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Abstract

In the adaptive sampling model of online learning, future prediction tasks can be
arbitrarily dependent on the past. Every round, an adversary selects an instance to
test the learner. After the learner makes a prediction, a noisy label is drawn from
an underlying conditional label distribution and is revealed to both learner and
adversary. A learner is consistent if it eventually performs no worse than the Bayes
predictor. We study the kn-nearest neighbor learner within this setting. In the
worst-case, the learner will fail because an adaptive process can generate spurious
patterns out of noise. However, under the mild smoothing assumption that the
process generating the instances is uniformly absolutely continuous and that choice
of (kn)n is reasonable, the kn-nearest neighbor rule is online consistent.

1 Introduction

We study binary classification with noisy labels in the online setting where predictions are made
using the kn-nearest neighbor rule (Fix and Hodges, 1951; Cover and Hart, 1967). Let (X , ρ) be a
instance space equipped with a metric, let Y = {0, 1} be a binary label space, and let the labels be
chosen by nature, drawn from a conditional label distribution defined by η : X → [0, 1],

η(x) ≡ Pr(Y = 1|X = x).

In the adaptive sampling model, the label noise is benign, but the sequence of prediction tasks can be
adversarial and adapt to the sequence of observed labels. For n = 1, 2, . . . ,

- a data-generating process with knowledge of the past selects an instance Xn ∈ X ,

- the learner makes a prediction Ŷn ∈ Y ,

- nature reveals a label Yn, freshly drawn from the Bernoulli distribution, Ber(η(Xn)).

The goal is to make as few mistakes Ŷn ̸= Yn as possible.

If the learner knew η, then it should predict the Bayes optimal label Y ∗
n = 1{η(Xn) ≥ 1/2}, as this

minimizes the expected error at each time step. But this strategy is not generally possible when η is
unknown. Still, we measure our learner against it: a learner is consistent if its asymptotic mistake
rate is no worse than what is achieved by making the Bayes optimal prediction every round:

lim sup
N→∞

1

N

N∑
n=1

1
{
Ŷn ̸= Yn

}
− 1

{
Y ∗
n ̸= Yn

}
≤ 0 a.s. (1)

In other words, the learner is asymptotically consistent if its performance in the long run is on par
with the best predictor given knowledge of ground-truth label distribution.
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Algorithm 1 The kn-nearest neighbor rule

1: for n = 1, 2, . . . do
2: Receive the instance Xn

3: Predict the majority vote label of the kn nearest neighbors X(1)
n , . . . , X

(kn)
n ,

Ŷn = 1

{
1

kn

kn∑
k=1

Y (k)
n ≥ 1/2

}
4: Observe and memorize the label Yn

5: end for

The learner we consider is the kn-nearest neighbor rule. It memorizes all data it sees. To predict on
the nth instance Xn, it sorts the n− 1 previously memorized data points by distance to Xn,

X(1)
n , . . . , X(n−1)

n , where ρ
(
Xn, X

(k)
n

)
≤ ρ
(
Xn, X

(k+1)
n ),

and it predicts with the majority vote over the labels of the kn nearest neighbors, as shown in
Algorithm 1. If there are distance ties, then we let the data point that arrived first take precedence.
Many other, but not all, tie-breaking mechanisms are reasonable, but let us leave those details to
Appendix E. While this is not needed, we assume that distance ties almost never occur.

1.1 Consistency of kn-nearest neighbor under non-adaptive sampling

For appropriate sequences (kn)n, the kn-nearest neighbor rule is consistent generally when the
instances are not adaptive to the labels (Chaudhuri and Dasgupta, 2014, and references therein). The
instances are usually assumed to be generated by an i.i.d. process, but a more general assumption
suffices (Kulkarni and Posner, 1995), where each label Yi is conditionally independent of given Xi,

Pr(Yi|X,Y−i) = Pr(Yi|Xi).

Here, X = (X1, X2, . . .) is the sequence of instances and Y−i = (Y1, . . . , Yi−1, Yi+1, . . .) is the
sequence of labels without Yi. Note that this precludes adaptive sampling mechanisms, where the
selection of downstream instances can depend on the realization of Yi. But under this non-adaptive
setting, the proof of consistency is conceptually straightforward. Say that X is a sufficiently nice
metric space and η is continuous. There are two key ideas:

(a) If kn = ω(log n) grows sufficiently fast, then the law of large numbers will always be in effect,
so that the empirical conditional means converge to their conditional expectations:

1

kn

kn∑
k=1

Y (k)
n → 1

kn

kn∑
k=1

η(X(k)
n ) (statistical convergence)

(b) If kn = o(n) does not grow too fast, then the kn nearest neighbors X(k)
n converge to Xn. By

the continuity of η, the conditional means over the neighbors tend to converge:

1

kn

kn∑
k=1

η(X(k)
n ) → η(Xn) (geometric convergence)

By chaining these two limiting behaviors together, we obtain a very informal proof that the empirical
label frequencies over the kn nearest neighbors eventually converge to η(Xn). And at this point, the
learner’s prediction becomes consistent with the Bayes optimal predictor.

To extend consistency beyond the non-adaptive setting, we will show that both types of statistical and
geometric convergence can be achieved under much weaker assumptions.

1.2 Main results

We first show that in the worst-case setting, the kn-nearest neighbor rule can fail to be consistent.
However, at least in our counter-example, an adversary really needs to select points carefully in
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Figure 1: The binary search adaptive sampling strategy efficiently finds a good threshold when data
on the line is labeled by a threshold function. However, when the labels are generated by i.i.d. noise,
the binary search strategy also generates a dataset that is linearly separable (see Example 6). For
example, here the existing data X1, . . . , X5 is separable. By querying a point like X6 between the
two classes, the data will continue to be separable no matter which label is realized.

order to construct such a worst-case sequence. This raises the question: how brittle are such hard
constructions? In a recent work, Dasgupta and So (2024) provided an answer for the adaptive but
noiseless setting, showing that the 1-nearest neighbor rule is consistent under very mild conditions on
the data-generating process. That is, worst-case sequences almost never occur.

This work considers the same question, but in the presence of noise. Is the kn-nearest neighbor rule
also generally a viable prediction strategy in adaptive settings? Or, does noise pose a much harder
challenge to learning? To answer these questions, we impose the same, mild condition on the data
process introduced by Dasgupta and So (2024). It ensures that a process selects from small regions
with small probability, generalizing the smoothness condition of Haghtalab et al. (2020):
Definition 1 (Uniform absolute continuity). A data process is uniformly dominated by υ if for any
ε > 0, there exists δ > 0 such that when a measurable set A ⊂ X satisfies υ(A) < δ, then:

∀n, Pr
(
Xn ∈ A

∣∣X<n,Y<n

)
< ε.

We say that X = (Xn)n is uniformly absolutely continuous with respect to υ at rate ε(δ). We say
that the process is smoothed or L-dominated if ε(δ) ≤ Lδ for some constant L ≥ 1.

For ε(δ)-uniformly dominated processes, we show that the kn-nearest neighbor rule is consistent
when the conditional label distribution η is continuous and when kn satisfies for some c > 0:

kn = ω

(
log

1

ε−1(n−(1+c))

)
and kn = o(n). (2)

In the case when the data process is L-dominated, we recover the standard condition on kn that is
imposed to obtain consistency in the i.i.d. setting, which is that kn = ω(log n) and kn = o(n).
Theorem 2 (Consistency of the kn-nearest neighbor rule). Let (X , ρ, υ) be a separable metric space
with a finite Borel measure. Let η : X → [0, 1] be continuous. Let X be uniformly dominated at rate
ε(δ). If kn satisfies (2), then the kn-nearest neighbor rule is consistent almost surely.

While Theorem 2 is already very general, it requires that η is continuous. The next result greatly
relaxes this condition to admit all measurable η. To achieve this, we impose stronger conditions on
the space. The general class of upper doubling spaces was studied by Dasgupta and So (2024), where
they showed that 1-NN is consistent for any measurable label function η in the realizable setting:
Definition 3 (Upper doubling). A metric space (X , ρ) is doubling with doubling dimension d if
every ball B(x, r) can be covered by 2d balls of radii r/2. A d-doubling space with measure υ is
upper doubling if there exists c > 0 such that for all B(x, r), we have υ

(
B(x, r)

)
≤ crd.

We show a corresponding result in such spaces for kn-nearest neighbor rule in the noisy, adaptive
sampling setting. In fact, it further allows us to relax the condition on (kn)n. Theorem 2 required the
sequence of kn to satisfy (2), which depends on the rate function, ε(δ). In upper doubling spaces, the
following regularity condition suffices, which encompasses most choices a practitioner might make,
as any sequence of the form kn = nα(log n)β suffices if 0 < α < 1 or if α = 0 and β > 1.
Definition 4 (Regular sequence). A non-decreasing sequence (kn)n is said to be regular if grows
between kn = ω(log n) and kn = o(n/ log n), and if for all c ∈ N, it satisfies lim

n→∞
kcn/kn → 1.

Theorem 5 (Universal consistency in upper doubling spaces). Let (kn)n be a regular sequence, and
(X , ρ, υ) be an upper doubling space. Let X be uniformly dominated by υ and η : X → [0, 1] be
measurable. Then the kn-nearest neighbor rule is online consistent with respect to (X, η).
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1.3 Related work

Nearest neighbor methods are fundamental to non-parametric learning, where for the most part, they
are studied in settings with strong statistical independence assumptions (Fix and Hodges, 1951; Cover
and Hart, 1967; Stone, 1977; Devroye et al., 1994, 2013; Chaudhuri and Dasgupta, 2014; Hanneke
et al., 2020; Györfi and Weiss, 2021). Expanding beyond i.i.d. or stationary processes, Kulkarni and
Posner (1995) remove independence assumptions across instances, but still assume that sampling is
non-adaptive (and thus independent of the labels). This work forgoes making explicit independence
assumptions across instances or labels, but rather imposes a ‘bounded precision’ constraint on the
data-generating process that was introduced by Dasgupta and So (2024).

This paper contributes to the smoothed or non-worst-case analysis of learning, which studies learning
settings that are in between i.i.d. and worst-case (Rakhlin et al., 2011; Haghtalab et al., 2020, 2024;
Hanneke, 2021; Block et al., 2022, 2024; Blanchard and Jaillet, 2023; Dasgupta and So, 2024). Many
of the work in smoothed online learning take place in the parametric setting. Our work provides
complementary results for the non-parametric setting. Moreover, we provide some initial directions
for extending the theory of sequential uniform convergence to the smoothed adaptive setting, taking a
related but distinct approach to Rakhlin et al. (2015).

2 Learning on noisy and adaptively-sampled data

To illustrate the challenges of learning on noisy sequential data, we’ll first describe an example of a
data-generating mechanism that produces data that looks starkly different from what is ‘expected’: it
turns out that an adaptive sampling strategy can make patterns out of random noise (Figure 1).

