Consistency of the £, -nearest neighbor rule
under adaptive sampling

Robi Bhattacharjee' Sanjoy Dasgupta® Geelon So?

1University of Tiibingen and Tiibingen AI Center
2Department of Computer Science and Engineering, UC San Diego

Abstract

In the adaptive sampling model of online learning, future prediction tasks can be
arbitrarily dependent on the past. Every round, an adversary selects an instance to
test the learner. After the learner makes a prediction, a noisy label is drawn from
an underlying conditional label distribution and is revealed to both learner and
adversary. A learner is consistent if it eventually performs no worse than the Bayes
predictor. We study the k,,-nearest neighbor learner within this setting. In the
worst-case, the learner will fail because an adaptive process can generate spurious
patterns out of noise. However, under the mild smoothing assumption that the
process generating the instances is uniformly absolutely continuous and that choice
of (k) is reasonable, the k,,-nearest neighbor rule is online consistent.

1 Introduction

We study binary classification with noisy labels in the online setting where predictions are made
using the k,-nearest neighbor rule (Fix and Hodges, 1951; Cover and Hart, 1967). Let (X, p) be a
instance space equipped with a metric, let ) = {0, 1} be a binary label space, and let the labels be
chosen by nature, drawn from a conditional label distribution defined by 1 : X — [0, 1],

n(z) =Pr(Y =1|X = x).
In the adaptive sampling model, the label noise is benign, but the sequence of prediction tasks can be
adversarial and adapt to the sequence of observed labels. Forn =1,2,...,
- a data-generating process with knowledge of the past selects an instance X,, € X,
- the learner makes a prediction Yn €,

- nature reveals a label Y,,, freshly drawn from the Bernoulli distribution, Ber(n(X,)).

The goal is to make as few mistakes Y, =Y, as possible.

If the learner knew 1), then it should predict the Bayes optimal label Y,* = 1{n(X,,) > 1/2}, as this
minimizes the expected error at each time step. But this strategy is not generally possible when 7 is
unknown. Still, we measure our learner against it: a learner is consistent if its asymptotic mistake
rate is no worse than what is achieved by making the Bayes optimal prediction every round:

N
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hfvlf’fop N ;:1 IL{Yn #* Yn} — IL{Yn #+ Yn} <0 a.s. D

In other words, the learner is asymptotically consistent if its performance in the long run is on par
with the best predictor given knowledge of ground-truth label distribution.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



Algorithm 1 The k,,-nearest neighbor rule

1: forn=1,2,...do
2:  Receive the instance X,

3:  Predict the majority vote label of the k,, nearest neighbors X T(Ll), ey X,(Lk”'),
1 k’!l
o il (k)
Y, =1 {k ;Yn > 1/2}

4:  Observe and memorize the label Y,,
5: end for

The learner we consider is the k,,-nearest neighbor rule. It memorizes all data it sees. To predict on
the nth instance X,,, it sorts the n — 1 previously memorized data points by distance to X,

X;(ll)7 o 7)(7(171—1)7 where p(Xm Xr(zk)) < p(XTL7 X7(1k+1))7

and it predicts with the majority vote over the labels of the k, nearest neighbors, as shown in
Algorithm 1. If there are distance ties, then we let the data point that arrived first take precedence.
Many other, but not all, tie-breaking mechanisms are reasonable, but let us leave those details to
Appendix E. While this is not needed, we assume that distance ties almost never occur.

1.1 Consistency of k,-nearest neighbor under non-adaptive sampling

For appropriate sequences (ky, ), the k,-nearest neighbor rule is consistent generally when the
instances are not adaptive to the labels (Chaudhuri and Dasgupta, 2014, and references therein). The
instances are usually assumed to be generated by an i.i.d. process, but a more general assumption
suffices (Kulkarni and Posner, 1995), where each label Y; is conditionally independent of given X,

Pr(Y;|X,Y_;) = Pr(¥;|X,).

Here, X = (X1, X, ...) is the sequence of instances and Y_; = (Y7,...,Y;_1,Y;y1,...) is the
sequence of labels without Y;. Note that this precludes adaptive sampling mechanisms, where the
selection of downstream instances can depend on the realization of Y;. But under this non-adaptive
setting, the proof of consistency is conceptually straightforward. Say that X is a sufficiently nice
metric space and 7 is continuous. There are two key ideas:

(a) If k,, = w(logn) grows sufficiently fast, then the law of large numbers will always be in effect,
so that the empirical conditional means converge to their conditional expectations:

ke k

1 1 bn

kn Z ]? n(Xy (k) (statistical convergence)
k=1 " k=1

(b) If k,, = o(n) does not grow too fast, then the k,, nearest neighbors Xy(Lk) converge to X,,. By
the continuity of 7, the conditional means over the neighbors tend to converge:

k
1 o

T Z W(Xr(bk)) = n(Xn) (geometric convergence)
" k=1

By chaining these two limiting behaviors together, we obtain a very informal proof that the empirical
label frequencies over the k,, nearest neighbors eventually converge to 7(X,,). And at this point, the
learner’s prediction becomes consistent with the Bayes optimal predictor.

To extend consistency beyond the non-adaptive setting, we will show that both types of statistical and
geometric convergence can be achieved under much weaker assumptions.

1.2 Main results

We first show that in the worst-case setting, the &k, -nearest neighbor rule can fail to be consistent.
However, at least in our counter-example, an adversary really needs to select points carefully in
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Figure 1: The binary search adaptive sampling strategy efficiently finds a good threshold when data
on the line is labeled by a threshold function. However, when the labels are generated by i.i.d. noise,
the binary search strategy also generates a dataset that is linearly separable (see Example 6). For
example, here the existing data X, ..., X5 is separable. By querying a point like X4 between the
two classes, the data will continue to be separable no matter which label is realized.

order to construct such a worst-case sequence. This raises the question: how brittle are such hard
constructions? In a recent work, Dasgupta and So (2024) provided an answer for the adaptive but
noiseless setting, showing that the 1-nearest neighbor rule is consistent under very mild conditions on
the data-generating process. That is, worst-case sequences almost never occur.

This work considers the same question, but in the presence of noise. Is the k,-nearest neighbor rule
also generally a viable prediction strategy in adaptive settings? Or, does noise pose a much harder
challenge to learning? To answer these questions, we impose the same, mild condition on the data
process introduced by Dasgupta and So (2024). It ensures that a process selects from small regions
with small probability, generalizing the smoothness condition of Haghtalab et al. (2020):

Definition 1 (Uniform absolute continuity). A data process is uniformly dominated by v if for any
€ > 0, there exists ¢ > 0 such that when a measurable set A C X satisfies v(A) < J, then:

Vn, Pr(X,e€A|Xep, Yon) <e

We say that X = (X,,),, is uniformly absolutely continuous with respect to v at rate £(J). We say
that the process is smoothed or L-dominated if £(§) < Lé for some constant L > 1.

For £(6)-uniformly dominated processes, we show that the k,,-nearest neighbor rule is consistent
when the conditional label distribution 7 is continuous and when £, satisfies for some ¢ > 0:

1
kn = w <10g 5_1(”_(1“!‘0))) and kn = 0(71) (2)

In the case when the data process is L-dominated, we recover the standard condition on k,, that is
imposed to obtain consistency in the i.i.d. setting, which is that k,, = w(logn) and k,, = o(n).

Theorem 2 (Consistency of the k,,-nearest neighbor rule). Let (X, p,v) be a separable metric space
with a finite Borel measure. Let 1) : X — [0, 1] be continuous. Let X be uniformly dominated at rate
e(9). If ky, satisfies (2), then the k,-nearest neighbor rule is consistent almost surely.

While Theorem 2 is already very general, it requires that 1 is continuous. The next result greatly
relaxes this condition to admit all measurable 7. To achieve this, we impose stronger conditions on
the space. The general class of upper doubling spaces was studied by Dasgupta and So (2024), where
they showed that 1-NN is consistent for any measurable label function 7 in the realizable setting:

Definition 3 (Upper doubling). A metric space (X, p) is doubling with doubling dimension d if
every ball B(z,r) can be covered by 2¢ balls of radii /2. A d-doubling space with measure v is
upper doubling if there exists ¢ > 0 such that for all B(z, r), we have v(B(z, 7)) < cr.

We show a corresponding result in such spaces for k,,-nearest neighbor rule in the noisy, adaptive
sampling setting. In fact, it further allows us to relax the condition on (k;,),,. Theorem 2 required the
sequence of k,, to satisfy (2), which depends on the rate function, (4). In upper doubling spaces, the
following regularity condition suffices, which encompasses most choices a practitioner might make,
as any sequence of the form k,, = n®(logn)” suffices if 0 < o < lorifa =0 and B > 1.

Definition 4 (Regular sequence). A non-decreasing sequence (ky, ), is said to be regular if grows
between k,, = w(logn) and k,, = o(n/logn), and if for all ¢ € N, it satisfies lim k¢, /kn — 1.
n—oo

Theorem 5 (Universal consistency in upper doubling spaces). Let (k. ), be a regular sequence, and
(X, p,v) be an upper doubling space. Let X be uniformly dominated by v and n : X — [0, 1] be
measurable. Then the k,-nearest neighbor rule is online consistent with respect to (X, n).



1.3 Related work

Nearest neighbor methods are fundamental to non-parametric learning, where for the most part, they
are studied in settings with strong statistical independence assumptions (Fix and Hodges, 1951; Cover
and Hart, 1967; Stone, 1977; Devroye et al., 1994, 2013; Chaudhuri and Dasgupta, 2014; Hanneke
et al., 2020; Gyorfi and Weiss, 2021). Expanding beyond i.i.d. or stationary processes, Kulkarni and
Posner (1995) remove independence assumptions across instances, but still assume that sampling is
non-adaptive (and thus independent of the labels). This work forgoes making explicit independence
assumptions across instances or labels, but rather imposes a ‘bounded precision’ constraint on the
data-generating process that was introduced by Dasgupta and So (2024).

