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ABSTRACT

With careful manipulation, malicious agents can reverse en-
gineer private information encoded in pre-trained language
models. Security concerns motivate the development of
quantum pre-training. In this work, we propose a highly
portable quantum language model (PQLM) that can easily
transmit information to downstream tasks on classical ma-
chines. The framework consists of a cloud PQLM built with
random Variational Quantum Classifiers (VQC) and local
models for downstream applications. We demonstrate the ad
hoc portability of the quantum model by extracting only the
word embeddings and effectively applying them to down-
stream tasks on classical machines. Our PQLM exhibits
comparable performance to its classical counterpart on both
intrinsic evaluation (loss, perplexity) and extrinsic evaluation
(multilingual sentiment analysis accuracy) metrics. We also
perform ablation studies on the factors affecting PQLM per-
formance to analyze model stability. Our work establishes a
theoretical foundation for a portable quantum pre-trained lan-
guage model that could be trained on private data and made
available for public use with privacy protection guarantees.

Index Terms— Quantum Machine Learning, Language
Modeling, Federated Learning, Model Portability

1. INTRODUCTION

A competitive language model can be extremely useful for
downstream tasks such as machine translation and speech
recognition despite the domain mismatch between pre-training
and downstream tasks [1, 2]. They become more powerful
with increased training data, but there is a trade-off between
data privacy and utility[3]. Previous works on ethical Al have
shown that pre-trained language models (PLM)s memorizes
training data in addition to learning about the language [4, 5],
which opens up vulnerabilities for potential adversaries to
recover sensitive training data from the model.

While some argue that language models should only be
trained on data explicitly produced for public use [6], pri-
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Fig. 1: Decentralized Quantum Language Model Pipeline.
Text data is trained on language model on NISQ servers, the
word embeddings are transferred to downstream models M;

vate data are richer in certain domains compared to public
corpora, including dialogue systems, code-mixing languages,
and medical applications [7, 8]. Therefore, it is essential to
develop new methods to mitigate potential data security and
privacy problems while being able to take advantage of the
rich linguistic information encoded in private data.

Recently, there has been growing interest in leveraging
random quantum circuits in neural models to solve data pri-
vacy issues [9]. The entanglement of states from the random
configuration of gates in the quantum circuits makes it pos-
sible to securely encode sensitive information contained in
training data [10, 9]. The combination of random quantum
circuits and decentralized training ensures privacy [11]. Ad-
ditionally, quantum computing has become the next logical
step in the development of deep learning for its efficiency in
manipulating large tensors [12].

The architecture of a large quantum computer is vastly
different from the classical computer as physical and environ-
mental constraints cannot be met [13], which means that the
model trained on the large quantum computer is difficult to
be directly used by others on the classical computer. Ad hoc
portability is defined as the model’s ability to transmit the
most essential information contained in the language model
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across different machines. In this work, we provide a method

to seamlessly transmit the information learned from the quan-

tum training step to the classical machine without requiring
any additional model adaptations, making the quantum model
highly portable.

As shown in Figure 1, we propose a decentralized PQLM
pipeline where private data is fed into a quantum model com-
posed of a Recurrent Neural Network (RNN) with its gates
replaced with Variational Quantum Classifiers (VQOC)[14].
As we will describe more in detail in Section 2, Noisy
intermediate-scale quantum (NISQ) computers on quantum
servers are used for such variational quantum algorithm com-
putations [15]. After the PQLM hosted on remote NISQ is
trained to convergence, instead of downloading the entire
model to a classical system, we directly use the embeddings
trained by the PQLM to initialize downstream tasks.

In summary, our contributions include the following:

* We propose a decentralized pipeline for transmitting
knowledge learned from a secure, fast quantum pre-trained
model to classical machines for downstream tasks.

* We demonstrate the ad hoc portability of our pre-trained
language model by showing that extracting the embeddings
trained by the PQLM is sufficient for downstream tasks
such as setiment analysis (SA).

* We show the stability of the model across different orders
of complexity with ablation studies on factors including the
number of qubits and training corpus size.