In the following, an instance sequence is generated via the binary search sampling strategy, while
the labels are independent flips of the same coin. As an artifact of the sampling procedure, the
data appears to be linearly separable, even though the underlying labeling mechanism is uniform
throughout space. Thus, the observable pattern in this case will fail to generalize to future data.
Example 6 (Binary search on noise). Fix p ∈ (0, 1). Let X = [0, 1] and let η(x) = p be constant.
That is, each round, regardless of Xn, the label Yn ∼ Ber(p) is generated by a coin flip with bias p.
Construct (X1, Y1, . . . , XN , YN ) as follows. Initialize (X0, Y0) = (0, 0). For n = 1, . . . , N,

- select Xn = Xn−1 +
1
2n · (−1)Yn−1 ,

- draw Yn ∼ Ber(p).

At time N , data points left of XN have the label 0, while those to the right have the label 1.

This idea can be used to construct an adversarial sequence for the kn-nearest neighbor rule. For
example, if p > 1/2, the Bayes optimal rule predicts 1 everywhere. But, the kn-nearest neighbor rule
will predict the suboptimal label 0 for a long time on instances queried to the left of XN .
Proposition 7 (Inconsistency of kn-NN). Let X = [0, 1] and let labels on X be generated by a
Bernoulli distribution Ber(p) where p ∈ (1/2, 1). Let (kn)n be regular. There is an adaptive sampling
strategy that generates a data stream for which the kn-nearest neighbor rule is not consistent:

lim sup
N→∞

1

N

N∑
n=1

1{Ŷn ̸= Y ∗
n } ≥ 1− p

8
a.s.

To a statistician trained in the i.i.d. setting, these examples where ‘statistical convergence’ fail can
be counterintuitive. In Example 6, specifically what may be surprising here is the large discrepancy
between empirical and expected label frequencies. Let I be the open interval (X0, XN ). Then:

1

|I|
∑
Xi∈I

Yi = 0 and
1

|I|
∑
Xi∈I

E[Yi|Xi] = p.

This is true even though I contains a very large number of points with high probability, when p is
bounded away from 0 or 1. At first, this seems to violate the martingale law of large numbers.

Here’s a false proof of convergence: if we carelessly apply Azuma-Hoeffding’s inequality to the
bounded, mean-zero random variables Yi−E[Yi|Xi] taken in sequence from the interval I , we would
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conclude that the deviation between the empirical and expected label frequency must tend to zero.
The problem is that the set I itself carries information about each Yi, so the appropriate martingale
difference sequence over which to apply Azuma-Hoeffding’s needs to also condition on I . Now, as I
and Yi are dependent, the conditional expectation of Yi given I is not p. Actually, in this case, XN

encodes the first N − 1 data points (X1, Y1, . . . , XN−1, YN−1) exactly, and so E[Yi|I] = Yi.

Still, this does not satisfactorily resolve the difference between the i.i.d. and sequential setting.
When X is an i.i.d. process, we can even search for a corresponding worst interval I ′ with the largest
discrepancy between the empirical and expected frequencies; I ′ is quite dependent on Y. But, because
the class of intervals on the line has finite VC dimension, so long as I ′ contains sufficiently many
points, we are guaranteed that the empirical and expected label frequencies will be close (for example,
see Theorem 5 of Balsubramani et al. (2019)). This follows from i.i.d. uniform convergence theory,
which shows that with high probability, the empirical and expected label frequencies simultaneously
converge for all intervals. For a more formal comparison, see Proposition A.1.

It can be unsettling that statistical intuition from the i.i.d. setting does not seem to transfer to the
sequential setting. Many processes, such as scientific discovery, take place under the adaptive
sampling model: we can think of instances as a sequence of experiments that a scientific community
performs and labels as the corresponding outcomes. This data-generating process is certainly not
i.i.d., as earlier results inform which experiments are performed next. And so, it is important to
understand where the new failure modes that arise with adaptivity come from, and how likely are
they to occur. To do so, let’s take a detour into the conditional mean estimation problem.

3 Online conditional mean estimation

Let (X1, Y1, . . . , XN , YN ) be an adaptively sampled dataset, following the model defined at the start.
Even in the sequential setting, the discrepancy between the empirical and expected frequencies is
well-understood by standard martingale concentration; by Azuma-Hoeffding’s inequality,

Pr

( ∣∣∣∣ 1

N

N∑
n=1

Yi︸ ︷︷ ︸
empirical frequency

− 1

N

N∑
n=1

η(Xi)︸ ︷︷ ︸
expected frequency

∣∣∣∣ ≥ t

)
≤ 2 exp(−2Nt2).

But now, suppose that a data analyst would like to make finer-grained inferences beyond estimating
the average label over the whole dataset. In particular, to define the conditional mean estimation
problem, we say that a query is any subset of indices Q ⊂ [N ], possibly chosen with knowledge of
the whole dataset. The data analyst would like to use the conditional empirical frequency η̂N (Q) to
estimate the conditional expected frequency η̄N (Q),1

η̂N (Q) :=
1

|Q|
∑
i∈Q

Yi︸ ︷︷ ︸
conditional empirical frequency

and η̄N (Q) :=
1

|Q|
∑
i∈Q

η(Xi)︸ ︷︷ ︸
conditional expected frequency

.

We can think of statistically valid queries as those that have strong concentration guarantees showing
that these two quantities converge quickly to each other as |Q| grows.

Of particular interest to this paper is the spatial query: for any region A and capacity k ∈ [N ], it
selects for the first k instances that land in a fixed region A.
Definition 8 (Spatial query). Let A be measurable and k ∈ [N ]. Let (X1, Y1, . . . , XN , YN ) be an
adaptively sampled dataset. The spatial query QN,k(A) is the query at time N :

QN,k(A) =
{
n ∈ [N ] : Xn ∈ A and |A ∩ {X1, . . . , Xn}| ≤ k

}
.

When A is a class of measurable sets, let QN,k(A) = {QN,k(A) : A ∈ A}.

Spatial queries are easily seen to a type of label-oblivious query, which turn out to be statistically
valid. Label-oblivious queries can be sequentially constructed, but the decision to insert n into the
query must be made before Yn is revealed. Thus, we can apply Azuma-Hoeffding’s to the martingale
difference sequence Yn − E[Yn|X1, Y1, . . . , Xn] to obtain the concentration result in Lemma 10.

1As a technicality, if |Q| = 0, we let η̂N (Q) = η̄N (Q) = 0.
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Definition 9 (Label-oblivious query). Let (X1, Y1, . . . , XN , YN ) be an adaptively sampled dataset.
At time N , a query Q ⊂ [N ] is label-oblivious if for all n ∈ [N ] the conditional independence holds:

1{n ∈ Q} ⊥⊥ Yn |X1, Y1, . . . , Xn.

Thus, the decision to include n ∈ Q can be made after Xn is revealed, but before Yn is realized.

The following provides a simple concentration bound. Notice that there is a factor of k that does not
appear in the original Azuma-Hoeffding’s inequality. This is because the sample size |Q| is adaptive,
and so we take a naive union bound over all possible sample sizes. Tighter bounds are possible
(Balsubramani, 2014; Zhao et al., 2016), but this is good enough for us.
Lemma 10 (Concentration for label-oblivious queries). Suppose that (X1, Y1, . . . , XN , YN ) is an
adaptively sampled dataset and Q is a label-oblivious query such that |Q| ≤ k almost surely. Then:

Pr
(∣∣η̂N (Q)− η̄N (Q)

∣∣ ≥ t
)
≤ 2k exp

(
−2 |Q| t2

)
.

Besides label-oblivious queries, we would also like to study queries that may be somewhat label-
dependent. Such queries arise in exploratory or adaptive data analysis, where the question being
asked can depend on the observed data. Of course, a good statistical sensibility tells us that the query
cannot be overly sensitive to the dataset itself; for example, a query that cherry picks all instances
with the label 1 should certainly be ruled out. But, some others seem reasonable, at least from an i.i.d.
standpoint, like the k-nearest neighbor query for a fixed x. After all, if there are no ties, then for every
realization of the k-nearest neighbor query, there is a spatial query selecting the same instances:
Definition 11 (k-nearest neighbor ball query). Fix x ∈ X and k ∈ [N ]. Let (X1, Y1, . . . , XN , YN )
be an adaptively sampled dataset. Then:

• Let Bx = {B̄(x, r) : r ≥ 0} consist of closed balls centered at x. A ball query at x is any:

QN,k(B̄) where B̄ ∈ Bx,

so that QN,k(B̄) selects for the first k instances Xn that land in B̄.

• The k-nearest neighbor ball query at x is the adaptive query:

QN,k(x) = QN,k

(
B̄(x, r)

)
where r = argmin

s>0

{∣∣QN,k

(
B̄(x, s)

)∣∣ ≥ k
}
,

so QN,k(x) selects for instances in the smallest ball B̄(x, r) that contains at least k instances.

However, as Proposition 7 shows, even such a seemingly benign form of label-dependency can still
over-fit to past data in the worst-case setting. The reason that the k-nearest neighbor query is valid in
the i.i.d. setting is because uniform convergence holds over the class of balls Bx, which is to say that
all ball queries are simultaneously valid: no matter how dependent the ball query is on the dataset,
convergence is still guaranteed with high probability. As Proposition A.1 shows, we cannot generally
expect uniform convergence to hold for Bx in the worst-case. However, we show now that these
worst-case processes are in a sense very rare; under mild constraints, they never occur.

3.1 Smoothed uniform convergence: concentration for adaptive spatial queries

Let X have a Borel probability measure υ and let A be a class of measurable sets. In this section,
we provide a basic uniform convergence result for spatial queries over the class A assuming that the
adaptive sampling mechanism is uniform dominated by υ.

The idea to prove uniform convergence is simple: suppose that we can approximate A by a finite
collection of sets C, which we will call a sandwiching cover. To obtain uniform convergence of A,
we show that (a) uniform convergence holds on C, and that (b) the approximation error achieved by C
is small, which is possible to show using the uniform domination condition. To key to controlling
this approximation error is the sandwiching property:
Definition 12 (Sandwiching cover). Let (X , υ) be a measure space and let A be a collection of
measurable sets. Let α ≥ 0. An α-sandwiching cover of A is a collection C of measurable sets such
that for all A ∈ A, there exist Ain, Aout ∈ C such that:

Ain ⊂ A ⊂ Aout and υ(Aout \Ain) ≤ α.

Let NA(α) be the α-sandwich number of A, the size of the smallest α-sandwiching cover of A.
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The sandwich number for balls centered at a point will be particularly relevant:

Lemma 13 (Sandwich number for balls centered at x). Let (X , ρ, υ) be a separable metric space
with a Borel probability measure. Fix x ∈ X and let Bx be the set of closed balls centered at x. Then,
for any α ∈ [0, 1], the α-sandwich number NBx

(α) of Bx is at most 4/α.

Lemma 14 (Uniform concentration for spatial queries). Let (X1, Y1, . . . , XN , YN ) be an adaptively
sampled dataset on (X , ρ, υ), a metric measure space where υ is a Borel probability measure. Let A
be a family of measurable sets and let QN,k(A) be a corresponding class of spatial queries. Suppose
that X is ε(δ)-uniformly dominated. For any p ∈ (0, 1), with probability at least 1− p,

∀Q ∈ QN,k(A),
∣∣η̂N (Q)− η̄N (Q)

∣∣ ≤ 2ℓ

|Q|
+

√
1

2(|Q| − ℓ)
log

k · NA(α)

p
,

whenever α satisfies ε(α) = 1/N and ℓ ≥ max{2 log 2NA(α)
p , e2}.

