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Abstract

In current deep learning tasks, Adam-style optimizers—such as Adam, Adagrad,
RMSprop, Adafactor, and Lion—have been widely used as alternatives to SGD-
style optimizers. These optimizers typically update model parameters using the sign
of gradients, resulting in more stable convergence curves. The learning rate and
the batch size are the most critical hyperparameters for optimizers, which require
careful tuning to enable effective convergence. Previous research has shown that
the optimal learning rate increases linearly (or follows similar rules) with batch size
for SGD-style optimizers. However, this conclusion is not applicable to Adam-style
optimizers. In this paper, we elucidate the connection between optimal learning
rates and batch sizes for Adam-style optimizers through both theoretical analysis
and extensive experiments. First, we raise the scaling law between batch sizes and
optimal learning rates in the “sign of gradient” case, in which we prove that the
optimal learning rate first rises and then falls as the batch size increases. Moreover,
the peak value of the surge will gradually move toward the larger batch size as
training progresses. Second, we conduct experiments on various CV and NLP
tasks and verify the correctness of the scaling law.

1 Introduction

Deep learning techniques, initiated by Stochastic Gradient Descent (SGD) learning on large datasets,
have significantly revolutionized various real-world applications [1]. Over the past decade, numerous
optimizers, such as momentum [2], Adagrad [3], ADADELTA [4], RMSprop [5], Adam [6], Adafac-
tor [7], and Lion [8], have been introduced to stabilize the iterative learning process and expedite
convergence. Among them, the Adam optimizer is the most widely used across various domains
including Computer Vision (CV) [9–11], Natural Language Processing (NLP) [12–15] and many
others [16, 17]. It retains the first and second moment information of parameters to facilitate adaptive
learning step size. Unlike SGD-style optimizers that use the raw gradient to determine the learning
direction and step size, Adam and its variants (Adagrad, RMSprop, Lion, etc.) employ the sign of
gradient for this purpose, thereby ensuring greater robustness [18].

Beyond specific hyper-parameters in optimizer configurations, the batch size and the learning rate are
the most critical hyperparameters influencing convergence. As the scale of training datasets in various
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Figure 1: The relationship between the optimal learning rate and the batch size is different between
Adam and SGD. The orange line represents the tendency of the optimal learning rate to converge to a
non-zero value when the batch size is large enough.

workloads (e.g. CV [19, 20], NLP [21, 14], and others) continues to grow, there is an increasing
demand for large batch size training across multiple data parallel workers. However, large batch
training presents great challenges for robust training and meticulous tuning. The learning rate, which
determines the actual step size in each learning iteration, is highly dependent on the batch size used.
Prior research has explored methods to determine an optimal learning rate according to the batch
size in scenarios utilizing SGD optimizers, including square root scaling [22], linear scaling [19, 23],
and others [24]. Among these, the empirical model focusing on large batch training [24] yields
convincing results in both theoretical and empirical contexts, proposing the following rule to depict
the relationship between the optimal learning rate and the batch size:

ϵopt(B) =
ϵmax

1 + Bnoise

B

(1)

For Adam-style optimizers, though existing works also provide some approximation [24, 23], they
fail to capture the true scaling law of optimal learning rates with batch sizes. For illustrative purposes,
Figure 1 presents curves that simulate the optimal learning rates for the Adam optimizer. We find
that, in scenarios involving small batch sizes, the optimal learning rate initially increases and then
decreases, resembling a surge in the sea, as depicted by the dashed orange line. For large batch sizes,
we identify a value to which the optimal learning rate converges. The solid orange line represents a
schematic based on our findings for both small and large batch sizes, showing that the learning rate
tends to rise initially, then decrease, and subsequently gradually ascend to asymptotically approach a
stable value. For clarity in visualization, we have omitted the final asymptotic portion of the curve.

