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ABSTRACT1

Existing machine learning models for Roman Numeral2

Analysis (RNA) treat the task as a classification problem,3

providing labels without the explanatory reasoning that is4

central to music theory. This "black box" approach mis-5

aligns with the goal of harmonic analysis, which is to6

deepen musical understanding. To address this, we in-7

troduce RNInfer, a novel framework that bridges a pre-8

trained symbolic music encoder with a Large Language9

Model (LLM) to perform interpretable RNA. Our archi-10

tecture uses a lightweight projector to align musical fea-11

tures with the LLM’s embedding space, enabling it to rea-12

son about harmonic content. We propose Octuple+, an en-13

hanced tokenization scheme that incorporates crucial en-14

harmonic spelling information into the music encoder. The15

model is trained in two stages: supervised fine-tuning to16

learn the analysis task, followed by reinforcement learn-17

ing with Group Relative Policy Optimization (GRPO) to18

generate human-readable reasoning traces without requir-19

ing annotated examples. Our experiments show that RN-20

Infer achieves competitive accuracy on the primary anal-21

ysis task, and we demonstrate its capability to generate22

structured explanations for its predictions, marking a criti-23

cal step toward more transparent and pedagogically useful24

models for computational musicology.25

1. INTRODUCTION26

Roman Numeral Analysis (RNA) is a foundational task27

in music theory, providing a systematic method for label-28

ing the harmonic function of chords within a tonal con-29

text [1]. Automating this process has been a long-standing30

goal in computational musicology. Early machine learn-31

ing approaches have made significant strides, with mod-32

els like AugmentedNet [2] and RNBert [3] demonstrating33

the potential of deep learning for this task. These systems34

have explored various architectures, from multi-task learn-35

ing frameworks that predict related tonal features simul-36

taneously [2, 4] to methods that enforce label consistency37

using autoregressive models [5].38
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However, these prior works are fundamentally limited39

by treating RNA as a classification task. Music analysis40

is subjective and allows multiple valid interpretations - its41

key purpose to deepen understanding of musical structure42

and capture its full richness. Producing harmonic labels43

without explanation falls short of this goal.44

To address these challenges, we turn to Large Language45

Models, leveraging architectures from vision-language46

models [6–8] to bridge symbolic music and natural lan-47

guage reasoning. We employ Group Relative Policy Op-48

timization (GRPO) [9] to elicit reasoning capabilities via49

reinforcement learning with rule-based rewards. allowing50

the model to generate detailed interpretations without de-51

pending on human-annotated reasoning traces.52

We introduce RNInfer, a novel framework to perform53

interpretable Roman Numeral Analysis. RNInfer lever-54

ages the symbolic music understanding of a customized55

MusicBERT, the generative power of an instruction-tuned56

LLM, and instills reasoning ability via GRPO. Our primary57

objective is to produce accurate RNA predictions accom-58

panied by human-readable explanations that illuminate the59

underlying harmonic logic.60

While some studies suggest that general-purpose LLMs61

may underperform specialized models on specific bench-62

marks [10, 11], their value lies in their capacity for cross-63

task generalization rather than narrow task-specific accu-64

racy. Our goal is to equip LLMs with deep domain under-65

standing that enables synergistic performance across mul-66

tiple related tasks. For instance, a model with robust sym-67

bolic music comprehension could not only analyze musical68

structures but also leverage this understanding for control-69

lable generation and interactive music education. Since70

current LLMs still lack nuanced symbolic music under-71

standing, systems like RNInfer represent important steps72

toward interpretable and generalizable music AI.73

In summary, our contributions are threefold:74

• We are the first to apply an LLM to the task of func-75

tional harmonic analysis, combining symbolic music76

encoders with natural language reasoning.77

• We propose Octuple+, an enhanced tokenization78

that integrates spelled pitch into the MusicBERT79

framework while retaining its pre-trained knowl-80

edge, yielding improved performance.81

• We develop a model that generates human-readable82

reasoning traces alongside RNA predictions, taking83

an initial step toward interpretable models that align84

with the explanatory purpose of harmonic analysis.85



Figure 1. The overall architecture of RNInfer, showing the music encoder, projector, and LLM components.

