

ADVANCING COMPLEX VIDEO OBJECT SEGMENTATION VIA PROGRESSIVE CONCEPT CONSTRUCTION

Anonymous authors

Paper under double-blind review

ABSTRACT

We propose Segment Concept (SeC), a concept-driven video object segmentation (VOS) framework that shifts from conventional feature matching to the progressive construction and utilization of high-level, object-centric representations. SeC employs Large Vision-Language Models (LVLMs) to integrate visual cues across diverse frames, constructing robust conceptual priors. To balance semantic reasoning with computational overhead, SeC forwards the LVLMs only when a new scene appears, injecting concept-level features at those points. To rigorously assess VOS methods in scenarios demanding high-level conceptual reasoning and robust semantic understanding, we introduce the Semantic Complex Scenarios Video Object Segmentation benchmark (SeCVOS). SeCVOS comprises 160 manually annotated multi-scenario videos designed to challenge models with substantial appearance variations and dynamic scene transformations. Empirical evaluations demonstrate that SeC substantially outperforms state-of-the-art approaches, including SAM 2 and its advanced variants, on both SeCVOS and standard VOS benchmarks. In particular, SeC achieves an 11.8-point improvement over SAM 2.1 on SeCVOS, establishing a new state-of-the-art in concept-aware VOS.

1 INTRODUCTION

Video Object Segmentation (VOS) is a pivotal task in computer vision, focusing on the precise delineation and temporal tracking of target objects within video sequences. By capturing both spatial and temporal dynamics, VOS enables comprehensive scene understanding, which is essential for a range of applications including autonomous driving (Siam et al., 2021), robotic perception (Griffin et al., 2020), video editing (Tu et al., 2025), and intelligent surveillance systems (Ammar et al., 2019). A core component of mainstream VOS models (Ravi et al., 2025; Cheng & Schwing, 2022; Zhou et al., 2024) is memory-based matching, where the target in each frame is identified by measuring its pixel-level similarity to previously observed instances. This approach achieves solid performance on standard VOS benchmarks (Pont-Tuset et al., 2017; Xu et al., 2018).

Despite their success, we argue that these methods remain far inferior to human capability in real-world scenarios, particularly when the appearance of the target changes drastically across frames due to occlusions, viewpoint shifts, or complex scenes. We think that this limitation arises from a fundamental gap between how machines and humans perceive objects over time. Human perception is not confined to surface-level similarity; instead, it involves the construction of a holistic, conceptual understanding of the target object by integrating observations across frames. This high-level representation, which we refer to as an **object-level concept**, allows humans to robustly recognize the same object even under significant appearance or scene variations. Take Figure 1(a) as an example: although the target (Harry Potter) remains visually consistent with his red and gold uniform, previous VOS model like SAM 2 (Ravi et al., 2025) frequently loses track of him when the scene changes or other characters with similar appearances are introduced. However, if the model were capable of concept-level reasoning, for example by recognizing that Harry is an active player rather than a spectator, such errors could be significantly reduced.

This observation motivates a paradigm shift: from conventional appearance matching to concept-driven segmentation. We take a step in this direction by equipping segmentation models with the ability to form and leverage high-level object concepts over time. To achieve this, we introduce **Segment Concept (SeC)**, a concept-driven segmentation framework that progressively constructs a

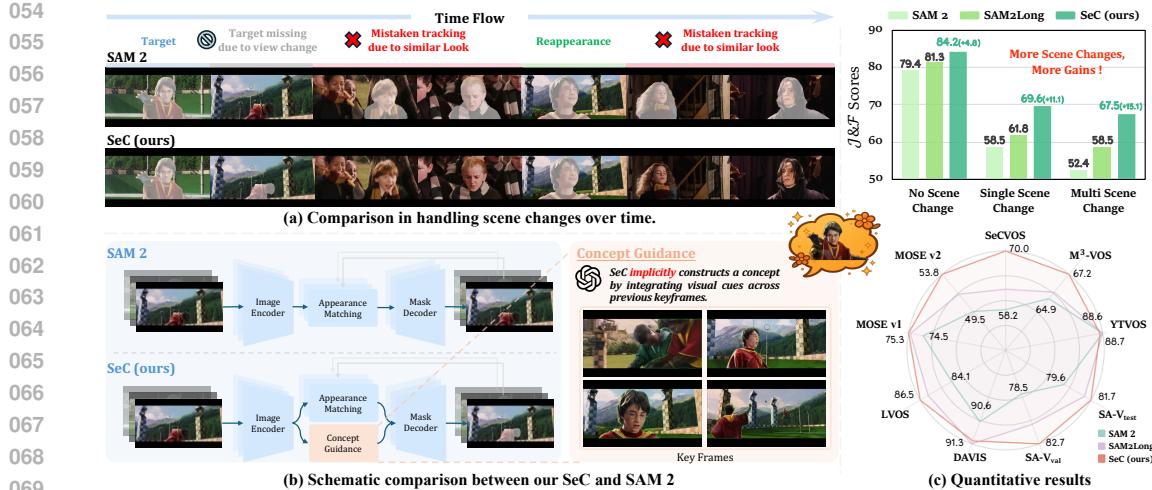


Figure 1: Overview of our Segment Concept (SeC) framework. (a) Compared to SAM 2, our model maintains better target tracking under severe appearance changes and scene transitions by leveraging concept-level guidance. (b) Schematic comparison between SeC and SAM 2. SeC integrates both low-level appearance matching and high-level concept priors. (c) Quantitative results show that SeC consistently outperforms strong baselines, especially in scenarios involving multiple scene changes.

concept-level representation of the target object by integrating information across frames. Rather than relying on superficial appearance matching, SeC leverages the conceptual reasoning capabilities of large vision-language models (LVLMs), drawing upon their rich visual understanding and vast knowledge to build and refine object-level concepts. This enables robust segmentation under challenging conditions such as occlusions, appearance changes, and scene variations. Specifically, SeC samples a representative subset of past frames to serve as input to the LVLM. These keyframes, arranged in temporal order along with the current query frame, are processed by the LVLM, which uses a learnable concept token to distill the concept essence of the target. Note that we only extract the hidden embedding of this token, making the LVLM usage lightweight without generating any additional text. This semantic representation is then injected into the query-frame feature via cross-attention, guiding segmentation with conceptual priors rather than relying solely on low-level features. We show that SeC can progressively model the concept of the target object on the fly, and its performance further improves when the construction is switched to offline mode. This highlights that leveraging LVLM-derived object-level features is beneficial for object referring.

