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Abstract

Different modalities hold considerable gaps in
optimization trajectories, including speeds and
paths, which lead to modality laziness and modal-
ity clash when jointly training multimodal mod-
els, resulting in insufficient and imbalanced mul-
timodal learning. Existing methods focus on en-
forcing the weak modality by adding modality-
specific optimization objectives, aligning their op-
timization speeds, or decomposing multimodal
learning to enhance unimodal learning. These
methods fail to achieve both unimodal sufficiency
and multimodal balance. In this paper, we, for
the first time, address both concerns by proposing
multimodal Data Remixing, including decoupling
multimodal data and filtering hard samples for
each modality to mitigate modality imbalance;
and then batch-level reassembling to align the
gradient directions and avoid cross-modal inter-
ference, thus enhancing unimodal learning suf-
ficiency. Experimental results demonstrate that
our method can be seamlessly integrated with
existing approaches, improving accuracy by ap-
proximately 6.50%71 on CREMAD and 3.41% %
on Kinetic-Sounds, without training set expan-
sion or additional computational overhead during
inference. The source code is available at Data
Remixing.

1. Introduction

Multimodal learning (Ngiam et al., 2011) is a rapidly evolv-
ing field in artificial intelligence, aimed at enhancing the
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Figure 1. We decouple the multimodal data to assign samples to
each modality’s training and then reassemble the inputs to control
the consistency of modalities within the batch. By regulating
the number of samples, we mitigate modality laziness, and by
adjusting the batch composition, we alleviate modality clash.

perception and decision-making capabilities of models by
integrating data from diverse modalities, including vision,
sound, and text (Zhu et al., 2024). However, existing multi-
modal learning methods often face challenges in fully inte-
grating rich multimodal knowledge across different modali-
ties. Due to the inherent differences in data representation
and distribution across modalities, their optimization trajec-
tories differ significantly, resulting in imbalanced learning
when multiple modalities are jointly trained under a unified
objective. Specifically, multimodal models often prioritize
learning the most discriminative features from the strong
modality, suppressing the training of the weak modality
and causing it to become lazy, known as modality laziness
(Wang et al., 2020; Huang et al., 2022; Du et al., 2021).

Several methods have been proposed to address these is-
sues. Some focus on alleviating modality laziness by enforc-
ing the weak modality through modality-specific optimiza-
tion objectives, such as adjusting task-specific supervision
(Wang et al., 2020; Xu et al., 2023; Du et al., 2023), in-
troducing prototype learning (Fan et al., 2023), or using
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knowledge distillation (Du et al., 2021). Other methods aim
to align optimization speeds by modifying learning rates
(Sun et al., 2021) and gradients (Peng et al., 2022; Li et al.,
2023; Sun et al., 2023; Fu et al., 2023; Kontras et al., 2024;
Wei & Hu, 2024) based on unimodal performance. In con-
trast, some approaches attempt to regulate modality inputs
to more explicitly enhance the learning of weak modalities,
such as by augmenting weak modality samples (Wu et al.,
2022; Wei et al., 2024) and masking strong ones (Zhou et al.,
2023), or by decoupling multimodal learning into unimodal
tasks to avoid modality laziness (Zhang et al., 2024b). How-
ever, most of the existing methods align the optimization
speeds of different modalities to alleviate modality laziness,
without addressing the fact that even when modality balance
is achieved, differing optimization paths can still cause inter-
ference during modality optimization. In multimodal learn-
ing, the gradient update directions of different modalities are
inconsistent (Fan et al., 2023), leading to cross-modal inter-
ference during batch gradient descent (Figure 3(c)), which
can be called modality clash. This inconsistency causes
the modalities to deviate from their expected optimization
paths, as shown in Figure 1, resulting in insufficient learning
across all modalities and limiting the effectiveness of multi-
modal learning. Moreover, some methods are constrained
by specific model architectures (He et al., 2022; Lin et al.,
2023; Zhang et al., 2024b) or hinder training efficiency (Wei
et al., 2024; Zhang et al., 2024b), which further limits their
applicability.

