue of M−1.

Now, Consider the 1-dimensional setting and note that for any positive definite M we can find a
unique Σ such that M = Σ⊤Σ. Hence,

∥ũ∥2M = ⟨ũ,Mũ⟩ = ⟨Σũ,Σũ⟩ ,
so without loss of generality we can focus on Σ for which

⟨Σũ,Σũ⟩ = ⟨v, ũ⟩2 +
T∑

t=2

∥ut − ut−1∥2,

where v ̸= 0 ∈ RT . 4 Note such a constant offset term is unavoidable: it is what captures the static
regret guarantee in the case where u1 = . . . = uT = u. Proposition 2 considers v = (0, . . . , 0, 1)

to get ∥ũ∥2M = ∥uT ∥2 +
∑T

t=2 ∥ut − ut−1∥2, though below we will show that any vector v would
still lead to Tr(M−1) = Ω(T 2).

It is clear that the only way to construct expressions of the form above is via matrices Σ satisfying

Σũ = c


u1 − u2
u2 − u3

...
uT−1 − uT

⟨v, ũ⟩

 ,

4Note that any such M is unique. Indeed, if there are positive definite matrices M1 ∈ RT×T and

M2 ∈ RT×T such that ∥ũ∥2M1
= ⟨v, ũ⟩2 + P

∥·∥22
T = ∥ũ∥2M2

for all ũ ∈ RT , then ⟨ũ, (M1 −M2)ũ⟩ = 0
and hence M1 = M2 since M1 and M2 are positive definite.
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where c ∈ {−1, 1} and the order of the rows indices of the vector can be permuted without loss of
generality. In particular, the only matrices that can produce these expressions (again noting that the
rows can be permuted without loss of generality) are of the form

Σ = c



1 −1 0 0 . . . 0 0
0 1 −1 0 . . . 0 0
0 0 1 −1 . . . 0 0
...

. . .
0 0 0 0 . . . 1 −1
v1 v2 v3 v4 . . . vT−1 vT

 =: c

∆

v⊤

 ,

so M = Σ⊤Σ = ∆⊤∆ + vv⊤. Moreover, ∆⊤∆ is a symmetric matrix with a unique zero
eigenvalue (corresponding to vectors in the span of 1 = (1, . . . , 1) ∈ RT ), so applying Lemma 3,

Tr(M−1) = Tr((∆⊤∆+ vv⊤)−1) ≥ ∥v∥2 +
T∑

t=2

1

λt(∆
⊤∆)

.

Now, define v0 = (0, . . . , 0, 1) ∈ RT and observe that M0 := ∆⊤∆ + v0v
⊤
0 is precisely the

matrix studied in Proposition 2. We have via the interlacing property of rank-1 updates to symmetric
matrices that λt(∆⊤∆) ≤ λt(M0) [13, Theorem 8.1.8], so overall we have

Tr(M−1) ≥
T∑

t=2

1

λt(M0)
=

T∑
t=2

λt(M
−1
0 )

= Tr(M−1
0 )− λmax(M

−1
0 )

≥ Tr(M−1
0 )− 9

10
Tr(M−1

0 )

=
1

10
Tr(M−1

0 ) =
1

10

T (T + 1)

2

where the last inequality applies Lemma 4 to bound λmax(M
−1
0 ) and recalls Tr(M−1

0 ) = T (T+1)
2

from Proposition 2.

Hence, the variance penalty will still be Ω(T 2) regardless of the choice of bias ⟨v, ũ⟩2 in the
variability measure. Combined with our lower bound in Theorem 1, it follows that adapting to the
squared path-length necessarily implies a variance penalty of Tr(M−1) ≥ Ω(T 2), leading to a
vacuous regret upper bound.

A.3.1 Proof of Lemma 3

Lemma 3. Let v ∈ RT be an arbitrary non-zero vector and let B ∈ RT×T be a symmetric matrix
with eigenvalues 0 = λ1(B) < λ2(B) ≤ . . . ≤ λT (B). Then

Tr((B + vv⊤)−1) ≥ ∥v∥2 +
T∑

t=2

1

λt(B)
.

Proof. Let A := B + vv⊤. Since B is symmetric, we have via the interlacing property that there is
an a1, . . . , aT ≥ 0 such that

∑T
t=1 at = ∥v∥2 and λt(A) = λt(B) + ai [see, e.g., Theorem 8.1.8 in

13]. Hence,

Tr((B + vv⊤)−1) = Tr(A−1) =

T∑
t=1

λt(A
−1) =

T∑
t=1

1

λt(A)

=

T∑
t=1

1

λt(B) + ai
≥ min

a1,...,aT≥0∑T
t=1 at=∥v∥2

T∑
t=1

1

λt(B) + ai
.
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To analyze the constrained optimization in the last line, let α1, . . . , αT ≥ 0, β ∈ R, and define the
Lagrangian

L(a1, . . . , aT , α1, . . . , αT , β) =

T∑
t=1

1

λt(B) + at
−

T∑
t=1

αtat + β

(
T∑

t=1

at − ∥v∥2
)
.

