
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

REAL-TIME VIDEO GENERATION WITH PYRAMID
ATTENTION BROADCAST

Anonymous authors
Paper under double-blind review

ABSTRACT

We present Pyramid Attention Broadcast (PAB), a real-time, high quality and
training-free approach for DiT-based video generation. Our method is founded
on the observation that attention difference in the diffusion process exhibits a
U-shaped pattern, indicating significant redundancy. We mitigate this by broadcast-
ing attention outputs to subsequent steps in a pyramid style. It applies different
broadcast strategies to each attention based on their variance for best efficiency.
We further introduce broadcast sequence parallel for more efficient distributed
inference. PAB demonstrates up to 10.5× speedup across three models compared
to baselines, achieving real-time generation for up to 720p videos. We anticipate
that our simple yet effective method will serve as a robust baseline and facilitate
future research and application for video generation.

latency: 97.5s, FPS: 2.0

Open-Sora

latency: 9.2s, FPS: 21.3

(10.5× Faster)

latency: 139.5s, FPS: 1.6

Open-Sora-Plan

latency: 16.5s, FPS: 13.4

(8.4× Faster)

latency: 80.5s, FPS: 0.6

Latte

latency: 9.2s, FPS: 13.8

(8.7× Faster)

prompt: A serene night scene in a forested area. The first frame ... The second frame ... The third frame ... The video is a

time-lapse, capturing the transition from day to night, with the lake and forest serving as a constant backdrop. The style

of the video is naturalistic, emphasizing the beauty of the night sky and the peacefulness of the forest.

o
u
rs

,
8

 G
P

U
s

o
ri

g
in

a
l,

 1
 G

P
U

Figure 1: Results and speed comparison of our and original methods. PAB can significantly boost
generation speed while preserving original quality. Latency is measured on 8 H100 GPUs. Video gen-
eration specifications: Open-Sora (2s, 480p), Open-Sora-Plan (2.7s , 512x512), Latte (2s, 512x512).

1 INTRODUCTION

Sora (Brooks et al., 2024) kicks off the door of DiT-based video generation (Peebles & Xie, 2023).
Recent approaches (Ma et al., 2024a; Zheng et al., 2024; Lab & etc., 2024) demonstrate their
superiority compared to CNN-based methods (Blattmann et al., 2023; Wang et al., 2023a) especially

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

in generated video quality. However, this improved quality comes from significant costs, i.e., more
memory occupancy, computation, and inference time. Therefore, exploring an efficient approach
for DiT-based video generation becomes urgent for broader GenAI applications (Kumar & Kapoor,
2023; Othman, 2023; Meli et al., 2024).

Model compression methods employ techniques such as distillation (Crowley et al., 2018; Hsieh
et al., 2023), pruning (Han et al., 2015; Ma et al., 2023), quantization (Banner et al., 2019; Lin et al.,
2024), and novel architectures (Lin et al., 2024) to speedup deep learning models and have achieved
remarkably success. Recently, they have also been proven to be effective on diffusion models (Sauer
et al., 2023; Ma et al., 2024b; Chen et al., 2024b). Nevertheless, these methods usually require
additional training with considerable computational resources and datasets, which makes model
compression prohibitive and impractical especially for large-scale pre-trained models.

Most recently, researchers revisit the idea of cache (Smith, 1982; Goodman, 1983; Albonesi, 1999)
to speedup diffusion models. Different from model compression methods, model caching methods
are training-free. They alleviate redundancy by caching and reusing partial network outputs, thereby
eliminating additional training. Some studies utilize high-level convolutional features for reusing
purposes (Ma et al., 2024c) and efficient distributed inference (Li et al., 2024; Wang et al., 2024).
Similar strategies have also been extended to specific attentions (Zhang et al., 2024; Wimbauer et al.,
2024), i.e., cross attention, and standard transformers (Chen et al., 2024c).

However, training-free speedup methods for DiT-based video generation still remains unexplored.
Besides, previous model caching methods are not directly applicable to video DiTs due to two
intrinsic differences: i) Different architecture. The model architecture has shifted from convolutional
networks (Ronneberger et al., 2015) to transformers (Vaswani et al., 2017). This transaction makes
former techniques that aims at convolutional networks not applicable to video generation anymore.
ii) Different components. Video generation relies on three diverse attention mechanisms: spatial,
temporal, and cross attention (Blattmann et al., 2023; Ma et al., 2024a). Such components lead to
more complex dependency and attention interactions, making simple strategies ineffective. They also
increase the time consumed by attentions, making attentions more critical than before.

Figure 2: Comparison of the attention outputs differ-
ences between the current and previous diffusion steps.
Differences are measured by Mean Square Error (MSE)
and averaged across all layers for each diffusion step.

To address these challenges, we take a
closer look at attentions in video DiTs
and empirically obtain two observations
as shown in Figure 2: (i) The attention out-
put differences between adjacent diffusion
steps exhibit a U-shaped pattern, with sta-
bility in the middle 70% steps, indicating
considerable redundancy for attention. (ii)
Within the stable middle segment, differ-
ent attention types also demonstrate vari-
ous degrees of difference. Spatial atten-
tion changes the most with high-frequency
visual elements, temporal attention shows
mid-frequency variations related to move-
ments, and cross-modal attention remains
the most stable, linking text with video con-
tent (Zhang et al., 2024).

Based on these observations, we propose Pyramid Attention Broadcast (PAB), a real-time, high
quality and training-free method for efficient DiT-based video generation. Our method mitigates
attention redundancy by broadcasting the attention outputs to subsequent steps, thus eliminating
attention computation in the diffusion process. Specifically, we apply various broadcast ranges for
different attentions in a pyramid style, based on their stability and differences as shown in Figure
2. We empirically find that such broadcast strategy can also work to MLP layers. Additionally, to
enable efficient distributed inference, we propose broadcast sequence parallel, which significantly
decreases generation time with much lower communication costs.

In summary, to the best of our knowledge, PAB is the first approach that achieves real-time video
generation, reaching up to 35.6 FPS with a 10.5× acceleration without compromising quality. It
consistently delivers excellent and stable speedup across popular open-source video DiTs, including

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Open-Sora (Zheng et al., 2024), Open-Sora-Plan (Lab & etc., 2024), and Latte (Ma et al., 2024a).
Notably, as a training-free and generalized approach, PAB has the potential to empower any future
video DiTs with real-time capabilities.

2 HOW TO ACHIEVE REAL-TIME VIDEO GENERATION

2.1 PRELIMINARIES

Denoising diffusion models. Diffusion models are inspired by the physical process where particles
spread out over time due to random motion, which consists of forward and reverse diffusion processes.
The forward diffusion process gradually adds noise to the data over T steps. Starting with data x0

from a distribution q(x), noise is added at each step:
xt =

√
αtxt−1 +

√
1− αtzt for t = 1, . . . , T, (1)

where αt controls the noise level and zt ∼ N (0, I) is Gaussian noise. As t increases, xt becomes
noisier, eventually approximating a normal distribution N (0, I) when t = T . The reverse diffusion
process aims to recover the original data from the noisy version:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), (2)
where µθ and Σθ are learned parameters defining the mean and covariance.

spatial attn.

cross attn.

temporal attn.

FFN

FFN

sp
at

ia
l

te
m

po
ra

l

noise

te
xt

 e
m

be
d.

video

N

cross attn.

Figure 3: Overview of DiT-based
video generation models, which
compromises spatial and temporal
transformer block. Cross attention
incorporates information from text.

Video generation models. The remarkable success of Sora
(Brooks et al., 2024) has demonstrated the great potential of
diffusion transformers (DiT) (Peebles & Xie, 2023) in video
generation, which leads to a series of research including Open-
Sora (Zheng et al., 2024), Open-Sora-Plan (Lab & etc., 2024),
and Latte (Ma et al., 2024a).

In this work, we focus on accelerating the DiT-based video
generation models. As illustrated in Figure 3, we present the
fundamental architecture of video DiTs. Different from tran-
sitional transformers, the model is composed of two types of
transformer blocks: spatial and temporal. Spatial transformer
blocks capture spatial information among tokens that share the
same temporal index, while temporal transformer blocks han-
dle information across different temporal dimensions. Cross-
attention enables the model to incorporate information from
the conditioning input at each step, ensuring that the generated
output is coherent and aligned with the given context. Note that
cross-attention mechanisms are not included in the temporal
blocks of some video generation models (Ma et al., 2024a).

2.2 ATTENTION REDUNDANCY IN VIDEO DITS

Attention’s rising costs. Video DiTs employ three distinct types of attentions: spatial, temporal, and
cross attention. Consequently, the computational cost of attention in these models is significantly
higher than in previous methods. As Figure 4(b) illustrates, the proportion of time for total attention
in video DiTs is significantly larger than in CNN approaches, which will further increases with larger
video sizes. This dramatic increase poses a significant challenge to the efficiency of video generation.