2. RELATED WORK

Differential Privacy and Federated Learning Traditional
approaches to protecting sensitive data such as Differential
Privacy (DP) introduces random noise to the system to pro-
tect individual data change, but usually sacrifices model per-
formance and efficiency [3] and makes strong assumptions
on the training data [6]. More recent work towards a safe data
pipeline involves decentralized training for federated training,
where the training data is strictly kept to remote machines,
and the gradients are exported and aggregated on another ma-
chine for downstream tasks [16, 17, 18]. This resolves the
need for any private data to join a centralized data pool from
the root. Even then, it is possible to leak sensitive information
[19].

Quantum ML with Variational Quantum Circuits Some
recent works attempt to make use of the irrecoverability of
quantum circuits in differential privacy algorithms [9] or fed-
erated learning architectures [20] involving the use of VQCs
on NISQ clusters with reliable optimization [21]. VQCs are
quantum circuits with quantum parameters that can absorb
the noise inherently contained in quantum computations and
can be optimized iteratively with classical gradient descent
[22, 23]. As shown in Figure 2a, there are three parts in
the VQC architecture: (1) the encoding stage where the in-
put vector is encoded; (2) the quantum circuit stage where

entanglement strategies are applied with quantum gates and
parameters are stored and trained; and (3) the measurement
stage where a hermitian operator projects the quantum states
onto its eigenvectors [14].

For decentralized training in which the data and the quan-
tum portion are hosted on a NISQ server, any adversaries will
not be able to recover the structure or data without knowing
the quantum gate configurations in the random circuit, there-
fore providing a security guarantee [24, 11, 10, 15]. More
secure procedures include the Quantum Circuit Obfuscation
method that add dummy CNOT gates to the circuit so the data
is protected from both the quantum and local machines, yet at
the cost of additional computation [25].

Decentralized Quantum Learning Applications Some
previous work has looked into the area of sequential data
modeling [22] and natural language processing [26], but with
a focus on the speedup of quantum computations. Applica-
tions of quantum decentralized privacy protection approach
have been used for speech feature extraction [11], image
recognition [27], language processing [28], and reinforce-
ment learning [29]. In this paper, we take a single-party
delegated training approach that can be easily extended to
multi-machine decentralized learning to train a secure PQLM.
We focus on providing a portable transfer of information from
the quantum server to the classical side.

3. METHODOLOGY

3.1. Quantum-LSTM Language Model

The primary task of language modeling is that given se-
quence words z', 22, ..., z*, we need to predict the probabil-
ity P(x'™1 | 21,22, ...2%). In previous studies, Long-Short
Term Memory (LSTM) has shown to be a good deep learning
model for building language models [30]. In our studies,
We use Quantum LSTM (Q-LSTM) [22] which is based
on LSTM model and random VQC to train our language
model. The basic architecture of Q-LSTM is shown in Figure
2b. Q-LSTM replaces some components such as forget gate,
input gate, update gate, and output gate in classical LSTM
with VQC and uses the mechanism of backpropagation to
update parameters of the Q-LSTM model. To meet the coher-
ence time specification, our Q-LSTM language model is built
with a shallow circuit of 2 layers and each VQC gate is built
with 4 qubits. Both the classical and Q-LSTM have a word
embedding size of 64 and vocab size as the output size.

As shown in Figure 2a, we use a random circuit to encode
the rotational vectors to protect the parameters against any 3rd
party attacks in the entanglement stage.

3.2. Decentralized Training

Quantum computers are in theory exponentially faster than
classical computers, making them ideal for training large-
scale models. Therefore, decentralized training on a quantum
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Fig. 2: Model Architecture

machine will provide both security and speedup. However,
because the quantum model learns in the Hilbert space repre-
sented by qubits, it will be difficult to load the entire model
into classical machines for downstream tasks the same way
we do for current pre-trained language models like BERT. We
introduce a decentralized PQLM framework as shown in Fig-
ure 1, which simplifies the transmission of information from
the quantum side to the classical side using extracted word
embeddings. Given decentralized PQLM F', we input a set
of text documents Dy, Do, Ds..., D,, into the NISQ servers.
After training, the word embedding E will be extracted from
PQLM and using in local downstream task.