For any t, we have
∂L

∂at
=

−1

(λt(B) + at)2
− αt + β = 0 ⇐⇒ at =

1√
β − αt

− λt(B) .

Plugging this into the dual D(α1, . . . , αT , β) = mina1,...,aT
L(a1, . . . , aT , α1, . . . , αT , β) we have

D(α1, . . . , αT , β) =

T∑
t=1

√
β − αt −

T∑
t=1

αt

(
1√

β − αt
− λt(B)

)
+ β

(
T∑

t=1

1√
β − αt

− λt(B)− ∥v∥2
)

=

T∑
t=1

√
β − αt +

T∑
t=1

(β − αt)
1√

β − αt
+

T∑
t=1

(αt − β)λt(B)− β ∥v∥2

= 2

T∑
t=1

√
β − αt +

T∑
t=1

(αt − β)λt(B)− β ∥v∥2 .

The derivatives of the dual w.r.t αt are
∂D

∂αt
=

−1√
β − αt

+ λt(B) .

Observe that for λ1(B) = 0, we have ∂D
∂αt

= − 1√
β−αt

≤ 0, so D is decreasing in α1, so the
dual is maximized when α1 = 0. Using the relation a1 = 1√

β−α1
− λ1(B) above we have

a1 = 1√
β−α1

− λ1(B) = 1√
β

. Equating the other derivatives for t > 1 to zero we have

1√
β − αt

= λt(B) =⇒ λt(B) + at = λt(B)

=⇒ at = 0 ∀t > 1

where we used the relationship at = 1√
β−αt

− λt(B) from above. Finally, the optimal β is such that∑T
t=1 at =

1√
β
= ∥v∥2, so overall we have

min
a1,...,aT≥0∑T
t=1 at=∥v∥2

T∑
t=1

1

λ(B) + ai
=

1√
β − α1

+

T∑
t=2

1

λt(B) + ai
=

1√
β
+

T∑
t=2

1

λt(B)

= ∥v∥2 +
T∑

t=2

1

λt(B)
.

A.3.2 Proof of Lemma 4

Lemma 4. Let Σ ∈ RT×T denote the finite-difference matrix defined in Proposition 2 and let
M = Σ⊤Σ. Then, for any T > 1, we have

λmax(M
−1) ≤ 9

10
Tr(M−1),

where λmax(M
−1) is the maximal eigenvalue of M−1.

Proof. The matrix M−1 = Σ−1Σ−⊤ is symmetric and positive definite, hence has real eigenvalues.
The eigenvalues of M−1 can be bound in terms of its trace as follows (see, e.g., Theorem 2.1
Wolkowicz and Styan [43], provided for convenience in Theorem 5):

λmax (M
−1) ≤

Tr
(
M−1

)
T

+

√√√√√(T − 1)

Tr
(
M−⊤M−1

)
T

−

(
Tr
(
M−1

)
T

)2
 .
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Next, observe that by Lemma 8, matrix Σ−1 is an upper-triangular matrix of all 1’s, so that

[M−1]ij =
[
Σ−1Σ−⊤

]
ij
=
∑
k∈[t]

Σ−1
ik Σ−⊤

kj =
∑
k∈[T ]

Σ
−1

ik Σ
−1
jk

=
∑
k∈[T ]

1 {k ≥ i}1 {k ≥ j} = T −max {i, j}+ 1,

Hence,

Tr
(
M−1

)
=

T∑
t=1

[M−1]ii =

T∑
t=1

(T − t+ 1) =

T∑
t=1

t =
T (T + 1)

2
.

Moreover,

Tr
(
M−⊤M−1

)
=

T∑
t=1

[M−⊤M−1]tt =

T∑
t=1

t∑
k=1

M−⊤
tk M−1

kt

=

T∑
t=1

t∑
k=1

(M−1
kt )2 =

T∑
t=1

t∑
k=1

(T −max {t, k}+ 1)2

=
T (T + 1)2(T + 2)

12
.

Thus, Tr
(
M−⊤M−1

)
T

−

(
Tr
(
M−1

)
T

)2
 =

(T + 1)2(T + 2)

12
− (T + 1)2

4

=
(T + 1)2

4

[
T + 2

3
− 1

]
=

(T + 1)2

4

T − 1

3
.

