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ABSTRACT

Existing Roman Numeral Analysis (RNA) models
frame the task as classification, outputting labels without
the explanatory reasoning central to music theory. This
"black box" approach misaligns with the goal of harmonic
analysis, which is to deepen musical understanding. To ad-
dress this, we introduce RNInfer, a novel framework that
bridges a pre-trained symbolic music encoder with a Large
Language Model (LLM) to perform interpretable RNA.
Our architecture uses a lightweight projector to align mu-
sical features with the LLM’s embedding space, enabling
it to reason about harmonic content. We propose Octu-
ple+, an enhanced tokenization scheme that incorporates
crucial enharmonic spelling information into the music en-
coder. The model is trained in two stages: supervised fine-
tuning to learn the analysis task, followed by reinforcement
learning with Group Relative Policy Optimization (GRPO)
to generate human-readable reasoning traces without re-
quiring annotated examples. Experiments show that RN-
Infer achieves competitive accuracy on the primary anal-
ysis task, and we demonstrate its capability to generate
structured explanations for its predictions, marking a criti-
cal step toward more transparent and pedagogically useful
models for computational musicology.

1. INTRODUCTION

Roman Numeral Analysis (RNA) systematically labels
harmonic function of chords within a tonal context [1].
Automating this process has been a long-standing goal in
computational musicology. Early machine learning ap-
proaches have made significant strides, with models like
AugmentedNet [2] and RNBert [3] demonstrating the po-
tential of deep learning for this task. These systems have
explored various architectures, from multi-task learning
frameworks that predict related tonal features simultane-
ously [2,4] to methods that enforce label consistency using
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autoregressive models [5].

However, prior work treats RNA as mere classification.
Music analysis is subjective, often multi-valued, and aims
to deepen understanding of musical structure and capture
its full richness. Producing harmonic labels without expla-
nation falls short of this goal.

To address these challenges, we turn to Large Language
Models, leveraging architectures from vision-language
models [6-8] to bridge symbolic music and natural lan-
guage reasoning. We employ GRPO [9] to elicit reasoning
via rule-based rewards, generating detailed interpretations
without human-annotated traces.

We introduce RNInfer, a novel framework to perform
interpretable Roman Numeral Analysis. RNInfer lever-
ages the symbolic music understanding of a customized
MusicBERT, the generative power of an instruction-tuned
LLM, and instills reasoning ability via GRPO. Our primary
objective is to produce accurate RNA predictions accom-
panied by human-readable explanations that illuminate the
underlying harmonic logic.

While some studies suggest that general-purpose LLMs
may underperform specialized models on specific bench-
marks [10, 11], their value lies in their capacity for cross-
task generalization rather than narrow task-specific accu-
racy. Our goal is to equip LLMs with deep domain under-
standing that enables synergistic performance across mul-
tiple related tasks. For instance, a model with robust sym-
bolic music comprehension could not only analyze musical
structures but also leverage this understanding for control-
lable generation and interactive music education. Since
current LL.Ms still lack nuanced symbolic music under-
standing, systems like RNInfer represent important steps
toward interpretable and generalizable music Al.

In summary, our contributions are threefold:

* We present the first LLM-based approach to func-
tional harmonic analysis, combining symbolic en-
coders with natural language reasoning.

* We propose Octuple+, an enhanced tokenization
that integrates spelled pitch into the MusicBERT
framework while retaining its pre-trained knowl-
edge, yielding improved performance.

* We develop a model that generates human-readable
reasoning traces alongside RNA predictions, taking
an initial step toward interpretable models that align
with the explanatory purpose of harmonic analysis.



2. RELATED WORK

Automated RNA has two main research trajectories. The
first began with multi-task BiLSTM models [12] and pro-
gressed to Transformer-based architectures like Harmony
Transformer [13, 14], which, however, were limited by
their reliance on piano-roll representations that lack enhar-
monic information.