Proof sketch. Let C be a minimal α-sandwiching cover of A, so that |C| ≤ NA(α). Union bounding
over all queries Q ∈ QN,k(C), we obtain from Lemma 10 that with probability at least 1− p/2,

∀Q ∈ QN,k(C),
∣∣η̂N (Q)− η̄N (Q)

∣∣ ≤√ 1

2|Q|
log

k · NA(α)

p
. (3)

To extend this large-deviation bound to the rest of QN,k(A), we shall use the fact that every A ∈ A
is sandwiched between two elements of C that are α-close Ain ⊂ A ⊂ Aout. We just need to ensure
that the region Aout \Aout does not contain a very large number of points from X≤N . There are at
most NA(α)

2 such difference regions, so it is possible to union bound over them as well: Lemma B.1
shows that none of these regions contains more than ℓ points. The contribution of these points are
accounted for by the 2ℓ/|Q| term and the slight adjustment to 1/(|Q| − ℓ).

We instantiate this lemma for the k-nearest neighbor query in Corollary 2 of Appendix B.3.

4 Consistency of kn-nearest neighbor rule for continuous η

Here, we will work under the assumption that almost surely no tie-breaking is needed for example,
when the instance space is a Euclidean space with a measure υ that is absolutely continuous with
respect to the Lebesgue measure. Theorem 2, where ties can exist, is proved in Appendix E.

Theorem 15 (Consistency of the kn-nearest neighbor rule). Let (X , ρ, υ) be a separable metric
space with a finite Borel measure. Let η : X → [0, 1] be continuous. Suppose that X is uniformly
dominated at rate ε(δ) and that almost surely there are no distance ties. If kn satisfies (2), then the
kn-nearest neighbor rule is consistent almost surely.

Proof sketch. Under uniform domination, statistical and geometric convergence hold (Propositions 16
and 18). Then, apply triangle inequality. The proof is in Appendix C and is slightly more subtle.

4.1 Statistical convergence of kn-nearest neighbor

In the introduction, we described the statistical convergence of the kn-nearest neighbor query in the
i.i.d. setting: the empirical label frequencies converge to the conditional expected frequencies,

1

kn

kn∑
k=1

Y (k)
n → 1

kn

kn∑
k=1

η(X(k)
n ),

informally speaking. In the previous section, Lemma 14 and Corollary 2 prove concentration for
kn-nearest neighbor queries for instances Z ∼ υ drawn independently of an adaptively-generated
data set. We use this to show statistical convergence for uniformly dominated process.

Proposition 16 (Statistical convergence of kn-nearest neighbor). Let (X , ρ, υ) be a metric space
with a Borel probability measure. Let η : X → [0, 1] be arbitrary. Suppose that when the sampling
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process is uniformly dominated, no distance ties occur, almost surely. Let (X1, Y1, . . .) be adaptively
sampled by an ε(δ)-uniformly dominated process and let kn satisfy (2). Then:

lim
n→∞

∣∣∣∣∣ 1kn
kn∑
k=1

Y (k)
n − 1

kn

kn∑
k=1

η(X(k)
n )

∣∣∣∣∣ = 0 a.s.

To prove this, we extend Corollary 2 by a partial coupling. Consider two parallel mechanisms:

1. Let (X1, Y1, . . . , XN , YN , XN+1) be the adaptively sampled process of interest.
2. Let (X1, Y1, . . . , XN , YN , Z) be a process that coincides with the first, until the last draw from

X , at which point an independent draw Z ∼ υ is sampled instead.

We would like to bound the chance that a k-nearest neighbor query centered at XN+1 is statistically
non-convergent. In general, this seems quite challenging, since we do not have much control over
XN+1 except that it is generated by a uniformly dominated process. However, we are able to bound
the corresponding event for Z. The following lemma relates the probabilities of these two events:
Lemma 17 (Partial coupling bound). Let D below be the outcome of an adaptive sampling process
that is ε(δ)-uniformly dominated by a probability measure υ; and, let D′ be the outcome of an
alternate mechanism that replace the last instance by an independent draw Z ∼ υ:

D = (X1, Y1, . . . , XN , YN , XN+1) and D′ = (X1, Y1, . . . , XN , YN , Z).

Let F be the σ-algebra adapted to this sequence and let E be any F-measurable event. Then:

Pr
D
(E) ≤ inf

s>0
ε(s) +

1

s
Pr
D′
(E).

Proof. Let G = σ(X1, Y1, . . . , XN , YN ) be the σ-algebra adapted to the first N labeled data points.
As E is F -measurable, the random set A = {x ∈ X : (X1, . . . , YN , x) ∈ E}, is G-measurable. This
is the set of outcomes conditioned on X1, . . . , YN for which E happens. For any s > 0, we obtain:

Pr
D
(E)

(i)
= E

X1,...,YN

[
E
[
1
{
Z ∈ A

} ∣∣G]]
(ii)

≤ E
X1,...,YN

[
ε
(
υ(A)

)]
(iii)

≤ ε(s) + Pr
(
υ(A) > s

) (iv)

≤ ε(s) +
1

s
Pr
D′
(E),

applying (i) the law of total expectations, (ii) uniform domination, (iii) the upper bound on ε(υ(A))
by ε(s) + 1

{
υ(A) > s

}
, and (iv) Markov’s inequality. Optimizing over s > 0 yields the result.

Proof of Proposition 16. Fix any s > 0 and time n, define the random variable:

D = (X1, Y1, . . . , Xn−1, Yn−1, Xn),

which are generated by an ε(δ)-uniformly dominated adaptive sampling process. Define En,t as the
event that the empirical and expected conditional frequencies at time n have t-large discrepancy:

En,t =

{∣∣∣∣∣ 1kn
kn∑
k=1

Y (k)
n − 1

kn

kn∑
k=1

η(X(k)
n )

∣∣∣∣∣ ≥ t

}
.

By assumption, kn = ω
(
log 1

ε−1(n−(1+c))

)
. We show that:

Pr
(
En,t

)
= o

(
n−(1+c)

)
.

As the sum of these probability converges, the Borel-Cantelli lemma (Lemma B.3) implies that the
discrepancy exceeds t finitely often, yielding:

lim sup
n→∞

∣∣∣∣∣ 1kn
kn∑
k=1

Y (k)
n − 1

kn

kn∑
k=1

η(X(k)
n )

∣∣∣∣∣ ≤ t a.s.

8



Letting t go to zero gives the result.

Instead of bounding Pr(En,t) directly, we consider a parallel process:
D′ = (X1, Y1, . . . , Xn−1, Yn−1, Z),

where the first n− 1 labeled data points are generated by the same adaptive sampling process, but
where the last instance Z is independently drawn from υ. Lemma 17 shows that for any s > 0:

Pr
D

(
En,t

)
≤ ε(s) +

1

s
Pr
D′
(En,t),

and so it suffices to show that eventually, we can set s so that:

s = ε−1
(
n−(1+c)

)
and Pr

D′
(E) ≤ s2,

since ε(δ) is lower bounded by δ. As there are no distance ties, this follows by our choice of kn and
the concentration result for the kn-nearest neighbor query, Corollary 2, in which we let p = s2.

4.2 Geometric convergence of kn-nearest neighbor

The next result shows that when the process is uniformly dominated, then X
(1)
n , . . . , X

(kn)
n have

conditional label frequencies that converge to that of Xn in the following sense.
Proposition 18 (Geometric convergence of kn-nearest neighbor). Let (X , ρ, υ) be a space with a
separable metric ρ and a finite, Borel measure υ. Let η : X → [0, 1] be continuous. Suppose that X
is uniformly dominated at rate ε(δ). If kn = o(n), then for any s > 0:

lim sup
N→∞

1

N

N∑
n=1

1

{∣∣∣∣∣ 1kn
kn∑
k=1

η(X(k)
n )− η(Xn)

∣∣∣∣∣ ≥ s

}
= 0 a.s.

Proof. Fix s > 0 and let B be a countable open cover of X by balls B = B(z, r) with the property:
sup

x,x′∈B(z,3r)

∣∣η(x)− η(x′)
∣∣ < s.

Such a cover exists by the continuity of η and the separability of X . Now, define En to be the event:

En =

{
there is a ball B ∈ B such that Xn ∈ B and |B ∩ X<n| ≥ kn

}
.

Lemma B.6 shows that when En occurs, all kn-nearest neighbors of Xn must also be close, and so
the labels are also s-close:

En ⊂
{

max
1≤k≤kn

∣∣η(Xn)− η(X(k)
n )

∣∣ ≤ s

}
.

Therefore, to prove the result, it suffices to show that for any ε > 0 that:

lim sup
N→∞

1

N

N∑
n=1

1 {En does not occur} ≤ ε a.s.

To do so, fix δ > 0 and take a finite subcover B′ of B of size M that covers all but a δ-fraction of X .
Denote the remaining uncovered region by Xδ = X \

⋃
B′. Then, we decompose the event:

1 {En does not occur} ≤ 1 {Xn ∈ Xδ}+ 1 {Xn /∈ Xδ and En does not occur} .
By the uniform absolute continuity of X, only an ε-fraction of points can land in the remainder:

lim sup
N→∞

1

N

N∑
n=1

1{Xn ∈ Xδ} ≤ ε(δ) a.s., (4)

by Lemma B.5. We also have that at any time n, at most knM points can land in a ball B ∈ B′

containing fewer than kn points. Since knM/n → 0, this contributes nothing to the asymptotic rate:

lim sup
N→∞

1

N

N∑
n=1

1{Xn /∈ Xδ and En does not occur} = 0 a.s. (5)

The result follows from setting δ sufficiently small and summing Equations 4 and 5. This proof shows
that the geometric convergence of kn-nearest neighbor also holds under a weaker condition implied
by Lemma B.5 called ergodic continuity (Definition B.4), introduced in Dasgupta and So (2024).
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5 Universal consistency on upper doubling spaces

In this section, we introduce the key technical innovations for Theorem 5, which shows universal
consistency of the kn-nearest neighbor rule in upper doubling spaces. The first idea is to show that
there are (random) subsequences of X that are well-behaved, on which Theorem 2 would imply
consistency. These sequences appear to be generated by an L-dominated process where ε(δ) ≤ Lδ,
and the labels seem to be sampled from a continuous label distribution η0 : X → [0, 1]. Moreover, L
and η0 can be chosen so that these subsequences only fail to capture an arbitrarily small fraction of
total instances. In the following, we let I be an indicator process, which is simply a binary process we
use to indicate instances in the subsequences X

[
I
]
≡ {Xn : In = 1} and X

[
1− I

]
≡ {Xn : In = 0}.

Definition 19 (Indicator process). An indicator process I = (In)n is a {0, 1}-valued stochastic
process. Given another stochastic process X, we say that I is adapted to X if I is adapted to the
natural filtration of X. We say that I is asymptotically rate-limited by γ > 0 if:

lim sup
N→∞

1

N

N∑
n=1

In ≤ γ a.s.