Overall, λmax(M
−1) is bounded by

λmax(M
−1) ≤

Tr
(
M−1

)
T

+

√
(T − 1)

(T + 1)2

4

T − 1

3

=
T + 1

2
+

(T + 1)(T − 1)

2
√
3

=
T (T + 1)

2
√
3

+
T + 1

2

[
1− 1√

3

]
≤ T (T + 1)

2
√
3

+
T (T + 1)

2

1

4
≤ 9

10

T (T + 1)

2
=

9

10
Tr(M−1),

where the last line observes that 1 − 1√
3
≤ 1

2 ≤ T
4 for T ≥ 2 and the fact that 1√

3
+ 1

4 ≈ 0.83 ≤
9
10 .

B Proofs for Section 4 (Dynamic regret for unconstrained OLO via weighted
norms)

B.1 Details on the 1-Dimensional Reduction

In this section, for completeness we provide the details of the 1-dimensional reduction of Cutkosky
and Orabona [9], specialized to dual weighted-norm pairs (∥·∥M , ∥·∥M−1) as well as its regret
guarantee.
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For concreteness, we choose adaptive FTRL with AdaGrad-norm stepsizes [40] as the direction
learner. For simplicity we use the scale-free version of [33], so that the direction learner’s update is
slightly simpler, not requiring prior knowledge of the Lipschitz constant G ≥ ∥g̃t∥M−1 .

Using Cutkosky and Orabona [9, Theorem 2], we have that the regret of Algorithm 2 is equal to

RT (ũ) = RA
T (∥ũ∥M ) + ∥u∥MRdirection

T

(
ũ

∥ũ∥M

)
, ∀ũ ∈ RdT ,

where RA
T is the regret of A over a sequence of G-Lipschitz linear losses and Rdirection

T is the regret of
(scale-free) adaptive FTRL with a feasible set equal to the unitary ball defined by ∥ · ∥M .

Choosing the algorithm A to be [20, Algorithm 1], we have

RA
T (∥ũ∥M ) ≤ O

Gϵ+ ∥ũ∥M

√VT log

(
∥ũ∥M

√
VTΛT

Gϵ
+ 1

)
∨G log

(
∥ũ∥M

√
VTΛT

ϵG

) ,

where VT =
∑T

t=1 ∥g̃t∥
2
M−1 and ΛT = log2(

∑T
t=1 ∥g̃t∥

2
M−1 /G2) ≤ O(log2 T ).

Focusing now on the regret of the direction learner, define the distance generating function ψ(x̃) =
1
2∥x̃

2∥M . Using [31, Theorem 4.3], we have that ψ is 1-strongly convex w.r.t ∥ · ∥M . Hence, using
the regret guarantee of Scale-free FTRL, i.e., Theorem 1 of Orabona and Pál [33], for any ṽ ∈ RdT

such that ∥ṽ∥M ≤ 1 the regret of the direction learner is

RDirection
T (ṽ) ≤

[
1

2
∥ṽ∥2M + 2.75

]√√√√ T∑
t=1

∥g̃t∥
2
M−1 + 3.5max

t≤T
∥g̃t∥M−1 ≤ O


√√√√ T∑

t=1

∥g̃t∥
2
M−1

 .

Applying this with ṽ = ũ
∥ũ∥M

and combining with the previous two displays leads to the bound
stated in the proof of Theorem 2.

B.2 The Haar Matrices and their Properties

In this section we provide some useful supporting lemmas related to the Haar matrices Hn. We first
introduce the Haar basis vectors, which make up the columns of the matrix Hn. Throughout this
section we assume for simplicity that T is a power of 2.
Definition 1. For any τ ∈

{
2i : i = 1 : log2(T )

}
and i ∈ [T/τ ], the Haar basis vector at timescale

τ and location i is the vector in RT with entries

[h
(τ)
i ]t =


1 if t ∈ [ 12τ(i− 1) + 1, 12τi]

−1 if t ∈ [ 12τi+ 1, τ i]

0 otherwise
(6)

The Haar basis vectors are often arranged into the columns of a matrix as follows:

Hn =
(
h0 h

(T )
1 h

(T/2)
1 h

(T/2)
2 h

(T/4)
1 h

(T/4)
2 h

(T/4)
3 h

(T/4)
4 · · · h

(2)
T/2

)
,

where h0 = (1, 1, . . . , 1)⊤ ∈ RT . This matrix is referred to as the (unnormalized) Haar basis
matrix of order n = log2(T ). It is well-known that Hn has the following equivalent recursive form
[38, 11, 37]:

H0 = (1),

Hn =

(
Hn−1 ⊗

(
1
1

)
I2n−1 ⊗

(
1
−1

))
. (7)