This paper contributes to the smoothed or non-worst-case analysis of learning, which studies learning
settings that are in between i.i.d. and worst-case (Rakhlin et al., 2011; Haghtalab et al., 2020, 2024;
Hanneke, 2021; Block et al., 2022, 2024; Blanchard and Jaillet, 2023; Dasgupta and So, 2024). Many
of the work in smoothed online learning take place in the parametric setting. Our work provides
complementary results for the non-parametric setting. Moreover, we provide some initial directions
for extending the theory of sequential uniform convergence to the smoothed adaptive setting, taking a
related but distinct approach to Rakhlin et al. (2015).

2 Learning on noisy and adaptively-sampled data

To illustrate the challenges of learning on noisy sequential data, we’ll first describe an example of a
data-generating mechanism that produces data that looks starkly different from what is ‘expected’: it
turns out that an adaptive sampling strategy can make patterns out of random noise (Figure 1).

In the following, an instance sequence is generated via the binary search sampling strategy, while
the labels are independent flips of the same coin. As an artifact of the sampling procedure, the
data appears to be linearly separable, even though the underlying labeling mechanism is uniform
throughout space. Thus, the observable pattern in this case will fail to generalize to future data.

Example 6 (Binary search on noise). Fixp € (0,1). Let X = [0, 1] and let n(z) = p be constant.
That is, each round, regardless of X, the label Y,, ~ Ber(p) is generated by a coin flip with bias p.
Construct (X1,Y1,...,Xn, Yn) as follows. Initialize (Xo,Yy) = (0,0). Forn=1,..., N,

- select X,, = X,—1 + QL . (fl)Ynfly

- draw'Y,, ~ Ber(p).
At time N, data points left of X n have the label 0, while those to the right have the label 1.

This idea can be used to construct an adversarial sequence for the k,-nearest neighbor rule. For
example, if p > 1/2, the Bayes optimal rule predicts 1 everywhere. But, the k,,-nearest neighbor rule
will predict the suboptimal label O for a long time on instances queried to the left of X .

Proposition 7 (Inconsistency of k,-NN). Let X = [0, 1] and let labels on X be generated by a
Bernoulli distribution Ber(p) wherep € (1/2,1). Let (ky,)n, be regular. There is an adaptive sampling
strategy that generates a data stream for which the k.,,-nearest neighbor rule is not consistent:

N
1 - 1—p
li — WY, £Y' '} > —— 8.
ljrvnjllopN;{ Y} 2 —g a.s
To a statistician trained in the i.i.d. setting, these examples where ‘statistical convergence’ fail can
be counterintuitive. In Example 6, specifically what may be surprising here is the large discrepancy
between empirical and expected label frequencies. Let I be the open interval (X, X ). Then:

1 1
i > Y¥;=0 and i > E[Yi|Xi] = p.
X;el X;el

This is true even though I contains a very large number of points with high probability, when p is
bounded away from O or 1. At first, this seems to violate the martingale law of large numbers.

Here’s a false proof of convergence: if we carelessly apply Azuma-Hoeffding’s inequality to the
bounded, mean-zero random variables Y; — E[Y;|X;] taken in sequence from the interval I, we would



conclude that the deviation between the empirical and expected label frequency must tend to zero.
The problem is that the set [ itself carries information about each Y;, so the appropriate martingale
difference sequence over which to apply Azuma-Hoeffding’s needs to also condition on I. Now, as
and Y; are dependent, the conditional expectation of Y; given [ is not p. Actually, in this case, X
encodes the first N — 1 data points (X1, Y7,..., Xy_1,Yn_1) exactly, and so E[Y;|I] = V;.

Still, this does not satisfactorily resolve the difference between the i.i.d. and sequential setting.
When X is an i.i.d. process, we can even search for a corresponding worst interval I’ with the largest
discrepancy between the empirical and expected frequencies; I’ is quite dependent on Y. But, because
the class of intervals on the line has finite VC dimension, so long as I’ contains sufficiently many
points, we are guaranteed that the empirical and expected label frequencies will be close (for example,
see Theorem 5 of Balsubramani et al. (2019)). This follows from i.i.d. uniform convergence theory,
which shows that with high probability, the empirical and expected label frequencies simultaneously
converge for all intervals. For a more formal comparison, see Proposition A.1.

It can be unsettling that statistical intuition from the i.i.d. setting does not seem to transfer to the
sequential setting. Many processes, such as scientific discovery, take place under the adaptive
sampling model: we can think of instances as a sequence of experiments that a scientific community
performs and labels as the corresponding outcomes. This data-generating process is certainly not
1.i.d., as earlier results inform which experiments are performed next. And so, it is important to
understand where the new failure modes that arise with adaptivity come from, and how likely are
they to occur. To do so, let’s take a detour into the conditional mean estimation problem.

3 Online conditional mean estimation

Let (X1,Y1,...,Xn, Yn) be an adaptively sampled dataset, following the model defined at the start.
Even in the sequential setting, the discrepancy between the empirical and expected frequencies is
well-understood by standard martingale concentration; by Azuma-Hoeffding’s inequality,

1 Y 1 <
Pr( oY - N;n(xi)

n=1

> t) < 2exp(—2Nt?).

empirical frequency expected frequency

But now, suppose that a data analyst would like to make finer-grained inferences beyond estimating
the average label over the whole dataset. In particular, to define the conditional mean estimation
problem, we say that a query is any subset of indices @@ C [N], possibly chosen with knowledge of
the whole dataset. The data analyst would like to use the conditional empirical frequency 7 (Q) to
estimate the conditional expected frequency iy (Q),'

Q==Y ad (@ = 3 (X)),
Q1 2 Q2

conditional empirical frequency conditional expected frequency

We can think of statistically valid queries as those that have strong concentration guarantees showing
that these two quantities converge quickly to each other as |Q| grows.

Of particular interest to this paper is the spatial query: for any region A and capacity k € [N], it

selects for the first & instances that land in a fixed region A.

Definition 8 (Spatial query). Let A be measurable and k& € [N]. Let (X1,Y1,...,Xn,Yn) be an

adaptively sampled dataset. The spatial query Qn i (A) is the query at time N:
Qni(A)={ne[N]: X, € Aand |[AN{X;,..., X,,}| <k}

When A is a class of measurable sets, let Qn x(A) = {Qn i (A4) : A € A}

Spatial queries are easily seen to a type of label-oblivious query, which turn out to be statistically
valid. Label-oblivious queries can be sequentially constructed, but the decision to insert n into the
query must be made before Y, is revealed. Thus, we can apply Azuma-Hoeffding’s to the martingale
difference sequence Y,, — E[Y,,| X1, Y7, ..., X,,] to obtain the concentration result in Lemma 10.

'As a technicality, if |Q| = 0, we let in (Q) = 7n(Q) = 0.



Definition 9 (Label-oblivious query). Let (X1,Y7,..., Xn, Yn) be an adaptively sampled dataset.
Attime N, a query Q C [N] is label-oblivious if for all n € [N] the conditional independence holds:

]]‘{nEQ}J-l—YTL|X13Y15’Xn

Thus, the decision to include n € () can be made after X,, is revealed, but before Y, is realized.

The following provides a simple concentration bound. Notice that there is a factor of k that does not
appear in the original Azuma-Hoeffding’s inequality. This is because the sample size |Q)| is adaptive,
and so we take a naive union bound over all possible sample sizes. Tighter bounds are possible
(Balsubramani, 2014; Zhao et al., 2016), but this is good enough for us.

Lemma 10 (Concentration for label-oblivious queries). Suppose that (X1,Y1,...,Xn,Yn) isan
adaptively sampled dataset and Q) is a label-oblivious query such that |Q| < k almost surely. Then:

Pr (|in(Q) — in(Q)] > t) < 2kexp (—2]Q|#?) .

Besides label-oblivious queries, we would also like to study queries that may be somewhat label-
dependent. Such queries arise in exploratory or adaptive data analysis, where the question being
asked can depend on the observed data. Of course, a good statistical sensibility tells us that the query
cannot be overly sensitive to the dataset itself; for example, a query that cherry picks all instances
with the label 1 should certainly be ruled out. But, some others seem reasonable, at least from an i.i.d.
standpoint, like the k-nearest neighbor query for a fixed x. After all, if there are no ties, then for every
realization of the k-nearest neighbor query, there is a spatial query selecting the same instances:

Definition 11 (k-nearest neighbor ball query). Fix z € X and k € [N]. Let (X1,Y1,..., XN, YN)
be an adaptively sampled dataset. Then:

e Let B, = {B(x,7) : 7 > 0} consist of closed balls centered at . A ball query at x is any:
Qn.1(B) where B € B,,
so that Q v x(B) selects for the first k instances X, that land in B.
e The k-nearest neighbor ball query at x is the adaptive query:

Qnik(x) =Qnk (B(z,r)) where r = arglgin {|QN,k. (B(z, 5))| > k:} ,
s>
0 Qn k() selects for instances in the smallest ball B(x,r) that contains at least k instances.

However, as Proposition 7 shows, even such a seemingly benign form of label-dependency can still
over-fit to past data in the worst-case setting. The reason that the k-nearest neighbor query is valid in
the i.i.d. setting is because uniform convergence holds over the class of balls 53,,, which is to say that
all ball queries are simultaneously valid: no matter how dependent the ball query is on the dataset,
convergence is still guaranteed with high probability. As Proposition A.1 shows, we cannot generally
expect uniform convergence to hold for 5, in the worst-case. However, we show now that these
worst-case processes are in a sense very rare; under mild constraints, they never occur.