In this paper, we aim to elucidate and formalize the connection between optimal learning rates and
batch sizes for Adam-style optimizers. By following the notation from the empirical model [24]
and conducting a more in-depth theoretical analysis, we discover that the relationship between the
optimal learning rate and the batch size in the above parameter update formular satisfies:

ϵopt(B) =
ϵmax

1
2

(√
Bnoise

B +
√

B
Bnoise

) , (2)

which differs from SGD, especially when the batch size is not too large. Here the meaning of Bnoise

is consistent with papers of scaling laws [24, 25], representing the trade-off point between training
speed and data efficiency. When the batch size is equal to Bnoise, the optimal learning rate reaches a
local maximum in accordance with Eq 2. Furthermore, we provide additional proof that when the
batch size becomes significantly large, the optimal learning rate gradually converges to a non-zero
value. We also prove that the previous conclusions about training speed and data efficiency are still
valid for Adam-style optimizers, and the variable Bnoise gradually increases as the training progresses.
It is worth noting that when B ≪ Bnoise, for SGD, the scaling law of optimal learning rates with
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batch sizes transitions into linear scaling, consistent with previous conclusions [19, 23]:

ϵopt(B) ≈ ϵmax

Bnoise
B; (3)

while for Adam, the relationship transitions into square root scaling, aligning with previous approxi-
mations [23, 24]:

ϵopt(B) ≈ 2ϵmax√
Bnoise

√
B. (4)

In addition to theoretical analysis, our extensive empirical study on various CV and NLP workloads
further validate the conclusions. The true optimal learning rate, across different Adam configurations,
exhibits a clear downward trend after reaching its peak value as the batch size increases. This behavior
contradicts previous research, but demonstrates the correctness and generalizability of our theory.
The experiments also reveal a gradual increase in the variable Bnoise, corresponding to the peak
optimal learning rate, as training progresses.

2 Theorems
2.1 Batch Size and Optimal Learning Rate

In this section, we theoretically derive the optimal learning rate for a given batch size. Initially, we
introduce an approximation of Adam-style optimizers. In alignment with the insights elucidated
in [26], a thorough examination of the Adam optimizer and its variants reveals that their primary
distinction from SGD resides in the utilization of the gradient’s sign for updates during each iteration,
as opposed to the gradient itself:

θi+1 = θi − ϵ · sign(Gest), (5)

where θt is the parameter at time t, Gest is the gradient estimated via mini-batch, and ϵ is the learning
rate. As the batch size increases, the expected value of the update amount tends to saturate. For
example, assuming that the mean value of the gradient is positive, when the accumulated gradient of
the mini-batch is positive, increasing the batch size will have no contribution to the signed update
amount. This is significantly different from the behavior of SGD where the larger the batch size,
the more accurate the gradient estimate. In Appendix A, we provide a detailed discussion on this
approximation for the Adam optimizer. Next, we derive the optimal learning rate that maximizes the
loss improvement. And then we establish a lemma that addresses the optimal learning rate given an
estimated mini-batch gradient:
Lemma 1. Suppose that we are updating the parameter θ using the mini-batch gradient V , with the
true gradient being G and the true Hessian being H . Then the optimal learning rate that maximizes
the decrease in loss is:

ϵopt ≡ argmaxϵ E[∆L] =
GTE[V ]

tr[H · cov(V )] + E[V ]THE[V ]
, (6)

and the corresponding loss improvement ∆L is:

∆Lopt =
GTE[V ]

2
ϵopt. (7)

The proof is in Appendix B. Although our conclusion is based on an approximation, we adopt the
equal sign here to simplify the analysis, following the notation used in previous work [24].

Now let’s consider the case where V = sign(Gest), and assuming that the estimated gradient Gest

follows a Gaussian distribution. The Gaussian distribution assumption is motivated by the following:
if the mini batch size is sufficiently large, we can invoke the Central Limit Theorem (CLT) and
approximate the distribution as Gaussian - a common assumption in previous research [27–30].
Furthermore, our experimental results confirm that the gradient distributions closely approximate
Gaussian distributions, as illustrated in Figure 8 of Appendix H. We have the following theorem:
Theorem 2. Suppose the gradient of parameter i for each sample follows a Gaussian distribution
with mean µi and variance σ2

i , the expected loss improvement is:

∆Lopt =
1

2

∑
i

∑
j EiEjµiµj∑

i(1− E2
i )Hi,i +

∑
i

∑
j EiEjHi,j

, (8)
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and the corresponding optimal learning rate is

ϵopt =

∑
i Eiµi∑

i(1− E2
i )Hi,i +

∑
i

∑
j EiEjHi,j

, (9)

where Ei is a function (derived from the Gauss error function) with respect to the batch size B:

Ei(B) =
2√
π

∫ √
B
2

µi
σi

0

e−t2dt ≈
µi

σi√
π
2B +

(
µi

σi

)2 . (10)

We prove the above theorem in Appendix C.