So, for instance, we have

H1 =

(
H0 ⊗

(
1
1

)
I20 ⊗

(
1
−1

))
=

(
(1)⊗

(
1
1

)
(1)⊗

(
1
−1

))
=

(
1 1
1 −1

)
,

H2 =

((
1 1
1 −1

)
⊗
(
1
1

) (
1 0
0 1

)
⊗
(

1
−1

))
=

1 1 1 0
1 1 −1 0
1 −1 0 1
1 −1 0 −1

 ,
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and so on. For our purposes, we will primaly work in terms of the matrices Hn rather than the basis
vectors h(τ)

i . The main utility of defining the basis vectors h(τ)
i is that their definition easily implies

the following useful result, which states that the Haar basis vectors are sparsely supported w.r.t time.
Proposition 5. Let n = log2 T and let Hn ∈ RT×T be the unnormalized Haar basis matrix of order
n. Then for any t ∈ [T ], there at most 1 + log T indices i for which [Hn]t,i ̸= 0.

The proof follows immediately from Definition 1 (i.e., any t can fall into only one of the intervals
covered at each of the log2(T ) time-scales) and accounting for the additional column h0 of all 1’s.

In what follows, we will also use the following well-known relationship between the vec operator
and the Kronecker product (see, e.g., Steeb and Shi [38, Chapter 2.11]).
Proposition 6. Let A, B, and C be matrices of appropriate dimensions such that the product ABC
exists. Then, vec(ABC) = (C⊤ ⊗A)vec(B).

The following three lemmas will be used to prove the guarantees of the algorithm characterized in
Section 4.1 (Propositions 3 and 4).
Lemma 5. Let n = log2(T ), v = (v1, . . . , vT )

⊤ ∈ RT , and let Hn be the unnormalized Haar basis
matrix of order n. Then

HT
nv =

(
H⊤

n−1v+

I2n−1v−

)
,

where

v+ =


v1 + v2
v3 + v4

...
vT−1 + vT

 , v− =


v1 − v2
v3 − v4

...
vT−1 − vT

 .

Proof. From Equation (7), we have that

H⊤
n v =

(
Hn−1 ⊗

(
1
1

)
I2n−1 ⊗

(
1
−1

))⊤

v =

(
H⊤

n−1 ⊗ (1 1)
I2n−1 ⊗ (1 −1)

)
v

=

([
H⊤

n−1 ⊗ (1 1)
]
v

[I2n−1 ⊗ (1 −1)]v

)
.

Moreover, leveraging Proposition 6 we have

H⊤
n v =

 vec
(
(1 1)

(
v1 v3 · · · vT−1

v2 v4 · · · vT

)
Hn−1

)
vec
(
(1 −1)

(
v1 v3 · · · vT−1

v2 v4 · · · vT

)
Hn−1

)


=



vec


=v⊤

+︷ ︸︸ ︷
(v1 + v2 v3 + v4 · · · vT−1 + vT )Hn−1


vec

(v1 − v2 v3 − v4 · · · vT−1 − vT )︸ ︷︷ ︸
=v⊤

−

I2n−1




=

(
H⊤

n−1v+

I2n−1v−

)
.

Lemma 6. Let Hn be the unnormalized Haar basis matrix of order n. Then, HnH
⊤
n satisfies

HnH
⊤
n = Hn−1H

⊤
n−1 ⊗

(
1 1
1 1

)
+ I2n−1 ⊗

(
1 −1
−1 1

)
(8)

=

(
Hn−1H

⊤
n−1 + 12n−1 02n−1

02n−1 Hn−1H
⊤
n−1 + 12n−1 ,

)
, (9)

where 12n−1 and 02n−1 are 2n−1 × 2n−1 matrices of 1’s and 0’s respectively.
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Proof. For brevity, let us denote Bn = HnH
⊤
n . The first equality follows from elementary properties

of block matrices and the Kronecker product: using the recursive form of Hn, we have

Bn = HnH
⊤
n

=

(
Hn−1 ⊗

(
1
1

)
I2n−1 ⊗

(
1
−1

))(
H⊤

n−1 ⊗ (1 1)
I2n−1 ⊗ (1 −1)

)
= Hn−1 ⊗

(
1
1

)
H⊤

n−1 ⊗ (1 1) + I2n−1 ⊗
(

1
−1

)
I2n−1 ⊗ (1 −1)

= Hn−1H
⊤
n−1 ⊗

(
1
1

)
(1 1) + I2n−1 ⊗

(
1
−1

)
(1 −1)

= Hn−1H
⊤
n−1 ⊗

(
1 1
1 1

)
+ I2n−1 ⊗

(
1 −1
−1 1

)
= Bn−1 ⊗

(
1 1
1 1

)
+ I2n−1 ⊗

(
1 −1
−1 1

)
.

To get the second expression, let us proceed by induction. We have B0 = (1) and

B1 = H1H
⊤
1 =

(
1 1
1 −1

)(
1 1
1 −1

)⊤

=

(
2 0
0 2

)
=

(
B0 + 11 01

01 B0 + 11

)
.