A second, parallel line of research emphasized the
importance of spelled-pitch representations [4, 15] and
explored various architectures to improve performance.
These include CRNNs with multi-task learning [2] and
autoregressive models designed to enforce label consis-
tency [5]. In addition to these two lines of work, RN-
Bert [3] achieved state-of-the-art results by fine-tuning
MusicBERT [16], but it inherited MusicBERT’s limitation
of being unable to take spelled pitch as input.

Despite accuracy gains, existing models share funda-
mental limitations. Most importantly, they function as
"black boxes," providing labels without the explanatory
reasoning which is central to the purpose of music analysis
and essential for alleviating its inherent ambiguity. Fur-
thermore, most approaches treat RNA at the onset level,
assigning a label to every note onset [2,3]. This contrasts
with human analysis, where harmonic spans are identified
first and non-chord tones are excluded. Onset-level mod-
els, by forcing harmonies onto such tones, create an unnat-
ural and less faithful workflow. Our work addresses these
gaps by reframing RNA as a reasoning task for a multi-
modal LLM, while retaining crucial spelled-pitch informa-
tion.

We adopt an architecture inspired by vision-language
models (VLMs) like LLaVA [6-8, 17], which use a sim-
ple projector to efficiently align features from a spe-
cialized encoder with an LLM. To instill reasoning ca-
pabilities without requiring human-annotated reasoning
traces, which is a key limitation of methods like Chain-
of-Thought (CoT) [18], we employ GRPO [9, 19]. GRPO
trains explanatory outputs via rule-based rewards, suiting
domains like music analysis where annotated reasoning
data is scarce.

3. METHODOLOGY

We introduce RNInfer, a novel framework designed for
interpretable Roman Numeral Analysis. Our architec-
ture bridges a pre-trained symbolic music encoder with an
LLM using a lightweight projector, enabling the LLM to
reason about musical content.

3.1 System Architecture and Workflow

Figure 1 illustrates the overall architecture of our proposed
RNInfer framework, which consists of three core compo-
nents: First, a customized MusicBERT or RNBert [3, 16]
encoder processes symbolic music tokenized with our pro-
posed Octuple+ scheme (see 3.2) to generate contextual
embeddings. Next, a lightweight two-layer MLP projec-
tor maps these music embeddings into the latent space of
the Qwen2.5-7B-Instruct LLM. The LLM then receives

the projected music embeddings alongside a task prompt
and autoregressively generates the final analysis, including
both the RNA labels and a natural-language explanation.

3.2 Octuple+ Spelled-Pitch Tokenization

A key limitation of MusicBERT and RNBert is their re-
liance on MIDI pitch, which ignores enharmonic distinc-
tions essential for nuanced harmonic analysis. To ad-
dress this, we propose Octuple+, an enhanced tokenization
scheme that adds a ninth attribute for accidental spelling to
MusicBERT’s original eight-tuple representation.

To avoid disrupting pre-trained knowledge, we adapt
LoRA-style initialization [20]. The embedding for each
note event, originally composed of eight token embeddings
F, is now extended with a ninth embedding for the ac-
cidental, E,.., forming a new sequence E' = [E; E,].
This sequence is projected to a single note embedding by
a downsampling layer. We zero-init the downsampler so
E’ initially matches E. This ensures the accidental con-
tributes O at start, letting the model begin fine-tuning from
its pre-trained state and gradually learn to incorporate the
new spelling information, which stabilizes the training pro-
cess.

3.3 Two-Phase Training Procedure

Our training process consists of two phases: Supervised
Fine-Tuning (SFT) and Reinforcement Learning (RL).

Phase 1: Supervised Fine-Tuning (SFT). In this
phase, we train the model to produce correct analytical
outputs using a two-stage curriculum. We first fine-tune
on local key prediction (SFT-Key), a foundational sub-task
of RNA, and then continue training on the full Roman Nu-
meral Analysis task (SFT-RNA). This curriculum is cru-
cial for performance (c.f. Section 4.4). The model is
trained with a standard cross-entropy loss. For parame-
ter efficiency, we only train the music encoder, projector,
and LoRA [20] adapters in the LLM, which constitute 2%
of the total parameters.