An important observation from the proof is that, not only is the covariance matrix of sign(Gest)
related to B, but its expected value also depends on B. This implies that in Eq 6 the numerator is
the first-order form of the function about B, and the denominator is the second-order form of the
function about B:

ϵ(B) =
βf(B)

f(B)2 + γ
=

β

f(B) + γ
f(B)

. (11)

Therefore, the conclusion in the case of Adam cannot be derived by simply following the form
mentioned in [24]:

ϵ(B) ̸= ϵ∗(
1 + Bnoise

B

)α . (12)

Then we aim to derive the specific expression for the optimal learning rate with respect to the batch
size through the following theorems.

Theorem 3. When B ≪ πσ2
i

2µ2
i

, the optimal learning rate is a function with respect to batch size B:

ϵopt(B) ≈ 1

1
2

(√
Bnoise

B +
√

B
Bnoise

)
√

Bnoise

2π

∑
i
µ2
i

σi∑
i Hi,i

≤

√
Bnoise

2π

∑
i
µ2
i

σi∑
i Hi,i

, (13)

where Bnoise is a variable unrelated to batch size B:

Bnoise =
π
∑

i Hi,i

2
∑

i

∑
j

{
µiµj

σiσj
i ̸= j

0 i = j
Hi,j

. (14)

Defining Bpeak as the batch size at which the optimal learning rate reaches a peak value, it is obvious
that:

Bpeak = Bnoise. (15)

The peak value is:

ϵmax =

√
Bnoise

2π

∑
i
µ2
i

σi∑
i Hi,i

. (16)

We prove the theorem in Appendix D. From the theorem we can finally get Eq 2, which implies that
there is an interval where the batch size becomes larger and the optimal learning rate needs to be
reduced. Considering that πσ2

i

2µ2
i

is much larger than normal batch sizes in research and industry (as
shown in Figure 2), this theorem can cover most of the scenarios. To make the conclusion more
comprehensive, we also derive the following theorem:

Theorem 4. When B ≫ πσ2
i

2µ2
i

, the optimal learning rate becomes:

ϵopt =

∑
i |µi|∑

i

∑
j sign(µi)sign(µj)Hi,j

. (17)
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We prove the theorem in Appendix E.

Therefore, when B increases infinitely, the optimal learning rate will eventually converge to a non-zero
value. If we make an (unrealistic) assumption that µi

σi
≈ sign(µi), we will find that the lower bound

of ϵmax in Theorem 3 will become the one in Theorem 4, which means that the local peak value of
the optimal learning rate is larger than the final convergence value. However, considering that the
variance of the gradient in the later stages of training is very small, which makes the above conclusion
µi

σi
≈ sign(µi) difficult to establish, so the stable value in the later stages of training is more likely to

exceed the local maximum. We provide a reference curve in Figure 1.

2.2 Data/Time Efficiency Trade-off

Following the empirical model for large-batch training [24], we also review the trade-off between
data and time efficiency during batch size selection. We have the following theorem:

Theorem 5. When B ≪ πσ2
i

2µ2
i

, the derived loss improvement with respect to the batch size is

∆Lopt(B) =
∆Lmax

1 + Bnoise

B

, (18)

where ∆Lmax is defined as

∆Lmax =

∑
i

∑
j

µ2
iµ

2
j

σiσj

2
∑

i

∑
j

{
µiµj

σiσj
i ̸= j

0 i = j
Hi,j

, (19)

We prove the theorem in Appendix F. This result aligns with the conclusion drawn in the SGD
situation [24], indicating that many related conclusions also remain valid.

It has been concluded in previous work [24] that, when using the SGD optimizer with the same form
as Eq 18, the relationship between training speed (number of steps S) and data efficiency (number of
samples E) is given by: (

S

Smin
− 1

)(
E

Emin
− 1

)
= 1. (20)

Here S(min) represents training speed, the actual (minimum) possible number of steps taken to reach
a specified model performance; and E(min) represents data efficiency, the actual (minimum) possible
number of training examples processed to reach that same level of performance. For more details,
please refer to the Eq 2.11 and the Appendix D in [24]. Additionally, as referenced in the Eq 2.12
in [24] and Eq 1.4 in [25], Bnoise is the balance point between training speed and data efficiency:

Bnoise ≈ Bcrit =
Emin

Smin
≈ B∗

L
1

αB

. (21)

Since in Adam optimizer we arrive at the same Eq 18 as in SGD optimizer, the above equations 20
and 21 still hold. In Adam scenarios, Bpeak = Bnoise is not only the local maximum of the optimal
learning rate, but also the balance point between training speed and data efficiency. Moreover, as
training progresses and the loss decreases, according to Eq 21, Bpeak will gradually becomes larger.