Next, let us assume that Bn satisfies

Bn =

(
Bn−1 + 12n−1 02n−1

02n−1 Bn−1 + 12n−1

)
.

Then, applying the recursive form Equation (8) for Bn+1, we have

Bn+1 = Bn ⊗
(
1 1
1 1

)
+ I2n ⊗

(
1 −1
−1 1

)
=

(
Bn−1 + 12n−1 02n−1

02n−1 Bn−1 + 12n−1

)
⊗
(
1 1
1 1

)
+ I2n ⊗

(
1 −1
−1 1

)

=

Bn−1 ⊗
(
1 1
1 1

)
+ 12n−1 ⊗

(
1 1
1 1

)
02n

02n Bn−1 ⊗
(
1 1
1 1

)
+ 12n−1 ⊗

(
1 1
1 1

)


+

I2n−1 ⊗
(

1 −1
−1 1

)
02n

02n I2n ⊗
(

1 −1
−1 1

)


=

(
Bn + 12n 02n

02n Bn + 12n ,

)
,

where the last line observes that 12n−1 ⊗
(
1 1
1 1

)
= 12n and that after adding the two block matrices,

the top left and bottom right blocks are both

Bn−1 ⊗
(
1 1
1 1

)
+ I2n−1 ⊗

(
1 −1
−1 1

)
+ 12n = Bn + 12n ,

via Equation (8). Hence, the stated result follows by induction.

Now using this, we have the following bound on the norm of the high-dimensional surrogate losses.
Lemma 7. Let n = log2(T ), et be the tth standard basis vector of RT , and for gt ∈ Rd let
g̃t = et ⊗ gt ∈ RdT . Let Hn be a Haar matrix of order n and let B = Hn ⊗ Id be it’s block
extension to sequence in Rd. Then, we have

∥g̃t∥
2
BB⊤ = (log T + 1) ∥gt∥

2
2 .

24



Proof. Using Lemma 1, we have that

∥g̃t∥
2
BB⊤ =

[
HnH

⊤
n

]
tt
∥gt∥

2
.

Moreover, using Equation (9) it can easily be seen that the diagonal entries of HnH
⊤
n are log2 T +1,

so we have
∥g̃t∥

2
BB⊤ ≤ (1 + log2 T ) ∥gt∥

2
2 .

B.3 Proof of Proposition 3

Proposition 3. Let n = log2 T and Hn be the unnormalized Haar basis matrix of order n. For
any τ ∈

{
2i : i = 0, . . . , log2 T

}
, let Nτ = T/τ and let I(τ)

1 , . . . , I(τ)
Nτ

be a partition of [T ] into

intervals of length τ . Define the average comparator in interval I(τ)
i to be ū

(τ)
i = 1

τ

∑
t∈I(τ)

i
ut,

and define the squared path-length at time-scale τ < T to be

P̄ (u⃗, τ) :=

Nτ/2∑
i=1

∥∥∥ū(τ)
2i−1 − ū

(τ)
2i

∥∥∥2
2
,

and P̄ (u⃗, T ) =
∥∥∥ū(T )

1

∥∥∥2
2
= ∥ū∥22. Then, setting S = [HnH

⊤
n ]

−1 and M = S⊗ Id, we have

∥ũ∥2M ≤ ∥ū∥22 +
1

4

log2(T )∑
i=0

P̄ (u⃗, 2i) ≤ ∥ū∥22 +
1

4
log (T )max

τ
P̄ (u⃗, τ),

∥g̃t∥
2
M−1 = ∥gt∥

2
2 (1 + log T ) .

Proof. The proof of the claim ∥g̃t∥
2
M−1 = ∥g̃t∥

2
HH⊤ = ∥gt∥

2
2 [log2(T ) + 1] is provided in

Lemma 7.

To see the form of ∥ũ∥2M , let us first write

∥ũ∥2M =
〈
ũ, [HH⊤]−1ũ

〉
=
〈
H−1ũ,H−1ũ

〉
=
∥∥H−1ũ

∥∥2
2
.