Unmasking attention patterns. To accelerate costly attention components, we conduct an in-depth
analysis of their behavior. Figure 4(a) shows the visualized differences in attention outputs across
various stages. We observe that for middle segments, the differences are minimal and patterns appear
similar. The first few steps show vague patterns, likely due to the initial arrangement of content. In
contrast, the final steps exhibit significant differences, presumably as the model sharpens features.

Similarity and diversity. To further investigate this phenomenon, we quantify the differences in at-
tention outputs across all diffusion steps, as illustrated in Figure 4(c). Our analysis reveals that the dif-
ferences in attention outputs demonstrate low difference for approximately 70% of the diffusion steps
in the middle segment. Additionally, the variance in their outputs is also low, but still with slight dif-
ferences: spatial attention shows the highest variance, followed by temporal and then cross-attention.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

prompt:

slow pan upward

of blazing oak fire

in an indoor

fireplace.

s
p

a
ti
a

l
a
tt
n

.
te

m
p

o
ra

l
a

tt
n
.

c
ro

s
s
 a

tt
n
.

diff 24-25 diff 14-15 diff 0-1diff 34-35diff 49-50

a) visualized examples of attention difference c) quantitative attn. difference

b) total attn. cost comparison

Figure 4: a) Visualization of attention differences in Latte. diff i-j represents the difference between
step i and step j. b) Comparison of total attention time cost between Stable Video Diffusion (Blattmann
et al., 2023) (U-Net) and Open-Sora (DiT). c) Quantitative analysis of attention differences in Open-
Sora, assessed using mean squared error (MSE). The dashed line represents the average value of the
corresponding attention difference.

2.3 PYRAMID ATTENTION BROADCAST

Figure 5: Overview of Pyramid Attention Broadcast. Our method (shown on the right side) which sets
different broadcast ranges for three attentions based on their differences. The smaller the variation in
attention, the longer the broadcast range. During runtime, we broadcast attention results to the next
several steps (shown on the left side) to avoid redundant attention computations.

Building on the findings above, we propose Pyramid Attention Broadcast (PAB), a real-time, high
quality and training-free method to speedup DiT-based video generation by alleviating redundancy
in attention computations. As shown in Figure 5, PAB employs a simple yet effective strategy
to broadcast the attention output from some diffusion steps to their subsequent steps within the
stable middle segment of diffusion process. Different from previous approaches that reuse attention
scores (Treviso et al., 2021), we choose to broadcast the entire attention module’s outputs, as we
find this method to be equally effective but significantly more efficient. This approach allows us to
completely bypass redundant attention computations in those subsequent steps, thereby significantly
reducing computational costs. This can be formulated as:

Oattn. = {F (Xt), Y
∗
t , · · · , Y ∗

t︸ ︷︷ ︸
broadcast range

, F (Xt−n), Y
∗
t−n, · · · , Y ∗

t−n︸ ︷︷ ︸
broadcast range

, · · · }. (3)

where Oattn. refers to the output of the attention module at all timesteps, F (Xt) denotes the attentions
are calculated at timestep t and Y ∗

t indicates the attentions results are broadcast from timestep t. We
also apply similar strategy to mlp modules as depicted in Appendix A.2.2.

Furthermore, our research reveals that a single strategy across all attention types is still far from
optimal, as each attention vary a lot as shown in Figure 2 and 4(c). To improve efficiency while

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

preserving quality, we propose to tailor different broadcast ranges for each attention, as depicted in
Figure 5. The determination of the broadcast ranges is based on two key factors: the rate of change
and the stability of each attention type. Attention types that exhibit more changes and fluctuations
at consecutive step are assigned smaller broadcast ranges for their outputs. This adaptive strategy
enables more efficient handling of diverse attentions within the model architecture.

2.4 BROADCAST SEQUENCE PARALLELISM

Figure 6: Comparison between original sequence parallelism
and ours. When temporal attention is broadcast, we can avoid
all communication.

We introduce broadcast sequence par-
allel, which leverages PAB’s unique
characteristics to improve distributed
inference speed. Sequence parallel
methods (Jacobs et al., 2023; Zhao
et al., 2024) distributes workload
across GPUs, thus reducing genera-
tion latency. But they incur significant
communication overhead for tempo-
ral attention as shown in Figure 6. By
broadcasting temporal attention, we
naturally eliminate extra communications, substantially reducing overhead without quality loss,
which enables more efficient, scalable distributed inference for real-time video generation.

3 EXPERIMENTS

In this section, we present our experimental settings, followed by our results and ablation studies. We
then evaluate the scaling capabilities of our approach and visualize the results.

3.1 EXPERIMENTAL SETUP

Models. We select three state-of-the-art open-source DiT-based video generation models including
Open-Sora-v1.2 (Zheng et al., 2024), Open-Sora-Plan-v1.1.0 (Lab & etc., 2024), and Latte-1.0 (Ma
et al., 2024a) as our experimental models.

Metrics. Following previous works (Li et al., 2024; Ma et al., 2024a), we evaluate video quality
using the following metrics: VBench (Huang et al., 2024), Peak Signal-to-Noise Ratio (PSNR),
Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018), and Structural Similarity
Index Measure (SSIM) (Wang & Bovik, 2002). VBench evaluates video generation quality, aligning
with human perception. PSNR quantifies pixel-level fidelity between outputs, while LPIPS measures
perceptual similarity, and SSIM assesses the structural similarity. The details of evaluation metrics
are presented in Appendix A.4.

Baselines. We employ ∆-DiT (Chen et al., 2024c) and T-GATE (Zhang et al., 2024), which are both
training-free caching methods to accelerate DiTs. We show details in Appendix A.3.

Implementation details. All experiments are carried out on the NVIDIA H100 80GB GPUs with
Pytorch. We enable FlashAttention (Dao et al., 2022) by default for all experiments.

3.2 MAIN RESULTS

Quality results. Table 1 presents quality comparisons between our method and baselines across
four metrics and three models. We generate videos based on VBench’s (Huang et al., 2024) prompts.
Then evaluate VBench for each method, and calculate other metrics including PSNR, LPIPS, and
SSIM with respect to the original results. PABαβγ denotes broadcast ranges of spatial (α), temporal
(β), and cross (γ) attentions. More experiments on other datasets can be found in Appendix B.1.

Based on the results, we make the following observations: i) Our method achieves superior quality
results compared with two baselines while simultaneously achieving significantly higher acceleration
by up to 1.58× on a single GPU. This demonstrates our method’s ability to improve efficiency with

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

model method VBench (%) ↑ PSNR ↑ LPIPS ↓ SSIM ↑ FLOPs (T) ↓ latency (s) ↓ speedup

Open-Sora

original 79.22 – – – 3230.24 26.54 –

∆-DiT 78.21 11.91 0.5692 0.4811 3166.47 25.87 1.03×
T-GATE 77.61 15.50 0.3495 0.6760 2818.40 22.22 1.19×

PAB246 78.51 27.04 0.0925 0.8847 2657.70 19.87 1.34×
PAB357 77.64 24.50 0.1471 0.8405 2615.15 19.35 1.37×
PAB579 76.95 23.58 0.1743 0.8220 2558.25 18.52 1.43×

Open-Sora-
Plan

original 80.39 – – – 12032.40 46.49 –

∆-DiT 77.55 13.85 0.5388 0.3736 12027.72 46.08 1.01×
T-GATE 80.15 18.32 0.3066 0.6219 10663.32 39.37 1.18×

PAB246 80.30 18.80 0.3059 0.6550 9276.57 33.83 1.37×
PAB357 77.54 16.40 0.4490 0.5440 8899.32 31.61 1.47×
PAB579 71.81 15.47 0.5499 0.4717 8551.26 29.50 1.58×

Latte

original 77.40 – – – 3439.47 11.18 –

∆-DiT 52.00 8.65 0.8513 0.1078 3437.33 10.85 1.02×
T-GATE 75.42 19.55 0.2612 0.6927 3059.02 9.88 1.13×

PAB235 76.32 19.71 0.2699 0.7014 2767.22 8.91 1.25×
PAB347 73.69 18.07 0.3517 0.6582 2648.45 8.45 1.32×
PAB469 73.13 17.16 0.3903 0.6421 2576.77 8.21 1.36×

Table 1: Quality results on single GPU. PABαβγ denotes broadcast ranges of spatial (α), temporal
(β), and cross (γ) attentions. Video generation specifications: Open-Sora (2s, 480p), Open-Sora-Plan
(2.7s, 512x512), Latte (2s, 512x512). PSNR, SSIM, and LPIPS are calculated against the original
model results. FLOPs indicate floating-point operations per video generation.

negligible quality loss. ii) Our method consistently performs well across all three models, which
utilize diverse training strategies and noise schedulers, demonstrating its generalizability.