To avoid frequent calls to LVLMs and unfriendly computation cost in the online mode, we draw inspiration from human behavior: for most coherent frames, quick glances are sufficient; only when significant changes occur, such as occlusions or abrupt shifts, do we rely on deeper reasoning with previously formed concepts to re-identify the target. To this end, SeC further employs a scene-adaptive activation strategy: it invokes LVLM-based concept reasoning when complex variations arise, updating the concept representation accordingly. For simpler, stable scenes, it falls back to an enhanced matching mechanism for efficient segmentation. This switch-mode design yields an online segmentation pipeline that is both robust to complex dynamics and computationally efficient.

To better benchmark our model's concept-level reasoning capabilities against prior work, we carefully curate the **Semantic Complex Scenarios Video Object Segmentation** benchmark (**SeCVOS**). SeCVOS consists of 160 manually annotated multi-shot videos, selected from the Shot2Story dataset (Han et al., 2025) and additional videos crawled from YouTube. To the best of our knowledge, SeCVOS exhibits the highest average number of scenes and the highest disappearance rate among existing VOS benchmarks. Highly discontinuous frame sequences with frequent object reappearances and dynamic visual changes pose significant challenges to existing VOS methods. Experimental evaluations demonstrate that state-of-the-art memory-based models such as Cutie (Cheng et al., 2024) and SAM 2 (Ravi et al., 2025) achieve limited success on SeCVOS, all scoring below 65 \mathcal{J} & \mathcal{F} , highlighting the necessity for improved semantic reasoning capabilities in current VOS approaches. We plan to open-source SeCVOS benchmark to facilitate further advancements in semantic-level video object segmentation.

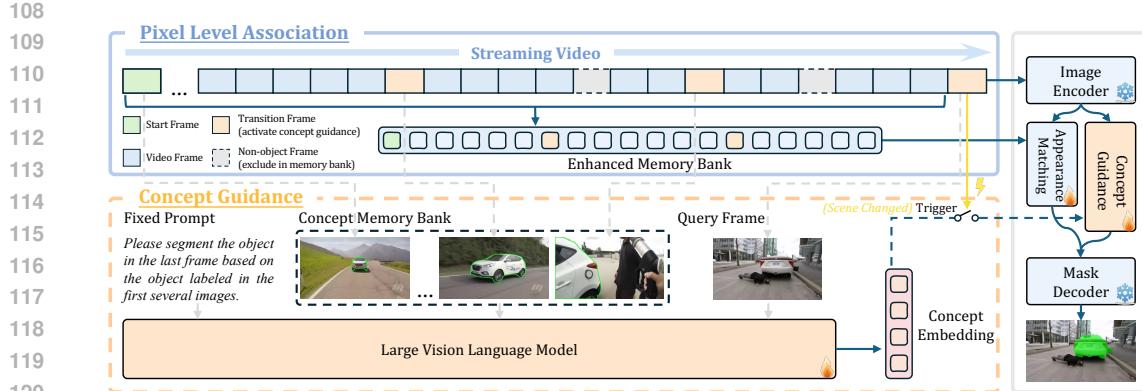


Figure 2: The architecture of our proposed SeC framework. For temporally coherent frames, it relies on Pixel Level Association (**Top**) for efficient, memory-based tracking. Upon a scene change, it activates the Concept Guidance module (**Bottom**), which leverages a LVLM to build a high-level concept of the target object that is then fused with visual features to guide the segmentation.

Moreover, extensive evaluations across 8 VOS benchmarks validate the effectiveness of our SeC framework. On the challenging SeCVOS benchmark, our method significantly outperforms SAM 2.1 and its recent variants, achieving an average improvement of 11.8 points in \mathcal{J} & \mathcal{F} over SAM 2.1. Besides, SeC consistently surpasses prior state-of-the-art across 5 standard benchmarks. Specifically, it improves over SAM 2.1 by 4.1 on SA-V (Ravi et al., 2025), 4.3 on MOSE v2 (Ding et al., 2025a), and 2.4 on LVOS v2 (Hong et al., 2024). This demonstrates the advantage of integrating fine-grained pixel association with object-level semantic reasoning derived from multimodal LLMs.

2 RELATED WORK

Memory-based VOS. VOS models typically propagate labels by matching pixel-level features between query and memory frames. Classical memory-based models (Oh et al., 2019; Cheng et al., 2023; Zhou et al., 2024; Duke et al., 2021; Liang et al., 2020; Oh et al., 2018; Seong et al., 2020; Cheng & Schwing, 2022; Xie et al., 2021; Yang & Yang, 2022; Yang et al., 2021) perform well on short-term tracking but often struggle with distractors due to their reliance on low-level visual cues. Recent methods incorporate object-level information to improve robustness (Athar et al., 2022; Wang et al., 2023; Cheng et al., 2024; Qian et al., 2023). For instance, Cutie (Cheng et al., 2024) introduces object-level memory queries that encode semantic and long-term context, enabling stronger target-background separation. ISVOS (Wang et al., 2023) injects features from a pre-trained Mask2Former (Cheng et al., 2022) detector to make embeddings instance-aware. Furthermore, recent unified segmentation frameworks (Athar et al., 2023; Yan et al., 2023; Li et al., 2024) have achieved strong performance on VOS by jointly modeling multiple tasks. While both models show the benefits of adding semantic cues, their semantic reasoning remains limited to instance-level features. In our work, we leverage LVLMs to inject rich concept-level semantic features into the memory module, further strengthening the model’s semantic understanding.