Phase 2: Reinforcement Learning (RL). Following
SFT, we apply the GRPO [9] algorithm to train the model
to generate human-readable reasoning traces. In this phase,
the model learns to produce a structured output containing
a <think> block with step-by-step reasoning, followed
by an <answer> block with the final RNA label. The
model is rewarded based on rule-based functions, obviat-
ing the need for human-annotated reasoning datasets.

The prompt templates for each training phase are de-
tailed in Appendix A.1.

3.4 Data Processing

To create musically coherent training samples and reduce
computational cost, we employ a "phrase-slicing" strategy,
segmenting music along phrase boundaries. This required
curating a new dataset, PDCML, from pieces with existing
phrase annotations in the DCML Corpora [21], the compo-
sition of which is detailed in Appendix A.2. As our abla-



R N S R

PR LLM A23ay | ¢ (MLP Projector o Positional |
I * 1 4 Encoding I
| Oooooooo =TT O : | . . . For Accidentalsﬂm I
: ngg%ggg%"' === e E } I : + Downsampling Layer | | [
I *A nnnnnnnn t*m n between <music></music> [ I Tra nsfo rmer I :
[ Emb. Layer  MLP Proiector” hy Encoder |~ Sisslamlenl I
' & Lo 8. E B g & l
I Tokenizer MusicBERT <« Z 4 Elé8 3 2 £ ¢ I
I + S HEn S e I
. = L e ,
AN RNIinfer ;. \ MusicBERT Octuple+ !

e e e ] - e o mm mm mm Em Em Em mm Em o Em Em Em mm o Em Em mm mm o Em Em —

Figure 1: The overall architecture of RNInfer, showing the music encoder, projector, and LLM components.

tion study in Section 4.4 confirms, this musically-informed
segmentation significantly improves model performance.

Our data preprocessing and augmentation largely fol-
low the procedures of RNBert [3], but with two key en-
hancements to create a more musically complete dataset:
First, we add support for augmented sixth chords, which
are omitted in RNBert. Second, we expand the annotation
of secondary chords to include their quality in addition to
their scale degree, as this information is necessary for a
complete and accurate RN label.

4. EXPERIMENTS

We evaluate RNInfer’s architecture and training strategy
through a series of experiments. We first report the model’s
performance on the supervised tasks of local key prediction
and full Roman Numeral Analysis. We then analyze the
effects of the subsequent RL stage, which is designed to
instill reasoning capabilities.

4.1 Validating the Projector Module

To validate the projector’s ability to bridge the music en-
coder and LLM, we designed a simple toy task requiring
the model to identify simultaneous notes, training only the
projector while keeping the other components frozen. The
near-perfect accuracy shown in Table 1 confirms that the
projector effectively maps musical features into the LLM’s
latent space, establishing the viability of our architecture
for more complex harmonic analysis.

Model
RNInfer

Both
99.35%

Position

99.51%

Group
99.74%

Table 1: Accuracy (%) on the simultaneous note determi-
nation task for note position, note group, and both.

4.2 Supervised Fine-Tuning (SFT)

Our SFT phase follows a two-stage curriculum. We first
fine-tune on local key prediction (SFT-Key), a foundational
sub-task that stabilizes training. As shown in Table 2,

Model Dataset Acc. (%)
RNInfer BPS 80.33
RNBert BPS 81.50
RNInfer PDCML 79.36
RNBert PDCML 85.76

Table 2: Accuracy (%) for the SFT-Key task. We report
RNBert results from our own training run, following the
original authors’ instructions.

RNInfer achieves competitive accuracy on the BPS and
PDCML datasets. A confusion matrix (see Appendix A.5)
confirms that most errors are musically plausible, occur-
ring between closely related keys.

Next, we fine-tuned the model on the full RNA task.
Unlike prior work that uses an onset-level classification ap-
proach, RNInfer adopts a more human-aligned, harmony-
level perspective, identifying harmonic spans and assign-
ing a single label to each. This approach naturally handles
non-chord tones and better reflects analytical practice.