2. RELATED WORK86

Automated Roman Numeral Analysis has evolved signif-87

icantly with machine learning. Early works established88

two main research trajectories. The first began with multi-89

task BiLSTM models [12] and progressed to Transformer-90

based architectures like Harmony Transformer [13, 14],91

which, however, were limited by their reliance on piano-92

roll representations that lack enharmonic information.93

A second, parallel line of research emphasized the94

importance of spelled-pitch representations [4, 15] and95

explored various architectures to improve performance.96

These include CRNNs with multi-task learning [2] and97

autoregressive models designed to enforce label consis-98

tency [5]. In addition to these two lines of work, RN-99

Bert [3] achieved state-of-the-art results by fine-tuning100

MusicBERT [16], but it inherited MusicBERT’s limitation101

of being unable to take spelled pitch as input.102

Despite these advances in accuracy, existing models103

share fundamental limitations. Most approaches treat RNA104

at the onset level, assigning a label to every note on-105

set [2, 3]. This contrasts with human analysis, where har-106

monic spans are identified first and non-chord tones are107

excluded. Onset-level models, by forcing harmonies onto108

such tones, create an unnatural and less faithful workflow.109

Most importantly, they function as "black boxes," provid-110

ing labels without the explanatory reasoning that is central111

to the purpose of music analysis. Our work addresses these112

gaps by reframing RNA as a reasoning task for a multi-113

modal LLM, while retaining crucial spelled-pitch informa-114

tion.115

We adopt an architecture inspired by vision-language116

models (VLMs) like LLaVA [6–8, 17], which use a simple117

projector to efficiently align features from a specialized en-118

coder with a LLM. To instill reasoning capabilities with-119

out requiring human-annotated reasoning traces, which120

is a key limitation of methods like Chain-of-Thought121

(CoT) [18], we employ Group Relative Policy Optimiza-122

tion (GRPO) [9, 19]. GRPO uses rule-based rewards to123

train the model to generate explanatory outputs, making it124

suitable for specialized domains like music analysis where125

annotated reasoning data is scarce.126

3. METHODOLOGY127

We introduce RNInfer, a novel framework designed for128

interpretable Roman Numeral Analysis. Our architecture129

bridges a pre-trained symbolic music encoder with a LLM130

using a lightweight projector, enabling the LLM to reason131

about musical content.132

3.1 System Architecture and Workflow133

Figure 1 illustrates the overall architecture of our proposed134

RNInfer framework, which consists of three core compo-135

nents: First, a customized MusicBERT or RNBert [3, 16]136

encoder processes symbolic music tokenized with our pro-137

posed Octuple+ scheme (see 3.2) to generate contextual138

embeddings. Next, a lightweight two-layer MLP projec-139

tor maps these music embeddings into the latent space of140

the Qwen2.5-7B-Instruct LLM. The LLM then receives141

the projected music embeddings alongside a task prompt142

and autoregressively generates the final analysis, including143

both the RNA labels and a natural-language explanation.144

3.2 Octuple+ Spelled-Pitch Tokenization145

A key limitation of MusicBERT and RNBert is their re-146

liance on MIDI pitch, which ignores enharmonic distinc-147

tions essential for nuanced harmonic analysis. To ad-148

dress this, we propose Octuple+, an enhanced tokenization149

scheme that adds a ninth attribute for accidental spelling to150

MusicBERT’s original eight-tuple representation.151

To incorporate this new attribute without disrupting the152

pre-trained knowledge, we draw inspiration from the ini-153

tialization strategy of LoRA [20]. The embedding for each154

note event, originally composed of eight token embeddings155

E, is now extended with a ninth embedding for the ac-156

cidental, Eacc, forming a new sequence E′ = [E;Eacc].157

This sequence is projected to a single note embedding by158

a downsampling layer. We carefully initialize this layer to159

0 so that its output for E′ is identical to its output for E at160

the start of training. This ensures the contribution from the161

new accidental token is initially zero, allowing the model162

to begin fine-tuning from its pre-trained state and gradually163

learn to incorporate the new spelling information, which164

stabilizes the training process.165



3.3 Two-Stage Training Procedure166

Our training process consists of two phases: Supervised167

Fine-Tuning (SFT) and Reinforcement Learning (RL).168

Phase 1: Supervised Fine-Tuning (SFT). In this169

phase, we train the model to produce correct analytical170

outputs using a two-stage curriculum. We first fine-tune171

on local key prediction (SFT-Key), a foundational sub-task172

of RNA, and then continue training on the full Roman Nu-173