LVLMs for fine-grained perception. Large vision-language models (LVLMs) (Hurst et al., 2024; Team et al., 2024; Wang et al., 2024; Chen et al., 2024) have recently emerged as powerful tools for bringing semantic understanding into dense prediction tasks (Lin et al., 2025; Lai et al., 2024; Yan et al., 2024; Bai et al., 2024; Yuan et al., 2025; Tang et al., 2025). LISA (Lai et al., 2024) pioneered reasoning-based segmentation for images by using an LVLMs with a special `SEG` token that is decoded into a mask. VISA (Yan et al., 2024) extends this concept to videos by integrating text-guided keyframe selection with a SAM-style decoder for per-frame segmentation. UFO (Tang et al., 2025) takes this methodology a step further by unifying detection, segmentation, and captioning tasks through an open-ended language interface. Unlike traditional vision-only models, LVLMs introduce a new level of interpretability and task flexibility through language interfaces, offering improved robustness for handling complex queries via multimodal reasoning. In contrast to these text-driven paradigms, our work focuses on implicitly leveraging the conceptual reasoning capacity

162 of LVLMs, without any explicit textual reasoning. We repurpose the LVLM as a visual concept
 163 extractor to guide segmentation directly through latent object-level reasoning.

164 **VOS benchmarks.** Several recent datasets (Li et al., 2013; Ochs et al., 2013; Xu et al., 2018; Ding
 165 et al., 2023; Hong et al., 2024; Ravi et al., 2025) have pushed VOS evaluation toward more challeng-
 166 ing settings. MOSE (Ding et al., 2023) introduces complex real-world scenes with frequent occlu-
 167 sions, crowded backgrounds, and disappearing-reappearing targets, exposing failure cases where
 168 traditional models struggle. SA-V (Ravi et al., 2025) scales up to a massive dataset of $\sim 51k$
 169 videos, including small, occluded, and reappearing objects to evaluate mask propagation. Mean-
 170 while, LVOS (Hong et al., 2024) focuses on long-term segmentation: its videos average over 60
 171 seconds and feature long-duration object interactions such as objects leaving and later re-entering
 172 the scene. However, they still primarily measure how well a model can match pixel-level masks
 173 across time. Notably, none incorporate multi-view scenarios or concept-level variation, making it
 174 difficult to assess a model’s higher-level semantic perception or reasoning capabilities. In contrast,
 175 our proposed benchmark SeCVOS is designed to fill this gap. It includes complex multi-shot context-
 176 ual changes throughout the sequence. This setup requires models to go beyond low-level tracking.
 177 They must reason about the target’s identity, roles, and intent as the contextual shifts, effectively
 178 evaluating semantic understanding in video object segmentation.

179 3 METHOD

182 3.1 PRELIMINARY STUDY ON CURRENT VOS

184 To understand the limitations of current VOS approaches in complex scenarios, we conduct a de-
 185 tailed evaluation on our SeCVOS benchmark. As shown in Figure 1(c), we categorize videos by the
 186 number of scene transitions and report the standard metric $\mathcal{J} \& \mathcal{F}$. Surprisingly, even the state-of-
 187 the-art SAM 2 model (Ravi et al., 2025) exhibits substantial performance degradation in videos with
 188 only one scene changes. These results indicate the limitations of memory-based designs that rely
 189 heavily on low-level visual similarity, lacking the conceptual reasoning needed to maintain object
 190 identity across drastic appearance variations.

191 In contrast, recent LVLMs (Hurst et al., 2024; Guo et al., 2025; Chen et al., 2024; Wang et al., 2024)
 192 have demonstrated impressive visual understanding and reasoning capabilities. Given a sequence
 193 of reference frames and a query frame with significant appearance or scene changes, LVLMs can
 194 correctly localize the target with reasonable justifications.

195 This suggests that LVLMs possess the ability to infer object identity beyond surface-level cues,
 196 by leveraging powerful visual perception and conceptual reasoning grounded in vast multimodal
 197 knowledge. Inspired by this, we propose SeC, a novel framework that integrates LVLM-based object
 198 concepts into the video segmentation pipeline. Our model demonstrates strong robustness against
 199 drastic scene variations, a major limitation of prior VOS methods.

200 3.2 SEGEMENT CONCEPT MODEL

202 The architecture of our proposed framework is depicted in Figure 2. Our goal is to enhance a
 203 VOS model with concept-level LVLM-based guidance, which enables the learning of object-level
 204 representations that are robust to significant appearance changes. At the same time, the model retains
 205 the ability to provide reliable pixel-level guidance when no visual scene change is detected.

207 **Concept guidance with an LVLM.** To facilitate robust concept-level reasoning, we maintain a
 208 sparse keyframe bank throughout the video, which provides a diverse view of the target concept to
 209 a large vision-language model (LVLM). This bank is initialized with the first annotated frame and
 210 dynamically updated during tracking. A new frame is added when it both differs significantly from
 211 existing keyframes and yields a confident segmentation result, ensuring diversity without sacrificing
 212 reliability. To balance efficiency and semantic coverage, we retain only the initial frame and a FIFO
 213 buffer of the most recent representative keyframes, capped by a fixed window size. This ensures
 214 that the LVLM receives a compact yet semantically rich set of frames for robust concept distillation.
 215 Inspired by LISA (Lai et al., 2024), we append a special $\langle \text{SEG} \rangle$ token to the end of the keyframe
 sequence, prompting the LVLM to summarize the object concept into this special token. The hidden
 state corresponding to the $\langle \text{SEG} \rangle$ token is then extracted as the object-level concept guidance vector.