E:F(D17D27D3"'7Dn) 9]

In Equation 1, the PQLM F' can be any quantum deep learn-
ing model that can be used to train the language model. In
this paper, we present Q-LSTM as an example to train our
language model. The output word embeddings E is a set
of vectors that can be further processed by other classical or
quantum routines. Finally, we make our work open source for

future explorations .

4. EXPERIMENTS

4.1. Dataset

We use two distinct datasets to train two language models.
The first one is a multilingual Twitter dataset 2 consisting of
69491 training documents and 998 test documents with 4 dif-
ferent labels (negative, positive, neutral and irrelevant). The
second one is an English-Hindi code-mixed Twitter dataset
from SemEval-2020 Task 9 [31]%, which consists of 15000
training and validation documents and 3,789 test documents.
These two datasets are selected because they are linguistically
complex in nature, and they have gold labels for SA, which
we later use in our evaluation step to train a classification
model without introducing further supervision or noise.

4.2. Preprocessing

A coarse filtering of the training datasets is performed before
they are fed into the language model. First, empty strings,
hash symbols, and URLs are removed from the text. All emo-
jis and emoticons are replaced by their English descriptions

lgit@github.com:stellali7/quantunlM.git

’https://www.kaggle.com/datasets/jp797498e/
twitter-entity-sentiment-analysis

3https://ritual-uh.github.io/sentimix2020/

using the emoji library*. Sentiment labels are ignored during
language model training.

4.3. Q-LSTM LM vs. Classical LSTM LM

In order to fairly assess the performance of the PQLM, we
create a classical language model with the same model ar-
chitecture and size. With a hidden size of 5 in the classical
LSTM, the number of parameters is of the same magnitude as
the Q-LSTM with 4 qubits [22].

The models are trained until the loss converges. The neg-
ative log-likelihood loss during training and the model per-
plexity are recorded to evaluate the model. Figure 3a shows
the training loss over 15 epochs of the Q-LSTM and its clas-
sical counterpart. The PQLM converges much faster than the
classical language model of the same size.

Model | LSTM Q-LSTM-4q Q-LSTM-6q
perplexity | 1152.78  1153.67 972.44

Table 1: Model Perplexity on Multilingual Twitter Corpus
LSTM: classical LSTM; Q-LSTM-4q: Q-LSTM built with 4-
qubit VQC; Q-LSTM-6q: Q-LSTM built with 6-qubit VQC.

Despite the quantum model converging faster than the
classical language model, the model quality as measured by
model perplexity for both models is extremely close as shown
in Table 1. Given the computing constraints, we only used
4 qubits to train the LSTM model, resulting in an extremely
limited number of parameters (around 200) for both mod-
els. Although the model perplexity is not ideal compared to
conventional PLMs, it still provides a valuable basis for com-
paring the classical language model and the PQLM. Another
factor that contributes to the high perplexity of our language
model is the multilinguality of the training data, which con-
tains richer linguistic information, making it difficult for the
small model to learn.

4.4. Model Evaluation - Sentiment Analysis

We use a downstream SA task to compare the quality of the
PQLM with its classical counterpart. Given a sequence of
tweets D1, Ds...D,,, we need to predict the sentiment class
(positive, neutral, negative, or irrelevant). We train a local
transformer-based four-way classifier using the pre-trained
word embeddings from the Q-LSTM language model. We
use 4 transformer blocks and each transformer model has 4
attention heads. In order to avoid introducing more noise to
our model pipeline, we use a random subset of the training
data for the language model. Finally, the sentiment of an
unknown document can be predicted as

y' = softmax(W'f(z) +b%) 2)

Where /' is a predicted sentiment label for a test document, f
is a transformer function to encode the input text z. We report
both the accuracy and weighted f1 scores since the dataset is
distributed unevenly across the four labels,