meral Analysis task (SFT-RNA). This curriculum is cru-174

cial for performance (c.f. Section 4.4). The model is175

trained with a standard cross-entropy loss. For parame-176

ter efficiency, we only train the music encoder, projector,177

and LoRA [20] adapters in the LLM, which constitute 2%178

of the total parameters.179

Phase 2: Reinforcement Learning (RL). Following180

SFT, we apply the GRPO [9] algorithm to train the model181

to generate human-readable reasoning traces. In this phase,182

the model learns to produce a structured output containing183

a <think> block with step-by-step reasoning, followed184

by an <answer> block with the final RNA label. The185

model is rewarded based on rule-based functions, obviat-186

ing the need for human-annotated reasoning datasets.187

3.4 Data Processing188

To create musically coherent training samples and reduce189

computational cost, we employ a "phrase-slicing" strategy,190

segmenting music along phrase boundaries. This required191

curating a new dataset, P.DCML, from pieces with existing192

phrase annotations in the DCML Corpora [21], the compo-193

sition of which is detailed in Appendix A.1. As our abla-194

tion study in Section 4.4 confirms, this musically-informed195

segmentation significantly improves model performance.196

Our data preprocessing and augmentation largely fol-197

low the procedures of RNBert [3], but with two key en-198

hancements to create a more musically complete dataset:199

First, we add support for augmented sixth chords, which200

are omitted in RNBert. Second, we expand the annotation201

of secondary chords to include their quality in addition to202

their scale degree, as this information is necessary for a203

complete and accurate RN label.204

4. EXPERIMENTS205

We evaluate RNInfer’s architecture and training strategy206

through a series of experiments. We first report the model’s207

performance on the supervised tasks of local key prediction208

and full Roman Numeral Analysis. We then analyze the209

effects of the subsequent RL stage, which is designed to210

instill reasoning capabilities.211

4.1 Validating the Projector Module212

To validate the projector’s ability to bridge the music en-213

coder and LLM, we designed a simple toy task requiring214

the model to identify simultaneous notes, training only the215

projector while keeping the other components frozen. The216

near-perfect accuracy shown in Table 1 confirms that the217

projector effectively maps musical features into the LLM’s218

latent space, establishing the viability of our architecture219

for more complex harmonic analysis.220

Model Position Group Both

RNInfer 99.51% 99.74% 99.35%

Table 1. Accuracy (%) on the simultaneous note determi-
nation task for note position, note group, and both.

Model Dataset Acc. (%)

RNInfer BPS 80.33
RNBert BPS 81.50

RNInfer P.DCML 79.36
RNBert P.DCML 85.76

Table 2. Accuracy (%) for the SFT-Key task. We report
RNBert results from our own training run, following the
original authors’ instructions.

4.2 Supervised Fine-Tuning (SFT)221

Our SFT phase follows a two-stage curriculum. We first222

fine-tune on local key prediction (SFT-Key), a foundational223

sub-task that stabilizes training. As shown in Table 2,224

RNInfer achieves competitive accuracy on the BPS and225

P.DCML datasets. A confusion matrix (see Appendix A.4)226

confirms that most errors are musically plausible, occur-227

ring between closely related keys.228

Next, we fine-tuned the model on the full RNA task.229

Unlike prior work that uses an onset-level classification ap-230

proach, RNInfer adopts a more human-aligned, harmony-231

level perspective, identifying harmonic spans and assign-232

ing a single label to each. This approach naturally handles233

non-chord tones and better reflects analytical practice.234

Table 3 shows that RNInfer outperforms strong base-235

lines, though it does not surpass the state-of-the-art RN-236

Bert. The performance gap may be explained by differ-237

ences in the task setup: RNInfer tackles a more challeng-238

ing open-ended generation task, whereas RNBert performs239

classification. Furthermore, RNInfer operates on a more240

granular output space, distinguishing between 42 enhar-241

monically distinct keys versus RNBert’s 24, and supports242

the recognition of augmented sixth chords and secondary243

chord qualities, which RNBert cannot handle.244

4.3 Reinforcement Learning for Reasoning (RL-RNA)245

Finally, we employ GRPO to train the model to generate246

reasoning traces. We design three rule-based reward func-247

tions: one to enforce the output format, one to encourage248

an appropriate reasoning length, and one to reward the ac-249

curacy of the final answer.250

As shown in Table 4, though the average reward for all251

three reward functions increases throughout RL training252

(see Appendix A.6) the final task accuracy is decreased.253



Model Training set Test set Acc. (%)