Table 3 shows that RNInfer outperforms strong base-
lines, though it does not surpass the state-of-the-art RN-
Bert. The performance gap may be explained by differ-
ences in the task setup: RNInfer tackles a more challeng-
ing open-ended generation task, whereas RNBert performs
classification. Furthermore, RNInfer operates on a more
granular output space, distinguishing between 42 enhar-
monically distinct keys versus RNBert’s 24, and supports
the recognition of augmented sixth chords and secondary
chord qualities, which RNBert cannot handle.

4.3 Reinforcement Learning for Reasoning (RL-RNA)

Finally, we employ GRPO to train the model to generate
reasoning traces. We design three rule-based reward func-
tions: one to enforce the output format, one to encourage
an appropriate reasoning length, and one to reward the ac-
curacy of the final answer.

As shown in Table 4, though the average reward for all
three reward functions increases throughout RL training
(see Appendix A.7) the final task accuracy is decreased.



Model Training set Testset Acc. (%)
RNInfer P.DCML BPS 58.3
AugN [2] AugNData BPS 45.4
Mi20 [4] Mi20Data BPS 42.8
RNInfer (8B) P.DCML P.DCML 52.8
RNInfer P.DCML P.DCML 49.5
RNBert P.DCML P.DCML 64.5

Table 3: Results for the SFT-RNA task. The PDCML
dataset is comparable in size to those used for AugN and
Mi20 (Appendix A.2). RNInfer (§B) employs Qwen3-8B,
while other RNInfer variants use Qwen2.5-7B-Instruct,
showing that stronger backbones improve performance.

Model Training Stage Dataset Acc. (%)
RNInfer SFT-RNA BPS 58.28
RNInfer RL-RNA BPS 38.67

Table 4: Accuracy (%) comparison before and after RL-
RNA. Due to the high computational cost of GRPO, this
experiment was conducted on the BPS subset.

We identify three reasons for this: First, the model strug-
gled to consistently adhere to the strict JSON format, lead-
ing to parsing errors. Unlike the token-level supervision in
SFT, the sample-level reward signal from RL is less effi-
cient for enforcing specific syntactic rules. Second, unlike
other domains, we lack formal verifiers for the correctness
of the reasoning trace itself, allowing the model’s behav-
ior to deviate from the intended analytical path. Third, the
computational cost of RL limited training to a single epoch
on the smaller BPS dataset (see Appendix A.2), which was
likely insufficient and led to underfitting. We provide re-
ward curves and generation examples in Appendix A.7.

4.4 Ablation Study

We conduct a series of ablation studies to validate our key
design choices. All experiments in this section were per-
formed on the PDCML dataset.

Impact of Slicing Strategy. We compare two data slic-
ing strategies: a simple measure-based approach and a
more musically-informed phrase-based strategy. As shown
in Table 5, phrase-based slicing yields a significant im-
provement in accuracy on the SFT-Key task. This confirms
our hypothesis that providing musically coherent segments
aligns better with the nature of harmonic analysis and im-
proves model performance.

Slicing Strategy Acc. (%)

Measure-based 73.90
Phrase-based 79.46

Table 5: Impact of slicing strategy on the SFT-Key task
using the RNBert encoder.

Tokenization Key Acc. (%)

Octuple (w/o accidental) 77.04
Octuple+ (w/ accidental) 79.46

Table 6: Impact of Octuple+ on the SFT-Key task using
the RNBert encoder.

Music Encoder Acc. (%)
MusicBERT (pre-trained) 21.69
RNBert (fine-tuned) 49.51

Table 7: Impact of music encoder on the SFT-RNA task.

Impact of Octuple+ Tokenization. We compare mod-
els trained with and without the additional accidental bit.
Table 6 shows that explicitly providing spelled pitch infor-
mation improves key prediction accuracy, while it may be
feasible for a model to implicitly learn to infer spelled pitch
from MIDI sequences [22].