2.3 Summary

In this section, we have drawn several conclusions from our theoretical analysis, which are summa-
rized as follows:

1. As the batch size increases, the optimal learning rate demonstrates a decreasing trend within
a specified range (Eq 2).

2. The batch size that corresponds to the local maximum optimal learning rate is consistent with
the balance point of training speed and data efficiency (Eq 21). As the training progresses
and the loss decreases, Bpeak will gradually becomes larger.
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3 Experiments

In this section, we carry out a series of experiments to corroborate the theoretical scaling law we
proposed in Section 2 and detail the experimental workloads and configurations in Section 3.1. The
process for deriving the estimated variables from our theory is elucidated in Section 3.2. We also
showcase and dissect the applicability of our scaling law across a variety of workloads in Section 3.3.

3.1 Experimental Setup

Workloads. In our empirical study, we incorporate 4 open-source workloads that are extensively
utilized: (1) training a 5-layer CNN model on the Fashion-MNIST [31], which is a typical CV test
case to start with. It consists of 60000 28x28 grayscale images in 10 classes; (2) training a ResNet-
18 model [32] on the Tiny-ImageNet dataset [33], which contains 100000 images of 200 classes
(500 for each class) downsized to 64×64 colored images. In each epoch we train the model with
random 10k samples to reduce the overall complexity; (3) training a dense Transformer model [12]
(simplified DistilGPT2 [34]) on the ELI5-Category dataset [35], which is a smaller but newer and
categorized version of the original ELI5 dataset [36]. It contains 10.5k complex, diverse questions
that require explanatory multi-sentence answers. (4) training a fine-grained Mixture-of-Experts (MoE)
model, similar in structure to Mistral-MoE [37] but with shared experts [38], on the RedPajama-v2
dataset [39], which contains 30 trillion filtered and deduplicated tokens (100+ trillions raw) from 84
CommonCrawl dumps covering 5 languages, along with 40+ pre-computed data quality annotations.
These workloads are popular in both academia and industry, covering typical deep learning tasks in
the domains of CV and NLP.

Batch sizes and learning rates. To showcase the optimal learning rate for each batch size configu-
ration, we leverage a grid-search-style experiments set. Each point in the grid search corresponds
to a certain round with the same configuration but a different random number seed. The start point,
stop point, and the interval of different workloads are listed in Table 1. In NLP tasks, the term "batch
size" refers to the number of tokens in a batch, as practiced in related works [25].

Table 1: Grid search configurations.

Adam Learning Rate Batch SizeWorkload
β1 β2 Start Stop Step Start Stop Step Round

CNN 0.9 0.999 1e-4 1e-3 1e-4 1 12 1 100
CNN 0.9 0.999 1e-4 1e-3 1e-4 64 1164 100 100

DistilGPT2 0.9 0.999 1e-5 1.09e-3 1.2e-4 4 114 10 30
DistilGPT2 0.0 0.0 1e-5 5.5e-4 6e-5 4 114 10 30
ResNet18 0.0 0.0 1e-4 7.876e-4 7.65e-5 16 376 33 100

MoE 0.9 0.999 2e-6 6e-5 2e-6 192k 12M 1.2M 10

Hyper-parameters. Since we derive the theorems on Adam-style optimizers, we conduct experiments
using the Adam optimizer. We experiment on both the "sign of gradient" configuration (β1 = 0,
β2 = 0) and the default hyper-parameters (β1 = 0.9, β2 = 0.999), as shown in Table 1.

Hardware environment. We execute each round of experiments utilizing an NVIDIA A100 card.
The training time of each round for the datasets are approximately 1 hour for Fashion-MNIST, 1.5
hours for TinyImageNet, 2 hours for ELI5-Category and 11 hours for RedPajama-v2. Given our
primary focus on the convergence process, the specific hardware environment does not matter in our
experiments. Our theoretical and empirical findings can be generalized to other hardware settings.
Additionally, some system optimizations [40–43] are also beneficial to enhancing training efficiency.