Speedups. Figure 7 illustrates the significant speedup achieved by our method when leveraging
multiple GPUs with broadcast sequence parallelism. Our method demonstrates almost linear speedups
as the GPU number increases across three different models. Notably, it achieves an impressive 10.50×
speedup when utilizing 8 GPUs. These results highlight the significant reduction in communication
overhead and underscore the efficacy of our broadcast sequence parallelism strategy.

10.50×
6.08×

3.22×

1.33×

8.43×
4.79×

2.53×

1.38×

8.70×4.72×

2.46×

1.35×

Figure 7: Speedups. We evaluate the latency and speedup achieved by PAB246/PAB235 (the strategy
with best quality, but less speedup) for single video generation across up to 8 NVIDIA H100 GPUs.
The results are presented for three models utilizing broadcast sequence parallelism. The multiple
GPUs’ speedup is compared with single GPU’s speed.

3.3 ABLATION STUDY

To thoroughly examine the characteristics of our method, we conduct extensive ablation studies.
Unless otherwise stated, we apply PAB246 (the best quality, but less speedup) to Open-Sora for
generating 2s 480p videos using a single NVIDIA H100 GPU.

Evaluation of components. As shown in Table 2, we compare the contribution of each component
in terms of speed and quality. We disable the broadcast strategy for each component individually
and measure the VBench scores and increase in latency. While the impacts on VBench scores
are negligible, all components contribute to the overall speedup. Spatial and temporal attentions
yield the most computational savings, as they address more extensive redundancies compared to

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Evaluation of components. w/o indicates
the broadcast strategy is disabled only for that com-
ponent. ∆ represents the corresponding increased
latency compared with all components.

broadcast strategy latency (s) ∆ VBench (%) ↑

w/o spatial attn. 21.74 +1.87 78.45
w/o temporal attn. 23.95 +4.08 78.98
w/o cross attn. 20.98 +1.11 78.58
w/o mlp 20.27 +0.40 78.59

all components 19.87 – 78.51

Table 3: Broadcast object comparison. We
compare the speedup and effect for different
broadcasting object. attention outputs refer to
the final output of attention. attention scores
denotes attention score map.

broadcast object VBench (%) latency (s)

original 79.22 26.54

attention scores 78.53 29.12
attention outputs 78.51 19.87

other components. Cross attention follows, offering moderate improvements despite its relatively
lightweight computation. The mlp shows limited speedup due to its inherently low redundancy.

Effect of attention broadcast range. We conduct a comparative analysis of different broadcast
ranges for spatial, temporal, and cross attentions. As illustrated in Figure 8, our findings reveal a clear
inverse relationship between broadcast range and video quality. Moreover, we observe that the effect
of different broadcast range varies across different attention, suggesting that each type of attention
has its own distinct characteristics and requirements for optimal performance.

2 3 4 5
22.0

23.0

24.0

25.0

26.0

27.0

la
te

nc
y

(s
)

24.86
24.50 24.30 24.12

spatial attention.
latency VBench score

4 5 6 7

broadcast range
20.0

21.0

22.0

23.0

24.0

25.0

la
te

nc
y

(s
)

22.61
22.28

21.94 21.85

temporal attention

5 6 7 8

25.2

25.5

25.8

26.1

26.4

la
te

nc
y

(s
)

25.72 25.68 25.66 25.65

cross attention

75.0

76.0

77.0

78.0

79.0

80.0

V
B

en
ch

 s
co

re
 (%

)

75.2

76.1

77.1

78.0

79.0

V
B

en
ch

 s
co

re
 (%

)

78.5

78.8

79.0

79.2

79.4

V
B

en
ch

 s
co

re
 (%

)

Figure 8: Evaluation of attention broadcast ranges. Comparison of latency and video quality across
varying attention broadcast ranges in spatial, temporal, and cross attentions.

What to broadcast in attention? While previous works (Treviso et al., 2021) typically reuse
attention scores, we find that broadcasting attention outputs is superior. Table 3 compares the
speedup and video quality achieved by broadcasting attention scores versus attention outputs. Our
results demonstrate that broadcasting attention outputs maintains similar quality while offering much
better efficiency, for two primary reasons:

i) Attention output change rates are low, as the accumulated results after attention aggregation
remain similar despite pixel-level changes. This further indicates significant redundancy in attention
computations. ii) Broadcasting attention scores prevents the use of efficient attention kernels such as
FlashAttention (Dao et al., 2022). It also requires complete attention-related computations, including
attention calculation and linear projection, which are avoided when broadcasting outputs.

3.4 SCALING ABILITY

To evaluate our method’s scalability, we conduct a series of experiments. In each experiment, we
apply PAB246 (the best quality, but less speedup) to Open-Sora as our baseline configuration, change
only the video sizes, parallel method and GPU numbers.

Scaling to multiple GPUs. We compare the scaling efficiency with and without our method using 8
GPUs in Table 4 for four sequence parallelism methods including Megatron-SP (Korthikanti et al.,
2023), DS-Ulysses (Jacobs et al., 2023) and DSP (Zhao et al., 2024). Our broadcast sequence parallel
is implemented based on DSP, and is also adaptable to other methods. The results demonstrate
that: i) PAB significantly reduces communication volume for all sequence parallelism methods.
Furthermore, our method achieves the lowest communication cost compared to other techniques,
and achieving near-linear scaling on 8 GPUs. With a larger temporal broadcast range, it can yield
even greater performance improvements. ii) Applying sequence parallelism alone is insufficient for
optimal performance because of the significant communication overhead across multiple devices.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 4: Communication and latency comparison of dif-
ferent sequence parallelism methods on 8 NVIDIA H100
GPUs with and without our method. original refers to our
method on single GPU. comm. represents the total commu-
nication volume required to generate a single 8s 480p video.

method
w/o PAB w/ PAB

comm. (G) latency (s) comm. (G) latency (s)

original – 97.51 – 73.25

Megatron-SP 184.63 17.17 104.62 14.78
DS-Ulysses 46.16 12.34 26.16 9.85
DSP 23.08 12.01 – –

ours – – 13.08 9.29

4.0s (102 frames), 480p
0.0

7.8

15.6

23.5

31.3

39.1

FP
S

20.67

35.56

4.0s (102 frames), 720p
0.0

3.6

7.1

10.7

14.3

17.8

8.79

16.22

ours (8 devices) ours (16 devices)

Figure 9: Real-time video generation
performance. We evaluate our methods’
speed in frames per second (FPS) using
8 and 16 NVIDIA H100 GPUs for 480p
and 720p videos.

9.81×
5.60×

3.21×

1.32×

10.50×
6.08×

3.22×

1.33×

10.09×
5.68×

3.03×

1.31×

10.59×
5.61×

2.85×

1.26×

Figure 10: Scaling video size. Validating our method’s acceleration and scaling capabilities on single
and multi-GPU setups for generating larger videos.

Scaling to larger video size. Currently, most models are limited to generating short, low-resolution
videos. However, the ability to generate longer, higher-quality videos is both inevitable and necessary
for future applications. To evaluate our model’s capacity to accelerate processing for larger video
sizes, we conducted tests across various video lengths and resolutions, as illustrated in Figure 10. Our
results demonstrate that as video size increases, we can deliver stable speedup on a single GPU and
better scaling capabilities when extending to multiple GPUs. These findings underscore the efficacy
and potential of our method for processing larger video sizes.

Real-time video generation. We evaluate our method’s speed in terms of FPS on 8 and 16 devices.
Since in inference, the batch size of diffusion is often 2 because of CFG. Therefore, we split the batch
first and apply sequence parallelism to each batch; in this way, PAB can extend to 16 devices with
almost linear acceleration. As shown in Figure 9, we can achieve real-time with very high FPS video
generation for 480p videos on 8 devices and even for 720p on 16 devices. Note that with acceleration
techniques like Torch Compiler (Ansel et al., 2024), we are able to achieve even better speed.

Runtime breakdown. To further investigate how our method achieves such significant speedup, we
provide a breakdown of the time consumption for various components, as shown in Figure 11. The
analysis reveals that the attention calculation itself does not consume a large portion of time because
the sequence length for attention will be much shorter if we do attention separately for each dimension.
However, attention-related operations, such as normalization and projection, are considerably more
time-consuming than the attention mechanism itself, which mainly contribute to our speedup.