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Table 1: Ablation on concept guidance. The offline mode constructs a more holistic concept of the target object.

Concept construction	$\mathcal{J} \& \mathcal{F}$	\mathcal{J}	\mathcal{F}
None	62.2	61.8	62.6
Online	70.0	69.7	70.2
Offline	71.8	71.5	72.1

Table 2: Efficiency comparison of SeC and SAM 2. SeC achieves superior performance at a comparable throughput, benchmarked on one NVIDIA A800 GPU.

Benchmark	Method	$\mathcal{J} \& \mathcal{F}$	Con. Guid. Ratio (%)	Throughput (s^{-1})
SeCVOS	SeC	70.0	7.4	14.8
	SAM 2	58.2	N/A	22.0
SA-V	SeC	82.7	1.0	18.1
	SAM 2	78.6	N/A	22.0

This method allows the model to implicitly build the concept within a single, efficient forward pass, rather than performing auto-regressive decoding to generate explicit textual reasoning.

Scene-adaptive activation strategy. Since most consecutive frames exhibit high temporal coherence, applying concept-level guidance to every frame is computationally redundant. Instead, lightweight pixel-level matching suffices in these cases. To this end, we propose a scene-adaptive activation strategy. Specifically, we detect whether the incoming frame exhibits a significant scene change compared to the previous one. If no such change is detected, we rely solely on the pixel-level association memory and feed the memory-enhanced image features directly into the mask decoder to generate the final prediction. Otherwise, we activate concept-level reasoning via the LVLM. The resulting concept vector is fused with the current frame features through a lightweight cross-attention module. The concept-enhanced spatial features are then pointwise added to the memory-enhanced features, enabling the model to produce segmentation predictions guided by both semantic priors and low-level visual correspondence. This fusion effectively combines high-level semantic concept priors from the LVLM with fine-grained pixel visual cues, enabling the model to remain robust and efficient across drastic appearance and scene variations.

3.3 DISCUSSION

In this section, we present a two-part practical analysis to shed light on the intuition behind SeC.

Does SeC progressively construct concept-level representation? During the online video segmentation process, frames are segmented sequentially, and the object concept is incrementally constructed as the video progresses. As a result, the final concept obtained after processing the entire video can be considered an expressive representation. This naturally leads to an intuitive idea: if the concept is indeed refined progressively, re-segmenting the video using the finalized concept should yield improved results. To validate this hypothesis, we define this re-segmentation process as an “offline” segmentation task and evaluate its effectiveness on the SeCVOS benchmark.

As shown in Table 1, the offline strategy yields the highest performance, indicating that concept representations constructed from a more diverse and comprehensive set of frames lead to better segmentation quality. This aligns well with our core intuition: the model benefits from observing a richer set of visual cues to form a more complete and robust understanding of the target object.

Does SeC require frequent concept guidance?

To investigate the optimal frequency for activating LVLM-based concept reasoning in SeC, we conduct an ablation study on SeCVOS, varying the concept activation rate. This is implemented by adjusting the threshold used to determine whether a scene change has occurred. As illustrated in Figure 3, enabling concept guidance on fewer than 10% of frames already results in a significant improvement in segmentation performance, with marginal gains beyond that point. This observation suggests that frequent activation of concept-level reasoning is unnecessary. Sparse yet timely activations are sufficient to capture critical semantic transitions.

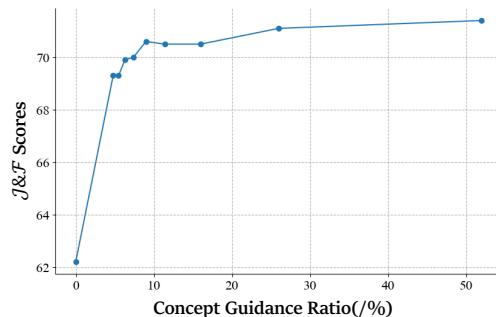


Figure 3: $\mathcal{J} \& \mathcal{F}$ Curve in terms of concept guidance ratio on SeCVOS. Sparse activation (e.g., under 10%) achieves strong performance.

Furthermore, Table 2 highlights that SeC maintains a competitive inference speed despite the additional reasoning cost. On both SeCVOS and SA-V benchmarks, SeC achieves higher \mathcal{J} & \mathcal{F} scores with minimal concept guidance usage (7.4% and 1.0%, respectively). This confirms that our scene-adaptive activation strategy effectively balances accuracy and efficiency, selectively invoking concept reasoning only when appearance variations demand it.

4 SECVOS BENCHMARK

Benchmarks play a crucial role in driving model breakthroughs by providing standardized evaluation protocols. However, we observe that most existing VOS benchmarks (Ding et al., 2023; Ravi et al., 2025; Hong et al., 2023; Ochs et al., 2013; Li et al., 2013) are becoming saturated, with state-of-the-art models already achieving over 90 in \mathcal{J} & \mathcal{F} scores on widely-used datasets such as YouTube-VOS (Xu et al., 2018) and DAVIS (Pont-Tuset et al., 2017). As a result, further improvements on these benchmarks offer diminishing insights into model robustness. More critically, current benchmarks fail to incorporate dedicated evaluation settings that assess a model’s performance under semantically challenging conditions, such as long-range occlusions, scene discontinuities, and cross-shot object reasoning.