Recognizing these limitations, we propose the Data Remix-
ing method, illustrated in Figure 2. Through dynamic sam-
ple allocation and batch-level alignment mechanisms, we si-
multaneously address modality laziness and modality clash
without hindering training efficiency or being constrained
by specific model architectures.

Concretely, our Data Remixing method consists of two
key steps: sample-level decoupling of multimodal data and
batch-level reassembling of unimodal data. First, based on
unimodal separability, we evaluate the representational ca-
pability of each modality at the sample level, retaining only
the input from the weak modality while masking the others
to zero. By decoupling the multimodal data, multimodal
models can leverage specific samples to train each modality
effectively. However, even after decoupling, unimodal gra-
dient update directions still lead to interference. We further
analyze the optimization process and propose that modal-
ity clash originates at the batch level. To address this, we
reassemble unimodal data based on the decoupling assign-
ments, ensuring that each batch contains data from only one
modality, free from interference from other modalities, as
shown in column 3 of Figure 1. Such sample-level decou-
pling and batch-level reassembling allow each modality to
be learned sufficiently and balanced, all without expanding
the dataset.

We test our method on different datasets and achieve excel-
lent results. When combined with conventional fusion meth-
ods, the model’s performance shows a notable improvement
across multiple datasets. Importantly, our strategy does not
expand the dataset or introduce additional overhead during
inference. We summarize our key contributions as follows:

* We introduce the Data Remixing method, a training
strategy that combines decoupling multimodal data
and reassembling unimodal data to address modality
laziness and clash. Our method does not require dataset
expansion and is not constrained by specific model
architectures.

* We analyze the optimization process and propose that
modality laziness and clash originate at the batch level.
To the best of our knowledge, we are the first to analyze
the challenges of multimodal learning at the batch level
and propose a solution.

* We perform experiments and demonstrate that (1) Data
Remixing achieves excellent results in multimodal
learning tasks; (2) Data Remixing can be easily and
effectively integrated with other methods, leading to
significant improvements of approximately 6.50% 7T on
CREMAD and 3.41%71 on Kinetic-Sounds.

2. Related Work

In this section, we introduce several strategies for multi-
modal balance learning. We categorize these methods based
on the form of data input. The methods described in Section
2.1 retain multimodal inputs throughout the learning pro-
cess, whereas those in Section 2.2 operate with unimodal
inputs (though not necessarily for the entire duration of
training).

2.1. Balance with Multimodal Joint Input

Wang et al. (2020); Du et al. (2021) discover that the opti-
mization speed varies across different modalities. Therefore,
when optimizing a multimodal model with a unified objec-
tive, the weak modality fails to learn adequately, leading
to modality laziness. Most methods maintain multimodal
data inputs during training, achieving modality balance by
adjusting optimization objectives and speeds.

Some try to alleviate modality laziness by enforcing the
weak modality through modality-specific optimization ob-
jectives Wang et al. (2020); Du et al. (2021); Xu et al. (2023);
Du et al. (2023); Fan et al. (2023). Wang et al. (2020) pro-
pose Gradient-Blending, which calculates the optimal mix-
ing mode of modality losses by determining the overfitting
situation for each modality. Du et al. (2021) attempt to distill
knowledge from well-trained unimodal models to enhance
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Figure 2. The pipeline of Data Remixing method. In step (a), the complete dataset is used for training to ensure the model develops
the basic representational capability. In step (b), the multimodal data is decoupled based on unimodal separability (calculated using
KL-divergence), and the original dataset is reassembled into non-overlapping subsets. In step (c), the subsets obtained in step (b) are used

to train on the specific modality by masking other modalities to zero.