‘https://pypi.org/project/emoji/
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PLM LSTM Q-LSTM (4q)
accuracy 0.928 0.934
weighted f1 | 0.93 0.93

Table 2: SA Performance on Multilingual Twitter Dataset

Table 2 summarizes the four-way sentiment classification
performance of the local transformer-based classifier initial-
ized with embeddings trained by the classical LSTM and the
quantum LSTM, while keeping all other hyperparameters the
same. The embedding trained by Q-LSTM achieves slightly
higher accuracy than the classical LSTM, and has the same
weighted fl score. Our results confirm that the decentral-
ized PQLM training and the portable information transmis-
sion do not sacrifice performance. With the random circuits
inits VQC gates, the quantum model has higher expressibility
- a circuit’s ability to generate states in the Hilbert space [32].
High expressibility allows the model to better search the so-
lution space given the training data compared to the classical
model, despite having the same number of parameters. The
high expressibility of the quantum model makes it a “better
learner,” contributing to the slightly higher accuracy.
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Fig. 3: Training Loss for Different Experiments

4.5. Ablation Studies
4.5.1. Effect of Number of Qubits

A single qubit can be described by a two-dimensional Hilbert
space H. Then, a system of n qubits is the tensor product of
n such Hilbert spaces

HOHR - QH. 3)
We explore the effect of having more qubits in the VQC gates
to examine the embeddings trained on the higher dimensional
Hilbert space. Both the 4-Qubit model and 6-Qubit model
converge rapidly as shown in Figure 3c, so we provide a fine-
grained comparison of the training loss for each batch in the
first epoch in Figure 3d. The 6-Qubit language model has

a much lower perplexity (Table 1) and a faster convergence
within the first epoch (Figure 3d). This indicates that the 6-
Qubit model better captures the non-linear relationship in a
higher dimensional embedding space to better fit the data. As
the number of qubits increases, so does the noise introduced
to the system. However, the smooth loss curve demonstrates
model stability as we extend the model to more qubits, indi-
cating the model’s robustness against quantum noise.

4.5.2. Effect of Training Data Size

Dataset Multilingual Twitter ~Code-Mixing
Data size 69491 15000
Vocab size 17000 5000
perplexity 1153.672 368.031

Table 3: Model Perplexity for Different Data Sizes

We train the Q-LSTM on a smaller corpus to confirm that
the high perplexity on both the classical and the quantum
model is due to the small model size trained on a large dataset.
The small dataset has a much lower model perplexity (Table
3) and a lower training loss (Figure 3b). Due to computation
constraints imposed by the NISQ machines, our model capac-
ity is limited, so the results indicate parameter saturation but
also justify the large perplexity. Despite the difference in the
corpus size, there is no obvious difference in the convergence
speed of the two models. Furthermore, although the code-
mixing corpus is more linguistically complex and thus harder
to predict, the linguistic complexity still does not overpower
the effect of dataset size on the model loss and perplexity.
Therefore, this experiment demonstrates model stability and
justifies the high perplexity due to limited model size.

5. CONCLUSIONS

This work provides a solution to integrate secure and fast
quantum language modeling and flexible classical down-
stream applications. We proposed a decentralized training
framework for PQLMs that provides both parameter protec-
tion and ad hoc portability. We show that the embedding
extraction is sufficient for downstream tasks, which enables
the ad hoc transfer of the model from the quantum server
to the classical machine. Our PQLM achieves competitive
if not better results compared to its classical counterpart on
multilingual Twitter SA tasks. We also studied the effect of
the number of qubits in the VQC and the training corpus size
to demonstrate model stability.

Our work provides a promising direction and a theoretical
foundation for future NLP research that have privacy protec-
tion demands. Some of the future work include extending this
decentralized quantum training procedure into a wider range
of language model architectures. As the required quantum
computing hardware becomes available to train large-scale
PQLMs, our approach can be used to easily transmit the quan-
tum information to downstream classical tasks. The ad hoc
portability method can also be further studied to enable down-
stream fine-tuning and model compression.
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