To address this gap, we propose the **Semantic Complex Scenarios Video Object Segmentation (SeCVOS)** benchmark, specifically designed to assess a model’s ability to perform high-level semantic reasoning across complex visual narratives. SeCVOS contains 160 carefully curated multi-shot videos characterized by: 1) Highly discontinuous frame sequences, 2) Frequent reappearance of objects across disparate scenes, and 3) Abrupt shot transitions and dynamic camera motion.

These characteristics introduce substantial challenges for existing memory-based approaches, which predominantly rely on local visual similarity and often fail to maintain object identity across shots. Despite the challenges within these scenarios, they are frequently encountered in real-world VOS applications, such as video editing, surveillance, and story-centric content understanding. Therefore, developing benchmarks that target these conditions is both necessary and important.

To construct the SeCVOS benchmark, we first filtered videos with three criteria to ensure sufficient spatiotemporal complexity: (1) a minimum duration of 20 seconds, (2) semantically meaningful. The semantics are filtered following the strategy introduced in the Shot2Story (Han et al., 2025) to remove less informative videos. Next, we employed GPT-4o to analyze the video content and identify target objects that appear frequently and unambiguously across scenes. Initial object masks were generated using SAM 2 (Ravi et al., 2025), and subsequently refined through multiple rounds of manual correction to ensure high-quality and accurate annotations.

The resulting SeCVOS benchmark consists of 160 multi-shot videos, each averaging 29.36 seconds in duration and containing 4.26 distinct scenes per video, significantly surpassing existing benchmarks in scene diversity. As shown in Table 3, SeCVOS features a high disappearance rate of 30.2%, reflecting the frequent occlusions and reappearances of objects across shots. In contrast, prior benchmarks contain mostly single-scene with low semantic discontinuity. Further details about the SeCVOS benchmark are provided in the Appendix B.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

Model Architecture. Our model is built upon the SAM 2.1-large backbone (Ravi et al., 2025), reusing its its image encoder and mask decoder components without fine-tuning. On top of this base,

Table 3: Comparison between our SeCVOS and existing VOS benchmarks in terms of videos count, average duration, disappearance rate and number of scenes¹.

VOS Benchmark	#Videos	Duration(s) Avg.	Disapp. Rate	#Scenes Avg.
DAVIS	90	2.87	16.1%	1.06
YTVOS	507	4.51	13.0%	1.03
MOSE	311	8.68 ²	28.8%	1.06
SA-V	155	17.24	25.5%	1.09
LVOS	140	78.36	7.8%	1.47
SeCVOS (ours)	160	29.36	30.2%	4.26

¹Scene counts are consistently estimated using the `scenedetect` library.

²Estimated using 6 FPS for MOSE.

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Table 4: Performance comparison with prior work on the SeCVOS benchmark, demonstrating better robustness of our SeC to drastic appearance and scene variations.

Method	No Scene Change			Single Scene Change			Multi Scene Change			Overall
	$\mathcal{J} \& \mathcal{F}$	\mathcal{J}	\mathcal{F}	$\mathcal{J} \& \mathcal{F}$	\mathcal{J}	\mathcal{F}	$\mathcal{J} \& \mathcal{F}$	\mathcal{J}	\mathcal{F}	
Xmem (Cheng & Schwing, 2022)	71.9	72.0	71.8	47.0	47.9	46.2	41.9	42.4	41.4	48.4
DEVA (Cheng et al., 2023)	71.6	71.6	71.5	48.5	48.4	48.6	46.4	46.0	46.8	49.7
Cutie-base (Cheng et al., 2024)	72.5	72.2	72.8	53.0	52.9	53.2	48.3	47.8	48.9	52.7
SAM2.1 (Ravi et al., 2025)	79.4	79.1	79.7	58.5	58.2	58.8	52.4	52.1	52.6	58.2
SAMURAI (Yang et al., 2024)	81.8	81.6	81.9	60.6	60.6	60.7	59.3	58.9	59.7	62.2
SAM2.ILong (Ding et al., 2025b)	81.3	81.0	81.6	61.8	61.6	62.0	58.5	58.1	58.9	62.3
SeC (Ours)	84.2 _{+4.8}	83.8	84.5	69.6 _{+11.1}	69.5	69.7	67.5 _{+15.1}	67.0	68.0	70.0 _{+11.8}

we incorporate a pixel-level association memory and an LVLM-based concept guidance module to enhance temporal modeling and semantic reasoning.

In practice, we adopt the memory attention mechanism of SAM 2 as the foundation for our pixel-level association memory. On top of this, we augment the memory module with an enhanced long-term memory by extending the temporal positional encoding to support a wider temporal window of up to 22 frames. Following SAM2Long (Ding et al., 2025b), we apply an object-aware filtering strategy that picks only frames with non-zero occlusion scores, ensuring that memory is constructed from frames where a visible object is present. This ensures that memory is both temporally broad and semantically relevant, reducing noise from uninformative frames. For the concept guidance module, we employ InternVL 2.5 (Chen et al., 2024) as the base model. The final model is achieved through a two-stage training process that first establishes long-term temporal modeling before fine-tuning the LVLM for concept-level reasoning. Further training details are provided in the Appendix A.

Scene change detection. To determine whether a frame should trigger concept-level reasoning, we employ a lightweight HSV-based scene change detector. Specifically, we compute 2D color histograms over the hue and saturation channels of the current and previous frames, and measure their difference using the Bhattacharyya distance. A scene change is detected if the distance exceeds a predefined threshold, which we set to 0.35 by default. Empirically, we find this threshold to be robust against minor variations while remaining sensitive to significant appearance shifts.