the unimodal encoders. Fan et al. (2023) introduce the pro-
totype cross-entropy loss for each modality to accelerate
the slow-learning modality. Others try to align optimiza-
tion speed by changing learning rates (Sun et al., 2021) or
modifying gradients (Peng et al., 2022; Li et al., 2023; Sun
et al., 2023; Fu et al., 2023; Kontras et al., 2024) according
to unimodal performance. Sun et al. (2021) dynamically
adjust the learning rates of different modalities based on
the unimodal predictive loss. Peng et al. (2022) adaptively
modulate the gradients of each modality by monitoring the
discrepancy in their contribution to the learning objective.
These methods promote modality balance and enhance the
expressive power of multimodal models. However, they fail
to recognize that even when modality laziness is addressed,
modality clash persists, meaning that multimodal capability
remains limited.

2.2. Balance with Unimodal Single Input

Some methods attempt to use alternating or selective uni-
modal inputs to promote multimodal learning, thereby avoid-
ing interference from other modalities and enhancing the
expressive power of multimodal models (Wu et al., 2022;
Zhang et al., 2024b; Wei et al., 2024; Zhou et al., 2023). Wu

et al. (2022) measure the relative speed of each modality and
train unimodal branches to fully utilize them. Zhang et al.
(2024b) decompose multimodal learning into alternating
unimodal learning with gradient modification to preserve
cross-modal interactions. Wei et al. (2024) design a sample-
level modality contribution evaluation based on Shapley
values and perform resampling of the weak modality to en-
hance specific modality training. These methods, which rely
on unimodal inputs, seem to avoid modality clash. How-
ever, upon closer inspection, we find that modality clash is
introduced at the batch level. Like the methods in Section
2.1, they have not analyzed or addressed the root cause of
modality clash.

Overall, current work focuses on addressing modality lazi-
ness but fails to recognize that modality clash still exists
in balanced multimodal learning. Meanwhile, some meth-
ods are constrained by specific model architectures (Wu
et al., 2022; Zhang et al., 2024b) or hinder training effi-
ciency (Zhang et al., 2024b; Wei et al., 2024), limiting their
applicability. In this paper, we aim to simultaneously mit-
igate modality laziness and modality clash while ensuring
compatibility with various fusion methods and model archi-
tectures.



Improving Multimodal Learning Balance and Sufficiency through Data Remixing

3. Method

3.1. Model formulation

In this paper, we focus on the multimodal discrimination
task, following related works (Peng et al., 2022; Fan et al.,
2023; Wei et al., 2024; Zhang et al., 2024b). For conve-
nience, we consider two input modalities: m, and m,,.
The training dataset is D = {x;,y;}i=12,... .~. Each ;
consists of multimodal inputs, i.e., z; = (z¢,2Y). y; €
{1,2,..., M}, where M is the number of classes. The mul-
timodal model is trained using batch gradient descent, with
data = (%, V) sampled from a batch B.

We use a multimodal model consisting of two unimodal
branches for prediction. Each branch has a unimodal en-
coder, denoted as ¢® and ¢", used to extract features from
the corresponding modality of . The encoder outputs are
represented as z% = ¢%(0%,x%) and z¥ = ¢Y(6%,x"?),
where 6% and 0Y are the parameters of the encoders. The
results of the two unimodal encoders are fused in some way
(Owens & Efros, 2018; Gunes & Piccardi, 2005) to obtain
the multimodal output. We use cross-entropy (CE) loss as
the loss function. To achieve better representation ability
in the warm-up stage, we add a separate classification head
for each modality, as Wang et al. (2020) do, and modify the
loss function as follows:

K
L=Ll5+ > willl, )
k=1

where L2, represents the CE loss for multimodal predic-
tion, while £}, represents the CE loss for the individual
prediction of the k-th modality. We provide experiments to
demonstrate that the improvements brought by our method
are not dependent on the design of this loss function.

3.2. Data Remixing Method

Overview of Method. The complete pipeline of our method
is presented in Figure 2. In step (a), we first use the com-
plete dataset and multimodal inputs for warm-up training to
ensure the model has the basic representational capability.
Then, the model is optimized through alternating steps (b)
and (c). In step (b), we decouple the multimodal inputs
based on the KL divergence of unimodal prediction proba-
bilities and reassemble the data at the batch level according
to the remaining modality. In step (c), we perform specific
training for each modality using the reassembled dataset.