3.1 Smoothed uniform convergence: concentration for adaptive spatial queries

Let X have a Borel probability measure v and let .4 be a class of measurable sets. In this section,
we provide a basic uniform convergence result for spatial queries over the class .A assuming that the
adaptive sampling mechanism is uniform dominated by v.

The idea to prove uniform convergence is simple: suppose that we can approximate .4 by a finite
collection of sets C, which we will call a sandwiching cover. To obtain uniform convergence of A,
we show that (a) uniform convergence holds on C, and that (b) the approximation error achieved by C
is small, which is possible to show using the uniform domination condition. To key to controlling
this approximation error is the sandwiching property:

Definition 12 (Sandwiching cover). Let (X, v) be a measure space and let A be a collection of
measurable sets. Let a > 0. An a-sandwiching cover of A is a collection C of measurable sets such
that for all A € A, there exist Ay, Aous € C such that:

Ay CAC Ao and U(Aout \ Ain) < a.

Let M4(«) be the a-sandwich number of A, the size of the smallest a-sandwiching cover of A.



The sandwich number for balls centered at a point will be particularly relevant:

Lemma 13 (Sandwich number for balls centered at x). Let (X, p,v) be a separable metric space
with a Borel probability measure. Fix x € X and let B, be the set of closed balls centered at x. Then,
forany a € [0,1], the a-sandwich number Ng_ () of B, is at most 4/cv.

Lemma 14 (Uniform concentration for spatial queries). Let (X1, Y1,..., XN, YN) be an adaptively
sampled dataset on (X, p,v), a metric measure space where v is a Borel probability measure. Let A
be a family of measurable sets and let Q1. (A) be a corresponding class of spatial queries. Suppose
that X is £(0)-uniformly dominated. For any p € (0, 1), with probability at least 1 — p,

1 k- Ny(a)
1
Q-0 p

whenever « satisfies (o)) = 1/N and ¢ > max{2log w, e?}.

VQ € QN,k('A)7

X _ 20
In(Q) —iin(Q) < ] + \/2(

Proof sketch. Let C be a minimal a-sandwiching cover of A, so that [C| < N_4(«). Union bounding
over all queries @ € Qn x(C), we obtain from Lemma 10 that with probability at least 1 — p/2,

1 k- Ny(a)
I .
21Q] 5T p

To extend this large-deviation bound to the rest of Q 1 (.A), we shall use the fact that every A € A
is sandwiched between two elements of C that are a-close A, C A C Agys. We just need to ensure
that the region Aoyt \ Aout does not contain a very large number of points from X< . There are at
most N 4(«)? such difference regions, so it is possible to union bound over them as well: Lemma B.1
shows that none of these regions contains more than ¢ points. The contribution of these points are
accounted for by the 2¢/|Q| term and the slight adjustment to 1/(|Q| — ¢). O

vQ € Qni(C),  |in(Q) —in(Q)| < \/ 3)

We instantiate this lemma for the k-nearest neighbor query in Corollary 2 of Appendix B.3.

4 Consistency of k,-nearest neighbor rule for continuous 7,

Here, we will work under the assumption that almost surely no tie-breaking is needed for example,
when the instance space is a Euclidean space with a measure v that is absolutely continuous with
respect to the Lebesgue measure. Theorem 2, where ties can exist, is proved in Appendix E.

Theorem 15 (Consistency of the k,,-nearest neighbor rule). Let (X, p,v) be a separable metric
space with a finite Borel measure. Let ) : X — [0, 1] be continuous. Suppose that X is uniformly
dominated at rate €(0) and that almost surely there are no distance ties. If k,, satisfies (2), then the
kn-nearest neighbor rule is consistent almost surely.

Proof sketch. Under uniform domination, statistical and geometric convergence hold (Propositions 16
and 18). Then, apply triangle inequality. The proof is in Appendix C and is slightly more subtle. [

4.1 Statistical convergence of k,-nearest neighbor

In the introduction, we described the statistical convergence of the k, -nearest neighbor query in the
i.i.d. setting: the empirical label frequencies converge to the conditional expected frequencies,

k k
1 &n ) 1 &

3N S Y ),
™ =1 " g=1

informally speaking. In the previous section, Lemma 14 and Corollary 2 prove concentration for
k,-nearest neighbor queries for instances Z ~ v drawn independently of an adaptively-generated
data set. We use this to show statistical convergence for uniformly dominated process.

Proposition 16 (Statistical convergence of k,,-nearest neighbor). Let (X, p,v) be a metric space
with a Borel probability measure. Let 1) : X — [0, 1] be arbitrary. Suppose that when the sampling



process is uniformly dominated, no distance ties occur, almost surely. Let (X1,Y7, . ..) be adaptively
sampled by an €(0)-uniformly dominated process and let k,, satisfy (2). Then:

. 1
M m 2t Z"

To prove this, we extend Corollary 2 by a partial coupling. Consider two parallel mechanisms:

1. Let (X1,Y1,..., XN, YN, Xn41) be the adaptively sampled process of interest.

2. Let (X1,Y1,..., XN, YN, Z) be a process that coincides with the first, until the last draw from
X, at which point an independent draw Z ~ v is sampled instead.

We would like to bound the chance that a k-nearest neighbor query centered at X 1 is statistically
non-convergent. In general, this seems quite challenging, since we do not have much control over
X 41 except that it is generated by a uniformly dominated process. However, we are able to bound
the corresponding event for Z. The following lemma relates the probabilities of these two events:

Lemma 17 (Partial coupling bound). Let D below be the outcome of an adaptive sampling process
that is €(8)-uniformly dominated by a probability measure v, and, let D' be the outcome of an
alternate mechanism that replace the last instance by an independent draw Z ~ v:

D:<X1a}/1a"'aXNaYN7XN+1) and D/:(X17Y17~"7XN7YN7Z>'
Let F be the o-algebra adapted to this sequence and let E be any F-measurable event. Then:

1
<i - .
EARE R S8

Proof. LetG = o(X1,Y1,..., Xy, Yn) be the o-algebra adapted to the first V labeled data points.
As E is F-measurable, the random set A = {z € X : (X1,...,Yn,z) € E}, is G-measurable. This
is the set of outcomes conditioned on X7, ..., Yy for which E happens. For any s > 0, we obtain:

Pr(E) CEL [E[1{Z € A} |d]]

(i)
< Xl,.E.XN [e(v(4))]
(? e(s) + Pr (v(A) > s) (igv) e(s) + i %“(E)

applying (i) the law of total expectations, (ii) uniform domination, (iii) the upper bound on &(v(A))
by e(s) + ]l{v ) > s}, and (iv) Markov’s inequality. Optimizing over s > 0 yields the result. [J

Proof of Proposition 16. Fix any s > 0 and time n, define the random variable:
D= (Xla Y17 L) Xn—la Y'n,—17 XW)?

which are generated by an £(d)-uniformly dominated adaptive sampling process. Define E,, ; as the
event that the empirical and expected conditional frequencies at time n have t-large discrepancy:

k=1
By assumption, &k, = w (log m) We show that:

Pr (Ent) =0 (n_(1+c)) .

As the sum of these probability converges, the Borel-Cantelli lemma (Lemma B.3) implies that the
discrepancy exceeds t finitely often, yielding:

n

kn kn
1 Sy - LS x )
" k=1 e k=1

lim sup
n—oo

a.s.




Letting ¢ go to zero gives the result.
Instead of bounding Pr(E, ;) directly, we consider a parallel process:
D = (Xla lea r- - aXn—la Yn—17 Z))
where the first n — 1 labeled data points are generated by the same adaptive sampling process, but
where the last instance Z is independently drawn from v. Lemma 17 shows that for any s > 0:
1

Pr(E,:) < - Pr(E

Dr ( n,t) > 5(5) + s D}A( n,t)v
and so it suffices to show that eventually, we can set s so that:

s=g} (n*(HC)) and %;"(E) < 52,

since (¢) is lower bounded by §. As there are no distance ties, this follows by our choice of k,, and
the concentration result for the k,,-nearest neighbor query, Corollary 2, in which we let p = s2. [

4.2 Geometric convergence of k,,-nearest neighbor

The next result shows that when the process is uniformly dominated, then XT(LD, e ,X,(Lk") have
conditional label frequencies that converge to that of X, in the following sense.

Proposition 18 (Geometric convergence of k,,-nearest neighbor). Let (X, p,v) be a space with a
separable metric p and a finite, Borel measure v. Let ) : X — [0, 1] be continuous. Suppose that X
is uniformly dominated at rate £(9). If k,, = o(n), then for any s > 0:

N k,
1 1 &
imsup — — (k)y _ —
hj{rnbup N 321 1 { o kiln(Xn ) —n(X,)| > s} =0 a.s.

Proof. Fix s > 0 and let BB be a countable open cover of X by balls B = B(z,r) with the property:

sup  |n(z) —n(@’)| < s.
x,x' €B(z,3r)

Such a cover exists by the continuity of 7 and the separability of X. Now, define E,, to be the event:
E, = {there isaball B € Bsuchthat X,, € Band |BNX,,| > kn}

Lemma B.6 shows that when E,, occurs, all k,-nearest neighbors of X,, must also be close, and so
the labels are also s-close:

_ (B <
E, C {é}%}in [n(Xn) = n(X;)| < S}

Therefore, to prove the result, it suffices to show that for any € > 0 that:

N
1
li]{]nj})lop i ,; 1{E,, does not occur} < a.s.