0 3 6 9 12 15 18 21 24 27 30

latency (s)

ours

org.

spatial attn.
spatial attn. related

temporal attn.
temporal attn. related

cross attn.
cross attn. related

mlp other

Figure 11: Runtime breakdown for generating a 2s 480p video. attn. denotes the time consumed by
attention operations alone, while attn. related includes the time for additional operations associated
with attention, such as normalization and projection.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

3.5 VISUALIZATION

As shown in Figure 12, we visualize the video results generated by our method compared to the
original model. The generation specifications are the same with those in Table 1, and we employ the
highest quality strategy outlined in the table. The visualized results demonstrate that our method
maintains the original quality and details.

prompt: white smoke on black background. simply drop it in and change its blending mode to screen or add.

Open-Sora
OursOriginal

Open-Sora-Plan
OursOriginal

Latte
OursOriginal

prompt: summer landscape on a mountain lake. small rustic wooden pier on the water waves. morning and sunlight through the clouds waves, in the background of the mountain in the fog.

prompt: korean popular dish, samgyopsal, is being baked on a stone plate with kimchi. close-up, macro shot.

prompt: slow pan upward of blazing oak fire in an indoor fireplace.

prompt: snow falling over multiple houses and trees on winter landscape against night sky. christmas festivity and celebration concept.

Figure 12: Qualitative results. We compare the generation quality between our method and original
model. The figures are randomly sampled from the generated video.

4 RELATED WORK

4.1 VIDEO GENERATION

Early approaches of video generation primarily leveraged GANs (Goodfellow et al., 2014), VA-
VAE (Van Den Oord et al., 2017), autoregressive Transformer (Rakhimov et al., 2020) and convolution-
based diffusion models (Ho et al., 2022b). Recently Video generation has seen remarkable progress
driven by diffusion models, which iteratively refine noisy inputs to generate high-fidelity video
frames (Ho et al., 2022b; An et al., 2023; Esser et al., 2023; Chen et al., 2024a). While many works
focus on conv-based diffusions (Ho et al., 2020; Harvey et al., 2022; Singer et al., 2022; Ho et al.,
2022a; Luo et al., 2023; Wang et al., 2023b; Zhang et al., 2023) and achieve good results, researchers
begin to explore Transformer-based diffusion models for video generation (Zheng et al., 2024; Lab &
etc., 2024; Ma et al., 2024a) because of scalability and efficiency (Peebles & Xie, 2023).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

4.2 DIFFUSION MODEL ACCELERATION

Advancements in video diffusion models have demonstrated their potential for high-quality video
generation, yet their practical application is often limited by slow inference speeds. Previous research
about speeding up diffusion model inference can be broadly classified into four categories.

Scheduler. Reducing the sampling steps with schedulers has been explored through methods such as
DDIM (Song et al., 2020), which enables fewer sampling steps without compromising generation
quality. Other works also explore efficient solver of ODE or SDE (Song et al., 2021; Jolicoeur-
Martineau et al., 2021; Lu et al., 2022; Karras et al., 2022; Lu et al., 2023), which employs a pseudo
numerical method to achieve faster sampling.

Compression. Researchers aimed at reducing the workload and inference time at each sampling
step, including distillation (Salimans & Ho, 2022; Li et al., 2023d), quantization (Li et al., 2023c; He
et al., 2023; So et al., 2023a; Shang et al., 2023) and joint optimization (Li et al., 2023a; Liu et al.,
2023). However, these methods demand extra training, using significant resources and data, making
compression impractical especially for large-scale pre-trained models.

Caching. Recently, researchers have revisited the concept of caching (Smith, 1982) in video
generation to achieve training-free acceleration. Some works (Ma et al., 2024c; Li et al., 2023b;
Wimbauer et al., 2024; So et al., 2023b) reusing high-level features in U-Net structures while updating
only the low-level ones based on the observation that high-level features typically undergo minimal
changes between consecutive steps. However, these convolutional-based methods can not directly
apply to video DiTs. For transformer architectures, T-GATE (Zhang et al., 2024) introduce caching
different attention at different stages, while ∆-DiT (Chen et al., 2024c) propose to cache feature
offsets of DiT blocks. Nevertheless, neither approach effectively addresses the unique attention
features present in video DiTs, resulting in suboptimal performance.

Parallelism. Sequence parallelism techniques (Korthikanti et al., 2023; Jacobs et al., 2023; Zhao
et al., 2024) have been proposed to reduce generation latency through distributed inference. However,
these methods introduce additional communication costs, particularly when processing large videos.
To address this issue, some works (Li et al., 2024; Wang et al., 2024) leverage convolutional features
in distributed inference to reduce communication overhead. Nevertheless, these approaches are still
limited to convolutions.

5 DISCUSSION AND CONCLUSION

In this work, we introduce Pyramid Attention Broadcast (PAB), a novel real-time, high quality,
and training-free approach to enhance the efficiency of DiT-based video generation. PAB reduces
attention redundancy through pyramid-style broadcasting by exploiting the U-shaped attention pattern
in the diffusion process. Moreover, our broadcast sequence parallel significantly improves distributed
inference efficiency. Overall, PAB achieves up to 10.5× speedup with negligible quality loss and
consistently outperforms baselines across various models. We believe that PAB provides a simple yet
effective foundation for advancing future research and practical applications in video generation.

Limitation. Our approach shows promise but has some limitations. PAB’s performance may vary
depending on the input data’s complexity, especially with dynamic scenes. The fixed broadcast
strategy might not work best for all video types and tasks. Also, we only focused on reducing
redundancy in attention mechanisms, not other parts of the model like Feed-Forward Networks. Future
work could explore ways to make PAB more flexible and effective across different applications, such
as developing adaptive strategies and expanding redundancy reduction to other model components.

Future works. Our work opens several promising avenues for future research. One key direction is
extending the to a wider range of video models with diverse architectures could broaden its applica-
bility and impact. Another area is the substantial redundancy observed in MLPs, which constitute a
large proportion of the networks, remains under-explored and warrants further investigation. Further-
more, our findings regarding significant redundancy in attention mechanisms suggest potential for
developing more efficient attention algorithms specifically tailored for video generation, potentially
leading to improved computational efficiency for both training and inference.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

D.H. Albonesi. Selective cache ways: on-demand cache resource allocation. In MICRO-32, 1999.

Jie An, Songyang Zhang, Harry Yang, Sonal Gupta, Jia-Bin Huang, Jiebo Luo, and Xi Yin. Latent-
Shift: Latent Diffusion with Temporal Shift for Efficient Text-to-Video Generation, 2023.

Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesensky,
Bin Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta Chauhan, Anjali Chourdia, Will
Constable, Alban Desmaison, Zachary DeVito, Elias Ellison, Will Feng, Jiong Gong, Michael
Gschwind, Brian Hirsh, Sherlock Huang, Kshiteej Kalambarkar, Laurent Kirsch, Michael Lazos,
Mario Lezcano, Yanbo Liang, Jason Liang, Yinghai Lu, C. K. Luk, Bert Maher, Yunjie Pan,
Christian Puhrsch, Matthias Reso, Mark-Albert Saroufim, Marcos Yukio Siraichi, Helen Suk,
Shunting Zhang, Michael Suo, Phil Tillet, Xu Zhao, Eikan Wang, Keren Zhou, Richard Zou,
Xiaodong Wang, Ajit Mathews, William Wen, Gregory Chanan, Peng Wu, and Soumith Chintala.
Pytorch 2: Faster machine learning through dynamic python bytecode transformation and graph
compilation. Proceedings of the 29th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 2, 2024. URL https://api.
semanticscholar.org/CorpusID:268794728.

Max Bain, Arsha Nagrani, Gül Varol, and Andrew Zisserman. Frozen in time: A joint video and
image encoder for end-to-end retrieval. In IEEE International Conference on Computer Vision,
2021.

Ron Banner, Yury Nahshan, and Daniel Soudry. Post training 4-bit quantization of convolutional
networks for rapid-deployment. NeurIPS, 2019.

Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
latent video diffusion models to large datasets. arXiv:2311.15127, 2023.

Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video
generation models as world simulators, 2024. URL https://openai.com/research/
video-generation-models-as-world-simulators.

Joya Chen, Zhaoyang Lv, Shiwei Wu, Kevin Qinghong Lin, Chenan Song, Difei Gao, Jia-Wei Liu,
Ziteng Gao, Dongxing Mao, and Mike Zheng Shou. Videollm-online: Online video large language
model for streaming video. In CVPR, 2024a.

Lei Chen, Yuan Meng, Chen Tang, Xinzhu Ma, Jingyan Jiang, Xin Wang, Zhi Wang, and Wenwu
Zhu. Q-dit: Accurate post-training quantization for diffusion transformers. arXiv:2406.17343,
2024b.