Decouple Multimodal Data. In multimodal learning, the
model tends to fit the modality that optimizes faster, often
converging before the other modality has been sufficiently
learned (Du et al., 2021). Therefore, appropriately reduc-
ing the training speed of the strong modality may be an
effective strategy for balancing learning (Peng et al., 2022).

However, modality-level control over the optimization pro-
cess or objectives overlooks the imbalance at the sample
level between modalities (Wei et al., 2024), which limits the
effectiveness of the balancing. Based on this premise, we
consider promoting balance by assigning specific samples
(in terms of difficulty and quantity) to different modalities,
achieving a more precise and convenient modality balance.

We first define a sample-level unimodal capability evalu-
ation method to achieve either-or data allocation, instead
of using Shapley values as proposed by Wei et al. (2024)',
to avoid dataset expansion. For each sample x;, we obtain
unimodal prediction probabilities p¥, k € {a, v}. The rep-
resentational ability of each modality is then assessed by
calculating the KL divergence between p¥ and a uniform
distribution as

M k
X b;;
Drr(piU) = 3 pijlog <UJ> : @
j=1 !

where pf ; represents the predicted probability for class j,

and u; = 4 corresponds to the uniform distribution. KL
divergence measures the difference between two probability
distributions. In the current application scenario, a smaller
KL divergence indicates that the output is closer to a uniform
distribution, meaning that the separability of the correspond-
ing unimodal output is worse. This can be interpreted as
insufficient training for the current modality on this sam-
ple. Therefore, we decouple the multimodal inputs for each
sample and only retain the modality that performs the worst,
masking input from other modalities to achieve accurate
unimodal training (Zhang et al., 2024a; Wei et al., 2024).
That is, the new training set is as follows:

D = {xm* r € D,m, = arg mir}(DKL(mi)}. 3)
m, €

By decoupling the multimodal inputs, the strong modality
is exposed to fewer samples, while the weak modality is
exposed to more, as shown in Figure 3(a). This forces the
model to focus more on learning the weak modality during
the optimization process and prevents the strong modality
from suppressing the weak modality’s learning, thereby
promoting modality balance, as shown in Figure 3(b), and
ensuring more comprehensive multimodal learning. More
importantly, our sample-level unimodal evaluation method
provides the basis for reassembling unimodal inputs to avoid
modality clash.

Reassemble Unimodal Data. After decoupling the mul-
timodal inputs, we address modality laziness but find that

"For x;, if the unimodal predictions are correct with probabili-
ties of 0.9 and 0.6, the Shapley values for both modalities would
be the same, but the representational abilities are different.
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modality clash remains, as shown in Figure 3(c). For more
sufficient multimodal learning, we further analyze the phe-
nomenon and identify that the interference is introduced at
the batch level.

Without loss of generality, we assume that the multimodal
fusion method selected for the model is Concatenation, as
done by others (Fan et al., 2023; Peng et al., 2022; Wei et al.,
2024). Let W € RM*(d=a+d=v) and b € RM represent the
parameters of the linear classifier that produces the logits
output. We can then express the output of the multimodal
model (without softmax) as

f(x) = W [9p%(0%,2%); 6" (0, 2")] + b. )
To analyze the optimization process of each modality, we
represent W as a block matrix composed of two parts:

[W, W"]. We can then rewrite Equation 4 as
f(x) =W [p (0, a)] + W ["(6",2")] + b )
=W +W'2" +b.
Assuming that no additional classification heads are added
for each modality branch, the loss for each batch is

|B| i)y
|B|Z°g< e >>
| B Wi+ W 2l +b,
|B| Z 0g ( j 1 ef(zi); )

Observing Equation 6, we see that when using batch gradi-
ent descent, even if we decouple the multimodal inputs and
mask the dominant modality for each sample, multimodal
inputs still coexist within a batch. The inconsistency in
optimization directions causes interference between their
gradient update directions, ultimately leading to insufficient
model training. Therefore, we propose that cross-modal
optimization interference originates at the batch level
and can be addressed by controlling the composition of each
batch, referring to this as reassembling unimodal inputs.