3.2 Variable Estimation

We try to estimate the value of Bnoise and the expectation of ϵmax through curve fitting. After using
Eq 21 to simplify Eq 20 (see Appendix G for details), we can record the actual possible number of
steps taken S and the actual possible number of training examples processed E to reach a specified
level of performance corresponding to the optimal learning rate of each batch size in the grid search
results, and then perform linear fitting to obtain the estimated value of Bnoise:

1

S
= −Bnoise

1

E
+

1

Smin
(22)
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Subsequently, we use the optimal learning rate and batch size of the grid search results to estimate
the max optimal learning rate of Adam-style E[ϵmax]Adam:

E[ϵmax]Adam = E

[
ϵopt
2

(√
Bnoise

B
+

√
B

Bnoise

)]
(23)

and SGD-style E[ϵmax]SGD:

E[ϵmax]SGD = E
[
ϵopt

(
1 +

Bnoise

B

)α]
(24)

Previous research [24] represents the SGD optimizer and the Adam optimizer using Eq 24 with α = 1
and α = 0.5, respectively. We include these fitted curves as comparisons in the following section.

While we use grid search to estimate the value of Bnoise, in practice we can efficiently approximate
it using the scaling law from previous studies [24, 25], where Bnoise ≈ Bcrit =

B∗
L1/α . With this

approximation, we only need a simple search for a pair of (batch size, optimal learning rate) to
determine the final hyperparameter ϵmax. Therefore, the costly grid-search can be avoided.

3.3 Results

Following Section 3.2, we first estimate the variables and fit the curves using observations, then
conduct grid-search-style experiments for learning rates and batch sizes.

Figure 2, 3, 4, 5 illustrate the experimental results of CNN-FashionMNIST, ResNet18-TinyImageNet,
DistilGPT2-ELI5Category and MoE-RedPajama-v2, respectively. Each figure is divided into two
parts: the left subfigure illustrates the grid-search results for batch sizes and learning rates, and
these data points are utilized to fit the curve of Eq 22 in the right subfigure. In order to estimate the
variables, we train models from scratch using different learning rates and batch sizes, then record the
number of steps S and examples E in each experiment to achieve an equivalent training loss. Using
the recorded S and E, we fit the curve in the right subfigure and obtain the estimated Bnoise. In the
left subfigure, upon achieving the desired training loss, all experiments continue to train the same
number of steps. Any subsequent decrease in training loss is represented through different colors, as
indicated in the color bar. For each batch size, we highlight the optimal learning rate that results in
the most significant reduction in training loss. We also plot the batch size Bnoise that corresponds
to the peak optimal learning rate, the fitted SGD curves with α = 0.5 and α = 1 as derived from
previous research [24], and the fitted Adam curve as derived from our theorems.

For the CNN-FashionMNIST workload, we train exactly 10 more step after achieving the desired
training loss. As shown in Figure 2(a), the batch size bound πσ2

i

2µ2
i

for Theorem 3 is around 800 in this
task. Given the simplicity of the CNN-FashionMNIST workload, commonly-used batch sizes are
usually smaller than the batch size bound. We plot the situations corresponding to Theorem 3 and
Theorem 4 in Figure 2(b) and 2(c), respectively. In both cases, the trend predicted by our theory
is consistent with the actual optimal learning rate performance, showing a declining range at small
batch sizes and a saturation range at large batch sizes.

For the ResNet18-TinyImageNet workload, we train 50 more steps after achieving the desired training
loss. We plot the figures for Theorem 3 at different achieved training losses, which represent the
progress of training, as shown in Figure 3. The observed optimal learning rates primarily exhibit a
downward trend after the batch size exceeds the estimated Bnoise. Although the SGD curve with
α = 0.5, which is claimed by [24] to represent the Adam optimizer, serves as a good approximation
in certain cases, it fails to capture the peak optimal learning rate as our Adam curve does. Comparing
the red dashed lines in different figures, we can see that the estimated Bnoise gradually increases as
the training progresses (i.e. training loss decreases), which corroborates the second conclusion in
Section 2.3.