The result then follows by showing that

H−1ũ =
1

2



2ū

ū
(T/2)
1 − ū

(T/2)
2

ū
(T/4)
1 − ū

(T/4)
2

ū
(T/4)
3 − ū

(T/4)
4

...
u1 − u2

u3 − u4

...
uT−1 − uT


, (10)

so that∥∥H−1ũ
∥∥2
2
= ∥ū∥22︸ ︷︷ ︸

P̄ (T )

+
1

4

∥∥∥ū(T/2)
1 − ū

(T/2)
2

∥∥∥2
2︸ ︷︷ ︸

P̄ (T/2)

+
1

4

∥∥∥ū(T/4)
1 − ū

(T/4)
2

∥∥∥2
2
+

1

4

∥∥∥ū(T/4)
3 − ū

(T/4)
4

∥∥∥2
2︸ ︷︷ ︸

P̄ (T/4)

+ . . .+
1

4
∥u1 − u2∥22 +

1

4
∥u3 − u4∥22 + . . .+

1

4
∥uT−1 − uT ∥22︸ ︷︷ ︸

=P̄ (1)

,

where for brevity we have dropped the argument u⃗ on P̄ (u⃗, τ).
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Equation (10) is best shown via example; the general case is mostly a tedius exercise which we
provide at the end. Assume T = 4, then the Haar matrix of order n = log2(T ) = 2 is

H2 =

1 1 1 0
1 1 −1 0
1 −1 0 1
1 −1 0 −1

 =


1
2

1
2

1√
2

0
1
2

1
2

−1√
2

0
1
2 − 1

2 0 1√
2

1
2 − 1

2 0 −1√
2


︸ ︷︷ ︸

=:H̃2


2 0 0 0
0 2 0 0
0 0

√
2 0

0 0 0
√
2


︸ ︷︷ ︸

=:D2

.

It is well-known that for any T the columns of Hlog2(T ) form an orthogonal basis of RT [41, Chapter
6.1.1], which implies that H̃2 is orthonormal. So, H̃−1

2 = H̃⊤
2 and

H−1
2 = (H̃2D2)

−1 = D−1
2 H̃−1

2 = D−1
2 H̃⊤

2

=


1
2 0 0 0
0 1

2 0 0
0 0 1√

2
0

0 0 0 1√
2




1
2

1
2

1
2

1
2

1
2

1
2 − 1

2 − 1
2

1√
2

− 1√
2

0 0

0 0 1√
2

−1√
2

 =


1
4

1
4

1
4

1
4

1
4

1
4 − 1

4 − 1
4

1
2 − 1

2 0 0
0 0 1

2
−1
2

 ,

which leads to Equation (10) after applying the Kronecker product:

H−1ũ =


Id

4
Id

4
Id

4
Id

4
Id

4
Id

4 − Id

4 − Id

4
Id

2 − Id

2 0 0
0 0 Id

2
−Id

2


u1

...
uT

 =


u1+u2+u3+u4

4
u1+u2−u3−u4

4
u1−u2

2
u3−u4

2

 =
1

2


2ū

ū
(T/2)
1 − ū

(T/2)
2

u1 − u2

u3 − u4

 .

More generally, start with d = 1 begin again by factoring

H−1
n = D−1

n H̃⊤
n = D−2

n H⊤
n ,

where now H̃n is the normalized Haar basis matrix of order n = log2(T ) and

Dn = Diag

√
T ,

√
T︸︷︷︸

20

,
√
T/2,

√
T/2︸ ︷︷ ︸

21

,
√
T/4, . . . ,

√
T/4︸ ︷︷ ︸

22

, . . . ,
√
2, . . . ,

√
2︸ ︷︷ ︸

2n−1

 .

The result is then attained by unrolling the recursion for H⊤
n ũ given by Lemma 5 and factoring in

the normalization factors D−2
n . The result for d > 1 is then immediately implied by observing that

the block matrix H−1
n ⊗ Id will act upon the vector components of ũ ∈ RdT in an identical way to

how H−1
n acts upon a vector of scalars.

B.4 Proof of Proposition 4

Proposition 4. The algorithm characterized by applying Theorem 2 with S = [HnH
⊤
n ]

−1 can be
implemented with O (d log T ) per-round computation.

Proof. Note that the losses passed to the 1-dimensional parameter-free algorithm are ⟨ṽt, g̃t⟩ =
⟨ṽt, et ⊗ gt⟩, and since et⊗gt has only d active indices we can compute the 1-dimensional learner’s
losses in O(d). As such, the 1-dimensional learner can be implemented in O(d) per-round computa-
tion.

For the direction learner, we are to show that each of the relevant variables can be maintained using
only O(d log T ) per-round computation.

Using Proposition 3, we immediately have Vt+1 = Vt + ∥g̃t∥
2
M−1 = Vt + (log T + 1) ∥gt∥

2, so
Vt+1 can be maintained using only O(d) per-round computation (i.e., to compute ∥gt∥2).