RNInfer P.DCML BPS 58.3
AugN [2] AugNData BPS 45.4
Mi20 [4] Mi20Data BPS 42.8

RNInfer (8B) P.DCML P.DCML 52.8
RNInfer P.DCML P.DCML 49.5
RNBert P.DCML P.DCML 64.5

Table 3. Results for the SFT-RNA task. The P.DCML
dataset is comparable in size to those used for AugN and
Mi20 (Appendix A.1). RNInfer (8B) employs Qwen3-8B,
while other RNInfer variants use Qwen2.5-7B-Instruct,
showing that stronger backbones improve performance.

Model Training Stage Dataset Acc. (%)

RNInfer SFT-RNA BPS 58.28
RNInfer RL-RNA BPS 38.67

Table 4. Accuracy (%) comparison before and after RL-
RNA. Due to the high computational cost of GRPO, this
experiment was conducted on the BPS subset.

We identify three reasons for this: First, the model strug-254

gled to consistently adhere to the strict JSON format, lead-255

ing to parsing errors. Unlike the token-level supervision in256

SFT, the sample-level reward signal from RL is less effi-257

cient for enforcing specific syntactic rules. Second, unlike258

other domains, we lack formal verifiers for the correctness259

of the reasoning trace itself, allowing the model’s behav-260

ior to deviate from the intended analytical path. Third, the261

computational cost of RL limited training to a single epoch262

on the smaller BPS dataset (see Appendix A.1), which was263

likely insufficient and led to underfitting. We provide re-264

ward curves and generation examples in Appendix A.6.265

4.4 Ablation Study266

We conduct a series of ablation studies to validate our key267

design choices. All experiments in this section were per-268

formed on the P.DCML dataset.269

Impact of Slicing Strategy. We compare two data slic-270

ing strategies: a simple measure-based approach and a271

more musically-informed phrase-based strategy. As shown272

in Table 5, phrase-based slicing yields a significant im-273

provement in accuracy on the SFT-Key task. This confirms274

our hypothesis that providing musically coherent segments275

aligns better with the nature of harmonic analysis and im-276

proves model performance.277

Slicing Strategy Acc. (%)

Measure-based 73.90
Phrase-based 79.46

Table 5. Impact of slicing strategy on the SFT-Key task
using the RNBert encoder.

Impact of Octuple+ Tokenization. We compare mod-278

Tokenization Key Acc. (%)

Octuple (w/o accidental) 77.04
Octuple+ (w/ accidental) 79.46

Table 6. Impact of Octuple+ on the SFT-Key task using
the RNBert encoder.

Music Encoder Acc. (%)

MusicBERT (pre-trained) 21.69
RNBert (fine-tuned) 49.51

Table 7. Impact of music encoder on the SFT-RNA task.

els trained with and without the additional accidental bit.279

Table 6 shows that explicitly providing spelled pitch infor-280

mation improves key prediction accuracy, while it may be281

feasible for a model to implicitly learn to infer spelled pitch282

from MIDI sequences [22].283

Music Encoder: Pre-trained vs. Fine-tuned. We284

compare a pre-trained MusicBERT encoder and an RNBert285

encoder fine-tuned on RNA tasks. As shown in Table 7,286

the fine-tuned RNBert provides a substantial performance287

boost on the SFT-RNA task. This demonstrates that using288

a domain-adapted music encoder is crucial for capturing289

important features for detailed harmonic analysis.290

Impact of SFT Curriculum. Finally, we validate291

our two-stage SFT curriculum. We compare training the292

SFT-RNA model from scratch versus initializing it from293

a checkpoint pre-trained on the SFT-Key task. Table 8294

shows that the curriculum approach dramatically improves295

performance. This confirms that pre-training on the foun-296

dational subtask of key prediction is a necessary step to297

effectively learn the more complex full RNA task.298

SFT-RNA Training Acc. (%)
From Scratch 29.44
With SFT-Key curriculum 49.51

Table 8. Impact of the two-stage SFT curriculum.