To do so, fix § > 0 and take a finite subcover B’ of B of size M that covers all but a d-fraction of X.
Denote the remaining uncovered region by X5 = X' \ |J B’. Then, we decompose the event:

1{E, doesnotoccur} < 1{X,, € X5} + 1{X,, ¢ X5 and E,, does not occur} .

By the uniform absolute continuity of X, only an e-fraction of points can land in the remainder:
N
1
limsup — H{X, € &s} <e(é a.s., “)
msup o z::l { }<e(d)
by Lemma B.5. We also have that at any time n, at most &, M points can land in a ball B € B’
containing fewer than k,, points. Since k,, M /n — 0, this contributes nothing to the asymptotic rate:
. 1 o

limsup — Z 1{X,, ¢ X5 and E,, does not occur} = 0 as. Q)

N—o0 N n—1
The result follows from setting § sufficiently small and summing Equations 4 and 5. This proof shows
that the geometric convergence of k,,-nearest neighbor also holds under a weaker condition implied
by Lemma B.5 called ergodic continuity (Definition B.4), introduced in Dasgupta and So (2024). [



5 Universal consistency on upper doubling spaces

In this section, we introduce the key technical innovations for Theorem 5, which shows universal
consistency of the k,-nearest neighbor rule in upper doubling spaces. The first idea is to show that
there are (random) subsequences of X that are well-behaved, on which Theorem 2 would imply
consistency. These sequences appear to be generated by an L-dominated process where £(§) < Ld,
and the labels seem to be sampled from a continuous label distribution 19 : X — [0, 1]. Moreover, L
and 7o can be chosen so that these subsequences only fail to capture an arbitrarily small fraction of
total instances. In the following, we let I be an indicator process, which is simply a binary process we
use to indicate instances in the subsequences X [I] = {X,, : I,, = 1} and X[1-1] = {X,, : I,, = 0}.
Definition 19 (Indicator process). An indicator process 1 = (I,,), is a {0, 1}-valued stochastic
process. Given another stochastic process X, we say that [ is adapted to X if I is adapted to the
natural filtration of X. We say that [ is asymptotically rate-limited by v > 0 if:
N
lim sup —ZI <~ as.

N—o00 n—1

Lemma 20 (Reduction to Lipschitz setting). Let v be a probability measure on X, andn : X — [0,1]
be measurable. Let X be uniformly dominated by v. For any 0 < v < 1/2, there exists L > 0, a
continuous map 1o : X — [0, 1], and an indicator process 1 adapted to X such that 1 is asymptotically
v-rate-limited, the subsequence X[l — ]I] is L-dominated by v, and U(X[l — H]) =19 (X [1 — H] )

However, this by itself is not enough to guarantee universal consistency: points in X []I] that are not
well-behaved may have undue influence on the predictions if they are often a k,,-nearest neighbor
of downstream instances. In order to control this, the next lemma shows that points in X []I] have
limited impact within the set of k,,-nearest neighbors, as long as X is upper doubling. In particular,
if a significant fraction of the nearest neighbors do come from X [H] , then we would discover them
through subsampling. For analysis, we define the following triangular array of indicator variables
J := (Jm,n)m=<n» Whose randomness is completely independent of X and Y,

Vm <n, Imon ~ Ber(1/ky,). (6)

Lemma 21 (Long-term influence bound). Let (X, p,v) be an upper doubling space and (k). a

regular sequence. There exist c1,co > 0 so that the following holds. Let X be uniformly dominated

at rate €(0) and 1 be an indicator process adapted to X asymptotically rate-limited by v > 0, and J

be given by (6). For any § > 0, the rate that an l-indicated k,,-nearest neighbor is sampled by J is:
N

1 1
lim sup N Z <3Xm € {Xfl1 ,...,X,(Lk")} T = 1> < ’y(cl + colog 5) +e(8) as.

N—o0 n—1

Proof sketch of Theorem 5. For any fixed v > 0, construct I and 7y via Lemma 20, so that 7 is
continuous and [ is y-rated limited. Since we can choose -y to be arbitrarily small, we may ignore
mistakes made during indicated times I,, = 1. Instead, we focus on bounding mistakes when I,, = 0.
On these times, the instance X, lands in the region where 7 is equal to 7y. And so, applying the
same argument used for Theorem 15, we obtain statistical and geometric convergence:

N k k
1 1 n 1 n
lim sup — — Ny — XF) —no(X,)| = 0.
m sup N,?:l T ’; 1 E n(X s g:lﬂo( ) = 10(Xn)

But this time, statistical convergence is in terms of 1, and geometric convergence in terms of 7, so
we cannot apply triangle inequality yet. We also need that the discrepancy between n and 1y when
averaged over sets of k,,-nearest neighbors can also be made to be arbitrarily small most of the time.

Notice that whenever the discrepancy is larger than a constant, then a constant fraction of k,,-nearest
neighbors must be indicated by I. Thus, if we sample from the nearest neighbors using J on such an
event, we are likely to detect at least one indicated neighbor. However, Lemma 21 shows that the
asymptotic rate of detecting indicated nearest neighbors can be made arbitrarily small: set § = ~y
and let v become vanishingly small. And so, the rate at which this discrepancy is larger than any
fixed constant is negligible. This allows us to complete the triangle inequality, proving universal
consistency of the k,,-nearest neighbor rule in upper doubling spaces under uniform domination. [

The formal proofs for this section are in Appendix D.
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A Proofs for Section 2

Proposition 7 (Inconsistency of k,-NN). Let X = [0, 1] and let labels on X be generated by a
Bernoulli distribution Ber(p) where p € (1/2,1). Let (ky,)y, be regular. There is an adaptive sampling
strategy that generates a data stream for which the k,,-nearest neighbor rule is not consistent:

N
1 N
limsup — 3~ 1Y, # Y7} >

N —o0

1-p
n=1 8
Proof. Define the Lth epoch to be the set of times in N,

Epoch; = {2L+1, L2k 1}7

so that the Lth epoch contains 2°* time stamps. Define Ry, to be the rate at which the learner made
a Bayes inconsistent prediction during the Lth epoch:

1 9 *

n€Epoch

Notice that as the lengths of each epoch doubles each time, we have by the end of the Lth epoch:

I 1
n=1

Even if in all the previous epochs, no mistakes were made, that would only reduce the inconsistency
rate by half. And so, it suffices to prove that:
1—
limsup Ry > bl a.s.
N —o00 4

To do so, we define the following adaptive sampling strategy, which restarts every epoch:

- Initialize: select a closed interval [a,b] C X that contains no previous data points, and by a
change of coordinates, renormalize it to [0, 1].

- For the first half of the epoch: run the binary search sampling strategy for 2 rounds on the
renormalized interval. At the end, sort the data from this epoch by the usual ordering:

XM ..« x 2"
By construction, the first M sorted instances have label 0, where:

E[M] = (1 —p)2L.

- For the second half of the epoch: exploit the region containing many 0’s. Define:

k™ = erélaxh kn and ki« = minn € Epoch; k,.
neEpoch,

Let = be a point sandwiched between two segments of data points of size k* all labeled 0,

xG=k"+1) o xO) p xO+D) L < )((i‘f‘k*)7

segment of k™ data points segment of k™ data points

then by sampling the point = consecutively for k. /2 times, we can induce the k,,-nearest neighbor
rule to predict 0 every single time. As there are at least | (M — k*)/k* | such sandwiched points,

we can induce at least:
M 9 ke . stenci
— — - — inconsistencies.
k* 2
Therefore, in the Lth epoch, in expectation, the rate of inconsistency is at least:

1 ((1=p)2" —2k*\ ki
( )

E[RL] z 9L+1 fox 2°

12



Using the regularity of k,,, we have that limy,_,, k. /k* = 1, so that over all the epochs:

1
limsup E[Rz] > ( p).
L—oo 4

Thus, by apply the martingale law of large numbers on (R},),, we obtain:

(1-p)

limsup Ry, > ————~ a.s,,
L—oo 4

which implies the result. O

Proposition A.1 (Intervals with large deviation). Two datasets on X = [0,1] and Y = {0,1} are
generated as follows. The labels have conditional distribution 1(x) = 1/2 everywhere.

o Let (X1,Y1,..., XN, YN) be adaptively sampled by binary search, as defined in Example 1.
o Let (X1,Y{,..., X}, YL) be sampled by a uniform i.i.d. process on X x Y.

Let I = (X,, Xy) be an interval with endpoints chosen uniformly at random from the adaptive
dataset. For any € > 0, the empirical frequency and expected frequency are unlikely to be similar:

Pr< ZYn’§

Xnel
Let I' = (X, X}) be an interval with endpoints chosen uniformly at random from the i.i.d. dataset.
For any € > 0, the empirical frequency and expected frequency are unlikely to have large deviation:

<N 5) < 2e. (non-convergence in adaptive setting)

I/
Pr Z Y, - % > Ne | < 2exp(—2Ne?). (convergence in i.i.d. setting)
XLer

Proof. 1. Non-convergence in the adaptive setting. Sort the dataset generated by Example 6, so

that:
XD .« x)
By construction, the labels are also sorted; there is a threshold k € {0, 1,..., N} where:
(i) : !
Y = ]]. 7> k + 5 .

Let I = (X®, X)) be an interval. The discrepancy is therefore given by:

|| i+ 1
ZYn 5 5 kg

X, el
It follows that an interval has discrepancy less than Ne if and only if:

i+ j 1 1
k+ - —Ne,k+ -+ Ne|.
5 E[+2 €, +2+ 5}

This occurs with probability at most 2%5 = 2e.