For the scaling factor
∥∥∥θ̃t+1

∥∥∥
M−1

, observe that∥∥∥θ̃t+1

∥∥∥2
M−1

= ∥g̃t∥
2
M−1 +

∥∥∥θ̃t

∥∥∥2
M−1

+ 2
〈
θ̃t,M

−1g̃t

〉
.
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Hence, we again have O(d) per-round computation to compute ∥g̃t∥
2
M−1 , and letting ht = H⊤

n et
we can decompose the last term as〈

θ̃t,
(
HnH

⊤
n ⊗ Id

)
(et ⊗ gt)

〉
=
〈
θ̃t,
(
HnH

⊤
n et ⊗ gt

)〉
=

〈
t−1∑
i=1

ei ⊗ gi,Hnht ⊗ gt

〉

=

t−1∑
i=1

(e⊤i ⊗ g⊤
i ) (Hnht ⊗ gt)

=

t−1∑
i=1

e⊤i Hnht ⊗ ⟨gi, gt⟩

=

t−1∑
i=1

⟨hi,ht⟩ ⟨gi, gt⟩

=

〈
t−1∑
i=1

hi ⟨gi, gt⟩ ,ht

〉

=

〈
t−1∑
i=1

hig
⊤
i gt,ht

〉

=

〈
gt,

[
t−1∑
i=1

gih
⊤
i

]
︸ ︷︷ ︸

=:Λt

ht

〉
.

From Proposition 5, for any t the vector ht = H⊤
n et has only log T + 1 active non-zero elements

by construction of the Haar basis, so given Λt, the product Λtht takes a linear combination of
log T + 1 vectors in Rd, for O(d log T ) operations. Note that the variable Λt can also be maintained
with O(d log T ) operations since each term is gth

⊤
t , which involves updating O(log T ) columns of

Λt−1 ∈ Rd×T . Hence overall we can maintain
∥∥∥θ̃t+1

∥∥∥
M−1

using O(d log T ) per-round computation.

Lastly, consider the variable θ̃t+1. Observe that we can maintain a variable θ̂t+1 =

−
(
H⊤

n ⊗ Id

)∑t
s=1 g̃s using O(d log T ) computation:

θ̂t+1 = −
(
H⊤

n ⊗ Id

) t∑
s=1

g̃s = θ̂t −
(
H⊤

n et ⊗ gt

)
= θ̂t − (ht ⊗ gt) ,

since ht ⊗ gt is a block vector containing log (T ) + 1 non-zeros blocks of length d. Hence,

θ̃t+1 = (HnH
⊤
n ⊗ In)

t∑
s=1

gs = (Hn ⊗ In)(H
⊤
n ⊗ In)

t∑
s=1

g̃s

= (Hn ⊗ In)θ̂t+1,

and again via the construction of the Haar basis, each row of Hn (i.e., each column of H⊤
n ) has only

log T + 1 non-zero entries, we can compute each d× 1 block of θ̃t+1 using O(d log T ) computation.
Finally, observe that in order to implement the direction learner, we need only compute the tth d× 1

block of θ̃t. Indeed, since for each t, the vector g̃t = et ⊗ gt has only d non-zero indices, it suffices
to retrieve the corresponding indices of ṽt to implement direction learner.

We note that the memory overhead of maintaining each of these variables can also likely be reduced
by more careful bookkeeping, and acknowledging the fact that the algorithm only really needs to
retrieve the tth block of w̃t, since the losses are g̃t = et ⊗ gt. We omit these considerations here for
brevity.
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C Proofs for Section 5 (Recovering Variance-Variability Coupling
Guarantees)

C.1 Proof of Theorem 3

Theorem 3. Let WealthT := −
∑T

t=1 ⟨g̃t, w̃t⟩ denote the “wealth” of an algorithm A and let
(f, f∗) be a Fenchel conjugate pair. Then A guarantees WealthT ≥ f∗T

(
−
∑T

t=1 g̃t

)
for any

sequence g̃1, . . . , g̃T if and only if RT (u⃗) ≤ fT (ũ) for any sequence u⃗ = (u1, . . . ,uT ) in W ,
where ũ = (u⊤

1 , . . . ,u
⊤
T )

⊤ is the concatenation of the sequence u⃗ into a vector.

Proof. Thanks to Proposition 1, the proof is essentially the same as the usual one. We provide the
argument here for completeness.

From Proposition 1, RT (u⃗) = RSeq
T (ũ) =

∑T
t=1 ⟨g̃t, w̃t − ũ⟩ for g̃t = et⊗gt and ũ =

∑T
t=1 et⊗

ut. Hence, recalling the definition of the Fenchel conjugate, we have

RT (u⃗) =

T∑
t=1

⟨gt,wt − ut⟩ =
T∑

t=1

⟨g̃t, w̃t − ũ⟩ = −WealthT −
T∑

t=1

⟨g̃t, ũ⟩

≤
〈
−

T∑
t=1

g̃t, ũ
〉
− f∗T

(
−

T∑
t=1

g̃t

)
≤ sup

θ
⟨θ, ũ⟩ − f∗T (θ) = fT (ũ) .