Music Encoder: Pre-trained vs. Fine-tuned. We
compare a pre-trained MusicBERT encoder and an RNBert
encoder fine-tuned on RNA tasks. As shown in Table 7,
the fine-tuned RNBert provides a substantial performance
boost on the SFT-RNA task. This demonstrates that using
a domain-adapted music encoder is crucial for capturing
important features for detailed harmonic analysis.

Impact of SFT Curriculum. Finally, we validate
our two-stage SFT curriculum. We compare training the
SFT-RNA model from scratch versus initializing it from
a checkpoint pre-trained on the SFT-Key task. Table 8
shows that the curriculum approach dramatically improves
performance. This confirms that pre-training on the foun-
dational subtask of key prediction is a necessary step to
effectively learn the more complex full RNA task.

SFT-RNA Training Acc. (%)

From Scratch 29.44
With SFT-Key curriculum 49.51

Table 8: Impact of the two-stage SFT curriculum.

S. CONCLUSION & FUTURE WORK

In this paper, we introduced RNInfer, a novel framework
for interpretable Roman Numeral Analysis that bridges a
symbolic music encoder with an LLM. Our approach, fea-
turing Octuple+ tokenization and a two-stage training cur-
riculum, achieves competitive accuracy and marks a crit-
ical step toward transparent, pedagogically useful models
for computational musicology. In future work, we plan to
use external LLMs as automated evaluators to provide a di-
rect reward signal for the reasoning traces. We also intend
to explore methods for improving inference efficiency to
accelerate the computationally expensive RL stage, which
would enable scaling our approach to larger datasets.
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A. COMPLEMENTARY MATERIALS
A.1 Prompt Templates

This section presents the prompt templates used to instruct
the LLM component during the SFT-Key, SFT-RNA, and
RL-RNA training stages. Placeholders for dynamic con-
tent, such as bar numbers, are denoted by curly braces ({ }).

system: "You are a music theory expert analyzing
a piece based on MusicBERT’s output. Only
identify keys within the specified bar. Other
bars are context and must not be labeled. For-
mat output exactly as: bar X position Y, bar
Z position W: Key"

user: "ldentify local key regions within BAR {}
only. Specity key regions using bar and po-
sition markers. MusicBERT’s output embed-
dings: <music></music>"

Prompt 1: Prompt template for the SFT-Key task.

system: "You are a music theory expert analyz-
ing a piece based on MusicBERT’s output.
Only apply Roman Numeral analysis within
the specified bar. Other bars are context and
must not be labeled. Return a valid JSON
object, where each key is the local key, each
value is a list of strings in the format: bar X
quarterbeats Y: Roman Numeral’"

user: "Apply Roman Numeral analysis for BAR
{}. MusicBERT’s output embeddings: <mu-
sic></music>."

Prompt 2: Prompt template for the SFT-RNA task.

system: "You are an expert in tonal harmony. Ap-
ply Roman-numeral analysis **only** to the
specified bar. Other bars are context. All ex-
cerpts are tonal. Run these 7 steps once per
excerpt, do not repeat the full cycle for every
chord: (1) establish the local key, (2) confir-
m/adjust the harmonic-rhythm, (3) filter non-
chord tones, (4) identify chord quality (M,
m, +, o, M7, Mm7, m7, o7, ¢7, augb) and
state the root-position Roman numeral, (5)
determine inversion, (6) detect tonicization-
s/modulations, (7) proof-read & summarise
higher-level pattern. If step 7 fails, fix ear-
lier steps inside <think> until all checks pass,
then produce the final answer. Output pro-
tocol: Wrap all reasoning between <think>
</think>, must no leakage. Must wrap a valid
JSON object with None indent between <an-
swer> </answer>, where each key is the local
key, each value must be a list of strings in the
format:’bar X quarterbeats Y: RN""

user: "Apply Roman Numeral analysis for BAR
{}. MusicBERT’s output embeddings: <mu-
sic></music>."