2. Convergence in the i.i.d. setting. This follows from Hoeffding’s inequality.

13



B Proofs for Section 3

B.1 Sandwiching covers

Lemma 13 (Sandwich number for balls centered at ). Let (X, p, v) be a separable metric space
with a Borel probability measure. Fix v € X and let B, be the set of closed balls centered at x. Then,
for any a € [0, 1], the a-sandwich number N, (a) of B, is at most 4/a.

Proof. Let X ~ v and let F'(r) be the cumulative distribution function of p(z, X). Let M € N be
any number greater than or equal to 1/a. Form = 0,..., M, define:

Ty, = Min {'I‘ZOZF(T)Zm/M}:

where 7, exists because F' is upper semi-continuous and is possibly infinite. We claim that the
following collection of open and closed balls forms an a-sandwiching cover of B,

M
C = U {B(Z‘,Tm),B(-rmi)}a
m=0

from which the result follows by letting M = [1], since 4/ > 2- [1 +17] > [C|.

1
We now choose Ajy, Agy; € C satisfying the a-sandwiching condition for any B(z,r) € B,. Let
m € {0, ..., M} be the smallest number such that F'(r) < F(r,,), which implies:
v(B(z,rm-1)) < v(B(z,7)) < v(B(z,mm)).
There are two cases:

(a) If r = ry,, then we let A;, = Aout = B(2, 74, ). The sandwiching condition evidently holds.
(b) If r < 7, then we let A;, = B(x,7y,—1) and Aoy = B(w, 7,,). By construction of 7,,,
v(B(z,s)) <m/M, Vs < Ty
By the continuity of measure, we obtain v (B(z,r,,)) < m/M. By construction of ry,,_1,
v(B(x,7m-1)) > (m —1)/M.

It follows that y(Aout \Ain) <1/M <a.

B.2 Concentration inequalities

Lemma 10 (Concentration for label-oblivious queries). Suppose that (X1,Y1,...,Xn,Yn) isan
adaptively sampled dataset and Q) is a label-oblivious query such that |Q| < k almost surely. Then:

Pr (|in(Q) — in(Q)| = t) < 2kexp (—2]|Q[#?).

Proof. Let 79 = 0. Define 11, 72, . . ., 7% to be the sequence of stopping times:
7; = min {t >T_1:t€ Q},
where the stopping times are possibly infinite. Thus, 7; is the ith index inserted into (), and we have:
Q={m: 7 < oo}

We define Y, = 0, so that Y, = 0 whenever 7; = oo. Then, for any fixed ¢ < k, the following
forms a martingale difference sequence:

Y, —E[Y, | Xo, Yoo, X0, i=1,...,¢,

where we can let X, be defined as any deterministic constant.

14



Now, we may apply Azuma—Hoeffding’s inequality, we obtain:

¢
Pr ( s Zn
i=1

We can union bound over all £ = 1,...,k, and since |Q| < k almost surely, the bound holds in
particular for the random sample size |Q)|,

(o] []
Pr| 3"y =Y 0(Xn)| >t Q1| < 2kexp (—2/Q).
=1 =1

> t€> < 2exp (—2€t2) .

We obtain the result by a change of notation. Recall that when |Q| > 0,

fin |c2|Z and |Q\Z"

1E€EQ i€EQ
and that when |Q| = 0, then 7y (Q) = n(Q) = 0. O
Lemma 14 (Uniform concentration for spatial queries). Ler (X1,Y1,..., XN, Yn) be an adaptively

sampled dataset on (X, p,v), a metric measure space where v is a Borel probability measure. Let A
be a family of measurable sets and let Q 1,(A) be a corresponding class of spatial queries. Suppose
that X is €(0)-uniformly dominated. For any p € (0, 1), with probability at least 1 — p,

R = 276 1 k- Na(a)
in(Q) —iin(Q)] < 7] +\/2(|Q e,

whenever « satisfies €(a)) = 1/N and £ > max{2log W, e?}.

VQ € On k(A),

Proof. Let C be a minimal a-sandwiching cover of \A, so that |C| < N 4(c). By a union bound taken
over queries @ € Qn x(C), we obtain from Lemma 10 that with probability at least 1 — p/2,

in(Q) —iin(Q)] < \/21;)| log u .J\;A(a). 3)

To extend this large-deviation bound to the rest of Qx 1 (A), we shall use the fact that every A € A
is sandwiched between two elements of C that are a-close A;,, C A C Aous. We just need to ensure
that the difference region Ajn A Aoyt does not contain a very large number of points from X< .

vVQ € On i (C),

To do so, define the collection of difference regions between a-close sets in C:
A.C = {AlAAQ : Ay, Ay € Cand U(AlAAQ) < a}.

There are at most NV 4(«)? such regions. We can now apply Lemma B.1 to show that when X is
uniformly dominated, these regions rarely contains more than ¢ points. In particular, we take a union
bound over all a-close pairs of sets in C, so that with probability at least 1 — p/2,

YU € AoC,  [UNXcn| <4, M

whenever ¢ > max {2log ZNA(O‘) ,e?} and e(e) = 1/N.

Given A € A, let Aj, C A C Aoyt satisfy the a-sandwiching property. Let Qin = Qn 1 (Ain). It
follows that if both events (3) and (7) occur, then:

D Yi-n(X) =D Yi-nX)+ Y Yi-nX)- Y Yi-

i€Q 1€Qin i€Q\Qin 1€Qin \Q
1 k- Na(a)
< |Qinl - log + 24,
s ¢ 200l b

where we use the fact that neither @ \ @i, nor Qi \ @ can contain be more than ¢ indices (note that
Qin \ Q can be non-empty if A reached capacity with some instances falling in A \ A;,). Dividing
through by |Q| yields the result, where we use |Qi,| < |Q| and 1/|Qin| < 1/(|Q| — £). O
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Lemma B.1. Let X be €(6)-uniformly dominated by v. Fix N € N and let A be measurable. Then:
Pr <i ]l{XZ- € A} > E) <p,
i=1
whenever £ > max {log %, €2N’}/} and v = e(v(A)).
Proof. The probability that X; € A is bounded by « because X is uniformly dominated. It follows

that for any fixed sequence of ¢ distinct times 1 < t; < to < --- < ty < N, the probability that the
event X;, € A occurs at each of these times is bounded by ~*. Formally:

4 4 i—1
Pr(/\Xti €A> <[JPr{X,ecA| \X,cA
i=1 i=1 j=1
£ i—1
<TIE |Pr(X, € A|Xey) | N\ X, € A <91 8)
i=1 j=1

We can bound the event that X<y hits A at least £ times by a union bound over all (]z ) possible sets
of time indexes {t1,...,t¢} for which X;, € A:

Pr(XN:]l{XieA}zf)% > Pr(/k\XtieA>

i=1 1<t < <ty<N i=1

=

which follows from (i) the union bound, (ii) Equation 8, (iii) the standard bound (](Y ) < (eN/0)!, (iv)
¢ > e?N~, and (V)Ezlog%. O

B.3 Concentration for k-nearest neighbor query

The following concentration for the k-nearest neighbor query for a random point Z ~ v follows
directly from Lemma 14, where A is the set 5 of balls centered at Z and a bound on its sandwich
number comes from Lemma 13. A version with tie-breaking is given in Appendix E.

Corollary 2 (Concentration for the k-nearest neighbor query). Let (X1,Ys,..., Xn,YN) be
adaptively sampled by an £(6)-uniformly dominated process. Let Z ~ v be independently sampled.
Suppose that almost surely there are no distance ties to Z; let XV ..., XN) sort the instances:

p(Z, XW) <o < p(2, X)),
Lett,p € (0,1). Suppose that k > 1% (1 + log k + log % + log %) Then:

1t
P - vy _

El e

k
Y on(x9)| >t <p.
j=1

Proof. Since Z is chosen independently from the data, we may apply the uniform convergence result
Lemma 14 to Bz, the closed balls around Z. In particular, when £ is sufficiently large, then:

40 +logk 20 1 k-Ng, (o)
B - “ 1 z
> = k+\/2(k—£) e,

k < t,
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when e(a) = 1/N and ¢ > max {2log M, e?}. By Lemma 14, with probability at least 1 — p,
1o 1<
- vy _ = x@ t.
k F 2 X)) <
Jj=1 Jj=1

Then, Lemma 13 bounds Nz, (o) < 4/a. So indeed, k is sufficiently large:
8

40 + log k 4 1
ﬂﬁ log2 + €* + log k 4 log — + log —
t2 12 e P
<2 (104 1ogk+log ——— +log~ ) <k
° o - -
<5 g 8 i) g, ,

since log2 + e? + log 4 < 10. O

B.4 Technical lemmas

Lemma B.3 (Borel-Cantelli). Let (A,,),, be a sequence of events such that y , Pr(A,,) < oc. Then:
Pr (A, occurs infinitely often) = 0.

For reference, see Theorem 2.3.1 of Durrett (2019).
Definition B.4 (Ergodic continuity). A stochastic process is ergodically dominated by v if for any
€ > 0, there exists 0 > 0 such that when a measurable set A C X satisfies v(A4) < J, then:

N
lim sup % Z ]l{Xn € A} <e a.s.

N —o00 n—1

We say that X is ergodically continuous with respect to v at rate £(9).

Lemma B.5 (Lemma 5, Dasgupta and So (2024)). Let (X, ), be a process that is uniformly dominated
by v at rate €(9), and let (F,,)n be its natural filtration. Let (Ay,),, be a (F,,)n-predictable sequence
where limsup,, , . v(A4,) < d. Then:

N
lim sup % Z 1{X, € A,} <e(6) a.s.