Lemma 20 (Reduction to Lipschitz setting). Let υ be a probability measure on X , and η : X → [0, 1]
be measurable. Let X be uniformly dominated by υ. For any 0 < γ < 1/2, there exists L > 0, a
continuous map η0 : X → [0, 1], and an indicator process I adapted to X such that I is asymptotically
γ-rate-limited, the subsequence X

[
1− I

]
is L-dominated by υ, and η

(
X
[
1− I

])
= η0

(
X
[
1− I

])
.

However, this by itself is not enough to guarantee universal consistency: points in X
[
I
]

that are not
well-behaved may have undue influence on the predictions if they are often a kn-nearest neighbor
of downstream instances. In order to control this, the next lemma shows that points in X

[
I
]

have
limited impact within the set of kn-nearest neighbors, as long as X is upper doubling. In particular,
if a significant fraction of the nearest neighbors do come from X

[
I
]
, then we would discover them

through subsampling. For analysis, we define the following triangular array of indicator variables
J := (Jm,n)m≤n, whose randomness is completely independent of X and Y,

∀m ≤ n, Jm,n ∼ Ber(1/kn). (6)

Lemma 21 (Long-term influence bound). Let (X , ρ, υ) be an upper doubling space and (kn)n a
regular sequence. There exist c1, c2 > 0 so that the following holds. Let X be uniformly dominated
at rate ε(δ) and I be an indicator process adapted to X asymptotically rate-limited by γ > 0, and J
be given by (6). For any δ > 0, the rate that an I-indicated kn-nearest neighbor is sampled by J is:

lim sup
N→∞

1

N

N∑
n=1

1

(
∃Xm ∈

{
X(1)

n , . . . , X(kn)
n

}
: ImJm,n = 1

)
< γ

(
c1 + c2 log

1

δ

)
+ ε(δ) a.s.

Proof sketch of Theorem 5. For any fixed γ > 0, construct I and η0 via Lemma 20, so that η0 is
continuous and I is γ-rated limited. Since we can choose γ to be arbitrarily small, we may ignore
mistakes made during indicated times In = 1. Instead, we focus on bounding mistakes when In = 0.
On these times, the instance Xn lands in the region where η is equal to η0. And so, applying the
same argument used for Theorem 15, we obtain statistical and geometric convergence:

lim sup
N→∞

1

N

N∑
n=1

∣∣∣∣∣ 1kn
kn∑
k=1

Y (k)
n − 1

kn

kn∑
k=1

η(X(k)
n )

∣∣∣∣∣+
∣∣∣∣∣ 1kn

kn∑
k=1

η0(X
(k)
n )− η0(Xn)

∣∣∣∣∣ = 0.

But this time, statistical convergence is in terms of η, and geometric convergence in terms of η0, so
we cannot apply triangle inequality yet. We also need that the discrepancy between η and η0 when
averaged over sets of kn-nearest neighbors can also be made to be arbitrarily small most of the time.

Notice that whenever the discrepancy is larger than a constant, then a constant fraction of kn-nearest
neighbors must be indicated by I. Thus, if we sample from the nearest neighbors using J on such an
event, we are likely to detect at least one indicated neighbor. However, Lemma 21 shows that the
asymptotic rate of detecting indicated nearest neighbors can be made arbitrarily small: set δ = γ
and let γ become vanishingly small. And so, the rate at which this discrepancy is larger than any
fixed constant is negligible. This allows us to complete the triangle inequality, proving universal
consistency of the kn-nearest neighbor rule in upper doubling spaces under uniform domination.

The formal proofs for this section are in Appendix D.
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A Proofs for Section 2

Proposition 7 (Inconsistency of kn-NN). Let X = [0, 1] and let labels on X be generated by a
Bernoulli distribution Ber(p) where p ∈ (1/2, 1). Let (kn)n be regular. There is an adaptive sampling
strategy that generates a data stream for which the kn-nearest neighbor rule is not consistent:

lim sup
N→∞

1

N

N∑
n=1

1{Ŷn ̸= Y ∗
n } ≥ 1− p

8
a.s.

Proof. Define the Lth epoch to be the set of times in N,

EpochL =
{
2L+1, . . . , 2L+2 − 1

}
,

so that the Lth epoch contains 2L+1 time stamps. Define RL to be the rate at which the learner made
a Bayes inconsistent prediction during the Lth epoch:

RL =
1

2L+1

∑
n∈EpochL

1
{
Ŷn ̸= Y ∗

n

}
.

Notice that as the lengths of each epoch doubles each time, we have by the end of the Lth epoch:

1

2L+2 − 1

2L+2−1∑
n=1

1
{
Ŷn ̸= Y ∗

n

}
≥ 1

2
RL.

Even if in all the previous epochs, no mistakes were made, that would only reduce the inconsistency
rate by half. And so, it suffices to prove that:

lim sup
N→∞

RL ≥ 1− p

4
a.s.

To do so, we define the following adaptive sampling strategy, which restarts every epoch:

- Initialize: select a closed interval [a, b] ⊂ X that contains no previous data points, and by a
change of coordinates, renormalize it to [0, 1].

- For the first half of the epoch: run the binary search sampling strategy for 2L rounds on the
renormalized interval. At the end, sort the data from this epoch by the usual ordering:

X(1) < · · · < X(2L).

By construction, the first M sorted instances have label 0, where:

E[M ] = (1− p)2L.

- For the second half of the epoch: exploit the region containing many 0’s. Define:

k∗ = max
n∈EpochL

kn and k∗ = minn ∈ EpochL kn.

Let x be a point sandwiched between two segments of data points of size k∗ all labeled 0,

X(i−k∗+1) < · · · < X(i)︸ ︷︷ ︸
segment of k∗ data points

< x < X(i+1) < · · · < X(i+k∗)︸ ︷︷ ︸
segment of k∗ data points

,

then by sampling the point x consecutively for k∗/2 times, we can induce the kn-nearest neighbor
rule to predict 0 every single time. As there are at least ⌊(M − k∗)/k∗⌋ such sandwiched points,
we can induce at least: (

M

k∗
− 2

)
· k∗
2

inconsistencies.

Therefore, in the Lth epoch, in expectation, the rate of inconsistency is at least:

E [RL] ≥
1

2L+1

(
(1− p)2L − 2k∗

k∗

)
· k∗
2
.

12



Using the regularity of kn, we have that limL→∞ k∗/k
∗ = 1, so that over all the epochs:

lim sup
L→∞

E [RL] ≥
(1− p)

4
.

Thus, by apply the martingale law of large numbers on (RL)L, we obtain:

lim sup
L→∞

RL ≥ (1− p)

4
a.s.,

which implies the result.

Proposition A.1 (Intervals with large deviation). Two datasets on X = [0, 1] and Y = {0, 1} are
generated as follows. The labels have conditional distribution η(x) = 1/2 everywhere.

• Let (X1, Y1, . . . , XN , YN ) be adaptively sampled by binary search, as defined in Example 1.

• Let (X ′
1, Y

′
1 , . . . , X

′
N , Y ′

N ) be sampled by a uniform i.i.d. process on X × Y .

Let I = (Xa, Xb) be an interval with endpoints chosen uniformly at random from the adaptive
dataset. For any ε > 0, the empirical frequency and expected frequency are unlikely to be similar:

Pr

(∣∣∣∣∣ ∑
Xn∈I

Yn − |I|
2

∣∣∣∣∣ ≤ Nε

)
≤ 2ε. (non-convergence in adaptive setting)

Let I ′ = (X ′
a, X

′
b) be an interval with endpoints chosen uniformly at random from the i.i.d. dataset.

For any ε > 0, the empirical frequency and expected frequency are unlikely to have large deviation:

Pr

∣∣∣∣∣∣
∑

X′
n∈I′

Y ′
n − |I ′|

2

∣∣∣∣∣∣ ≥ Nε

 ≤ 2 exp(−2Nε2). (convergence in i.i.d. setting)

Proof. 1. Non-convergence in the adaptive setting. Sort the dataset generated by Example 6, so
that:

X(1) < · · · < X(N).

By construction, the labels are also sorted; there is a threshold k ∈ {0, 1, . . . , N} where:

Y (i) = 1

{
i > k +

1

2

}
.

Let I = (X(i), X(j)) be an interval. The discrepancy is therefore given by:∣∣∣∣∣ ∑
Xn∈I

Yn − |I|
2

∣∣∣∣∣ =
∣∣∣∣ i+ j

2
−
(
k +

1

2

)∣∣∣∣
It follows that an interval has discrepancy less than Nε if and only if:

i+ j

2
∈
[
k +

1

2
−Nε, k +

1

2
+Nε

]
.

This occurs with probability at most 2Nε
N = 2ε.

2. Convergence in the i.i.d. setting. This follows from Hoeffding’s inequality.
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B Proofs for Section 3

B.1 Sandwiching covers

Lemma 13 (Sandwich number for balls centered at x). Let (X , ρ, υ) be a separable metric space
with a Borel probability measure. Fix x ∈ X and let Bx be the set of closed balls centered at x. Then,
for any α ∈ [0, 1], the α-sandwich number NBx

(α) of Bx is at most 4/α.

Proof. Let X ∼ υ and let F (r) be the cumulative distribution function of ρ(x,X). Let M ∈ N be
any number greater than or equal to 1/α. For m = 0, . . . ,M , define:

rm = min
{
r ≥ 0 : F (r) ≥ m/M

}
,

where rm exists because F is upper semi-continuous and is possibly infinite. We claim that the
following collection of open and closed balls forms an α-sandwiching cover of Bx,

C =

M⋃
m=0

{
B(x, rm), B̄(x, rm)

}
,

from which the result follows by letting M = ⌈ 1
α⌉, since 4/α ≥ 2 · ⌈ 1

α + 1⌉ ≥ |C|.

We now choose Ain, Aout ∈ C satisfying the α-sandwiching condition for any B̄(x, r) ∈ Bx. Let
m ∈ {0, . . . ,M} be the smallest number such that F (r) ≤ F (rm), which implies:

υ
(
B̄(x, rm−1)

)
< υ

(
B̄(x, r)

)
≤ υ

(
B̄(x, rm)

)
.

There are two cases:

(a) If r = rm, then we let Ain = Aout = B̄(x, rm). The sandwiching condition evidently holds.

(b) If r < rm, then we let Ain = B̄(x, rm−1) and Aout = B(x, rm). By construction of rm,

υ
(
B̄(x, s)

)
< m/M, ∀s < rm.

By the continuity of measure, we obtain υ
(
B(x, rm)

)
≤ m/M . By construction of rm−1,

υ
(
B̄(x, rm−1)

)
≥ (m− 1)/M.

It follows that υ
(
Aout \Ain

)
≤ 1/M ≤ α.

B.2 Concentration inequalities

Lemma 10 (Concentration for label-oblivious queries). Suppose that (X1, Y1, . . . , XN , YN ) is an
adaptively sampled dataset and Q is a label-oblivious query such that |Q| ≤ k almost surely. Then:

Pr
(∣∣η̂N (Q)− η̄N (Q)

∣∣ ≥ t
)
≤ 2k exp

(
−2 |Q| t2

)
.