5. CONCLUSION & FUTURE WORK299

In this paper, we introduced RNInfer, a novel framework300

for interpretable Roman Numeral Analysis that bridges a301

symbolic music encoder with an LLM. Our approach, fea-302

turing Octuple+ tokenization and a two-stage training cur-303

riculum, achieves competitive accuracy and marks a crit-304

ical step toward transparent, pedagogically useful models305

for computational musicology. In future work, we plan to306

use external LLMs as automated evaluators to provide a di-307

rect reward signal for the reasoning traces. We also intend308

to explore methods for improving inference efficiency to309

accelerate the computationally expensive RL stage, which310

would enable scaling our approach to larger datasets.311
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Figure 2. Confusion matrix for the SFT-Key task.

A. COMPLEMENTARY MATERIALS411

A.1 Dataset Statistics and Comparison412

In this subsection, we provide a detailed description of413

the datasets used in our experiments and compare them to414

those from related work to highlight differences in scale415

and coverage.416

Table 9 presents the statistics for our curated P.DCML417

dataset, its BPS subset, and the Mi20 dataset [4]. Several418

observations can be made: First, the BPS dataset is sig-419

nificantly smaller and less diverse than the full P.DCML420

corpus. Due to the high computational cost of GRPO, our421

RL-RNA experiments were conducted only on this smaller422

BPS subset, which likely contributed to underfitting. Sec-423

ond, our P.DCML dataset is comparable in size to the Mi20424

dataset, as introduced in Table 3. Statistics for the AugN425

dataset [2] are not included, as the number of measures and426

labels were not provided by the authors. However, AugN is427

known to be larger than Mi20, as it incorporates additional428

corpora from [23] and [24] on top of Mi20.429

A.2 Output Format: Projector Validation Task430

For the architecture validity task, the model was prompted431

to identify all notes sounding at each onset. The output432

is a JSON object where keys are onset positions and val-433

ues are strings of spelled pitches. Note that "position" is a434

value from the Octuple tokenization, referring to the note’s435

location with a 64th-note granularity.436

{437

"Position 0": "G3, B3, D4, G4, D6",438

"Position 16": "G2, B3, D4, B4, D6",439

"Position 32": "G2, B3, D4, G5"440

}441

A.3 Output Format: SFT-Key Task442

For the SFT-Key task, the model generates a single string443

where each line describes a local key region. Each line444

specifies the start and end locations (bar and position) fol-445

lowed by the predicted key label. Uppercase letters de-446

note major keys and lowercase letters denote minor keys,447

as shown in the example below.448

bar 1 position 0, bar 4 position 0: C449

bar 4 position 0, bar 8 position 0: a450



Group Dataset Measures Labels

BPS
Beethoven Piano Sonatas 16,433 21,963

total 16,433 21,963

P.DCML

Beethoven Piano Sonatas 16,433 21,963
Chopin Mazurkas 5,142 9,127
Corelli 4,777 14,314
Debussy Suite Bergamasque 421 1,013
Dvorak Silhouettes 674 1,539
Grieg Lyric Pieces 5,414 8,231
Liszt Pelerinage 2,625 5,070
Mozart Piano Sonatas 7,488 15,272
Schumann Kinderszenen 392 948
Tchaikovsky Seasons 1,250 3,059

total 44,616 80,536

Mi20 [4]

TAVERN 7,901 24,738
ABC 15,881 29,652
BPS-FH 9,420 11,337
Roman Text 3,610 7,448

total 36,812 73,175

Table 9. Statistics of the datasets used in our experiments. The table details the number of measures and harmonic labels
for our curated P.DCML dataset, its BPS subset, and the Mi20 baseline dataset [4].