Pengtao Chen, Mingzhu Shen, Peng Ye, Jianjian Cao, Chongjun Tu, Christos-Savvas Bouganis,
Yiren Zhao, and Tao Chen. delta-dit: A training-free acceleration method tailored for diffusion
transformers. arXiv:2406.01125, 2024c.

Elliot J Crowley, Gavin Gray, and Amos J Storkey. Moonshine: Distilling with cheap convolutions.
NeurIPS, 2018.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. NeurIPS, 2022.

Patrick Esser, Johnathan Chiu, Parmida Atighehchian, Jonathan Granskog, and Anastasis Germanidis.
Structure and Content-Guided Video Synthesis with Diffusion Models. In CVPR, 2023.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. NeurIPS, 2014.

James R. Goodman. Using cache memory to reduce processor-memory traffic. SIGARCH Comput.
Archit. News, 11(3):124–131, 1983. ISSN 0163-5964. doi: 10.1145/1067651.801647. URL
https://doi.org/10.1145/1067651.801647.

11

https://api.semanticscholar.org/CorpusID:268794728
https://api.semanticscholar.org/CorpusID:268794728
https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators
https://doi.org/10.1145/1067651.801647

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv:1510.00149, 2015.

William Harvey, Saeid Naderiparizi, Vaden Masrani, Christian Weilbach, and Frank Wood. Flexible
Diffusion Modeling of Long Videos, 2022.

Yefei He, Luping Liu, Jing Liu, Weijia Wu, Hong Zhou, and Bohan Zhuang. PTQD: Accurate
Post-Training Quantization for Diffusion Models, 2023.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models, 2020.

Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P.
Kingma, Ben Poole, Mohammad Norouzi, David J. Fleet, and Tim Salimans. Imagen Video: High
Definition Video Generation with Diffusion Models, 2022a.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. NeurIPS, 2022b.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh, Hootan Nakhost, Yasuhisa Fujii, Alexander Ratner,
Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister. Distilling step-by-step! outperforming larger
language models with less training data and smaller model sizes. arXiv:2305.02301, 2023.

Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianxing
Wu, Qingyang Jin, Nattapol Chanpaisit, Yaohui Wang, Xinyuan Chen, Limin Wang, Dahua Lin,
Yu Qiao, and Ziwei Liu. VBench: Comprehensive benchmark suite for video generative models.
In CVPR, 2024.

Sam Ade Jacobs, Masahiro Tanaka, Chengming Zhang, Minjia Zhang, Leon Song, Samyam Rajbhan-
dari, and Yuxiong He. Deepspeed ulysses: System optimizations for enabling training of extreme
long sequence transformer models. arXiv:2309.14509, 2023.

Alexia Jolicoeur-Martineau, Ke Li, Rémi Piché-Taillefer, Tal Kachman, and Ioannis Mitliagkas.
Gotta Go Fast When Generating Data with Score-Based Models, 2021.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the Design Space of Diffusion-
Based Generative Models, 2022.

Vijay Anand Korthikanti, Jared Casper, Sangkug Lym, Lawrence McAfee, Michael Andersch,
Mohammad Shoeybi, and Bryan Catanzaro. Reducing activation recomputation in large transformer
models. MLSys, 2023.

Madhav Kumar and Anuj Kapoor. Generative ai and personalized video advertisements. Available at
SSRN 4614118, 2023.

PKU-Yuan Lab and Tuzhan AI etc. Open-sora-plan, April 2024. URL https://doi.org/10.
5281/zenodo.10948109.

Lijiang Li, Huixia Li, Xiawu Zheng, Jie Wu, Xuefeng Xiao, Rui Wang, Min Zheng, Xin Pan, Fei Chao,
and Rongrong Ji. AutoDiffusion: Training-Free Optimization of Time Steps and Architectures for
Automated Diffusion Model Acceleration, 2023a.

Muyang Li, Tianle Cai, Jiaxin Cao, Qinsheng Zhang, Han Cai, Junjie Bai, Yangqing Jia, Kai Li, and
Song Han. Distrifusion: Distributed parallel inference for high-resolution diffusion models. In
CVPR, 2024.

Senmao Li, Taihang Hu, Fahad Shahbaz Khan, Linxuan Li, Shiqi Yang, Yaxing Wang, Ming-Ming
Cheng, and Jian Yang. Faster diffusion: Rethinking the role of unet encoder in diffusion models.
arXiv:2312.09608, 2023b.

Yanjing Li, Sheng Xu, Xianbin Cao, Xiao Sun, and Baochang Zhang. Q-DM: An Efficient Low-bit
Quantized Diffusion Model. In NeurIPS, 2023c.

Yanyu Li, Huan Wang, Qing Jin, Ju Hu, Pavlo Chemerys, Yun Fu, Yanzhi Wang, Sergey Tulyakov,
and Jian Ren. SnapFusion: Text-to-Image Diffusion Model on Mobile Devices within Two Seconds,
2023d.

12

https://doi.org/10.5281/zenodo.10948109
https://doi.org/10.5281/zenodo.10948109

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. MLSys, 2024.

Enshu Liu, Xuefei Ning, Zinan Lin, Huazhong Yang, and Yu Wang. OMS-DPM: Optimizing the
Model Schedule for Diffusion Probabilistic Models, 2023.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. DPM-Solver: A Fast
ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps, 2022.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. DPM-Solver++: Fast
Solver for Guided Sampling of Diffusion Probabilistic Models, 2023.

Zhengxiong Luo, Dayou Chen, Yingya Zhang, Yan Huang, Liang Wang, Yujun Shen, Deli Zhao,
Jingren Zhou, and Tieniu Tan. Notice of Removal: VideoFusion: Decomposed Diffusion Models
for High-Quality Video Generation. In CVPR, 2023.

Xin Ma, Yaohui Wang, Gengyun Jia, Xinyuan Chen, Ziwei Liu, Yuan-Fang Li, Cunjian Chen, and
Yu Qiao. Latte: Latent diffusion transformer for video generation. arXiv:2401.03048, 2024a.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. NeurIPS, 2023.

Xinyin Ma, Gongfan Fang, Michael Bi Mi, and Xinchao Wang. Learning-to-cache: Accelerating
diffusion transformer via layer caching. arXiv:2406.01733, 2024b.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Deepcache: Accelerating diffusion models for free.
In CVPR, 2024c.

K Meli, J Taouki, and D Pantazatos. Empowering educators with generative ai: The genai education
frontier initiative. In EDULEARN24 Proceedings, pp. 4289–4299. IATED, 2024.

Imran Othman. Ai video editor: A conceptual review in generative arts. In ICCM, 2023.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In CVPR, 2023.

Ruslan Rakhimov, Denis Volkhonskiy, Alexey Artemov, Denis Zorin, and Evgeny Burnaev. Latent
Video Transformer, 2020.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In MICCAI, 2015.

Tim Salimans and Jonathan Ho. Progressive Distillation for Fast Sampling of Diffusion Models,
2022.

Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion
distillation. arXiv:2311.17042, 2023.

Yuzhang Shang, Zhihang Yuan, Bin Xie, Bingzhe Wu, and Yan Yan. Post-training Quantization on
Diffusion Models, 2023.

Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu, Harry
Yang, Oron Ashual, Oran Gafni, Devi Parikh, Sonal Gupta, and Yaniv Taigman. Make-A-Video:
Text-to-Video Generation without Text-Video Data, 2022.

Alan Jay Smith. Cache memories. ACM Computing Surveys, 14(3):473–530, 1982.

Junhyuk So, Jungwon Lee, Daehyun Ahn, Hyungjun Kim, and Eunhyeok Park. Temporal Dynamic
Quantization for Diffusion Models, 2023a.

Junhyuk So, Jungwon Lee, and Eunhyeok Park. Frdiff: Feature reuse for exquisite zero-shot
acceleration of diffusion models. arXiv:2312.03517, 2023b.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models.
arXiv:2010.02502, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-Based Generative Modeling through Stochastic Differential Equations, 2021.

Marcos Treviso, António Góis, Patrick Fernandes, Erick Fonseca, and André FT Martins. Predicting
attention sparsity in transformers. arXiv:2109.12188, 2021.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. NeurIPS, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. NeurIPS, 2017.

Jiannan Wang, Jiarui Fang, Aoyu Li, and PengCheng Yang. Pipefusion: Displaced patch pipeline
parallelism for inference of diffusion transformer models. arXiv:2405.14430, 2024.

Jiuniu Wang, Hangjie Yuan, Dayou Chen, Yingya Zhang, Xiang Wang, and Shiwei Zhang. Mod-
elscope text-to-video technical report. arXiv:2308.06571, 2023a.