N—o0 ne1

Lemma B.6 (Closeness of k-nearest neighbors). Let X be any process in X and fix some n € N.
Let B = B(z,r) be any ball and let 3B denote the larger ball B(z,3r). Suppose that X,, € B and
|BNXcp| > k. Then, the k-nearest neighbors of X, are contained in 3B,

XM xF e3B.
Proof. Forall z € B and 2’ ¢ 3B, we have:

plz, Xp) < 2r and p(z, X,) > 2r.

That is, all points in B are closer to X,, than points outside of 3B. Since B contains at least % points,
the k nearest neighbors of X,, must come from 35. O
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C Proofs for Section 4

Theorem 15 (Consistency of the k,,-nearest neighbor rule). Let (X, p,v) be a separable metric
space with a finite Borel measure. Let 1) : X — [0, 1] be continuous. Suppose that X is uniformly
dominated at rate €(0) and that almost surely there are no distance ties. If k,, satisfies (2), then the
kn-nearest neighbor rule is consistent almost surely.

Proof. 1t suffices to show that the rate at which the k,,-nearest neighbor rule does not coincide with

the Bayes optimal prediction goes to zero. When 7(X,,) = 1/2, we say that both possible predictions
in Y = {0, 1} are Bayes optimal. Then, the Bayes-inconsistent event is contained in:

{Yn#Y;}C{ >s}u{0<

for any s > 0. By applying the triangle inequality to the statistical and geometric convergence results,
Propositions 16 and 18, we obtain that:
> 3} = a.s.

T
lim sup NZ]I{
1
(CEHEN

N—o0 n—1
Thus, the rate that k,,-nearest neighbor is inconsistent with the Bayes predictor is bounded by:

k
1 & i
" k=1

CAEHENE

k
1 & i
? Z Y7E ) — n(Xn)
k=1

Define A, to be the set:
Ay = {x eX:0<

N N
1 - 1
: 1 o 1 <
lim sup ¥ g 1 {Yn # Yn} < lgrljip N ngzl 1{X, € As} <e(v(4y)),

N—oc0 p—

where the second inequality holds by the uniform domination condition. The result follows by letting
s J 0, which implies that A5 | &. By the continuity of measure, v(A;) also converges to zero, so by
uniform domination, so does €(v(As)). O
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D Proofs for Section 5

D.1 Proof of Theorem 5

Theorem 5 (Universal consistency in upper doubling spaces). Let (ky,)n be a regular sequence, and
(X, p,v) be an upper doubling space. Let X be uniformly dominated by v and ) : X — [0,1] be
measurable. Then the k,-nearest neighbor rule is online consistent with respect to (X, n).

Proof. Fix v > 0, and let I and 79 be as described in Lemma 20. We show that the asymptotic
mistake rate is almost surely bounded by 3~y. This implies the result since y was arbitrary.

By construction, the subsequence X[1 — I] asymptotically all but a y-fraction of X. And so, even if
the learner makes a mistake at each indicated time I,, = 1, this would contribute at most an additive
term of v in the overall mistake rate. In the remainder, we show that mistakes made during the rest of
times, when I,, = 0, contribute at most another term of 2.

As in Theorem 15, it suffices to show that the rate at which the k,,-nearest neighbor rule does not
coincide with the Bayes optimal prediction goes to zero. On a non-indicated time I,, = 0, we have
that n(X,,) = 1o(X,), and so for any s > 0, the Bayes-inconsistent event is contained in:

{Y £ Y and I, :o}
zsandlnzo} U {0<

C {
(a) (b)

Let’s bound the rate at which either (a) or (b) occurs. As 79 is continuous, we may choose s > 0 such
that by uniform domination, (b) contributes at most another - term to the mistake rate:

1N
lim sup N Z 1 {O <

N—o0 n—1

k
1S,

T YO —no(X)
" k=1

1
(X)) — 2‘ < } <y s

As for the event (a), we can first bound ‘ = Z]le Y, - 1o(Xn)

using triangle inequality by:

k k K k k
1 n i 1 n 1 n 1 n 1 n
. Vi — . ZU(Xk) e Zn(Xk) . Zﬁo(Xk) all Zﬂo(Xk) —no(Xy)
" k=1 " k=1 " k=1 " k=1 " k=1

(4) (i) (i)
where both (i) and (iii) eventually never exceed s/3 almost surely, resepctively by statistical conver-
gence (Proposition 16) and geometric convergence (Proposition 18). Thus, to bound the rate that
event (a) occurs, it suffices to bound the rate that (ii) exceeds s/3. This is bounded by the rate that
an s/3-fraction of the k,,-nearest neighbors of X,, come from the region {n # 1}, and thus are
indicated instances. To bound this, let A,, indicate the event that 7, = 0 but at least an s/3-fraction
of the k,-nearest neighbors of X, are in X[I]. Then, it suffices to show:

N
1
lim sup N Z A,=0 a.s. 9)

N—o0 n—1

To do so, we bound the long-term influence of X []I} . Let B,, be the indicator from Lemma 21:
B, = ]1(3Xm e {xW, L XEIY LT, = 1),

the event that some k,,-nearest neighbor of X, comes from X [H] and is sampled by J, which was
defined in (6). By setting 0 = v and sending v — 0 as before, Lemma 21 shows that:

N
1
limsup — > B, =0  as. (10)

N—o0 n—1
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To complete our proof, we relate A, to B,,, showing that a significant fraction of the &, -nearest
neighbors cannot come from X [I[] , for otherwise they would have been sampled by J. Observe that
at time n, the conditional expectation of B,, can be lower bounded in terms of A4,,:

E[B, | X<n] = Pr (HXm e (XM, XEON L T = 1)

1 kn-s/3
>A,(1—-—
=17,

s/3
1
An <) )
4
where the last inequality holds for all &, > 2. Now, averaging over time, we obtain:
1 N 1 1 s/3 N
— E|B, | Xcn| > = |~ An.
g (i) X
By the martingale law of large numbers and Equation (10), as IV goes to infinity, the left-hand side

must converge to zero almost surely. It follows that the right-hand side must as well. This implies
Equation (9) and completes the proof. O

v

D.2 Proof of Lemma 20

Lemma 20 (Reduction to Lipschitz setting). Let v be a probability measure on X, andn : X — [0,1]
be measurable. Let X be uniformly dominated by v. For any 0 < v < 1/2, there exists L > 0, a
continuous map 1o : X — [0, 1], and an indicator process 1 adapted to X such that 1is asymptotically
~-rate-limited, the subsequence X[l — ]I] is L-dominated by v, and n(X[l — H]) =1 (X [1 — H] )
Proof. Let u,, denote the conditional measure of X,, on X, so that for all measurable A C X’:

Because X is uniformly dominated by v, the measure p,, itself is absolutely continuous with respect
to v. Thus, the Radon-Nikodym theorem implies that it has a density function f,, : X — [0, c0),

in(A) = /A ful2) v(dz).

Let L = % andlet A, = {:z: D fn(z) > %} By design, X, is unlikely to be drawn from A,,,
(1) (id) L\ ) (2 (iv) ~
() £ (o) e (P (102 5)) 'S e (30 5 ln00]) € 3

where (i) applies the uniform domination property of p,,, (ii) rewrites v(A,,) as a probability, (iii)
applies Markov’s inequality, and (iv) follows from our choice of L and from the fact that f,, is a
density function, so that Ex ., [f(X)] = 1.

We now also construct the continuous map 79. By Lusin’s theorem, there is an open subset B C X
with v(B) < e~* (2) such that the restriction of 7 to X'\ B is continuous. Since X' is a metric space,
this restriction can be continuously extended to all of A" using the Tietze extension theorem. Let g
be any such extension. Then, X, is also unlikely to be drawn from B,

in(B) < £(v(B)) < 1.

Finally, we define the indicator process I = (1,,),,, where:
I, = ]l{Xn cA,U B}.

Since un, (A, U B) <+, the martingale law of large numbers implies that I is ~y-rate limited:

N
1
limsup — I, <vy a.s.,
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proving that condition (1) holds. Condition (3) also follows by construction, since 7 is equal to n on
X\ B. Indeed, when I,, = 1, then X,, ¢ B. Condition (2) remains.

For this last condition, for any n where I,, = 0, the distribution from which X, is selected is
conditioned on the fact that X,, ¢ A,, U B. Since A,, U B has v-measure at most -y, we see that for
any measurable set I, the probability that X,, € F is at most:

pin (E'\ (An U B))

Pr (X, € B|Xen,Yen, I = 0) = 1—u (4,UB)

S / fnlz IL{:E ¢ (A, U B)} v(dx)
< j/Efn ) 1{fula) < L/2} v
L
<75/, §’U(d$)
L
= 72(1 ) -v(E) < Lu(E).

Here, we exploited the fact outside of the set A,,, the density f,, is at most L /2, and thaty < 1/2. O

D.3 Proof of Lemma 21

Lemma 21 (Long-term influence bound). Let (X, p,v) be an upper doubling space and (k). a
regular sequence. There exist c1,cy > 0 so that the following holds. Let X be uniformly dominated
at rate €(0) and 1 be an indicator process adapted to X asymptotically rate-limited by v > 0, and J
be given by (6). For any § > 0, the rate that an l-indicated k,,-nearest neighbor is sampled by J is:

N
1 1
lim sup N E 1 (HXm € {Xr(Ll)’ . ,XT(J%)} T = 1) < fy(cl + colog 5) +¢e(0) as.

N—o0 n—1

The proof of this result builds on the technique developed by Dasgupta and So (2024), specifically
for their Theorem 17. In Sections D.4 and D.5, we review the key definitions from their work along
with some modifications to extend to k,,-nearest neighbors (rather than 1-nearest neighbors).

We begin with a quick technical lemma that lets us bound how many points are likely to be selected
for which both I and J are 1.

Lemma D.1. Let I and J be as defined in Lemma 21. Then:

kn
hmsup—ZI I, N <.