Proof. Let τ0 = 0. Define τ1, τ2, . . . , τk to be the sequence of stopping times:

τi = min
{
t > τi−1 : t ∈ Q

}
,

where the stopping times are possibly infinite. Thus, τi is the ith index inserted into Q, and we have:

Q = {τi : τi < ∞}.

We define Y∞ = 0, so that Yτi = 0 whenever τi = ∞. Then, for any fixed ℓ ≤ k, the following
forms a martingale difference sequence:

Yτi − E
[
Yτi

∣∣Xτ1 , Yτ2 , . . . , Xτi

]
, i = 1, . . . , ℓ,

where we can let X∞ be defined as any deterministic constant.
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Now, we may apply Azuma-Hoeffding’s inequality, we obtain:

Pr

(∣∣∣∣∣
ℓ∑

i=1

Yτi −
ℓ∑

i=1

η(Xτi)

∣∣∣∣∣ ≥ tℓ

)
≤ 2 exp

(
−2ℓt2

)
.

We can union bound over all ℓ = 1, . . . , k, and since |Q| ≤ k almost surely, the bound holds in
particular for the random sample size |Q|,

Pr

∣∣∣∣∣∣
|Q|∑
i=1

Yτi −
|Q|∑
i=1

η(Xτi)

∣∣∣∣∣∣ ≥ t · |Q|

 ≤ 2k exp
(
−2|Q|t2

)
.

We obtain the result by a change of notation. Recall that when |Q| > 0,

η̂N (Q) =
1

|Q|
∑
i∈Q

Yi and η̄N (Q) =
1

|Q|
∑
i∈Q

η(Xi),

and that when |Q| = 0, then η̂N (Q) = η̄N (Q) = 0.

Lemma 14 (Uniform concentration for spatial queries). Let (X1, Y1, . . . , XN , YN ) be an adaptively
sampled dataset on (X , ρ, υ), a metric measure space where υ is a Borel probability measure. Let A
be a family of measurable sets and let QN,k(A) be a corresponding class of spatial queries. Suppose
that X is ε(δ)-uniformly dominated. For any p ∈ (0, 1), with probability at least 1− p,

∀Q ∈ QN,k(A),
∣∣η̂N (Q)− η̄N (Q)

∣∣ ≤ 2ℓ

|Q|
+

√
1

2(|Q| − ℓ)
log

k · NA(α)

p
,

whenever α satisfies ε(α) = 1/N and ℓ ≥ max{2 log 2NA(α)
p , e2}.

Proof. Let C be a minimal α-sandwiching cover of A, so that |C| ≤ NA(α). By a union bound taken
over queries Q ∈ QN,k(C), we obtain from Lemma 10 that with probability at least 1− p/2,

∀Q ∈ QN,k(C),
∣∣η̂N (Q)− η̄N (Q)

∣∣ ≤√ 1

2|Q|
log

k · NA(α)

p
. (3)

To extend this large-deviation bound to the rest of QN,k(A), we shall use the fact that every A ∈ A
is sandwiched between two elements of C that are α-close Ain ⊂ A ⊂ Aout. We just need to ensure
that the difference region Ain∆Aout does not contain a very large number of points from X≤N .

To do so, define the collection of difference regions between α-close sets in C:

∆αC =
{
A1∆A2 : A1, A2 ∈ C and υ(A1∆A2) ≤ α

}
.

There are at most NA(α)
2 such regions. We can now apply Lemma B.1 to show that when X is

uniformly dominated, these regions rarely contains more than ℓ points. In particular, we take a union
bound over all α-close pairs of sets in C, so that with probability at least 1− p/2,

∀U ∈ ∆αC,
∣∣U ∩ X≤N

∣∣ ≤ ℓ, (7)

whenever ℓ ≥ max
{
2 log 2NA(α)

p , e2
}

and ε(α) = 1/N .

Given A ∈ A, let Ain ⊂ A ⊂ Aout satisfy the α-sandwiching property. Let Qin = QN,k(Ain). It
follows that if both events (3) and (7) occur, then:∑

i∈Q

Yi − η(Xi) =
∑
i∈Qin

Yi − η(Xi) +
∑

i∈Q\Qin

Yi − η(Xi)−
∑

i∈Qin\Q

Yi − η(Xi)

≤ |Qin| ·

√
1

2|Qin|
log

k · NA(α)

p
+ 2ℓ,

where we use the fact that neither Q \Qin nor Qin \Q can contain be more than ℓ indices (note that
Qin \Q can be non-empty if A reached capacity with some instances falling in A \Ain). Dividing
through by |Q| yields the result, where we use |Qin| ≤ |Q| and 1/|Qin| ≤ 1/(|Q| − ℓ).
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Lemma B.1. Let X be ε(δ)-uniformly dominated by υ. Fix N ∈ N and let A be measurable. Then:

Pr

(
N∑
i=1

1
{
Xi ∈ A

}
≥ ℓ

)
≤ p,

whenever ℓ ≥ max
{
log 1

p , e
2Nγ

}
and γ = ε

(
υ(A)

)
.

Proof. The probability that Xt ∈ A is bounded by α because X is uniformly dominated. It follows
that for any fixed sequence of ℓ distinct times 1 ≤ t1 < t2 < · · · < tℓ ≤ N , the probability that the
event Xti ∈ A occurs at each of these times is bounded by γℓ. Formally:

Pr

(
ℓ∧

i=1

Xti ∈ A

)
≤

ℓ∏
i=1

Pr

Xti ∈ A

∣∣∣∣ i−1∧
j=1

Xtj ∈ A


≤

ℓ∏
i=1

E

Pr (Xti ∈ A
∣∣X<ti

) ∣∣∣∣ i−1∧
j=1

Xtj ∈ A

 ≤ γℓ. (8)

We can bound the event that X≤N hits A at least ℓ times by a union bound over all
(
N
ℓ

)
possible sets

of time indexes {t1, . . . , tℓ} for which Xti ∈ A:

Pr

(
N∑
i=1

1
{
Xi ∈ A

}
≥ ℓ

)
(i)

≤
∑

1≤t1<···<tℓ≤N

Pr

(
k∧

i=1

Xti ∈ A

)
(ii)

≤
(
N

ℓ

)
γℓ

(iii)

≤
(
eN

ℓ

)ℓ

γℓ

(iv)

≤ 1

eℓ

(v)

≤ p,

which follows from (i) the union bound, (ii) Equation 8, (iii) the standard bound
(
N
ℓ

)
≤ (eN/ℓ)ℓ, (iv)

ℓ ≥ e2Nγ, and (v) ℓ ≥ log 1
p .

B.3 Concentration for k-nearest neighbor query

The following concentration for the k-nearest neighbor query for a random point Z ∼ υ follows
directly from Lemma 14, where A is the set BZ of balls centered at Z and a bound on its sandwich
number comes from Lemma 13. A version with tie-breaking is given in Appendix E.
Corollary 2 (Concentration for the k-nearest neighbor query). Let (X1, Y2, . . . , XN , YN ) be
adaptively sampled by an ε(δ)-uniformly dominated process. Let Z ∼ υ be independently sampled.
Suppose that almost surely there are no distance ties to Z; let X(1), . . . , X(N) sort the instances:

ρ(Z,X(1)) < · · · < ρ(Z,X(N)).

Let t, p ∈ (0, 1). Suppose that k ≥ 100
t2

(
1 + log k + log 1

ε−1(1/N) + log 1
p

)
. Then:

Pr

∣∣∣∣∣∣1k
k∑

j=1

Y (j) − 1

k

k∑
j=1

η(X(j))

∣∣∣∣∣∣ ≥ t

 ≤ p.

Proof. Since Z is chosen independently from the data, we may apply the uniform convergence result
Lemma 14 to BZ , the closed balls around Z. In particular, when k is sufficiently large, then:

k >
4ℓ+ log k

t2
=⇒ 2ℓ

k
+

√
1

2(k − ℓ)
log

k · NBZ
(α)

p
< t,
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when ε(α) = 1/N and ℓ ≥ max
{
2 log

2NBZ
(α)

p , e2
}

. By Lemma 14, with probability at least 1− p,∣∣∣∣∣∣1k
k∑

j=1

Y (j) − 1

k

k∑
j=1

η(X(j))

∣∣∣∣∣∣ < t.

Then, Lemma 13 bounds NBZ
(α) ≤ 4/α. So indeed, k is sufficiently large:

4ℓ+ log k

t2
≤ 8

t2

(
log 2 + e2 + log k + log

4

α
+ log

1

p

)
≤ 8

t2

(
10 + log k + log

1

ε−1(1/N)
+ log

1

p

)
< k,

since log 2 + e2 + log 4 ≤ 10.

B.4 Technical lemmas

Lemma B.3 (Borel-Cantelli). Let (An)n be a sequence of events such that
∑

Pr(An) < ∞. Then:

Pr (An occurs infinitely often) = 0.

For reference, see Theorem 2.3.1 of Durrett (2019).
Definition B.4 (Ergodic continuity). A stochastic process is ergodically dominated by υ if for any
ε > 0, there exists δ > 0 such that when a measurable set A ⊂ X satisfies υ(A) < δ, then:

lim sup
N→∞

1

N

N∑
n=1

1
{
Xn ∈ A

}
< ε a.s.

We say that X is ergodically continuous with respect to υ at rate ε(δ).
Lemma B.5 (Lemma 5, Dasgupta and So (2024)). Let (Xn)n be a process that is uniformly dominated
by υ at rate ε(δ), and let (Fn)n be its natural filtration. Let (An)n be a (Fn)n-predictable sequence
where lim supn→∞ υ(An) < δ. Then:

lim sup
N→∞

1

N

N∑
n=1

1
{
Xn ∈ An

}
≤ ε(δ) a.s.

Lemma B.6 (Closeness of k-nearest neighbors). Let X be any process in X and fix some n ∈ N.
Let B = B(z, r) be any ball and let 3B denote the larger ball B(z, 3r). Suppose that Xn ∈ B and
|B ∩ X<n| ≥ k. Then, the k-nearest neighbors of Xn are contained in 3B,

X(1)
n , . . . , X(k)

n ∈ 3B.

Proof. For all x ∈ B and x′ /∈ 3B, we have:

ρ(x,Xn) ≤ 2r and ρ(z,Xn) > 2r.

That is, all points in B are closer to Xn than points outside of 3B. Since B contains at least k points,
the k nearest neighbors of Xn must come from 3B.
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C Proofs for Section 4

Theorem 15 (Consistency of the kn-nearest neighbor rule). Let (X , ρ, υ) be a separable metric
space with a finite Borel measure. Let η : X → [0, 1] be continuous. Suppose that X is uniformly
dominated at rate ε(δ) and that almost surely there are no distance ties. If kn satisfies (2), then the
kn-nearest neighbor rule is consistent almost surely.