Yaohui Wang, Xinyuan Chen, Xin Ma, Shangchen Zhou, Ziqi Huang, Yi Wang, Ceyuan Yang, Yinan
He, Jiashuo Yu, Peiqing Yang, Yuwei Guo, Tianxing Wu, Chenyang Si, Yuming Jiang, Cunjian
Chen, Chen Change Loy, Bo Dai, Dahua Lin, Yu Qiao, and Ziwei Liu. LAVIE: High-Quality
Video Generation with Cascaded Latent Diffusion Models, 2023b.

Zhou Wang and Alan C Bovik. A universal image quality index. IEEE signal processing letters,
2002.

Felix Wimbauer, Bichen Wu, Edgar Schoenfeld, Xiaoliang Dai, Ji Hou, Zijian He, Artsiom Sanakoyeu,
Peizhao Zhang, Sam Tsai, Jonas Kohler, et al. Cache me if you can: Accelerating diffusion models
through block caching. In CVPR, 2024.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In CVPR, 2018.

Wentian Zhang, Haozhe Liu, Jinheng Xie, Francesco Faccio, Mike Zheng Shou, and Jürgen
Schmidhuber. Cross-attention makes inference cumbersome in text-to-image diffusion models.
arXiv:2404.02747, 2024.

Yabo Zhang, Yuxiang Wei, Dongsheng Jiang, Xiaopeng Zhang, Wangmeng Zuo, and Qi Tian.
ControlVideo: Training-free Controllable Text-to-Video Generation, 2023.

Xuanlei Zhao, Shenggan Cheng, Zangwei Zheng, Zheming Yang, Ziming Liu, and Yang You. Dsp:
Dynamic sequence parallelism for multi-dimensional transformers. arXiv:2403.10266, 2024.

Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen, Shenggui Li, Hongxin Liu, Yukun Zhou,
Tianyi Li, and Yang You. Open-sora: Democratizing efficient video production for all, 2024. URL
https://github.com/hpcaitech/Open-Sora.

14

https://github.com/hpcaitech/Open-Sora

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Real-Time Video Generation with Pyramid Attention Broadcast

Appendix

We organize our appendix as follows:

Experimental Settings:

• Section A.1: Models

• Section A.2: PAB generation settings

– Section A.2.1: Attention
– Section A.2.2: MLP

• Section A.3: Baselines generation settings

• Section A.4: Metrics

Additional Experimental Results and Findings:

• Section B.1: Additional quantitative results

• Section B.2: Findings for MLP broadcast

• Section B.3: Results for long, complex and dynamic scenes

• Section B.4: Breakdown of PAB’s contribution with multiple GPUs

• Section B.5: Breakdown of time cost within attention module

• Section B.6: Workflow comparison for broadcasting different objects

• Section B.8: Extension to Text-to-Image model

• Section B.7: Various metrics for evaluating redundancy

Guidelines for supplementary materials:

• Section C.1: Supplementary materials overview

• Section C.2: Getting started with code

A EXPERIMENT SETTINGS

A.1 MODELS

As we focus on DiT-based video generation, three popular state-of-the-art open-source DiT-based
video generation models are selected in the evaluation, including Open-Sora (Zheng et al., 2024),
Open-Sora-Plan (Lab & etc., 2024), and Latte (Ma et al., 2024a). Open-Sora-Plan (Lab & etc., 2024)
utilizes CausalVideoVAE to compress visual representations and DiT with the 3D full attention
module. Open-Sora (Zheng et al., 2024) combines 2D-VAE with 3D-VAE for better video
compression and uses an SD-DiT block in the diffusion process. Latte (Ma et al., 2024a) uses spatial
Transformer blocks and temporal Transformer blocks to capture video information in the diffusion
process. The inference configs of three models are shown in Table 5, which strictly follow the official
settings.

Table 5: The inference config of three models.

model scheduler inference steps

Open-Sora RFLOW 30
Open-Sora-Plan PSNR 150

Latte DDIM 50

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 6: The attention broadcast configuration of PAB. diffusion timesteps represents the start and
end diffusion timestep of the broadcast, where 1000 is the beginning and 0 is the end.

model method
broadcast range

diffusion timesteps
spatial temporal cross

Open-Sora
PAB246 2 4 6

[930-450]PAB357 3 5 7
PAB579 5 7 9

Open-Sora-Plan
PAB246 2 4 6

[850-100]PAB357 3 5 7
PAB579 5 7 9

Latte
PAB235 2 3 5

[800-100]PAB347 3 4 7
PAB469 4 6 9

A.2 PAB GENERATION SETTINGS

A.2.1 ATTENTION

In Table 6 we demonstrate the detailed settings of attention broadcast in experiments.

A.2.2 MLP

As demonstrated in Section 2.3 and Figure 4(c), the attention outputs exhibit low difference across
approximately 70% of the diffusion steps within the middle segment. Spatial attention shows the
highest variance, followed by temporal attention and, finally, cross-attention. Empirically, we
perform a similar analysis on the MLP module to investigate whether it also involves redundant
computations during the diffusion process.

In our current evaluation experiments, we select the skippable MLP modules for each model through
empirical analysis in Appendix B.2. We show our detailed configuration for MLP modules in Table 7.

Table 7: The MLP broadcast configuration of PAB. diffusion timesteps represents the starting diffusion
timestep of the broadcast and the Block indicates the index of the broadcast block.

model diffusion timesteps block broadcast range

Open-Sora [864, 788, 676] [0, 1, 2, 3, 4] 2

Open-Sora-Plan
[738, 714, 690, 666, 642,

[0, 1, 2, 3, 4, 5, 6] 2618, 594, 570, 546, 522,
498, 474, 450, 426]

Latte [720, 640, 560, 480, 400] [0, 1, 2, 3, 4] 2

A.3 BASELINES GENERATION SETTINGS

We employ ∆-DiT (Chen et al., 2024c) and T-GATE (Zhang et al., 2024), which are cache-based
methods as baselines in the evaluation.

Table 8: Configuration of ∆-DiT. b represents the gate step of two stages and k is the cache interval.
Block range refers to the index of the front blocks that are skipped. Block range refers to the specific
indices of the blocks in the DiT-based video generation model that are skipped during the process.
For example, Block range [0, 2] means that the first three blocks in the model block 0, block 1, and
block 2—are skipped.

∆-DiT diffusion steps b k block range

Open-Sora 30 25 2 [0, 5]
Open-Sora-Plan 150 148 2 [0, 1]
Latte 50 48 2 [0, 2]

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

∆-DiT (Chen et al., 2024c) uses the offset of hidden states (the deviations between feature maps)
rather than the feature maps themselves. ∆-DiT is applied to the back blocks in the DiT during the
early outline generation stage of the diffusion model and on front blocks during the detail generation
stage. The stage is bounded by a hyperparameter b, and the cache interval is k. Since the source code
for ∆-DiT is not publicly available, we implement the baseline based on the methods in the paper.
Additionally, we selected the parameters based on experimental results on video generation models.
We only jump the computation of the front blocks during the Outline Generation stage. The detailed
configuration is shown in Table 8.

Table 9: Configuration of T-GATE. m represents the gate step of the Semantics-Planning Phase and
the Fidelity-Improving Phase, and k is the cache interval.

T-GATE diffusion steps m k

Open-Sora 30 12 2
Open-Sora-Plan 150 90 3
Latte 50 20 2

T-GATE (Zhang et al., 2024) reuses self-attention in semantics-planning phase and then skip
cross-attention in the fidelity-improving phase. T-GATE segments the diffusion process into two
phases: the semantics-planning phase and the fidelity-improving phase. Suppose m represent the
gate step of the transition between phases. Before gate step m, during the Semantics-Planning Phase,
cross-attention (CA) remains active continuously, whereas self-attention (SA) is calculated and
reused every k steps following an initial warm-up period. After gate step m, cross-attention is
replaced by a caching mechanism, with self-attention continuing to function. We present details in
Table 9.

A.4 METRICS

In this work, we evaluate our methods using several established metrics to comprehensively assess
video quality and similarity. On the one hand, we assess video generation quality by the benchmark
VBench, which is well aligned with human perceptions.

VBench. VBench (Huang et al., 2024) is a benchmark suite designed for evaluating video generative
models, which uses a hierarchical approach to break down ’video generation quality’ into various
specific, well-defined dimensions. Specifically, VBench comprises 16 dimensions in video
generation, including Subject Consistency, Background Consistency, Temporal Flickering, Motion
Smoothness, Dynamic Degree, Aesthetic Quality, Imaging Quality, Object Class, Multiple Objects,
Human Action, Color, Spatial Relationship, Scene, Appearance Style, Temporal Style, Overall
Consistency. In experiments, we adopt the VBench evaluation framework and utilize the official code
to apply weighted scores to assess generation quality.