Lcg =

(6)

We assume that the dataset D with K modalities can be
transformed into D’ through decoupling multimodal inputs.
Based on the retained modality, the dataset can be divided
into K subsets, denoted as

D :{xi|wf:0,Vj7ék:}. %)

The divided subsets satisfy Equation 8, ensuring that our
training set does not expand.

K
U Dmk — D/,
et ®)

DD = Vi

To control the composition of each batch, we reassemble
the unimodal inputs based on the decouple assignments
and ensure that each batch B; contains data from only one
subset, as shown in Equation 9.

B, CD™, ke{l,2,...,K} C)]
When sampling from a specific data subset, Equation 6 can
be further simplified. For example, when sampling from the
data subset corresponding to the video modality, Equation 6
simplifies to

WU7“+b A

|B|
— 1 " 10
tos =iy s (G e )+ 0

where the phenomenon of cross-modal optimization inter-
ference has been effectively addressed.

In general, the pseudo-code for our method is provided in
Algorithm 1. We bridge modality decoupling and reassem-
bling through unimodal evaluation and implement the Data
Remixing method to simultaneously tackle modality imbal-
ance and insufficiency.

Algorithm 1 Method of Data Remixing

Input: input data D = {(z}, 22, ..., 2%), y; }ic12. N,
number of modalities K, model parameters 6, training
epoch E , warm-up epoch F,.
fore=0,---,F—1do
if ¢ < E, then
Update model parameters 6 with dataset D;

else
fork=1,--- ,Kdo
Initialize D™* : D™ = ();
end for

for each sample = in D do
Calculate Uni-modal Ability {¢!, ¢?,.
with Equation 2;
Identify k corresponding to the minimum *;
Mask 7, j # k to zero;
Add z into D™

end for

fork=1,---,Kdo
Update model parameters 6 with dataset D"**;

end for

end if
end for

R}

4. Experiments

4.1. Dataset and Experimental settings

CREMA-D (Cao et al., 2014) is an audiovisual dataset for
emotion recognition, consisting of 7,442 video clips from
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91 actors. The dataset includes six of the most common
emotions: anger, disgust, fear, happy, neutral and sad.
A total of 2,443 participants rated each clip for emotion
and emotional intensity using three modalities: audiovisual,
video only, and audio only. The entire dataset is randomly
divided into a training and validation set of 6,698 samples
and a test set of 744 samples, with a ratio of approximately
9:1.

Kinetic-Sounds (Arandjelovic & Zisserman, 2017) is a
dataset derived from the Kinetics dataset (Kay et al., 2017),
which includes 400 action classes based on YouTube videos.
Kinetic-Sounds consists of 31 action categories, selected for
their potential to be represented both visually and aurally,
such as playing various instruments. Each video is manually
annotated for human actions using Mechanical Turk and is
cropped to 10 seconds, focusing on the action itself. The
dataset comprises 19k 10-second video clips, split into 15k
for training, 1.9k for validation, and 1.9k for testing.

Experimental settings. Unless otherwise specified, all
feature extraction networks used in the experiments are
ResNet-18 (He et al., 2016), trained from scratch. During
training, we use the Adam (Kingma, 2014) optimizer with
B = (0.9,0.999) and set the learning rate to 5 x 1075. We
obtain unimodal prediction results from the unimodal clas-
sification heads and also present the results of our method
by masking specific modalities to zero, as in Hinton (2012)
and Wei et al. (2024). All reported results are averages from
three random seeds, with all models trained on two NVIDIA
RTX 3090 GPUs using a batch size of 64.