Prompt 3: Prompt template for the RL-RNA task.

A.2 Dataset Statistics and Comparison

In this subsection, we provide a detailed description of
the datasets used in our experiments and compare them to
those from related work to highlight differences in scale
and coverage.

Table 9 presents the statistics for our curated PDCML
dataset, its BPS subset, and the Mi20 dataset [4]. Several
observations can be made: First, the BPS dataset is sig-
nificantly smaller and less diverse than the full PDCML
corpus. Due to the high computational cost of GRPO, our
RL-RNA experiments were conducted only on this smaller
BPS subset, which likely contributed to underfitting. Sec-
ond, our PDCML dataset is comparable in size to the Mi20
dataset, as introduced in Table 3. Statistics for the AugN
dataset [2] are not included, as the number of measures and
labels were not provided by the authors. However, AugN is
known to be larger than Mi20, as it incorporates additional
corpora from [23] and [24] on top of Mi20.

A.3 Output Format: Projector Validation Task

For the architecture validity task, the model was prompted
to identify all notes sounding at each onset. The output
is a JSON object where keys are onset positions and val-
ues are strings of spelled pitches. Note that "position" is a
value from the Octuple tokenization, referring to the note’s
location with a 64th-note granularity.

{

"Position 0": "G3, B3, D4, G4, D6",
"Position 16": "G2, B3, D4, B4, D6",
"Position 32": "G2, B3, D4, G5"

A.4 Output Format: SFT-Key Task

For the SFT-Key task, the model generates a single string
where each line describes a local key region. Each line
specifies the start and end locations (bar and position) fol-
lowed by the predicted key label. Uppercase letters de-
note major keys and lowercase letters denote minor keys,
as shown in the example below.

bar 1 position 0, bar 4 position 0: C
bar 4 position 0, bar 8 position 0: a

A.5 Confusion Matrix for the SFT-Key Task

Figure 2 shows the confusion matrix for the SFT-Key task,
with keys arranged by the circle of fifths. The main di-
agonal (solid line) shows correct predictions. Dominant
predictions are immediately to its right and sub-dominant
to its left. The red dashed line indicates relative keys, and
the blue dashed line indicates parallel keys. The concentra-
tion of errors around these lines indicates that the model is
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Figure 2: Confusion matrix for the SFT-Key task.
learning meaningful tonal relationships, as most mistakes "bar 105 gb 1.00: i: A-C-E, R-T-F"

occur between musically plausible keys. This figure was
generated with a lower-performing checkpoint to better vi-
sualize this distribution of errors.

A.6 Output Format: SFT-RNA Task

For the SFT-RNA task, the model generates a JSON ob-
ject where keys are the local key signatures present in the
excerpt. The value for each key is a list of strings, where
each string contains the full analysis for a single harmony:
its location (bar and quarterbeats), the Roman numeral la-
bel, the spelled chord tones, and the chord factors (e.g.,
Root, Third, Fifth).

{

"g": [
"bar 102 gb 1.00: V6: D-F#-A, R-T-F",
"bar 102 gb 2.00: #viio64: A-C, T-F",
"bar 102 gb 2.50: i6: G-Bb-D, R-T-F",
"bar 102 gb 3.50: #viio6: A-C, T-F",
"bar 103 gb 1.00: i: G-Bb-D, R-T-F"
1y

"a": [
"bar 103 gb 2.50: It6: D#-F-A, R-T-F",
"bar 104 gb 1.00: V: E-G#-B, R-T-F",

]

A.7 RL-RNA: Reward Curves and a Reasoning
Example

The figures below show the training curves for the three re-
ward functions used during the RL-RNA stage. The curves
demonstrate that the model successfully learned to opti-
mize for the given rewards, even though this did not trans-
late to an improvement in final task accuracy.

Figure 7 is an example of the model’s generated out-
put, including the reasoning trace and the final answer, and
Figure 6 shows the ground truth analysis for the same ex-

cerpt.