On the other hand, we also evaluate the performance of the accelerated video generation model by
the following metrics. We compare the generated videos from the original model (used as the
baseline) with those from the accelerated model. The metrics are computed on each frame of the
video and then averaged over all frames to provide a comprehensive assessment.

Peak Signal-to-Noise Ratio (PSNR). PSNR is a widely used metric for measuring the quality of
reconstruction in image processing. It is defined as:

PSNR = 10 · log10
(

R2

MSE

)
, (4)

where R is the maximum possible pixel value of the image and MSE denotes the Mean Squared
Error between the reference image and the reconstructed image. Higher PSNR values indicate better
quality, as they reflect a lower error between the compared images. For video evaluation, PSNR is
computed for each frame and the results are averaged to obtain the overall PSNR for the video.
However, PSNR primarily measures pixel-wise fidelity and may not always align with perceived
image quality.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Learned Perceptual Image Patch Similarity (LPIPS). LPIPS (Zhang et al., 2018) is a metric
designed to capture perceptual similarity between images more effectively than pixel-based measures.
It is based on deep learning models that learn to predict perceptual similarity by training on large
datasets. It measures the distance between features extracted from pre-trained deep networks. The
LPIPS score is computed as:

LPIPS =
∑
i

αi · Dist(Fi(I1), Fi(I2)), (5)

where Fi represents the feature maps from different layers of the network, I1 and I2 are the images
being compared, Dist is a distance function (often L2 norm), and αi are weights for each feature
layer. Lower LPIPS values indicate higher perceptual similarity between the images, aligning better
with human visual perception compared to PSNR. LPIPS is calculated for each frame of the video
and averaged across all frames to produce a final score.

Structural Similarity Index Measure (SSIM). SSIM (Wang & Bovik, 2002) evaluate the similarity
between two images by considering changes in structural information, luminance, and contrast.
SSIM is computed as:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, (6)

where µx and µy are the mean values of image patches, σ2
x and σ2

y are the variances, σxy is the
covariance, and C1 and C2 are constants to stabilize the division with weak denominators. SSIM
values range from -1 to 1, with 1 indicating perfect structural similarity. It provides a measure of
image quality that reflects structural and perceptual differences. For video evaluation, SSIM is
calculated for each frame and then averaged over all frames to provide an overall similarity measure.

B ADDITIONAL EXPERIMENTAL RESULTS AND FINDINGS

B.1 ADDITIONAL QUANTITATIVE RESULTS.

model method
PSNR ↑ LPIPS ↓ SSIM ↑

w/ g.t. w/ org. w/ g.t. w/ org. w/ g.t. w/ org.

Open-Sora

original 8.62 – 0.7582 – 0.3506 –

∆-DiT 9.44 12.01 0.7397 0.5263 0.3387 0.4676
T-GATE 8.38 14.22 0.7658 0.3951 0.3811 0.6286

PAB246 8.69 26.53 0.7652 0.1001 0.3606 0.8635
PAB357 8.79 24.12 0.7719 0.1597 0.3695 0.8133
PAB579 8.84 22.48 0.7821 0.2129 0.3741 0.7745

Open-Sora-
Plan

original 8.32 – 0.7701 – 0.2619 –

∆-DiT 7.88 12.26 0.7719 0.5572 0.1884 0.3865
T-GATE 8.39 13.60 0.7734 0.4750 0.2436 0.4544

PAB246 8.65 19.84 0.7653 0.2575 0.2759 0.6847
PAB357 8.87 17.39 0.7637 0.3814 0.2766 0.5767
PAB579 9.20 16.06 0.7610 0.4905 0.3025 0.4831

Latte

original 8.83 – 0.7670 – 0.3008 –

∆-DiT 7.09 9.64 0.8071 0.7787 0.0741 0.1567
T-GATE 9.27 19.13 0.7655 0.2585 0.3202 0.6416

PAB235 9.94 19.18 0.7743 0.2667 0.3742 0.6461
PAB347 10.38 17.49 0.7775 0.3577 0.4032 0.5813
PAB469 10.60 16.76 0.7832 0.3934 0.4190 0.5619

Table 10: Quality results on webvid. Latency and speedup are calculated on one GPU. PABαβγ

denotes broadcast ranges of spatial (α), temporal (β), and cross (γ) attentions. Video generation
specifications: Open-Sora (2s, 480p), Open-Sora-Plan (2.7s, 512x512), Latte (2s, 512x512). w/ g.t.
indicates evaluating the metrics based on the ground-truth videos, while w/ org. means with the
original methods’ outputs.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

In Section 3.2, we present results only based on Vbench prompts. To further evaluate the efficacy of
our method, we expand our analysis using a subset of 1000 videos from WebVid (Bain et al., 2021), a
large-scale text-video dataset sourced from stock footage websites. We apply PAB to this subset,
assessing its performance across three models and four metrics. The results of this additional
experimentation are summarized in Table 10.

B.2 FINDINGS FOR MLP BROADCAST.

0 100 200 300 400 500 600 700 800 900
Timestep

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Av
er

ag
e

M
SE

Average MSE

(a) Average MSE of spatial MLP

0 100 200 300 400 500 600 700 800 900
Timestep

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Av
er

ag
e

M
SE

Average MSE

(b) Average MSE of temporal MLP

400 440 480 520 560 600 640 680 720 760 800
Timestep

0.00

0.01

0.02

0.03

0.04

0.05

0.06

M
SE

Block 0
Block 8
Block 16
Block 24

(c) MSE of different layers of spatial MLP

400 440 480 520 560 600 640 680 720 760 800
Timestep

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

M
SE

Block 0
Block 8
Block 16
Block 24

(d) MSE of different layers of temporal MLP

Figure 13: Quantitative analysis of MLP module differences in Latte by mean squared error (MSE)
of the MLP output across continuous time steps. In Figures (a) and (c), we present the results for the
spatial MLP, while Figures (b) and (d) illustrate the outcomes for the temporal MLP. Additionally, in
Figure (a) and (b), we show the average MSE across all layers. In Figures (c) and (d), we select the
block 0, 8, 16, and 24 to illustrate the characteristics of MLPs across different layers.

We present a quantitative analysis of the FFN output differences in Latte, Open-Sora, and
Open-Sora-Plan, using mean squared error (MSE) as the evaluation metric in Figure 13, 14 and 15.

We observe that during the intermediate stages of diffusion, the MSE exhibits a periodic spiking
pattern, where local maxima occurs at specific timesteps, followed by consistently low values in
subsequent timesteps. Therefore, we can retain the MLP output at the peak and reuse it during the
following low-value timesteps. Additionally, by analyzing the FFN modules across different blocks
in Figure, we found that the output differences in the lower layers’ MLPs are relatively small, while
those in the upper layers’ MLPs are significantly larger. Based on these findings, we empirically
selected MLP modules to broadcast and corresponding broadcast ranges for each model, including
Latte, Open-Sora, and Open-Sora-Plan.

B.3 RESULTS FOR LONG, COMPLEX AND DYNAMIC SCENES.

In this section, we evaluate the quantitative and qualitative results for PAB when dealing with long,
complex and dynamic scenes.

Quantitative results. For model settings, we specifically use Open-Sora to generate videos of 16
seconds duration. This longer duration purposefully challenges our method with more complex and
dynamic scenes. Open-Sora is the only model used as other models are restricted to fixed short
lengths.

For dataset, from VBench’s comprehensive 16-dimensional evaluation metrics, we strategically
select 7 categories that best assess complex and dynamic scenes. Total performance scores are

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

143 548 736 848 920 968
Timestep

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

M
SE

Average MSE

(a) Average MSE of spatial MLP

143 548 736 848 920 968
Timestep

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Av
er

ag
e

M
SE

Average MSE

(b) Average MSE of temporal MLP

548 636 708 764 808 848 880
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

M
SE

Block 0
Block 8
Block 16
Block 24

(c) MSE of different layers of spatial MLP

548 636 708 764 808 848 880
Timestep

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
SE

Block 0
Block 8
Block 16
Block 24

(d) MSE of different layers of temporal MLP

Figure 14: Quantitative analysis of MLP module differences in Open-Sora by mean squared error
(MSE) of the MLP output across continuous time steps. Figures (a) and (c) present the results for the
spatial MLP, while Figures (b) and (d) show the outcomes for the temporal MLP. Figures (a) and (b)
display the average MSE across all layers, and Figures (c) and (d) examine block 0, 8, 16, and 24 to
showcase the MLP characteristics across different layers.