For the DistilGPT2-Eli5Category workload, we train 50 more steps after achieving the desired
training loss. As shown in Figure 4, we test on two distinct Adam configurations for Theorem 3: the
first with β1 = 0.0, β2 = 0.0, and the second with β1 = 0.9, β2 = 0.999. In both configurations,
promising learning rates that lead to a substantial decrease in loss are consistent with our Adam curve.
It is worth noting that another curve, SGD with α = 0.5 [24], also provides a suitable approximation
in this scenario. To more clearly demonstrate the accuracy of our theoretical predictions, we present
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(a) Statistical histogram of πσ2
i

2µ2
i

.

(b) The situation of small batch size in Theorem 3. (c) The situation of large batch size in Theorem 4.

Figure 2: Batch size versus optimal learning rate within the context of CNN trained on FashionMNIST.

detailed results from a finer-grained grid search in Figure 6 of Appendix H. These experiments
demonstrate that our theorems can be generalized to different optimizer configurations, validating the
analysis in Appendix A.

For the sparse MoE model using the RedPajama-v2 dataset, we train 300 more steps after achieving
the desired training loss. Figure 5 demonstrates that our predictions on optimal learning rate are both
accurate and appropriate.

In addition to the above workloads, we also conduct an analysis of experimental results from third
parties, confirming that our conclusions remain valid. Detailed results are presented in Figure 7 of
Appendix H.

4 Discussion

We have carried out empirical studies on representative workloads using the Adam optimizer. Our
investigation into the scaling laws of learning rates relative to batch sizes has provided deeper
insights into the training dynamics of deep learning models. This understanding can help fine-
tune hyperparameters, enhance convergence speeds, and circumvent exhaustive grid searches. By
leveraging prior knowledge that the optimal learning rate decreases after reaching a peak, researchers
and engineers can more effectively adjust the learning rate to achieve efficient training outcomes.

In real-world applications, there are numerous different learning workloads [44–47]. Other factors,
beyond the scope of this paper, may influence the learning process - the specific optimizer used, weight
decay, gradient clipping, etc. While we assert that our theorem can be applied to numerous practical
scenarios, it may not fully encompass all situations involving intricate training configurations.

As one of our conclusions points out, the variable Bnoise will gradually increases as the training
progresses. It is natural to implement adaptive learning rates (and batch sizes) if possible, to speed up
the training process. As mentioned in [24], using adaptive batch sizes and warmed-up learning rates
brings considerable benefits. Fully exploring the potential of batch size and learning rate scheduling
requires meticulous design, which we leave as future work.
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(a) Ltraining = 5.213± 0.001 (b) Ltraining = 5.146± 0.001

(c) Ltraining = 5.113± 0.001 (d) Ltraining = 4.863± 0.001

(e) Ltraining = 4.741± 0.001 (f) Ltraining = 4.633± 0.001

Figure 3: The relationship between batch sizes and optimal learning rates within the context of
ResNet-18 trained on TinyImageNet. The red dashed line accurately predicts the peak value, and as
the training loss decreases, the peak value gradually shifts to the right.

(a) β1 = 0.0, β2 = 0.0 (b) β1 = 0.9, β2 = 0.999

Figure 4: The relationship between batch sizes and optimal learning rates within the context of
DistilGPT2 trained on Eli5Category.
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Figure 5: Grid search results for the MoE [37, 38] structure model.

Our theory is based on the quadratic approximation of the loss function. Experimental results
demonstrate that conclusions drawn from this second-order expansion effectively predict the surge
phenomenon observed in most mainstream scenarios. However, recent studies [48–50] have proposed
that quadratic approximations do not accurately capture the loss in scenarios involving large learning
rates. We acknowledge the potential benefits of exploring higher-order approximations and consider
this a promising direction for future research.

5 Related Work

Aiming to accelerate convergence, our work analyzes the scaling law of optimal learning rates with
respect to batch sizes for Adam-style optimizers. Numerous related studies have been proposed to
enhance the convergence of deep learning tasks by investigating optimal learning rates, developing
new optimizers, and analyzing gradient noise.

Earlier works have proposed various scaling laws to tune learning rates for SGD-style optimizers,
including square root scaling [22], linear scaling [19, 23], and others [24]. They also obtained a
scaling law for Adam-style optimizers [24, 23] through approximation, revealing a square root-like
relationship where the optimal learning rate monotonically increases with the batch size. However, as
illustrated in Section 1 and 2, their analysis holds only for small batch sizes, whereas the true scaling
law exhibits greater complexity, with the optimal learning rate reaching a peak value at a balanced
batch size.