Group Dataset Measures Labels

BPS Beethoven Piano Sonatas 16,433 21,963
total 16,433 21,963

Beethoven Piano Sonatas 16,433 21,963

Chopin Mazurkas 5,142 9,127

Corelli 4777 14,314

Debussy Suite Bergamasque 421 1,013

Dvorak Silhouettes 674 1,539

PDCML Grieg Lyric Pieces 5,414 8,231
Liszt Pelerinage 2,625 5,070

Mozart Piano Sonatas 7,488 15,272

Schumann Kinderszenen 392 948
Tchaikovsky Seasons 1,250 3,059

total 44,616 80,536

TAVERN 7,901 24,738

ABC 15,881 29,652

Mi20 [4] BPS-FH 9,420 11,337
Roman Text 3,610 7,448

total 36,812 73,175

Table 9: Statistics of the datasets used in our experiments. The table details the number of measures and harmonic labels
for our curated PDCML dataset, its BPS subset, and the Mi20 baseline dataset [4].

train/rewards/rna_note_level_accuracy_reward/mean
= RNInfer-7B v

train/rewards/thinking_format_reward/mean
— RNInfer-7B -

Figure 3: Training curve for the note-level accuracy re-
ward.

train/rewards/rna_thinking_length_reward/mean
= RNInfer-7B v

Figure 5: Training curve for the thinking format reward.

Figure 4: Training curve for the thinking length reward.



n"pr. [

"bar 165 quarterbeats 1.00: V43/V:
< E-G#-B-D, R-T-F-S",

"bar 165 quarterbeats 3.00: V: A-C#-E,
— R-T-F",

"bar 165 quarterbeats 4.50: I: D-F#-A,
«— R-T-F",

"bar 166 quarterbeats 1.00: IV: G-B-D,
«— R-T-F",

"bar 166 quarterbeats 2.50: V/vi:
< F#-A#-C#, R-T-F",

"bar 166 quarterbeats 3.00: wvi:
< B-D-F#, R-T-F",

"bar 166 quarterbeats 4.50: V: A-C#-E,
<~ R-T-F",

"bar 167 quarterbeats 1.00: I: D-F#-A,
<~ R-T-F",

"bar 167 quarterbeats 2.50: IV: G-B,
— R-T",

"bar 167 quarterbeats 3.00: I64:
< D-F#-A, R-T-F",

"bar 167 quarterbeats 4.00: V7:
< A-C#-E-G, R-T-F-S",

"bar 168 quarterbeats 1.00: wvi:
< B-D-F#, R-T-F",

"bar 168 quarterbeats 4.50:
— #viio43/ii: D#-F#-A-C, R-T-F-S"

Figure 6: The ground truth analysis for the example shown
in Figure 7.



<think>

For BAR 165-168,
### BAR 165

1. xxEstablish the local key:*xx A.

let’s go through the 7 steps for each bar:

*+xConfirm/adjust the harmonic-rhythm:x* V43: A-C#-E-G, V: A-C#-E, V7: A-C#-E-G.

2
3. xxFilter non-chord tones:xx None.
4

*xIdentify chord quality and state the root-position Roman numeral:*x V43:

— V: A-C#-E, V7:

A-C#-E-G.

5. *xDetermine inversion:** V43:

R-T-F-S,

vV: R-T, V7:

R-T-F-S.

A-C#-E-G,

6. x»*Detect tonicizations/modulations:*x None.

7. xxProof-read & summarize higher-level pattern:*x V43:

— A-C#-E-G.
### BAR 166
1. xxEstablish the local key:*x*

2. *xConfirm/adjust the harmonic-rhythm:++ I6: D-F#-A,

< V: A-C#-E, I: D-F#-A.

D.

3. *xFilter non-chord tones:x* None.