Proof. It suffices to show that the rate at which the kn-nearest neighbor rule does not coincide with
the Bayes optimal prediction goes to zero. When η(Xn) = 1/2, we say that both possible predictions
in Y = {0, 1} are Bayes optimal. Then, the Bayes-inconsistent event is contained in:{

Ŷn ̸= Y ∗
n

}
⊂

{∣∣∣∣∣ 1kn
kn∑
k=1

Y (i)
n − η(Xn)

∣∣∣∣∣ ≥ s

}
∪
{
0 <

∣∣∣∣η(Xn)−
1

2

∣∣∣∣ ≤ s

}
,

for any s > 0. By applying the triangle inequality to the statistical and geometric convergence results,
Propositions 16 and 18, we obtain that:

lim sup
N→∞

1

N

N∑
n=1

1

{∣∣∣∣∣ 1kn
kn∑
k=1

Y (i)
n − η(Xn)

∣∣∣∣∣ ≥ s

}
= 0 a.s.

Define As to be the set:

As =

{
x ∈ X : 0 <

∣∣∣∣η(x)− 1

2

∣∣∣∣ ≤ s

}
Thus, the rate that kn-nearest neighbor is inconsistent with the Bayes predictor is bounded by:

lim sup
N→∞

1

N

N∑
n=1

1

{
Ŷn ̸= Y ∗

n

}
≤ lim sup

N→∞

1

N

N∑
n=1

1 {Xn ∈ As} ≤ ε (υ (As)) ,

where the second inequality holds by the uniform domination condition. The result follows by letting
s ↓ 0, which implies that As ↓ ∅. By the continuity of measure, υ(As) also converges to zero, so by
uniform domination, so does ε(υ(As)).
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D Proofs for Section 5

D.1 Proof of Theorem 5

Theorem 5 (Universal consistency in upper doubling spaces). Let (kn)n be a regular sequence, and
(X , ρ, υ) be an upper doubling space. Let X be uniformly dominated by υ and η : X → [0, 1] be
measurable. Then the kn-nearest neighbor rule is online consistent with respect to (X, η).

Proof. Fix γ > 0, and let I and η0 be as described in Lemma 20. We show that the asymptotic
mistake rate is almost surely bounded by 3γ. This implies the result since γ was arbitrary.

By construction, the subsequence X[1− I] asymptotically all but a γ-fraction of X. And so, even if
the learner makes a mistake at each indicated time In = 1, this would contribute at most an additive
term of γ in the overall mistake rate. In the remainder, we show that mistakes made during the rest of
times, when In = 0, contribute at most another term of 2γ.

As in Theorem 15, it suffices to show that the rate at which the kn-nearest neighbor rule does not
coincide with the Bayes optimal prediction goes to zero. On a non-indicated time In = 0, we have
that η(Xn) = η0(Xn), and so for any s > 0, the Bayes-inconsistent event is contained in:{

Ŷn ̸= Y ∗
n and In = 0

}
⊂

{∣∣∣∣∣ 1kn
kn∑
k=1

Y (i)
n − η0(Xn)

∣∣∣∣∣ ≥ s and In = 0

}
︸ ︷︷ ︸

(a)

∪

{
0 <

∣∣∣∣η0(Xn)−
1

2

∣∣∣∣ ≤ s

}
︸ ︷︷ ︸

(b)

.

Let’s bound the rate at which either (a) or (b) occurs. As η0 is continuous, we may choose s > 0 such
that by uniform domination, (b) contributes at most another γ term to the mistake rate:

lim sup
N→∞

1

N

N∑
n=1

1

{
0 <

∣∣∣∣η0(Xn)−
1

2

∣∣∣∣ ≤ s

}
≤ γ a.s.

As for the event (a), we can first bound
∣∣∣ 1
kn

∑kn

k=1 Y
(i)
n − η0(Xn)

∣∣∣ using triangle inequality by:∣∣∣∣∣ 1kn
kn∑
k=1

Y (i)
n − 1

kn

kn∑
k=1

η(Xk)

∣∣∣∣∣︸ ︷︷ ︸
(i)

+

∣∣∣∣∣ 1kn
kn∑
k=1

η(Xk)−
1

kn

kn∑
k=1

η0(Xk)

∣∣∣∣∣︸ ︷︷ ︸
(ii)

+

∣∣∣∣∣ 1kn
kn∑
k=1

η0(Xk)− η0(Xn)

∣∣∣∣∣︸ ︷︷ ︸
(iii)

,

where both (i) and (iii) eventually never exceed s/3 almost surely, resepctively by statistical conver-
gence (Proposition 16) and geometric convergence (Proposition 18). Thus, to bound the rate that
event (a) occurs, it suffices to bound the rate that (ii) exceeds s/3. This is bounded by the rate that
an s/3-fraction of the kn-nearest neighbors of Xn come from the region {η ̸= η0}, and thus are
indicated instances. To bound this, let An indicate the event that In = 0 but at least an s/3-fraction
of the kn-nearest neighbors of Xn are in X[I]. Then, it suffices to show:

lim sup
N→∞

1

N

N∑
n=1

An = 0 a.s. (9)

To do so, we bound the long-term influence of X
[
I
]
. Let Bn be the indicator from Lemma 21:

Bn = 1

(
∃Xm ∈

{
X(1)

n , . . . , X(kn)
n

}
: ImJm,n = 1

)
,

the event that some kn-nearest neighbor of Xn comes from X
[
I
]

and is sampled by J, which was
defined in (6). By setting δ = γ and sending γ → 0 as before, Lemma 21 shows that:

lim sup
N→∞

1

N

N∑
n=1

Bn = 0 a.s. (10)
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To complete our proof, we relate An to Bn, showing that a significant fraction of the kn-nearest
neighbors cannot come from X

[
I
]
, for otherwise they would have been sampled by J. Observe that

at time n, the conditional expectation of Bn can be lower bounded in terms of An:

E
[
Bn

∣∣X<n

]
= Pr

(
∃Xm ∈

{
X(1)

n , . . . , X(kn)
n

}
: ImJm,n = 1

)
≥ An

(
1− 1

kn

)kn·s/3

≥ An

(
1

4

)s/3

,

where the last inequality holds for all kn ≥ 2. Now, averaging over time, we obtain:

1

N

N∑
n=1

E
[
Bn

∣∣X<n

]
≥ 1

N

(
1

4

)s/3 N∑
n=1

An.

By the martingale law of large numbers and Equation (10), as N goes to infinity, the left-hand side
must converge to zero almost surely. It follows that the right-hand side must as well. This implies
Equation (9) and completes the proof.

D.2 Proof of Lemma 20

Lemma 20 (Reduction to Lipschitz setting). Let υ be a probability measure on X , and η : X → [0, 1]
be measurable. Let X be uniformly dominated by υ. For any 0 < γ < 1/2, there exists L > 0, a
continuous map η0 : X → [0, 1], and an indicator process I adapted to X such that I is asymptotically
γ-rate-limited, the subsequence X

[
1− I

]
is L-dominated by υ, and η

(
X
[
1− I

])
= η0

(
X
[
1− I

])
.

Proof. Let µn denote the conditional measure of Xn on X , so that for all measurable A ⊂ X :

µn(A) = Pr
(
Xn ∈ A |X<n,Y<n

)
.

Because X is uniformly dominated by υ, the measure µn itself is absolutely continuous with respect
to υ. Thus, the Radon-Nikodym theorem implies that it has a density function fn : X → [0,∞),

µn(A) =

∫
A

fn(x) υ(dx).

Let L = 2
ε−1(γ/2) and let An =

{
x : fn(x) ≥ L

2

}
. By design, Xn is unlikely to be drawn from An,

µn(An)
(i)

≤ ε
(
υ(An)

) (ii)
= ε

(
Pr

X∼υ

(
fn(X) ≥ L

2

))
(iii)

≤ ε

(
2

L
· E
X∼υ

[fn(X)]

)
(iv)

≤ γ

2
,

where (i) applies the uniform domination property of µn, (ii) rewrites υ(An) as a probability, (iii)
applies Markov’s inequality, and (iv) follows from our choice of L and from the fact that fn is a
density function, so that EX∼υ[fn(X)] = 1.

We now also construct the continuous map η0. By Lusin’s theorem, there is an open subset B ⊆ X
with υ(B) < ε−1

(
γ
2

)
such that the restriction of η to X \B is continuous. Since X is a metric space,

this restriction can be continuously extended to all of X using the Tietze extension theorem. Let η0
be any such extension. Then, Xn is also unlikely to be drawn from B,

µn(B) ≤ ε
(
υ(B)

)
≤ γ

2
.

Finally, we define the indicator process I = (In)n, where:

In = 1
{
Xn ∈ An ∪B

}
.

Since µn(An ∪B) ≤ γ, the martingale law of large numbers implies that I is γ-rate limited:

lim sup
N→∞

1

N

N∑
n=1

In ≤ γ a.s.,

20



proving that condition (1) holds. Condition (3) also follows by construction, since η0 is equal to η on
X \B. Indeed, when In = 1, then Xn /∈ B. Condition (2) remains.

For this last condition, for any n where In = 0, the distribution from which Xn is selected is
conditioned on the fact that Xn /∈ An ∪B. Since An ∪B has υ-measure at most γ, we see that for
any measurable set E, the probability that Xn ∈ E is at most:

Pr
(
Xn ∈ E

∣∣X<n,Y<n, In = 0
)
=

µn (E \ (An ∪B))

1− µn (An ∪B)

≤ 1

1− γ

∫
E

fn(x) · 1
{
x /∈ (An ∪B)

}
υ(dx)

≤ 1

1− γ

∫
E

fn(x) · 1
{
fn(x) ≤ L/2

}
υ(dx)

≤ 1

1− γ

∫
E

L

2
υ(dx)

=
L

2(1− γ)
· υ(E) ≤ Lυ(E).

Here, we exploited the fact outside of the set An, the density fn is at most L/2, and that γ < 1/2.

D.3 Proof of Lemma 21

Lemma 21 (Long-term influence bound). Let (X , ρ, υ) be an upper doubling space and (kn)n a
regular sequence. There exist c1, c2 > 0 so that the following holds. Let X be uniformly dominated
at rate ε(δ) and I be an indicator process adapted to X asymptotically rate-limited by γ > 0, and J
be given by (6). For any δ > 0, the rate that an I-indicated kn-nearest neighbor is sampled by J is:

lim sup
N→∞

1

N

N∑
n=1

1

(
∃Xm ∈

{
X(1)

n , . . . , X(kn)
n

}
: ImJm,n = 1

)
< γ

(
c1 + c2 log

1

δ

)
+ ε(δ) a.s.

The proof of this result builds on the technique developed by Dasgupta and So (2024), specifically
for their Theorem 17. In Sections D.4 and D.5, we review the key definitions from their work along
with some modifications to extend to kn-nearest neighbors (rather than 1-nearest neighbors).

We begin with a quick technical lemma that lets us bound how many points are likely to be selected
for which both I and J are 1.

Lemma D.1. Let I and J be as defined in Lemma 21. Then:

lim sup
N→∞

kN
N

N∑
n=1

InJn,N ≤ γ.

Proof. It is clear that lim supN→∞
1
N

∑N
n=1 In ≤ γ almost surely. Thus, for any α > 0, there

almost surely exists Nα such that for all N ≥ Nα, 1
N

∑
In ≤ γ + α.