There are many meticulously designed optimizers for various tasks and scenarios. First-order
optimizers dominate nowadays deep learning models, including adaptive methods [3–7], sign-based
methods [18, 8], layer-wise methods (for large-batch training) [51, 52]. Second-order optimizers [53–
55], though with stronger theoretical guarantees, are not efficient for large-scale models due to
quadratic complexity with respect to the number of parameters. Despite the emergence of new
optimizers, empirical evidence confirms that Adam has remained the most widely used and effective
optimizer over the past decade.

Our analysis is inspired by the empirical model of large-batch training [24], which predicts the useful
batch size using the gradient noise scale. Gradient noise can help with learning rate determination [56],
batch size selection [57, 58], and gaining deeper insights into the convergence process [59–62].

6 Conclusion

In this paper, we established a scaling law between optimal learning rates and batch sizes for Adam-
style optimizers. We theoretically proved that the optimal learning rate initially increases and then
decreases as the batch size grows, and that the peak value of the surge represents a trade-off point
between training speed and data efficiency. Through extensive experiments, we validated our theory
on diverse deep learning models and datasets.
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A Parameter Update Amount in the Adam Optimizer

The update amount in the Adam optimizer consists of two parts, the first moment:
mt = β1mt−1 + (1− β1)Gest,t

m̂t =
mt

1− βt
1

(25)

and the second moment:
vt = β2vt−1 + (1− β2)G

2
est,t

v̂t =
vt

1− βt
2

(26)

where m0 = 0 and v0 = 0. The final update amount is

V =
m̂t√

v̂t + ϵAdam

=

1−β1

1−βt
1

∑t
i β

t−i
1 Gest,i√

1−β2

1−βt
2

∑t
i β

t−i
2 G2

est,i + ϵAdam

(27)

After ignoring the role of ϵAdam, when β1 → 1 and β2 → 1, Eq 27 transforms to

V =

∑t
i Gest,i

t√∑t
i G

2
est,i

t

=
Et[Gest]√
Et[G2

est]
=

sign(Et[Gest])√
1 + vart(Gest)

Et[Gest]2

(28)

The equation is obtained by using vart(Gest) = Et[G
2
est]− Et[Gest]

2. Note that the expected value
Et[Gest] is over the iteration distribution, not over the data distribution. Obviously, when the variance
of Gest is small, the update amount is approximately sign(Gest).

On the other hand, when β1 → 0 and β2 → 0, Eq 27 can be simplified to

V =
Gest√
G2

est

= sign(Gest) (29)

Therefore, we can approximate the parameter update amount of the Adam optimizer as sign(Gest),
without affecting the theoretical conclusion.

B Proof of Lemma 1

Proof. We can perturb the parameters θ by some vector V with learning rate ϵ, and approximate the
true loss using a quadratic expansion in terms of ϵ via Taylor expansion:

L(θ − ϵ · V ) ≈ L(θ)− ϵGTV +
1

2
ϵ2V THV. (30)

Consider the expected value of loss improvement over a data distribution ρ(x) over data points x:

E[∆L] = E[L(θ)− L(θ − ϵ · V )] ≈ ϵGTE[V ]− 1

2
ϵ2E[V THV ]. (31)

By maximizing the expected loss improvement, we obtain the optimal learning rate in Eq 6 and the
optimal loss improvement in Eq 7.

C Proof of Theorem 2

Proof. Consider a random variable x ∼ N (µ, σ2), let y = x−µ
σ and z = −µ

σ , then

E[sign(x)] =
∫ ∞

−∞
sign(x)

1

σ
√
2π

e−
(x−µ)2

2σ2 dx

=
1√
2π

∫ ∞

−∞
sign(µ+ σy)e−

y2

2 dy

=
1√
2π

(

∫ ∞

z

e−
y2

2 dy −
∫ z

−∞
e−

y2

2 dy)

= (1− Φ(z))− Φ(z) = erf

(
µ√
2σ

)
(32)
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and the variance is

var(sign(x)) = E[sign(x)2]− E[sign(x)]2 = 1− erf

(
µ√
2σ

)2

, (33)

where Φ represents the cumulative distribution function of the standard normal distribution, and erf

is the Gauss error function that is defined as erf(x) = 2√
π

∫ x

0
e−t2dt.