Similarly, for the other direction, suppose we have RT (u⃗) = RSeq
T (ũ) ≤ fT (ũ) for any ũ. Then

re-arranging, we have WealthT ≥
〈
−
∑T

t=1 g̃t, ũ
〉
− fT (ũ), and since this holds for any ũ, we

can choose the one that tightens the bound to get WealthT ≥ supũ

〈
−
∑T

t=1 g̃t, ũ
〉
− fT (ũ) =

f∗T (−
∑T

t=1 g̃t).

D Supporting Lemmas

Lemma 8. Let Σ ∈ RT×T be the finite-difference operator, having entries

Σij =


1 if i = j

−1 if j = i+ 1

0 otherwise
.

Then,

1. The inverse of Σ the upper-triangular matrix of 1’s:

Σ−1
ij =

{
1 if j ≥ i

0 otherwise
, ∀i, j .

2. The eigenvalues of Σ and Σ−1 are λi = 1 for all i ∈ [T ].

3. x 7→ x⊤Σx is positive definite.

Moreover, the analogous properties hold for the block matrix Σ⊗ Id ∈ RdT×dT .

Proof. The inverse of Σ is the upper-triangular matrix ∆ characterized by entries

∆ij =

{
1 if j ≥ i

0 otherwise
.

To see why, observe that we have ΣT,T∆T,T = 1 and for i < T we have

[Σ∆]ij =
∑
i,j

Σik∆kj = ∆ij −∆i+1,j =

{
1 if i = j

0 otherwise
,
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and likewise for [∆Σ]ij . Hence Σ∆ = ∆Σ = I and M−1 = ∆.

Next, since Σ and Σ−1 are upper-triangular, their eigenvalues are equal to their diagonal entries, and
hence both have eigenvalues λi = 1 for all i.

To see that the asymmetric matrix Σ is positive definite, it suffices to show that the symmetric part of
Σ, i.e., the matrix ΣS = (Σ+Σ⊤)/2, is positive definite [23]. Luckily, ΣS is also a well-known
variation of the discrete difference operator and is known to be positive definite [see, e.g., Theorem
7.4.7 in 39].

For the block matrix B = Σ⊗ Id, the inverse is given immediately by the inverse property of the
Kronecker product: B−1 = (Σ⊗ Id)

−1
= Σ−1 ⊗ Id. We also have that B = Σ ⊗ Id and B−1

have eigenvalues λi = 1 for all i ∈ [dT ], since both are again upper-triangular with 1’s on their
main diagonal. Finally, we have positive definiteness of B using the fact that the symmetric part
of B = Σ⊗ Id is 1

2 (B +B⊤) = 1
2 (Σ⊗ Id +Σ⊤ ⊗ Id) =

1
2 (Σ+Σ⊤)⊗ Id by the distributive

property, hence B is the Kronecker product of two symmetric positive definite matrices, so B is
positive definite [38, Chapter 2].

We borrow the following eigenvalue bound from [43].
Theorem 5. (Wolkowicz and Styan [43, Theorem 2.1]) Let A be a symmetric n × n matrix with
eigenvalues λ1(A) ≤ . . . ≤ λn(A). Then

λmax(A) ≤ Tr(A)

n
+

√√√√(n− 1)

[
Tr(A⊤A)

n
−
(
Tr(A)

n

)2
]
.

29



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our abstract and introduction clear state the main claims of our paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
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much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We clearly state the problem setting and the assumptions therein. We clearly
state which results are optimal up to logarithmic factors. We discuss the computational
complexity of our newly proposed algorithm at the end of Section 4.1. Attaining the
tightest matching logarithmic dependencies in our lower bound is still an open problem, as
mentioned in the conclusion.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
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implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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a complete (and correct) proof?
Answer: [Yes]
Justification: All the theorems provide the full set of assumptions. All of our main results
are proven explicitly either in the main text or in the appendix.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
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they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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algorithms.
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• The answer NA means that the paper does not include experiments.
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whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: This is a theoretical paper that studies theoretical guarantees for online learning
algorithms.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
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• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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• The instructions should contain the exact command and environment needed to run to
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• The authors should provide scripts to reproduce all experimental results for the new
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: This is a theoretical paper that studies theoretical guarantees for online learning
algorithms.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: This is a theoretical paper that studies theoretical guarantees for online learning
algorithms.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: This is a theoretical paper that studies theoretical guarantees for online learning
algorithms.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Given the theoretical nature of this work, there are no ethical concerns to be
addressed.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This is a theoretical paper that studies theoretical guarantees for online learning
algorithms. As stated in the guidelines, this is foundational research and it is not tied to
particular applications, let alone deployments.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No models nor data is associated to this paper.
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: No assets were used in this paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

34



• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
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Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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