Table 1. Combination and comparison with conventional fusion
methods. “+ Remix” indicates that our Data Remixing method is
applied. Bold indicates that our method brings improvement.

Method | CREMAD | Kinetic-Sounds
Concatenation 64.52% 50.23%
Summation 63.44% 51.66%
Decision fusion 67.47% 52.47%
FiLM 62.77% 49.61%
Bi-Gated 63.04% 49.92%
Concat + Remix 72.72% 55.63%
Sum + Remix 71.51% 54.09 %
Decision + Remix 70.70 % 54.86 %

4.2. Comparison with conventional fusion methods

We first compare our method with several representative
multimodal fusion methods commonly used in deep learn-
ing frameworks: Concatenation (Concat) (Owens & Efros,
2018), Summation (Sum), Decision Fusion (Decision)
(Gunes & Piccardi, 2005), FILM (Perez et al., 2018), and
Bi-Gated (Kiela et al., 2018). The results are shown in Table
1. We apply Data Remixing in combination with Concate-

nation as the representative fusion method for our approach.
It is evident that our method significantly improves model
performance across different datasets, with an increase of
8.20% on CREMAD and 5.40% on Kinetic-Sounds, out-
performing other conventional fusion strategies. To further
demonstrate the generalizability of our method, we com-
bine Data Remixing with Summation and Decision Fusion,
achieving substantial improvements across both datasets.

4.3. Comparison with imbalanced multimodal learning
methods

Our method is primarily designed to address the issues of
modality imbalance and insufficiency in multimodal learn-
ing. To evaluate the improvements, we compare our ap-
proach with several representative methods that target mul-
timodal balance and sufficiency: G-Blend (Wang et al.,
2020), OGM-GE (Peng et al., 2022), Greedy (Wu et al.,
2022), PMR (Fan et al., 2023), MLA (Zhang et al., 2024b)
and Resample (Wei et al., 2024). For a fair comparison, we
adopt Concatenation as the fusion strategy for the baseline,
following the approach used in the above methods. The re-
sults, including accuracy (Acc) and dataset expansion factor
(Factor), are presented for all methods.

Table 2. Comparison with other imbalanced multimodal learning
methods. All modulation strategies are applied to the baseline,
using Concatenation as the fusion method. We also include results
of applying Data Remixing to Resample and MLA for further
comparison.

Method CREMAD Kinetic-Sounds
Acc(%) Factor | Acc(%) Factor

Concatenation | 64.52 1 | 5023 1

+ OGM-GE 68.15 1 52.66 1

+ G-Blend 69.89 1 53.55 1

+ Greedy 68.28 1 51.20 1

+ PMR 68.95 1 51.93 1

+ MLA 68.01 2 54.66 2

+ Resample 67.61 1.85 55.17 1.97

+ Remix (Ours) 72.72 1 55.63 1

+ MLA + Remix 74.19 1 57.75 1

+ Resample + Remix | 73.25 1.92 58.40 2.01

Based on the results in Table 2, we observe that, due to the
differing optimization trajectories of modalities, these im-
balanced multimodal learning methods show performance
improvements over traditional fusion methods. However,
our method addresses both modality laziness and modality
clash simultaneously, leading to even greater improvements.

Among these, the MLA and Resample strategies also per-
form relatively well, but hinder training efficiency. Un-
der the same training conditions (especially GPUs and
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batch size), MLA employs a multi-stage training strategy
and requires gradient modification based on previous fea-
tures, making its training approximately 3 x slower than our
method?. The Resample method enhances the model’s train-
ing on weak modality samples through resampling, which
expands the training set by nearly twice, but it hinders train-
ing efficiency. To more intuitively reflect the differences in
efficiency, we measure the training time of four methods
under the same conditions, as shown in Table 3. We observe
that balancing methods using unimodal single input tend to
increase the training time, whereas Remix does not expand
the training set, making it more efficient. Unlike these meth-
ods, our approach neither expands the dataset nor reduces
the model’s training efficiency.