N—o00 ne1

Proof. 1t is clear that limsupy_, % Efy:l I, < v almost surely. Thus, for any a > 0, there
almost surely exists N, such that for all N > N, ﬁ S L<y+a.

Pick any NN for which this occurs. Observe that the values of J, y are i.i.d Bernouli variables
each with expected value k. Thus applying Hoeffding’s lemma over all of them, we see that with

probability at least 1 — exp (—W), our desired sum is at most (7 + «)(1 + «).

Since (k) is a regular sequence, KLN grows strictly faster than logn, which implies that

Z?:l exp (—%ﬁf“)) is finite. Applying the Borel-Cantelli lemma implies that our deisred sum is

at most (7 + a)(1 + «) almost surely completing the proof. O

Proof of Lemma 21. Without loss of generality, X" has diameter 1. For 1 < n < N, let x(n) be the
number of instances 1 < ¢ < n for which I;J; xy = 1, and let 73, to be the time of the kth time for
which this occurs.
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Next, we construct a chain of sequentially-constructed cover trees (Definition D.6) exactly as done in
the proof of Theorem 17 in Dasgupta and So (2024). That is, let (Cy)x be a chain of sequentially-
constructed cover trees associated to the sequence X, , X,,.... Let Ly denote the insertion rank of
X, . Forn > 7y, define

1. c
Tk,n =Lp+1+ ’7 lg —‘ + Gk,n(n); (11)

d”é
where (c, d) are parameters associated to the upper doubling condition (Definition 3), and G ,.(») is
the number of generations of children X, has by time n.

Next, construct a set of very small balls that are centered at the points in our cover tree as follows.
Define

r(n)
To = |J cone(X7,; Thn +1)  and A, = |J 2B,
k=1 BeTn

where the cone is defined as in Definition D.5.

We now relate the number of times in which X, has a nearest neighbor with I;J; y = 1 to events
related to this cover tree. Since v is an upper doubling measure, we immediately have that the
sequence X1, Xo,... are almost surely distinct points. Thus, applying Lemma D.8, with the
combined indicator process I,,.J,, n, we have

il (EIXt c {XT(})’M’Xy(Lkn)}) < iv: Z 1 (EIZBT,T/Q)

n=1 n=1 B,,.eCh.,(n_l)

N N
=YY (B Y 1K e A0,
n=1

n=1B.€Cpx(n-1)\Tn-1
We now bound each term separately. For the first term, we apply Lemma D.4 to see that

N N
Z Z 1 (EELBT,r/z) < Z Z 1 (EgBr,rp) < 221G o\ T

n=1B,.€C(n-1)\Tn-1 Bre€Cun—1)\Tn-1n=1
Bounding the total number of balls within this set follows identically to the proof of Theorem 17 in
Dasgupta and So (2024): it suffices to count the number of balls for each instance X, that are not in
its (T, N + 1)-tail:

K(N)

Com) \ T € D (Thw +1) — Li
k=1
K(N)

<o (o4 1]+ B

oy (24 [1e]) rt0

To bound the second term, Lemma D. 10 implies that A,, has mass at most v(A,,) < ¢ for all n. Thus

the probability that X,, € A,,_; is at most £(d), and the expected number of total occurrences is
N(e(9))-

Combining our bounds, fix any o > 0. Lemma 5 from Dasgupta and So (2024) implies that for
N sufficiently large, Z:Ll 1(X, € A,_1) < N(g(d) + o) with probability 1. Furthermore, by
applying Lemma D.1, we see that for NV sufficiently large, x(N) < % (v + «) also occurs with
probability 1. Combining these, we see that

72 (axt { }J,...,X}ﬁw})

< 22t Ly (I;v(%L a)> <3+ Blg ;D + (e(d) + @)

< (y + a)2%t! <3+ Lll lg ED +e(d) +a
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Since av > 0 was arbitrary, it follows that almost surely,

N
limsup% 1 (axt € {X}LU, . ,X}f“)}) < y22d+1 (3 + B g ED +£(5).

N—o0

D.4 Packing Bounds

Here we include several definitions that are taken directly from Section 6.1 of Dasgupta and So
(2024). In some cases, we include slight modifications that will prove useful for generalizing their
results from 1-nearest neighbor to k,,-nearest neighbors.
Definition D.2 (Packing number, Definition 18 of Dasgupta and So (2024)). Letr > 0. Aset Z C X
is an r-packing if all of its points are bounded away from each other by a distance r,

iI/léZ p(z,2') >

The r-packing number P,.(U) of U is the maximum possible size of an r-packing Z contained in U.

Similarly to Dasgupta and So (2024), we will use packing numbers to bound the number of times a
point has a large k,,-nearest neighbor radius (its furthest neighbor is quite far from it). To do so, we
adapt their notion of an “r-separated event" (Definition 19 in Dasgupta and So (2024)) to apply to
k,-nearest neighbors. An r-separated event is visualized in Figure 2.
Definition D.3 (r-separated event). Let X be a process, » > 0, and (k, ), be a sequence. The
r-separated event at time n is the event ), that X,, has distance at least r from its £, th nearest
neighbor. That is,

El = {p(Xp, X{F)) > r}.
Given a subset U, the (U, 7)-separated events are the events EJ"" := E N {X,, € U}.

Next, similar in spirit to Lemma 20 of Dasgupta and So (2024), we bound how frequently r-separated
events can occur with respect to the packing number.

Lemma D.4 (Packing bound). Let (X, p) be a metric space, U C X be a subset, r > 0, and (k)
be regular sequence (Definition 4). For any process X, the number of (U, r)-separated events that
occur before time N is bounded by the r-packing number of U,

N

Z {EY" occurs} < 2knP,(U).

n=1
Proof. Letny,...,n; index all instances where the (U, r)-separated event Efff occurs. Construct a
graph with vertices n1, . .., n; such that (n;, nj) is a directed edge if and only if n; < n; and X,

was one of the (k,,, — 1)-nearest neighbors of X, . See also Figure 2. We make two claims:

1. Any independent set in this graph must form an r-packing of U.

2. The graph has an independent set of size t/2k .

Together, these two claims imply the result, since it shows that t/2kn < P,.(U), recalling that ¢ is
the total number of (U, r)-separated events that occur by time N. We now prove the claims:

* Claim 1. Let n; < n;. By construction, when (n;,n;) is not an edge, the points X, and X,
must be r-separated; this is because X,,, can be no closer to X, than the k;, , th nearest neighbor
of X,,,. Thus, any independent set in the graph must form an r-packing of U.

 Claim 2. The graph has a total of at most Z§=1(kn —1) < t(knx —1) edges (ky is larger
than k,,, by the regularity of (ky,),). It follows that the average degree is at most 2(ky — 1).
Applying Turan’s theorem, the graph must have an independent set of size at least:
_t St
2ky — 1 = 2kn
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Xr(Lkn)

Figure 2: We say that an r-separated event occurs when the k,,th nearest neighbor of X, is
r-separated from X,,. Thus, the ball B(X,,,r) contains at most k,, — 1 neighbors.

D.5 Properties of cover trees

Next, we review cover trees, which were introduced by (Beygelzimer et al., 2006) and a book-keeping
device applied by Dasgupta and So (2024). We begin with several definitions and lemmas taken
directly from Dasgupta and So (2024). We refer the interested reader to view their work for the
intuition behind these ideas: for our purposes we will simply state them for completeness.

Definition D.5 (Dyadic cone: Definition 21 from Dasgupta and So (2024)). Let (X, p) have unit
diameter and let x € X'. A dyadic cone centered at x of rank L € Zx is the discrete collection of
balls:

cone(w; L) = {B(x,27%) : £ > Land ¢ € Z¢}.

When L’ > L, we also refer to cone(z; L’) within cone(x; L) as its rank-1’ fail.

Definition D.6 (Sequentially-constructed cover trees: Definition 22 from Dasgupta and So (2024)).
Let (X, p) have unit diameter and A = (ay,); be a dataset in X without duplicates. The cover trees
(Ck )i with insertion ranks (L), are defined:

Cl = cone(al; Ll), Ll = O,

Cr, = Ci_1 U cone(ay; Ly), Ly, = min {¢ € Zx : no ball of radius 2~ * in Cj,_; contains z}.

We say that ay was inserted into the cover tree at the Ljth rank.

Definition D.7 (Cover-Tree Neighbor Map: Equation 7 from Dasgupta and So (2024)). We define a
cover-tree neighbor map ¢, : X \ A< — Cj, as any one satisfying:

cx(z) = Bla,r) = z € B(a,2r) and 71r/2 < p(z,Acy) <. (12)

Dasgupta and So (2024) show that such maps always exist with the following lemma.

Lemma D.8 (Lemma 23 from Dasgupta and So (2024)). The cover tree Cy, for A<y, has a cover-tree
neighbor map cy.

Definition D.9 (Tree structure: Definition 24 from Dasgupta and So (2024)). For the above sequence
of cover trees and insertion ranks, we let a; be the root of A. For all £k > 1, there is a ball
B(aj, 2-Lr+1) € €1 containing ay. We assign such an a; to be the parent of a;,, and we say that
ay, 1s its child. A set of instances inserted at the same rank to the same parent is called a generation
of children. The number of generations of children aj, has at time n defines the upper triangular array
(Grn)k<nt

Grn = |{Lk/ : ay, is the parent of ay where k' < n}|

Lemma D.10 (Cover tree d-tail: Lemma E.1 from Dasgupta and So (2024)). Let (X, p,v) be a
upper doubling metric space with unit diameter. Let (Cy)y. be a chain of cover trees for the sequence
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A = (ay)y and let (Ly,)y, be its sequence of insertion ranks. Define the array of tail ranks (T, n)k<n
and tail sets (Ap)n,

C

]

1
Ty =Lk +1+ {dlg

n
k=1

where d is the doubling dimension and c is the upper doubling constant in Definition 3. For all n, the
mass of the tail is bounded v(A,,) < d.