204 384 564 744
Timestep

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Av
er

ag
e

M
SE

Average MSE

(a) Average MSE of spatial MLP

204 384 564 744
Timestep

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

Av
er

ag
e

M
SE

Average MSE

(b) Average MSE of temporal MLP

504 534 564 594 624 654 684 714 744 774
Timestep

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
SE

Block 0
Block 8
Block 16
Block 24

(c) MSE of different layers of spatial MLP

504 534 564 594 624 654 684 714 744 774
Timestep

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

M
SE

Block 0
Block 8
Block 16
Block 24

(d) MSE of different layers of temporal MLP

Figure 15: Quantitative analysis of MLP module differences in Open-Sora-Plan by mean squared
error (MSE) of the MLP output across continuous time steps. In Figures (a) and (c), the results for
the spatial MLP are shown, while Figures (b) and (d) show the results for the temporal MLP. Figures
(a) and (b) display the average MSE across all layers, and Figures (c) and (d) highlight block 0, 8, 16,
and 24 to illustrate the MLP behavior across different layers.

calculated based exclusively on these 7 categories to provide focused evaluation of complex and
dynamic capabilities.

As shown in Table 11, we specifically test our method under the most challenging conditions by
using the longest videos and selecting the more complex tasks in the dataset. The results show that
PAB performs consistently well, with PAB246 showing comparable performance.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 11: Quantitative results of Open-Sora (16s 480p) on subset dimensions of Vbench datasets for
long, complex and dynamic scenes.

method human overall imaging aesthetic dynamic motion subject totalaction consistency quality quality degree smoothness consistency

original 92.67 73.65 61.40 56.59 21.07 96.43 90.26 74.54
PAB246 91.33 73.43 60.18 56.24 19.91 97.05 90.08 73.98
PAB357 89.33 72.53 58.17 54.86 19.45 96.40 88.35 72.58
PAB579 88.33 72.36 57.92 54.63 18.05 96.50 88.32 72.15

What’s particularly encouraging is that PAB maintains good scores even in the most difficult
dimensions we tested, like human action and dynamic degree. This shows that our model stays
reliable even under demanding conditions.

Qualitative results. As shown in Figure 16, our method demonstrates robust performance in
processing dynamic, complex scenes while maintaining high-quality output.

Figure 16: Qualitative results of Open-Sora (16s 480p) on subset dimensions of Vbench datasets for
long, complex and dynamic scenes.

B.4 BREAKDOWN OF PAB’S CONTRIBUTION WITH MULTIPLE GPUS

As shown in Table B.4, we evaluate the independent contribution of PAB from computation and
communication and come with the following conclusions:

• With PAB’s computation speedup (save computation by attention broadcast), the latency is
further reduced by 24% compared with DSP only.

• With PAB’s communication speedup (can save all communication cost when temporal
attention is skipped), the latency can be further reduced by 5.0% compared with
computation speedup only.

• Since we only evaluate based on PAB246 (better quality but less speedup), PAB is able
achieve more speedup if using more aggressive strategies.

Table 12: Breakdown of PAB’s contribution with multiple GPUs using Open-Sora (8s 480p).

method latency (s)

original (1 gpu) 96.90
DSP (8 gpus) 11.53
DSP + PAB (with computation speedup) (8 gpus) 9.29
DSP + PAB (with computation and communication speedup) (8 gpus) 8.85

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

B.5 BREAKDOWN OF TIME COST WITHIN ATTENTION MODULE

As shown in Figure 11, the attention operation takes only a small proportion of time in attention
module for 2s 480p Open-Sora. In this section, we further investigate what the main cost in attention
module.

As shown in Table 13;14;15, our findings show that attention operation isn’t actually the main thing
slowing down the model. The real bottleneck comes from other parts - specifically layernorm and
positional embedding. Even though these operations have fewer calculations and FLOPs, they run
much slower in practice. Because modern GPUs are built to handle big matrix calculations super
efficiently, but they struggle with operations that work on one element at a time, which is exactly
what LayerNorm and positional embedding do.

Table 13: Breakdown of time cost in spatial attention.

time layernorm1 mask modulate qkv proj layernorm2 o proj attn reshape

absolute (ms) 1.132 0.149 0.616 0.473 2.160 0.176 1.595 0.312
normalized 17.1% 2.2% 9.3% 7.2% 32.7% 2.7% 24.1% 4.7%

Table 14: Breakdown of time cost in temporal attention.

time layernorm1 mask modulate qkv proj layernorm2 pos emb o proj attn reshape

absolute (ms) 1.126 0.150 0.616 0.477 2.154 2.610 0.176 0.896 0.314
normalized 13.1% 1.8% 7.2% 5.6% 25.3% 30.7% 2.1% 10.6% 3.6%

Table 15: Breakdown of time cost in cross attention.

time qkv proj attn o proj reshape

absolute (ms) 0.771 0.362 0.176 0.912
normalized 34.8% 16.2% 7.9% 41.1%

B.6 WORKFLOW COMPARISON FOR BROADCASTING DIFFERENT OBJECTS

In Table 3, we demonstrate the efficiency of broadcasting different objects. In this section, we further
demonstrate why there will be such difference:

• Broadcasting attention outputs enables us to bypass all intermediate computations within
the attention module (including layer normalization, positional embedding, and qkvo
projections) while maintaining compatibility with efficient attention kernels such as
FlashAttention (we enable FlashAttention in all experiments by default to be closer to
real-world usage).

• But broadcasting attention scores still requires partial computation in the attention module
(e.g., attention calculation and linear projection). Its performance may even degrade below
baseline due to incompatibility with FlashAttention.

To be more clear, here are the workflows in attention module for different broadcast strategies:

• original:
x → q, k, v = proj(x) → q, k = pos emb(layer norm(q, k)) → o = attn(q, k, v) →
o = proj(o)

• attention score (cannot use FlashAttention because we need attention score explicitly):
x → v = proj(x) → o = attn(broadcast score, v) → o = proj(o)

• attention outputs:
o = broadcast outputs

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

B.7 VARIOUS METRICS FOR EVALUATING REDUNDANCY

We evaluate different metrics for measuring redundancy as shown in Figure 17.

Figure 17: Various metrics for evaluating redundancy.

B.8 EXTENSION TO TEXT-TO-IMAGE MODEL

PAB also has the potential to extend to Text-to-Image model like FLUX. In this section, we
demonstrate our speedup, qualitative and quantitative results on FLUX.

Figure 18: Qualitative results of FLUX with PAB55.

As shown in Table 16, we can achieve 1.77× speedup compared with original method. We choose
PAB55 because it offers best balance between speedup and image quality. Note that this is only ran
on single GPU.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 16: Speedup of FLUX. PABαγ denotes broadcast ranges of spatial (α) and cross (γ) attentions.

method latency (s)

original 13.8
PAB55 7.8

As shown in Figure 18, we visualize the quantitative results on FLUX. Our method can achieve
comparable results compared with baseline.

C GUIDELINES FOR SUPPLEMENTARY MATERIALS

C.1 SUPPLEMENTARY MATERIALS OVERVIEW

Our supplementary materials is organized as follows:

supplementary material
slides.pdf
code

eval
examples
...

slides.pdf contains a presentation of our work. The code folder holds our source code. Within this
folder, eval contains our evaluation code, and examples includes demo code to run PAB.

C.2 GETTING STARTED WITH CODE

To get start with our code, you can run the following code:

1 # install requirements
2 cd code
3 pip install -r requirements.txt
4

5 # run demo
6 python/examples/open_sora/sample.py
7 python/examples/open_sora_plan/sample.py
8 ...
9

10 # run eval
11 cd eval/pab
12 python experiments/opensora.py
13 python experiments/open_sora_plan.py
14 ...

You can find more instructions through the readme in the code.

24

	Introduction
	How to Achieve Real-Time Video Generation
	Preliminaries
	Attention Redundancy in Video DiTs
	Pyramid Attention Broadcast
	Broadcast sequence parallelism

	Experiments
	Experimental setup
	Main Results
	Ablation Study
	Scaling ability
	Visualization

	Related Work
	Video Generation
	Diffusion Model Acceleration

	Discussion and Conclusion
	Experiment Settings
	Models
	PAB Generation Settings
	Attention
	MLP

	Baselines Generation Settings
	Metrics

	Additional Experimental Results and Findings
	Additional quantitative results.
	Findings for MLP broadcast.
	Results for long, complex and dynamic scenes.
	Breakdown of PAB's contribution with multiple GPUs
	Breakdown of time cost within attention module
	Workflow comparison for broadcasting different objects
	Various metrics for evaluating redundancy
	Extension to Text-to-Image model

	Guidelines for supplementary materials
	Supplementary materials overview
	Getting started with code