Pick any N for which this occurs. Observe that the values of Jn,N are i.i.d Bernouli variables
each with expected value kN . Thus applying Hoeffding’s lemma over all of them, we see that with
probability at least 1− exp

(
−N(γ+α)

KN

)
, our desired sum is at most (γ + α)(1 + α).

Since (kn)n is a regular sequence, N
KN

grows strictly faster than log n, which implies that∑∞
N=1 exp

(
−N(γ+α)

KN

)
is finite. Applying the Borel-Cantelli lemma implies that our deisred sum is

at most (γ + α)(1 + α) almost surely completing the proof.

Proof of Lemma 21. Without loss of generality, X has diameter 1. For 1 ≤ n ≤ N , let κ(n) be the
number of instances 1 ≤ t ≤ n for which ItJt,N = 1, and let τk to be the time of the kth time for
which this occurs.
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Next, we construct a chain of sequentially-constructed cover trees (Definition D.6) exactly as done in
the proof of Theorem 17 in Dasgupta and So (2024). That is, let (Ck)k be a chain of sequentially-
constructed cover trees associated to the sequence Xτ1 , Xτ2 , . . . . Let Lk denote the insertion rank of
Xτk . For n ≥ τk, define

Tk,n = Lk + 1 +

⌈
1

d
lg

c

δ

⌉
+Gk,κ(n), (11)

where (c, d) are parameters associated to the upper doubling condition (Definition 3), and Gk,κ(n) is
the number of generations of children Xτk has by time n.

Next, construct a set of very small balls that are centered at the points in our cover tree as follows.
Define

Tn =

κ(n)⋃
k=1

cone
(
Xτk ;Tk,n + 1

)
and An =

⋃
B∈Tn

2B,

where the cone is defined as in Definition D.5.

We now relate the number of times in which Xn has a nearest neighbor with ItJt,N = 1 to events
related to this cover tree. Since υ is an upper doubling measure, we immediately have that the
sequence X1, X2, . . . are almost surely distinct points. Thus, applying Lemma D.8, with the
combined indicator process InJn,N , we have
N∑

n=1

1

(
∃Xt ∈

{
X(1)

n , . . . , X(kn)
n

})
≤

N∑
n=1

∑
Br∈Cκ(n−1)

1

(
E2Br,r/2

n

)

=

N∑
n=1

∑
Br∈Cκ(n−1)\Tn−1

1

(
E2Br,r/2

n

)
+

N∑
n=1

1 (Xn ∈ An−1) .

We now bound each term separately. For the first term, we apply Lemma D.4 to see that
N∑

n=1

∑
Br∈Cκ(n−1)\Tn−1

1

(
E2Br,r/2

n

)
≤

∑
Br∈Cκ(N−1)\TN−1

N∑
n=1

1

(
E2Br,r/2

n

)
≤ 22d+1kN |Cκ(N)\TN |.

Bounding the total number of balls within this set follows identically to the proof of Theorem 17 in
Dasgupta and So (2024): it suffices to count the number of balls for each instance Xτk that are not in
its (Tk,N + 1)-tail:

|Cκ(N) \ TN | ≤
κ(N)∑
k=1

(Tk,N + 1)− Lk

≤ κ(N) ·
(
2 +

⌈
1

d
lg

c

δ

⌉)
+

κ(N)∑
k=1

Gk,κ(N)

≤ κ(N) ·
(
2 +

⌈
1

d
lg

c

δ

⌉)
+ κ(N).

To bound the second term, Lemma D.10 implies that An has mass at most υ(An) ≤ δ for all n. Thus
the probability that Xn ∈ An−1 is at most ε(δ), and the expected number of total occurrences is
N(ε(δ)).

Combining our bounds, fix any α > 0. Lemma 5 from Dasgupta and So (2024) implies that for
N sufficiently large,

∑N
n=1 1(Xn ∈ An−1) < N(ε(δ) + α) with probability 1. Furthermore, by

applying Lemma D.1, we see that for N sufficiently large, κ(N) < N
kN

(γ + α) also occurs with
probability 1. Combining these, we see that

1

N

N∑
n=1

1

(
∃Xt ∈

{
X(1)

n , . . . , X(kn)
n

})
≤ 22d+1kN

(
1

kN
(γ + α)

)(
3 +

⌈
1

d
lg

c

δ

⌉)
+ (ε(δ) + α)

≤ (γ + α)22d+1

(
3 +

⌈
1

d
lg

c

δ

⌉)
+ ε(δ) + α.
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Since α > 0 was arbitrary, it follows that almost surely,

lim sup
N→∞

1

N

N∑
n=1

1

(
∃Xt ∈

{
X(1)

n , . . . , X(kn)
n

})
≤ γ22d+1

(
3 +

⌈
1

d
lg

c

δ

⌉)
+ ε(δ).

D.4 Packing Bounds

Here we include several definitions that are taken directly from Section 6.1 of Dasgupta and So
(2024). In some cases, we include slight modifications that will prove useful for generalizing their
results from 1-nearest neighbor to kn-nearest neighbors.
Definition D.2 (Packing number, Definition 18 of Dasgupta and So (2024)). Let r > 0. A set Z ⊂ X
is an r-packing if all of its points are bounded away from each other by a distance r,

inf
z,z′∈Z

ρ(z, z′) ≥ r.

The r-packing number Pr(U) of U is the maximum possible size of an r-packing Z contained in U .

Similarly to Dasgupta and So (2024), we will use packing numbers to bound the number of times a
point has a large kn-nearest neighbor radius (its furthest neighbor is quite far from it). To do so, we
adapt their notion of an “r-separated event" (Definition 19 in Dasgupta and So (2024)) to apply to
kn-nearest neighbors. An r-separated event is visualized in Figure 2.
Definition D.3 (r-separated event). Let X be a process, r > 0, and (kn)n be a sequence. The
r-separated event at time n is the event Er

n that Xn has distance at least r from its knth nearest
neighbor. That is,

Er
n :=

{
ρ(Xn, X

(kn)
n ) ≥ r

}
.

Given a subset U , the (U, r)-separated events are the events EU,r
n := Er

n ∩
{
Xn ∈ U

}
.

Next, similar in spirit to Lemma 20 of Dasgupta and So (2024), we bound how frequently r-separated
events can occur with respect to the packing number.
Lemma D.4 (Packing bound). Let (X , ρ) be a metric space, U ⊂ X be a subset, r > 0, and (kn)n
be regular sequence (Definition 4). For any process X, the number of (U, r)-separated events that
occur before time N is bounded by the r-packing number of U ,

N∑
n=1

1
{
EU,r

n occurs
}
≤ 2kNPr(U).

Proof. Let n1, . . . , nt index all instances where the (U, r)-separated event EU,r
ni

occurs. Construct a
graph with vertices n1, . . . , nt such that (ni, nj) is a directed edge if and only if ni ≤ nj and Xni

was one of the (knj
− 1)-nearest neighbors of Xnj

. See also Figure 2. We make two claims:

1. Any independent set in this graph must form an r-packing of U .

2. The graph has an independent set of size t/2kN .

Together, these two claims imply the result, since it shows that t/2kN ≤ Pr(U), recalling that t is
the total number of (U, r)-separated events that occur by time N . We now prove the claims:

• Claim 1. Let ni ≤ nj . By construction, when (ni, nj) is not an edge, the points Xni
and Xnj

must be r-separated; this is because Xni
can be no closer to Xnj

than the knj
th nearest neighbor

of Xnj
. Thus, any independent set in the graph must form an r-packing of U .

• Claim 2. The graph has a total of at most
∑t

i=1(kni
− 1) ≤ t (kN − 1) edges (kN is larger

than kni
by the regularity of (kn)n). It follows that the average degree is at most 2(kN − 1).

Applying Turan’s theorem, the graph must have an independent set of size at least:
t

2kN − 1
≥ t

2kN
.
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Figure 2: We say that an r-separated event occurs when the knth nearest neighbor of Xn is
r-separated from Xn. Thus, the ball B(Xn, r) contains at most kn − 1 neighbors.

D.5 Properties of cover trees

Next, we review cover trees, which were introduced by (Beygelzimer et al., 2006) and a book-keeping
device applied by Dasgupta and So (2024). We begin with several definitions and lemmas taken
directly from Dasgupta and So (2024). We refer the interested reader to view their work for the
intuition behind these ideas: for our purposes we will simply state them for completeness.
Definition D.5 (Dyadic cone: Definition 21 from Dasgupta and So (2024)). Let (X , ρ) have unit
diameter and let x ∈ X . A dyadic cone centered at x of rank L ∈ Z≥0 is the discrete collection of
balls:

cone(x;L) = {B(x, 2−ℓ) : ℓ ≥ L and ℓ ∈ Z≥0}.
When L′ ≥ L, we also refer to cone(x;L′) within cone(x;L) as its rank-L′ tail.
Definition D.6 (Sequentially-constructed cover trees: Definition 22 from Dasgupta and So (2024)).
Let (X , ρ) have unit diameter and A = (ak)k be a dataset in X without duplicates. The cover trees
(Ck)k with insertion ranks (Lk)k are defined:

C1 = cone(a1;L1), L1 = 0,

Ck = Ck−1 ∪ cone(ak;Lk), Lk = min
{
ℓ ∈ Z≥0 : no ball of radius 2−ℓ in Ck−1 contains x

}
.

We say that ak was inserted into the cover tree at the Lkth rank.
Definition D.7 (Cover-Tree Neighbor Map: Equation 7 from Dasgupta and So (2024)). We define a
cover-tree neighbor map ck : X \ A≤k → Ck as any one satisfying:

ck(x) = B(a, r) =⇒ x ∈ B(a, 2r) and r/2 ≤ ρ(x,A≤k) < r. (12)

Dasgupta and So (2024) show that such maps always exist with the following lemma.
Lemma D.8 (Lemma 23 from Dasgupta and So (2024)). The cover tree Ck for A≤k has a cover-tree
neighbor map ck.

Definition D.9 (Tree structure: Definition 24 from Dasgupta and So (2024)). For the above sequence
of cover trees and insertion ranks, we let a1 be the root of A. For all k > 1, there is a ball
B(aj , 2

−Lk+1) ∈ Ck−1 containing ak. We assign such an aj to be the parent of ak, and we say that
ak is its child. A set of instances inserted at the same rank to the same parent is called a generation
of children. The number of generations of children ak has at time n defines the upper triangular array
(Gk,n)k≤n:

Gk,n =
∣∣{Lk′ : ak is the parent of ak′ where k′ ≤ n

}∣∣.
Lemma D.10 (Cover tree δ-tail: Lemma E.1 from Dasgupta and So (2024)). Let (X , ρ, υ) be a
upper doubling metric space with unit diameter. Let (Ck)k be a chain of cover trees for the sequence
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A = (ak)k and let (Lk)k be its sequence of insertion ranks. Define the array of tail ranks (Tk,n)k≤n

and tail sets (An)n,

Tk,n = Lk + 1 +

⌈
1

d
lg

c

δ

⌉
+Gk,n and An =

n⋃
k=1

B
(
ak, 2

−Tk,n
)
,

where d is the doubling dimension and c is the upper doubling constant in Definition 3. For all n, the
mass of the tail is bounded υ(An) < δ.