A.4 Confusion Matrix for the SFT-Key Task451

Figure 2 shows the confusion matrix for the SFT-Key task,452

with keys arranged by the circle of fifths. The main di-453

agonal (solid line) shows correct predictions. Dominant454

predictions are immediately to its right and sub-dominant455

to its left. The red dashed line indicates relative keys, and456

the blue dashed line indicates parallel keys. The concentra-457

tion of errors around these lines indicates that the model is458

learning meaningful tonal relationships, as most mistakes459

occur between musically plausible keys. This figure was460

generated with a lower-performing checkpoint to better vi-461

sualize this distribution of errors.462

A.5 Output Format: SFT-RNA Task463

For the SFT-RNA task, the model generates a JSON ob-464

ject where keys are the local key signatures present in the465

excerpt. The value for each key is a list of strings, where466

each string contains the full analysis for a single harmony:467

its location (bar and quarterbeats), the Roman numeral la-468

bel, the spelled chord tones, and the chord factors (e.g.,469

Root, Third, Fifth).470

{471

"g": [472

"bar 102 qb 1.00: V6: D-F#-A, R-T-F",473

"bar 102 qb 2.00: #viio64: A-C, T-F",474

"bar 102 qb 2.50: i6: G-Bb-D, R-T-F",475

"bar 102 qb 3.50: #viio6: A-C, T-F",476

"bar 103 qb 1.00: i: G-Bb-D, R-T-F"477

],478

"a": [479

"bar 103 qb 2.50: It6: D#-F-A, R-T-F",480

"bar 104 qb 1.00: V: E-G#-B, R-T-F",481

"bar 105 qb 1.00: i: A-C-E, R-T-F"482

]483

}484

A.6 RL-RNA: Reward Curves and a Reasoning485

Example486

The figures below show the training curves for the three re-487

ward functions used during the RL-RNA stage. The curves488

demonstrate that the model successfully learned to opti-489

mize for the given rewards, even though this did not trans-490

late to an improvement in final task accuracy.491

Figure 3. Training curve for the note-level accuracy re-
ward.

Figure 7 is an example of the model’s generated out-492

put, including the reasoning trace and the final answer, and493

Figure 6 shows the ground truth analysis for the same ex-494

cerpt.495



Figure 4. Training curve for the thinking length reward.

Figure 5. Training curve for the thinking format reward.

{
"D": [

"bar 165 quarterbeats 1.00: V43/V:
↪→ E-G#-B-D, R-T-F-S",

"bar 165 quarterbeats 3.00: V: A-C#-E,
↪→ R-T-F",

"bar 165 quarterbeats 4.50: I: D-F#-A,
↪→ R-T-F",

"bar 166 quarterbeats 1.00: IV: G-B-D,
↪→ R-T-F",

"bar 166 quarterbeats 2.50: V/vi:
↪→ F#-A#-C#, R-T-F",

"bar 166 quarterbeats 3.00: vi:
↪→ B-D-F#, R-T-F",

"bar 166 quarterbeats 4.50: V: A-C#-E,
↪→ R-T-F",

"bar 167 quarterbeats 1.00: I: D-F#-A,
↪→ R-T-F",

"bar 167 quarterbeats 2.50: IV: G-B,
↪→ R-T",

"bar 167 quarterbeats 3.00: I64:
↪→ D-F#-A, R-T-F",

"bar 167 quarterbeats 4.00: V7:
↪→ A-C#-E-G, R-T-F-S",

"bar 168 quarterbeats 1.00: vi:
↪→ B-D-F#, R-T-F",

"bar 168 quarterbeats 4.50:
↪→ #viio43/ii: D#-F#-A-C, R-T-F-S"

]
}

Figure 6. The ground truth analysis for the example shown
in Figure 7.



<think>
For BAR 165-168, let’s go through the 7 steps for each bar:
### BAR 165
1. **Establish the local key:** A.
2. **Confirm/adjust the harmonic-rhythm:** V43: A-C#-E-G, V: A-C#-E, V7: A-C#-E-G.
3. **Filter non-chord tones:** None.
4. **Identify chord quality and state the root-position Roman numeral:** V43: A-C#-E-G,

↪→ V: A-C#-E, V7: A-C#-E-G.
5. **Determine inversion:** V43: R-T-F-S, V: R-T, V7: R-T-F-S.
6. **Detect tonicizations/modulations:** None.
7. **Proof-read & summarize higher-level pattern:** V43: A-C#-E-G, V: A-C#-E, V7:

↪→ A-C#-E-G.
### BAR 166
1. **Establish the local key:** D.
2. **Confirm/adjust the harmonic-rhythm:** I6: D-F#-A, IV: G-B-D, V: A-C#-E, vi: B-D-F#,

↪→ V: A-C#-E, I: D-F#-A.
3. **Filter non-chord tones:** None.
4. **Identify chord quality and state the root-position Roman numeral:** I6: D-F#-A, IV:

↪→ G-B-D, V: A-C#-E, vi: B-D-F#, V: A-C#-E, I: D-F#-A.
5. **Determine inversion:** I6: R-T-F, IV: R-T-F, V: R-T-F, vi: R-T-F, V: R-T-F, I: R-T-F.
6. **Detect tonicizations/modulations:** None.
7. **Proof-read & summarize higher-level pattern:** I6: D-F#-A, IV: G-B-D, V: A-C#-E, vi:

↪→ B-D-F#, V: A-C#-E, I: D-F#-A.
### BAR 167
1. **Establish the local key:** D.
2. **Confirm/adjust the harmonic-rhythm:** I6: D-F#-A, IV: G-B-D, V: A-C#-E, vi: B-D-F#,

↪→ V: A-C#-E, I: D-F#-A.
3. **Filter non-chord tones:** None.
4. **Identify chord quality and state the root-position Roman numeral:** I6: D-F#-A, IV:

↪→ G-B-D, V: A-C#-E, vi: B-D-F#, V: A-C#-E, I: D-F#-A.
5. **Determine inversion:** I6: R-T-F, IV: R-T-F, V: R-T-F, vi: R-T-F, V: R-T-F, I: R-T-F.
6. **Detect tonicizations/modulations:** None.
7. **Proof-read & summarize higher-level pattern:** I6: D-F#-A, IV: G-B-D, V: A-C#-E, vi:

↪→ B-D-F#, V: A-C#-E, I: D-F#-A.
### BAR 168
1. **Establish the local key:** D.
2. **Confirm/adjust the harmonic-rhythm:** I: D-F#-A, IV: G-B, I64: D-F#-A, V7: A-C#-E-G.
3. **Filter non-chord tones:** None.
4. **Identify chord quality and state the root-position Roman numeral:** I: D-F#-A, IV:

↪→ G-B, I64: D-F#-A, V7: A-C#-E-G.
5. **Determine inversion:** I: R-T-F, IV: R-T, I64: R-T-F, V7: R-T-F-S.
6. **Detect tonicizations/modulations:** None.
7. **Proof-read & summarize higher-level pattern:** I: D-F#-A, IV: G-B, I64: D-F#-A, V7:

↪→ A-C#-E-G.
</think>

<answer>
{

"D": [
"bar 165 quarterbeats 1.00: V43: A-C#-E-G, R-T-F-S",
"bar 165 quarterbeats 3.00: V: A-C#-E, R-T-F",
"bar 165 quarterbeats 4.00: V7: A-C#-E-G, R-T-F-S",
"bar 166 quarterbeats 1.00: I6: D-F#-A, R-T-F",
"bar 166 quarterbeats 2.00: IV: G-B-D, R-T-F",
"bar 166 quarterbeats 2.50: V: A-C#-E, R-T-F",
"bar 166 quarterbeats 3.00: vi: B-D-F#, R-T-F",
"bar 166 quarterbeats 4.00: V: A-C#-E, R-T-F",
"bar 167 quarterbeats 1.00: I: D-F#-A, R-T-F",
"bar 167 quarterbeats 2.00: IV: G-B-D, R-T-F",
"bar 167 quarterbeats 2.50: V: A-C#-E, R-T-F",
"bar 167 quarterbeats 3.00: vi: B-D-F#, R-T-F",
"bar 167 quarterbeats 4.00: V: A-C#-E, R-T-F",
"bar 168 quarterbeats 1.00: I: D-F#-A, R-T-F",
"bar 168 quarterbeats 2.00: IV: G-B, R-T",
"bar 168 quarterbeats 3.00: I64: D-F#-A, R-T-F",
"bar 168 quarterbeats 4.00: V7: A-C#-E-G, R-T-F-S"

]
}
</answer>

Figure 7. An example of the model’s generated output, including the reasoning trace and the final answer.