Table 3. Training time to convergence (seconds) on CREMAD and
Kinetic-Sounds datasets.

Method | Baseline | Remix | Resample | MLA
CREMAD 1536 2537 4525 6128
Kinetic-Sounds 3849 4946 10362 12868

Considering the similarities between our approach and the
Resample and MLA methods—such as MLA’s decoupling
of unimodal training, which indirectly achieves batch con-
trol, and Resample’s selective data training—we further
combine Data Remixing with these methods to demon-
strate its advancements and generalizability. We integrate
a sample-level evaluation process into MLA, promoting
model balance without increasing the number of input sam-
ples (which is why the Factor in Table 2 is updated to 1), and
reassemble the unimodal inputs after applying Resample.
With our method applied, both approaches show significant
improvements in their final results.

4.4. Combination with complex cross-modal
architectures

The above methods and experiments are conducted using
simple fusion methods, where multimodal fusion occurs
after the unimodal encoders or classifiers. To validate the
applicability of the Data Remixing method in more complex
multimodal scenarios, we combine it with two intermediate
fusion methods: MMTM (Joze et al., 2020) and CentralNet
(Vielzeuf et al., 2018). MMTM recalibrates the channel fea-
tures of different CNN streams through squeezing and mul-
timodal excitation steps, while CentralNet uses unimodal
hidden representations alongside a central joint representa-
tion at each layer, performing fusion through a weighted
summation learned during training.

?Although MLA does not increase the number of samples,
decoupling the inputs without selecting for unimodal training is
similar to expanding the dataset, which slows down training.

Table 4. Results on CREMAD and Kinetic-Sounds with two types
of complex cross-modal architectures. “+ Remix” indicates the
application of our Data Remixing method.

Method | CREMAD | Kinetic-Sounds
Concatenation 64.52% 50.23%
Concat + Remix 72.72% 55.63%
MMTM 66.40% 52.27%
MMTM + Remix 68.82% 54.78 %
CentralNet 65.46% 54.09%
CentralNet + Remix 67.61% 55.94%

As shown in Table 4, when multimodal fusion occurs during
the encoding process, applying the Data Remixing method
leads to significant improvements, further demonstrating
the applicability of our method in complex cross-modal
architectures.

4.5. Analysis of Methods

In this section, we provide a detailed analysis of the per-
formance improvements introduced by our method. This
includes comprehensive ablation experiments and an evalua-
tion of the effectiveness of each design choice. Additionally,
we explore different unimodal prediction methods to further
demonstrate the broad applicability of the Data Remixing
approach.

4.5.1. ABLATION STUDY

We conduct ablation studies to demonstrate the effectiveness
of our two main designs, with the specific results shown
in Table 5. Our experiments consist of two parts: (1) De-
couple, which involves decoupling the multimodal data and
masking a specific modality without reassembling; (2) Re-
assemble, which involves reassembling the modality inputs
based on sample-level evaluation without specific training
(i.e., without modality masking).

Observing the experimental results, we demonstrate the ef-
fectiveness of our method. In Experiment (1), we decouple
the multimodal data and select specific samples for train-
ing. This approach facilitates modality balance, yielding
some performance improvements. In Experiment (2), we
reassemble the inputs based on sample-level evaluation,
controlling the data composition within each batch. This
strategy alleviates modality clash and leads to corresponding
improvements. Finally, when both strategies are combined,
the model’s performance is further enhanced.

4.5.2. STUDY OF DECOUPLE MULTIMODAL DATA

In the process of conducting sample-level evaluation and
decoupling multimodal data, we choose to mask the better-
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Figure 3. Proof of effectiveness of Decouple and Reassemble Methods. The results are obtained on CREMAD. (a) Statistics of the
number of samples used for training specific modalities. (b) The change of the imbalance ratio p. (c) Comparison of gradient direction

discrepancies.

Table 5. Results of ablation studies on CREMAD and Kinetic-
Sounds. The second and third rows correspond to Experiment (1)
and Experiment (2), respectively.