Benchmarks. To evaluate our method, we conduct experiments on seven standard video object segmentation (VOS) benchmarks: SA-V (Ravi et al., 2025), LVOS v2 (Hong et al., 2024), MOSE v1 (Ding et al., 2023), DAVIS (Pont-Tuset et al., 2017), YouTube-VOS (Xu et al., 2018), M³-VOS (Chen et al., 2025), MOSE v2 (Ding et al., 2025a) and our proposed SeCVOS dataset. We follow the standard evaluation protocol for each benchmark and report its primary metrics. All evaluations are performed under the semi-supervised setting, where the ground-truth mask of the first frame is provided. Further details of these benchmarks can be found in the Appendix D.

5.2 MAIN RESULTS ON SECVOS

We present the performance comparison on the SeCVOS benchmark in Table 4. Our approach consistently outperforms prior art across various settings, including no scene transition, single-scene, and multi-scene scenarios. Notably, as the number of scene transitions increases, the performance gap between our method and prior approaches becomes larger. Even Cutie (Cheng et al., 2024), which claims to leverage object-level representations for improved tracking, fails to maintain performance on SeCVOS. This aligns with our hypothesis that previous VOS methods largely rely on superficial object appearance cues and lack the capacity to form robust, concept-level understanding. This verifies our integration of LVLM-based concept reasoning into the segmentation pipeline enables the model to effectively distill object-level concepts across diverse and discontinuous scenes.

5.3 COMPARISON ON STANDARD VOS BENCHMARKS

We further compare SeC against state-of-the-art methods on standard video object segmentation (VOS) benchmarks. The comparison encompasses both traditional matching-based segmentation algorithms and recent SAM 2 and its variants. As reported in Table 5, SeC achieves competitive or superior performance across all benchmarks. Specifically, it achieves leading $\mathcal{J} \& \mathcal{F}$ scores of 82.7 and 81.7 on the SA-V validation and test sets, and reaches 86.5 on LVOS v2. Furthermore, SeC significantly outperforms prior work on MOSE v2 with a $\mathcal{J} \& \mathcal{F}$ score of 53.8 and on the M³-VOS

Table 5: Performance comparison with prior work on standard VOS benchmarks. **Bold** indicates the best performance, and underline indicates the second-best performance.

Method	Param	FPS	$\mathcal{J}\&\mathcal{F}$					\mathcal{G}	\mathcal{J}	$\mathcal{J}\&\mathcal{F}$
			SA-V val	SA-V test	LVOS v2 val	MOSE v1 val	DAVIS 2017 val			
STCN (Cheng et al., 2021)	54 M	56.7	61.0	62.5	60.6	52.5	85.4	82.7	-	29.7
SwinB-AOT (Yang et al., 2021)	65 M	28.9	51.1	50.3	-	59.4	85.4	84.5	-	30.2
SwinB-DeAOT (Yang & Yang, 2022)	70 M	32.0	61.4	61.8	63.9	59.9	86.2	86.1	62.3	32.6
RDE (Li et al., 2022)	64 M	43.6	51.8	53.9	62.2	46.8	84.2	81.9	-	32.0
XMem (Cheng & Schwing, 2022)	62 M	60.4	60.1	62.3	64.5	59.6	86.0	85.6	60.6	36.3
SimVOS-B (Wu et al., 2023)	111 M	-	44.2	44.1	-	-	88.0	84.2	-	-
DEVA (Cheng et al., 2023)	69 M	53.1	55.4	56.2	-	66.0	87.0	85.4	-	38.3
ISVOS (Wang et al., 2023)	-	-	-	-	-	-	88.2	86.3	-	-
TarVIS (Athar et al., 2023)	229 M	-	-	-	-	-	85.2	-	-	-
UNINEXT (Yan et al., 2023)	1.42 B	-	-	-	-	-	81.8	78.6	-	-
UniVS (Li et al., 2024)	438 M	-	-	-	-	-	76.2	71.5	-	-
JointFormer (Zhang et al., 2025)	128 M	16.2	-	-	-	-	90.1	87.4	-	37.7
Cutie-base (Cheng et al., 2024)	35 M	58.3	60.7	62.7	-	69.9	87.9	87.0	64.6	42.8
Cutie-base+ (Cheng et al., 2024)	35 M	56.0	61.3	62.8	-	71.7	88.1	87.5	-	-
SAM 2.1 (Ravi et al., 2025)	224 M	22.0	78.6	79.6	84.1	74.5	90.6	88.7	64.9	49.5
SAMURAI (Yang et al., 2024)	224 M	20.9	79.8	80.0	84.2	72.6	89.9	88.3	-	51.1
SAM2.1Long (Ding et al., 2025b)	224 M	15.8	81.1	81.2	85.9	75.2	91.4	88.7	65.5	51.5
MoSAM (Yang et al., 2025)	-	-	81.6	81.5	85.7	-	-	-	-	-
SeC (Ours)	3.95 B	18.1	82.7	81.7	86.5	75.3	91.3	88.6	67.2	53.8

Table 6: Ablation studies on proposed modules.

Pixel-level Association	Concept Guidance	SA-V $\mathcal{J} \& \mathcal{F}$	SeCVOS $\mathcal{J} \& \mathcal{F}$
\times	\times	78.6	58.2
\checkmark	\times	82.4	62.2
\checkmark	\checkmark	82.7	70.0

Table 7: Ablation studies on LVLM size.

LVLM Size	$\mathcal{J} \& \mathcal{F}$	\mathcal{J}	\mathcal{F}
1B	68.4	68.2	68.7
2B	69.5	69.3	69.8
4B	70.0	69.7	70.2
8B	70.3	70.1	70.7

core set with a \mathcal{J} score of 67.2. These results establish SeC as the new state-of-the-art across a wide range of benchmarks, validating both the effectiveness and the versatility of our framework.