For the final lemma in this section, we will modify Lemma 25 from Dasgupta and So (2024) in order
to apply for kn-nearest neighbors (rather than only 1-nearest neighbor).
Lemma D.11 (Cover tree decomposition). Let (X , ρ) have unit diameter, let X be a process in X ,
and let I be an indicator process. For any n, let C be a cover tree for X

[
I<n

]
with a cover-tree

neighbor map c. Assume that Xn /∈ X[I<n] is not equal to one of the indicated instances. Then:{
∃Xt ∈

{
X(1)

n , . . . , X(kn)
n

}
∩ X[I<n]

]}
⊂

⋃
B(a,r)∈C

{
Er/2

n = 1 and c(Xn) = B(a, r)
}
,

where Er
n (Definition D.3) denotes the event that Xn has distance at least r from its kn-th nearest

neighbor in X<n. In particular, the event within the union indexed by B = B(a, r) ∈ C is contained
in E

2B,r/2
n .

Proof. Let c(Xn) = B(a, r) for some r > 0. Suppose that Xn indeed has some nearest neighbor that
is located within the indicated instances. By the definition of a cover tree neighbor, there must exist
some Xt ∈ X[I<n] such that ρ(Xn, Xt) ≥ r

2 . This implies that the kn-nearest neighbor distance of
Xn is at least r/2, which implies Er/2

n does indeed occur. Finally, the fact that Xn ∈ 2B(a, r) is
immediate from the definition of a cover tree neighbor.
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E Tie-breaking details

In this section, we formalize the tie-breaking strategy and show that the techniques introduced earlier
also apply. Let (X1, Y1, . . . , XN , YN ) be an adaptively sampled dataset. For a new query point
x ∈ X , we sort the dataset X(1), . . . , X(N) by the lexicographic ordering on the pair:(

ρ(x,Xi), i
)
.

Thus, the ordering is foremost determined by the distance of an instance to x, so that ρ(x,X(n)) is
monotonically increasing with n. And if there are distance ties with ρ(x,X(n)) = ρ(x,X(n+1)),
then the instance that entered the dataset earlier takes precedence. The kn-nearest neighbor query
consists of taking the first kn indices under this ordering.

It turns out that we can describe the kn-nearest neighbor query as a relatively simple composition of
spatial queries (Definition 8). In addition to the ball queries (Definition 11) defined earlier, we need
the shell queries, which are spatial queries over sets of the form Sr = {z ∈ X : ρ(x, z) = r}. Then,
the kn-nearest neighbor query (with tie-breaking) can be given as follows:
Definition E.1 (kn-nearest neighbor query). Fix x ∈ X and k ∈ [N ]. Let (X1, Y1, . . . , XN , YN ) be
an adaptively sampled dataset. Then:

• Let B◦
x = {Br : r > 0} be the set of open balls centered at x, where Br = B(x, r).

• Let Sx = {Sr : r ≥ 0} be the set of shells centered at x, where Sr = B̄(x, r) \B(x, r).

• The k-nearest neighbor query at x is the adaptive query:

QN,k(x) = QN,k

(
Br

)
∪QN,ℓ(Sr) where r = argmax

s>0

{∣∣QN,k

(
B̄(x, s)

)∣∣ ≥ k
}
,

and where ℓ = k − |QN,k(Br)|. Thus, QN,k(x) selects for exactly k points by finding the
smallest closed ball containing at least k points, selecting for all points in its interior, and filling
the remaining quota from the boundary, taken in order of arrival.

E.1 Sandwich numbers and concentration

Notice that any uniform concentration for spatial queries over closed balls directly carries over to
spatial queries over open balls: for every open ball Br ∈ B◦

x and dataset (X1, Y1, . . . , XN , YN ), as
long as s < r is sufficiently close to r, then the queries coincide QN,k(Br) = QN,k(B̄s).

We need to provide uniform concentration of the class of spherical queries QN,k(Sx). A very similar
proof to Lemma 13 yields the following bound on the sandwich number of Sx:
Lemma E.2 (Sandwich number for spheres centered at x). Let (X , ρ, υ) be a separable metric space
with a Borel probability measure. Fix x ∈ X and let Sx be the set of shells centered at x. Then, for
any α ∈ [0, 1], the α-sandwich number NBx

(α) of Sx is at most 4/α.

Proof. Let X ∼ υ and let F (r) be the cumulative distribution function of ρ(x,X). Let M ∈ N be
any number greater than or equal to 1/α. For m = 0, . . . ,M , define:

rm = min
{
r ≥ 0 : F (r) ≥ m/M

}
,

where rm exists because F is upper semi-continuous and is possibly infinite. We claim that the
following collection of rings and shells forms an α-sandwiching cover of Sx,

C =

M⋃
m=0

{
B(x, rm) \ B̄(x, rm−1), S(x, rm)

}
,

from which the result follows by letting M = ⌈ 1
α⌉, since 4/α ≥ 2 · ⌈ 1

α + 1⌉ ≥ |C|.
We now choose Ain, Aout ∈ C satisfying the α-sandwiching condition for any S(x, r) ∈ Sx. Let
m ∈ {0, . . . ,M} be the smallest number such that F (r) ≤ F (rm). There are two cases:

(a) If r = rm, then we let Ain = Aout = S(x, rm). The sandwiching condition evidently holds.
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(b) If r < rm, then we let Ain = ∅ and Aout = B(x, rm) \ B̄(x, rm−1). By construction of rm,

υ
(
B̄(x, s)

)
< m/M, ∀s < rm.

By the continuity of measure, we obtain υ
(
B(x, rm)

)
≤ m/M . By construction of rm−1,

υ
(
B̄(x, rm−1)

)
≥ (m− 1)/M.

It follows that υ
(
Aout

)
≤ 1/M ≤ α.

Lemma E.3 (Concentration for the k-nearest neighbor query). Let (X1, Y2, . . . , XN , YN ) be
adaptively sampled by an ε(δ)-uniformly dominated process. Let Z ∼ υ be independently sampled.
Let X(1), . . . , X(N) sort the instances by ascending lexicographic ordering on the pair:(

ρ(Z,Xi), n
)
.

Let t, p ∈ (0, 1). Suppose that k ≥ 500
t2

(
1 + log k + log 1

ε−1(1/N) + log 1
p

)
. Then:

Pr

∣∣∣∣∣∣1k
k∑

j=1

Y (j) − 1

k

k∑
j=1

η(X(j))

∣∣∣∣∣∣ ≥ t

 ≤ p.

Proof. Since Z is chosen independently from the data and let A = B◦
Z ∪SZ consist of the open balls

and shells around Z. Thus, as shown in Definition E.1, the k-nearest neighbor query centered at Z is
the union of two disjoint queries:

Q1, Q2 ∈
⋃

m∈[k]

QN,m(A).

The result follows by proving uniform convergence over queries that are the disjoint union of two
such queries. As Z is independently chosen from the data, we may apply the uniform convergence
result Lemma 14. In particular, by a union bound, with probability at least 1− p,

∀Q ∈
⋃

m∈[k]

QN,m(A),
∣∣η̂N (Q)− η̄N (Q)

∣∣ ≤ 2ℓ

|Q|
+

√
1

2(|Q| − ℓ)
log

k2 · NA(α)

p
,

where we let α = ε−1(1/N) and ℓ = 2 log 2NA(α)
p + e2.

Let Q1 and Q2 be two disjoint queries satisfying the above inequality. Let Q = Q1∪Q2 and |Q| = k.
Without loss of generality, assume |Q1| ≥ k/2. Then, we claim that:

∣∣η̂N (Q)− η̄N (Q)
∣∣ ≤ 2

(
2ℓ

|Q1|
+

√
1

2(|Q1| − ℓ)
log

k2 · NA(α)

p

)
, (13)

where the right-hand side of Equation 13 is less than t when k is sufficiently large:

k >
16ℓ+ 8 log k

t2
.

In particular, this holds when Q is a k-nearest neighbor query.

Lemma 13 and Lemma E.2 bounds NA(α) ≤ 8/α. So indeed, k is sufficiently large:

16ℓ+ 8 log k

t2
≤ 32

t2

(
log 2 + e2 + log k + log

8

α
+ log

1

p

)
≤ 500

t2

(
1 + log k + log

1

ε−1(1/N)
+ log

1

p

)
< k,

since log 2 + e2 + log 8 ≤ 12.

Proof of claim. Let C =
√

1
2 log

k·NA(α
p . There are two cases:
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1. Case 1: |Q2| > 2ℓ.∣∣η̂N (Q)− η̄N (Q)
∣∣ ≤ 1

|Q|
(
|Q1| ·

∣∣η̂N (Q1)− η̄N (Q1)
∣∣+ |Q2| ·

∣∣η̂N (Q2)− η̄N (Q2)
∣∣)

≤ 1

|Q|

(
4ℓ+ C

√
|Q1|2

|Q1| − ℓ
+ C

√
|Q2|2

|Q2| − ℓ

)

≤ 1

|Q1|

(
4ℓ+ 2C

√
|Q1|2

|Q1| − ℓ

)

= 2

(
2ℓ

|Q1|
+

√
1

2(|Q1| − ℓ)
log

k · NA(α)

p

)
.

2. Case 2: |Q2| ≤ 2ℓ.∣∣η̂N (Q)− η̄N (Q)
∣∣ ≤ 1

|Q|
(
|Q1| ·

∣∣η̂N (Q1)− η̄N (Q1)
∣∣+ |Q2| ·

∣∣η̂N (Q2)− η̄N (Q2)
∣∣)

≤ 1

|Q|

(
4ℓ+

√
|Q1|2

2(|Q1| − ℓ)
log

k · NA(α)

p

)

≤ 2

(
2ℓ

|Q1|
+

√
1

2(|Q1| − ℓ)
log

k · NA(α)

p

)
.

Proof of Theorem 2. Recall that Theorem 15 proved consistency for the kn-nearest neighbor rule
when η is continuous, under the assumption that almost surely no distance ties occur. That assumption
only came in so that the concentration bound for kn-nearest neighbor queries without ties, Corollary 2,
could by applied. By replacing that with the concentration bound for kn-nearest neighbor queries
with tie-breaking, Lemma E.3, we immediately the result.
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Answer: [Yes]
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of the paper (regardless of whether the code and data are provided or not)?
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whether the code and data are provided or not.
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to make their results reproducible or verifiable.
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For example, if the contribution is a novel architecture, describing the architecture fully
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one good way to accomplish this, but reproducibility can also be provided via detailed
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tions to faithfully reproduce the main experimental results, as described in supplemental
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
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versions (if applicable).
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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Answer: [Yes]

Justification: yes, we made sure it conforms to ethics. This is a theory paper about nearest
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eration due to laws or regulations in their jurisdiction).
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: theory paper

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: we cited everything, and this is a theory paper so no code was used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: theory paper
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: theory paper, no human subjects or crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: no study participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: no LLMs used.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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