4. xxIdentify chord quality and state the root-position Roman numeral:xx I6:
B-D-F#, V: A-C#-E, I:

< G-B-D, V: A-C#-E,
5. xxDetermine inversion:** 16:

viz:

o

< B-D-F#, V: A-C#-E, I:
### BAR 167
1. xxEstablish the local key:*x*

2. x*Confirm/adjust the harmonic-rhythm:*% I6: D-F#-A,

— V: A-C#-E, I: D-F#-A.

R-T-F,

D.

3. x*xFilter non-chord tones:*xx None.

4. xxIdentify chord quality and state the root-position Roman numeral:xx I6:

D-F#-A.

IV: R-T-F, V: R-T-F, vi:

x+«Detect tonicizations/modulations:x* None.
7. xxProof-read & summarize higher-level pattern:xx I6:
D-F#-A.

D-F#-A,

<y G-B-D, V: A-C#-E, vi: B-D-F#, V: A-C#-E, I: D-F#-A.
5. xxDetermine inversion:** I6: R-T-F, IV: R-T-F, V: R-T-F, vi:
6. x*Detect tonicizations/modulations:*x None.
7. *xProof-read & summarize higher-level pattern:x* I6: D-F#-A,
< B-D-F#, V: A-C#-E, I: D-F#-A.
### BAR 168
1. xxEstablish the local key:xx D.
x*xConfirm/adjust the harmonic-rhythm:x* I: D-F#-A, IV: G-B,

2
3. x*xFilter non-chord tones:*x None.
4

*xIdentify chord quality and state the root-position Roman numeral:xx I:

— G-B, I64: D-F#-A, V7: A-C#-E-G.
5. *xDetermine inversion:** I: R-T-F, IV: R-T, I64: R-T-F, V7:
6. xxDetect tonicizations/modulations:*x None.

7. xxProof-read & summarize higher-level pattern:*x I:

— A-C#-E-G.

D-F#-A,

</think>

<answer>

{

"D": [
"bar 165 quarterbeats 1.00: Vv43: A-C#-E-G, R-T-F-S",
"bar 165 quarterbeats 3.00: V: A-C#-E, R-T-F",
"bar 165 quarterbeats 4.00: V7: A-C#-E-G, R-T-F-S",
"bar 166 quarterbeats 1.00: I6: D-F#-A, R-T-F",
"bar 166 quarterbeats 2.00: IV: G-B-D, R-T-F",
"bar 166 quarterbeats 2.50: V: A-C#-E, R-T-F",
"bar 166 quarterbeats 3.00: vi: B-D-F#, R-T-F",
"bar 166 quarterbeats 4.00: V: A-C#-E, R-T-F",
"bar 167 quarterbeats 1.00: I: D-F#-A, R-T-F",
"bar 167 quarterbeats 2.00: IV: G-B-D, R-T-F",
"bar 167 quarterbeats 2.50: V: A-C#-E, R-T-F",
"bar 167 quarterbeats 3.00: vi: B-D-F#, R-T-F",
"bar 167 quarterbeats 4.00: V: A-C#-E, R-T-F",
"bar 168 quarterbeats 1.00: I: D-F#-A, R-T-F",
"bar 168 quarterbeats 2.00: IV: G-B, R-T",
"bar 168 quarterbeats 3.00: I64: D-F#-A, R-T-F",
"bar 168 quarterbeats 4.00: V7: A-C#-E-G, R-T-F-S"
]
}
</answer>

IV: G-B-D, V: A-C#-E,

A-C#-E-G, V: A-C#-E, V7:

vi: B-D-F#,
D-F#-A, IV:
R-T-F, V: R-T-F, I: R-T-F.
IV: G-B-D, V: A-C#-E, vi:
IV: G-B-D, V: A-C#-E, vi: B-D-F#,
D-F#-A, IV:
R-T-F, V: R-T-F, I: R-T-F.
IV: G-B-D, V: A-C#-E, vi:
I64: D-F#-A, V7: A-C#-E-G.
D-F#-A, IV:
R-T-F-S.
IV: G-B, I64: D-F#-A, V7:

Figure 7: An example of the model’s generated output, including the reasoning trace and the final answer.