Decouple Reassemble | CREMAD | Kinetic-Sounds
X X 64.52% 50.23%
v X 69.89% 52.31%
X v 68.68% 51.70%
v v 72.72% 55.63%

performing modality and train with specific samples to alle-
viate modality imbalance. Figure 3(a) shows the distribution
of samples assigned to different modalities during training.
It is clear that the strong modality consistently receives
fewer samples compared to the weak modality. Figure 3(b)
illustrates the change in imbalance ratio p (Peng et al., 2022)
before and after decoupling the modality inputs. The results
indicate that our method alleviates the modality imbalance,
supporting our hypothesis that balancing modality repre-
sentation via sample quantity and difficulty can improve
model performance. Note that our method is applied after a
10-epoch warm-up stage.

4.5.3. STUDY OF REASSEMBLE UNIMODAL DATA

To mitigate cross-modal optimization interference, we re-
assemble unimodal inputs to control the data composition
within each batch. Our theoretical analysis of batch control
supports the effectiveness of this strategy, and the improve-
ments in unimodal performance are evident. Specifically,
audio accuracy on CREMAD increased by 1.75%, while
video accuracy improved by 2.96%, since the strong modal-
ity is less affected compared to the weak modality.

To further validate the effectiveness of our method in allevi-
ating gradient interference, we evaluate the gradient update
discrepancies with and without data reassembling, as shown
in Figure 3(c). Specifically, we assess the gradient update
discrepancies of the audio modality (the strong modality)

on CREMAD at different training stages. We calculate the
angle between the actual gradient update direction and the
ideal guidance direction for the audio modality. The results
show that after reassembling the unimodal inputs, the gra-
dient update direction aligns more closely with the ideal
direction, providing further evidence of the effectiveness of
our approach.

Table 6. Results of accuracy(%) on CREMAD and Kinetic-Sounds
using different methods for unimodal predictions.

Method CREMAD Kinetic-Sounds

Dropout Head | Dropout Head
Concatenation 61.56 64.52 49.58 50.23
Summation 59.68 63.44 48.00 51.66
Decision fusion 62.23 67.47 50.08 52.47
Concat + Remix 70.03 72.72 53.89 55.63
Sum + Remix 68.68 71.51 53.12 54.09
Decision + Remix 68.55 70.70 53.55 54.86

4.5.4. STUDY OF UNIMODAL PREDICTION METHODS

Since our method requires accurate unimodal predictions,
we add a classification head to each modality branch and
synchronize the updates of the classification head parame-
ters by modifying the loss function. This approach has been
shown to improve model performance (Wang et al., 2020).
To further validate our method, we compare the results with
the dropout method (Hinton, 2012; Wei et al., 2024) for uni-
modal prediction evaluation across three traditional fusion
strategies. The results are presented in Table 6. From the
table, we observe that both methods of obtaining unimodal
predictions show effective improvements when applying
our strategy. Notably, regardless of the chosen method, our
approach does not introduce any additional overhead during
inference.
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5. Conclusion

Multimodal models often face challenges due to the dif-
ferences in optimization trajectories between modalities,
leading to issues of insufficient and imbalanced learning dur-
ing joint training. We propose the Data Remixing method,
which decouples multimodal data based on unimodal separa-
bility and reassembles unimodal data to ensure consistency
between modalities at the batch level. Our method effec-
tively mitigates both modality laziness and modality clash,
achieving significant performance improvements across var-
ious datasets, fusion methods, and model structures. Addi-
tionally, it does not require dataset expansion or introduce
extra computational overhead during inference. Moreover,
to the best of our knowledge, we are the first to propose
that the challenges of multimodal learning originate at the
batch level and to offer a solution for them. However, a
limitation of our approach arises when one modality serves
primarily as an auxiliary modality with limited information
(Wei et al., 2025). In such cases, the unimodal evaluation
and allocation strategy may require further refinement.
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