5.4 ABLATION STUDY

We conduct a series of ablation studies on the SA-V validation set and our proposed SeCVOS benchmark, with results presented in Table 6 and Table 7. Further experiments on our framework design and robustness are detailed in the Appendix C.1.

Effectiveness of proposed modules. Table 6 presents an ablation study evaluating the contributions of the pixel-level association and concept guidance modules. Enabling only the pixel-level association leads to a significant improvement on the SA-V benchmark and a modest gain on SeCVOS, highlighting its effectiveness in capturing low-level visual patterns, particularly beneficial in the single-shot scenarios of SA-V.

When the concept guidance module is further introduced, performance on SeCVOS improves by 7.8 points, demonstrating that concept-level reasoning is critical for handling the complex, multi-shot nature of SeCVOS, where simple pixel-level matching is insufficient. The marginal improvement on SA-V is expected, as this benchmark does not involve substantial semantic discontinuities or scene transitions that require high-level reasoning.

Effectiveness of large vision-language model size. Table 7 analyzes the effect of varying model parameter scales. As the parameter count increases from 1B to 4B, the model performance consistently improves across the three main metrics on the SeCVOS benchmark. However, further scaling to 8B leads to marginal gains, with results nearly identical to those of the 4B model. This indicates that beyond a certain scale, the benefits of increasing model size begin to saturate, and no longer translate into proportional performance improvements.

5.5 GENERALIZATION

We further evaluate SeC on large-scale tracking datasets, such as TrackingNet (Muller et al., 2018) and SportsMOT (Cui et al., 2023). As shown in Tables 8, SeC achieves performance comparable to, or slightly better than, SAM2 and its variants across most metrics, demonstrating better generalization to video object tracking tasks.

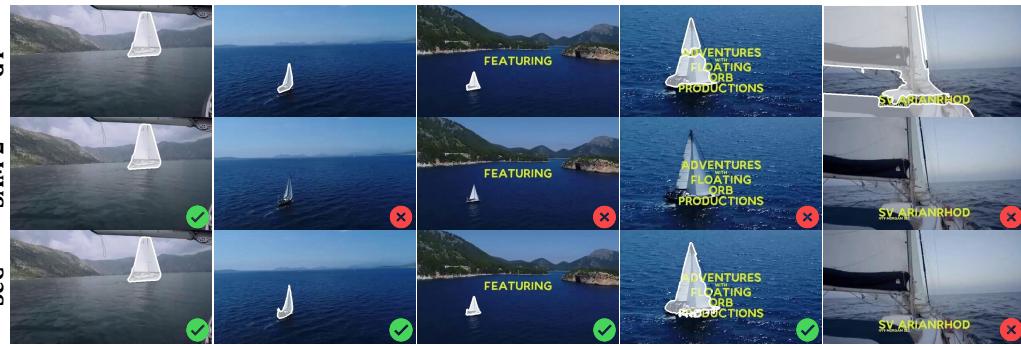


Figure 4: Failure case example from the SeCVOS benchmark.

Table 8: Performance comparison with prior work on TrackingNet (Muller et al., 2018) and SportsMOT (Cui et al., 2023), demonstrating SeC’s better generalization to object tracking tasks.

Method	TrackingNet				SportsMOT				
	Coverage	Precision	Norm. Prec.	Success	HOTA	IDF1	AssA	MOTA	DetA
SAM2 (Ravi et al., 2025)	99.8	88.0	91.1	85.2	56.5	68.4	63.9	37.8	50.0
SAMURAI (Yang et al., 2024)	99.9	88.0	91.2	85.2	59.0	71.5	67.3	41.4	51.9
SAM2Long (Ding et al., 2025b)	99.9	88.1	91.2	85.3	61.4	74.9	68.6	48.2	55.1
SeC (ours)	99.9	88.0	91.3	85.3	62.7	76.1	70.5	49.3	55.8

Beyond object tracking, SeC can also be extended to referring VOS. Similar to Grounded SAM2 (Ren et al., 2024), we employ the open-vocabulary detector Grounding DINO (Liu et al., 2023) to obtain the first-frame mask, and then use SeC to propagate the predictions throughout the video. As shown in Tables 9, experiments show that Grounded SeC significantly outperforms existing LVLM-VOS models in both accuracy and efficiency, though its performance is still lower than vanilla SeC due to limitations in the grounding module.

5.6 VISUALIZATION

To more intuitively demonstrate the segmentation performance of our method, Figure 5 showcases a visual comparison between our approach and the SAM 2 baseline on the SeCVOS benchmark. Compared to the SAM 2, our SeC model consistently delivers reliable segmentation results by constructing a well-formed concept representation, particularly in handling complex situations such as viewpoint changes, background interference, and object occlusion. More qualitative results on the SeCVOS and MOSE v2 benchmark can be found in the Appendix C.2.

However, since this concept is learned from a limited set of viewpoints, the model’s performance may decline in extreme cases where the current viewpoint differs significantly from those encountered during concept construction. For example, as illustrated in Figure 4, the interior view of the sailboat in the fifth image poses a challenge. The drastic shift in perspective leads to a failure in matching the frame to the learned concept, resulting in incorrect segmentation.