Given that the gradient Gx of any data point x in the data distribution ρ(x) relative to a certain
parameter θi follows a Gaussian distribution with mean µi and variance σ2

i , then

Gest(θi) =
1

B

B∑
Gx(θi) ∼ N

(
µi,

σ2
i

B

)
. (34)

Therefore, when V = sign(Gest), using Eq 32 and Eq 33 we can get the expectation

E[V ] =


...

erf
(√

B
2

µi

σi

)
...

, (35)

and the covariance matrix

cov(V ) =


. . . 0

1− erf
(√

B
2

µi

σi

)2
0

. . .

. (36)

Given that the real gradient satisfies:

G =


...
µi

...

 , (37)

and define Ei as a function with respect to the token batch size B, based on the Gauss error function:

Ei(B) = erf

(√
B

2

µi

σi

)
=

2√
π

∫ √
B
2

µi
σi

0

e−t2dt, (38)

substituting the expectation and the variance of V in Eq 6 and Eq 7 from Lemma 1 using the above
equations, we can get Eq 8 and Eq 9 respectively.

To simplify the subsequent computation, we approximate the function Ei by other sigmoid-like

analytical forms. Specifically, we find that Ei(B) ≈
µi
σi√

π
2B+

(
µi
σi

)2
, which results in Eq 10.

D Proof of Theorem 3

Proof. When B ≪ πσ2
i

2µ2
i

, Eq 10 reduces to:

Ei(B) ≈
√

2B

π

µi

σi
. (39)

Substituting the function Ei in Eq 9 using the above equation, and defining Bnoise and ϵmax as in
Eq 14 and 16, we can deduce the relationship between the optimal learning rate and the token batch
size:
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ϵopt(B) =
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(40)

It should be noted that since Bnoise > 0 and ϵmax > 0, then both
∑

i Hi,i and∑
i

∑
j

{
µiµj

σiσj
i ̸= j

0 i = j
Hi,j are greater than 0. Therefore, ϵmax can be expressed as a form that

does not contain Bnoise:
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The last inequality is derived using the AM–GM inequality (a2 + b2 ≥ 2ab).

E Proof of Theorem 4

Proof. When B ≫ πσ2
i

2µ2
i

, Eq 10 converges to:

Ei = sign

(
µi

σi

)
= sign(µi). (42)

Substituting the function Ei in Eq 9, we can obtain Eq 17.

17



F Proof of Theorem 5

Proof. When B ≪ πσ2
i

2µ2
i

, we have the approximate results in Eq 39 from Theorem 3. Substituting Ei
and Bnoise using Eq 39 and 14, and defining ∆Lmax as in 19, the optimal loss improvement in Eq 8
can be expressed as:

∆Lopt(B) = ��
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2 · �2Bπ
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i
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(43)

Following the Appendix D in [24], this allows both the total number of steps and data examples
processed to still be written as

S =

∫ (
1 +

Bnoise

B

)
ds

E =

∫
(Bnoise +B)ds

(44)

Therefore the conclusion in [24]

Smin =

∫
ds

Emin =

∫
Bnoiseds

(45)

and Eq 20, 21 still hold.

G Variable Estimation for Data/Time Efficiency Relationship Equation

When considering S, E, Smin and Emin > 0, Eq 20 can be simplified to(
S

Smin
− 1

)(
E

Emin
− 1

)
= 1

SE − SminE − SEmin +(((((SminEmin =(((((SminEmin

SminE + SEmin = SE

Smin

S
+

Emin

E
= 1

1

S
= −Emin

Smin

1

E
+

1

Smin

(46)

so a linear fit to the relationship between 1
S and 1

E can estimate Smin and Emin.

H Additional Experiments Results
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Figure 6: Finer-grained grid search results for the experiments shown in Figure 4(b).

(a) 1e17 FLOPs (177M FLOPs/token) (b) 1e20 FLOPs (2.94B FLOPs/token)

Figure 7: The optimal learning rates, based on the results presented in the Deekseek paper [63], align
with our theorems.

Figure 8: Examples of gradient distributions observed during the training of an MoE structure model,
which approximate Gaussian distributions.
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might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: The model structure and data required for the experiments are publicly avail-
able. And the necessary experimental configuration has been provided in Section 3.1 for
reproduction.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The necessary experimental configurations have been provided in Section 3.1
for reproduction.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: See Section 3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Section 3.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conforms the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed. This work is a foundational
research and is not tied to particular applications.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the creators and provide necessary information in Section 3.1.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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