For the final lemma in this section, we will modify Lemma 25 from Dasgupta and So (2024) in order
to apply for k,,-nearest neighbors (rather than only 1-nearest neighbor).

Lemma D.11 (Cover tree decomposition). Let (X, p) have unit diameter, let X be a process in X,
and let 1 be an indicator process. For any n, let C be a cover tree for X[H<n] with a cover-tree
neighbor map ¢. Assume that X,, ¢ X[l.,] is not equal to one of the indicated instances. Then:

{axt € {X,gl), . ,X}fn)} mX[H<nH} c B(U)EC {Er/? = 1and «(X,) = B(a,7)},

where E; (Definition D.3) denotes the event that X,, has distance at least r from its k,-th nearest
neighbor in X ,,. In particular, the event within the union indexed by B = B(a,r) € C is contained

. 2B,r/2
in By, T/.

Proof. Let¢(X,,) = B(a,r) for some r > 0. Suppose that X,, indeed has some nearest neighbor that
is located within the indicated instances. By the definition of a cover tree neighbor, there must exist
some X; € X[I,] such that p(X,,, X;) > . This implies that the %, -nearest neighbor distance of

X, is at least /2, which implies EZ;/ % does indeed occur. Finally, the fact that X,, € 2B(a,r) is
immediate from the definition of a cover tree neighbor. [
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E Tie-breaking details

In this section, we formalize the tie-breaking strategy and show that the techniques introduced earlier
also apply. Let (X1,Y1,...,Xn, Yy) be an adaptively sampled dataset. For a new query point
x € X, we sort the dataset X1, ..., X(N) by the lexicographic ordering on the pair:

(p(x, X;),4).

Thus, the ordering is foremost determined by the distance of an instance to z, so that p(z, X () is

monotonically increasing with . And if there are distance ties with p(z, X)) = p(z, X (+1),
then the instance that entered the dataset earlier takes precedence. The k,, -nearest neighbor query
consists of taking the first &,, indices under this ordering.

It turns out that we can describe the k,,-nearest neighbor query as a relatively simple composition of
spatial queries (Definition 8). In addition to the ball queries (Definition 11) defined earlier, we need
the shell queries, which are spatial queries over sets of the form S, = {z € X' : p(z, z) = r}. Then,
the k,,-nearest neighbor query (with tie-breaking) can be given as follows:

Definition E.1 (k,,-nearest neighbor query). Fix x € X and k € [N]. Let (X1,Y1,..., Xn,Yn) be
an adaptively sampled dataset. Then:

e Let BY = {B, : v > 0} be the set of open balls centered at z, where B, = B(z,r).
e Let S, = {S, : > 0} be the set of shells centered at x, where S, = B(z,r) \ B(z,r).

* The k-nearest neighbor query at x is the adaptive query:
Qni(®) = Qni(Br) UQnN,e(Sr) where 7 = argmax {|Qnk(B(z,5))| >k},

s>0

and where ¢ = k — |Qn x(B,)|. Thus, Qn r(x) selects for exactly k points by finding the
smallest closed ball containing at least &k points, selecting for all points in its interior, and filling
the remaining quota from the boundary, taken in order of arrival.

E.1 Sandwich numbers and concentration

Notice that any uniform concentration for spatial queries over closed balls directly carries over to
spatial queries over open balls: for every open ball B, € B2 and dataset (X;,Y1,..., Xn,Yn), as
long as s < r is sufficiently close to 7, then the queries coincide Qn 1 (B;) = QN kx(Bs)-

We need to provide uniform concentration of the class of spherical queries Qn 1 (S,). A very similar
proof to Lemma 13 yields the following bound on the sandwich number of S,:

Lemma E.2 (Sandwich number for spheres centered at x). Let (X, p,v) be a separable metric space
with a Borel probability measure. Fix x € X and let S, be the set of shells centered at x. Then, for
any « € [0, 1], the a-sandwich number N, (o) of S, is at most 4/ .

Proof. Let X ~ v and let F'(r) be the cumulative distribution function of p(z, X). Let M € N be
any number greater than or equal to 1/«. Form =0, ..., M, define:
Tm =min {r >0: F(r) >m/M},

where r,, exists because I’ is upper semi-continuous and is possibly infinite. We claim that the
following collection of rings and shells forms an a-sandwiching cover of S,

C= U {B(l‘,?‘m)\B(xvrm—1)75(x’rm)}’

m=0
from which the result follows by letting M = [1], since 4/a > 2-[1 + 1] > |C|.
We now choose Ajy,, Aoyt € C satisfying the a-sandwiching condition for any S(x,r) € S,. Let
m € {0,..., M} be the smallest number such that F'(r) < F'(r,,). There are two cases:

(a) If r = r,,, then we let A;, = Aouy = S(x, 7). The sandwiching condition evidently holds.
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(b) Ifr < r,,, then we let A, = @ and Agy = B(x,7,,) \ B(x,7,,_1). By construction of 7,
v(B(z,s)) <m/M, Vs < 1.
By the continuity of measure, we obtain v (B (z, rm)) < m/M. By construction of r,,_1,
v(B(z,rp-1)) > (m —1)/M.
It follows that v (Aou) < 1/M < .

O

Lemma E.3 (Concentration for the k-nearest neighbor query). Let (X1,Ys,...,Xn,YN) be
adaptively sampled by an £(§)-uniformly dominated process. Let Z ~ v be independently sampled.

Let X ..., XN) sort the instances by ascending lexicographic ordering on the pair:
(p(Z7 XZ)7 Tl)
Lett,p € (0,1). Suppose that k > 5% (1 +logk + log % + log %) Then:

k
Pr

k
1 , 1 ,
- y@ _ = XY > <.
- p 2 X =) <p
j=1 j=1
Proof. Since Z is chosen independently from the data and let A = B% U Sz consist of the open balls

and shells around Z. Thus, as shown in Definition E.1, the k-nearest neighbor query centered at 7 is
the union of two disjoint queries:

Q17Q2€ U QNA,m(A)'

me|[k]

The result follows by proving uniform convergence over queries that are the disjoint union of two
such queries. As Z is independently chosen from the data, we may apply the uniform convergence
result Lemma 14. In particular, by a union bound, with probability at least 1 — p,

1 o k2 - Na(a)
20— % p

vQe | Qnm(A),

me k]

) _ 20
in(Q) —iin(Q)] < o \/

where we let « = e71(1/N) and £ = QIOgW + e

Let @1 and Q)2 be two disjoint queries satisfying the above inequality. Let Q = Q1 UQ2 and |Q| = k.
Without loss of generality, assume |Q1| > k/2. Then, we claim that:

ﬁN<Q>—ﬁN<Q)|s2< 2€|+\/2( : )logkz'N*‘(O‘)>, 13)

Q1 Q1] — ¢ p
where the right-hand side of Equation 13 is less than ¢ when k is sufficiently large:

16¢ + 8log k
> —
t2
In particular, this holds when @ is a k-nearest neighbor query.

k

Lemma 13 and Lemma E.2 bounds N 4(«) < 8/c. So indeed,  is sufficiently large:

16+ 8logk _ 32 8 1
166+ 8logk < — (log2+62+logk+1og+log>
« p

t2 - 2
500 1 1
< —(1+4+logk+log————F— +log— | <k,
= ( + logk + Ogg—l(l/N) + ogp)
since log2 + e? + log 8 < 12.
Proof of claim. Let C' = % log MTA(O‘. There are two cases:
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1. Case 1: |Q2] > 2¢.

IN(Q) —n(Q)| < — (1Q1] - [N (Q1) — N (Q1)] + |Q2] - [N (Q2) — TN (Q2)])

1 Q1] Q2
— |4+ C C
%@G*’@N'|@|J
b @12
: Q1] <4€+QC |Q1|—€>
_ 2¢ 1 k- Na(a)
_26h+¢%&|@m P )
2. Case 2: |Q2] < 20
1
n(Q) —in(Q)] < @] (1Q1] - [N (Q1) — v (Q1)] + Q2| - [N (Q2) — 7N (Q2)])
1 |Q1? k- Ny(a)
— | 4 1
Sm<4+¢M@|@Og , )

IN
N
7N

20 1 k- Na(a)
@+¢w@vom ’ >'

O

Proof of Theorem 2. Recall that Theorem 15 proved consistency for the k,-nearest neighbor rule
when 7 is continuous, under the assumption that almost surely no distance ties occur. That assumption
only came in so that the concentration bound for k,,-nearest neighbor queries without ties, Corollary 2,
could by applied. By replacing that with the concentration bound for k,,-nearest neighbor queries
with tie-breaking, Lemma E.3, we immediately the result. O
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are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We describre the full scope of our theorems rigorously.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: well theorems are proved and correct to the best of our knowledge. The
statements are rigorous (meaning assumptions are included).

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]
Justification: No experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: No experiments
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (
) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (
) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: no experiments
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: no experiments
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification: no experiments
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics ?

Answer: [Yes]

Justification: yes, we made sure it conforms to ethics. This is a theory paper about nearest
neighbors.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: this is a theory paper discussing online nearest neighbors. The introduction
outlines the significance of our results which clearly does not have any negative societal
impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: theory paper
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: we cited everything, and this is a theory paper so no code was used.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets,
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: theory paper
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: theory paper, no human subjects or crowdsourcing.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: no study participants.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: no LLMs used.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy ( ) for
what should or should not be described.
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