6 CONCLUSION

We present Segment Concept (SeC), a novel concept-driven framework for Semi-Supervised Video Object Segmentation that moves beyond traditional appearance-based matching by leveraging high-level object-centric reasoning. By integrating the conceptual perception capabilities of Large Vision-Language Models (LVLMs), SeC constructs and updates robust semantic representations over time, enabling consistent tracking under challenging conditions such as dynamic scene or appearance transitions. To evaluate these capabilities, we introduce SeCVOS, a new benchmark specifically

Figure 5: Qualitative comparison between SAM 2 (Ravi et al., 2025), SAMURAI (Yang et al., 2024), SAM2Long (Ding et al., 2025b) and SeC (ours) on the SeCVOS benchmark.

designed to test semantic-level understanding in complex, multi-shot video scenarios. Extensive experiments show that SeC significantly outperforms existing state-of-the-art models, including SAM 2 and its variants, across both SeCVOS and standard benchmarks, while maintaining competitive efficiency. We hope SeC and SeCVOS will inspire further exploration of concept-level modeling for long-term and semantically grounded video understanding.

540 REFERENCES
541

542 Sirine Ammar, Thierry Bouwmans, Nizar Zaghdén, and Mahmoud Neji. Moving objects segmen-
543 tation based on deepsphere in video surveillance. In *Advances in Visual Computing: 14th Interna-*
544 *tional Symposium on Visual Computing, ISVC 2019, Lake Tahoe, NV, USA, October 7–9, 2019,*
545 *Proceedings, Part II 14*, pp. 307–319. Springer, 2019.

546 Ali Athar, Jonathon Luiten, Alexander Hermans, Deva Ramanan, and Bastian Leibe. Hodor: High-
547 level object descriptors for object re-segmentation in video learned from static images. In *Pro-*
548 *ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 3022–
549 3031, 2022.

550 Ali Athar, Alexander Hermans, Jonathon Luiten, Deva Ramanan, and Bastian Leibe. Tarvis: A uni-
551 fied approach for target-based video segmentation. In *Proceedings of the IEEE/CVF Conference*
552 *on Computer Vision and Pattern Recognition*, pp. 18738–18748, 2023.

553 Zechen Bai, Tong He, Haiyang Mei, Pichao Wang, Ziteng Gao, Joya Chen, Zheng Zhang, and
554 Mike Zheng Shou. One token to seg them all: Language instructed reasoning segmentation in
555 videos. *Advances in Neural Information Processing Systems*, 37:6833–6859, 2024.

556 Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shen-
557 glong Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source
558 multimodal models with model, data, and test-time scaling. *arXiv preprint arXiv:2412.05271*,
559 2024.

560 Zixuan Chen, Jiaxin Li, Junxuan Liang, Liming Tan, Yejie Guo, Cewu Lu, and Yong-Lu Li. M³-
561 vos: Multi-phase, multi-transition, and multi-scenery video object segmentation. In *Proceedings*
562 *of the Computer Vision and Pattern Recognition Conference*, pp. 29193–29202, 2025.

563 Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, and Rohit Girdhar. Masked-
564 attention mask transformer for universal image segmentation. In *CVPR*, 2022.

565 Ho Kei Cheng and Alexander G Schwing. Xmem: Long-term video object segmentation with an
566 atkinson-shiffrin memory model. In *European Conference on Computer Vision*, pp. 640–658.
567 Springer, 2022.

568 Ho Kei Cheng, Yu-Wing Tai, and Chi-Keung Tang. Rethinking space-time networks with improved
569 memory coverage for efficient video object segmentation. *Advances in Neural Information Pro-*
570 *cessing Systems*, 34:11781–11794, 2021.

571 Ho Kei Cheng, Seoung Wug Oh, Brian Price, Alexander Schwing, and Joon-Young Lee. Tracking
572 anything with decoupled video segmentation. In *Proceedings of the IEEE/CVF International*
573 *Conference on Computer Vision*, pp. 1316–1326, 2023.

574 Ho Kei Cheng, Seoung Wug Oh, Brian Price, Joon-Young Lee, and Alexander Schwing. Putting
575 the object back into video object segmentation. In *Proceedings of the IEEE/CVF Conference on*
576 *Computer Vision and Pattern Recognition*, pp. 3151–3161, 2024.

577 Yutao Cui, Chenkai Zeng, Xiaoyu Zhao, Yichun Yang, Gangshan Wu, and Limin Wang. Sportsmot:
578 A large multi-object tracking dataset in multiple sports scenes. In *Proceedings of the IEEE/CVF*
579 *international conference on computer vision*, pp. 9921–9931, 2023.

580 Claudia Cuttano, Gabriele Trivigno, Gabriele Rosi, Carlo Masone, and Giuseppe Averta. Samwise:
581 Infusing wisdom in sam2 for text-driven video segmentation. In *Proceedings of the Computer*
582 *Vision and Pattern Recognition Conference*, pp. 3395–3405, 2025.

583 Henghui Ding, Chang Liu, Shuting He, Xudong Jiang, Philip HS Torr, and Song Bai. Mose: A
584 new dataset for video object segmentation in complex scenes. In *Proceedings of the IEEE/CVF*
585 *international conference on computer vision*, pp. 20224–20234, 2023.

586 Henghui Ding, Kaining Ying, Chang Liu, Shuting He, Xudong Jiang, Yu-Gang Jiang, Philip HS
587 Torr, and Song Bai. Mosev2: A more challenging dataset for video object segmentation in com-
588 plex scenes. *arXiv preprint arXiv:2508.05630*, 2025a.

594 Shuangrui Ding, Rui Qian, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Yuhang Cao, Yuwei Guo, Dahua
 595 Lin, and Jiaqi Wang. Sam2long: Enhancing sam 2 for long video segmentation with a training-
 596 free memory tree. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*,
 597 pp. 13614–13624, 2025b.

598 Brendan Duke, Abdalla Ahmed, Christian Wolf, Parham Aarabi, and Graham W Taylor. Sstvos:
 599 Sparse spatiotemporal transformers for video object segmentation. In *Proceedings of the*
 600 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 5912–5921, 2021.

602 Brent Griffin, Victoria Florence, and Jason Corso. Video object segmentation-based visual servo
 603 control and object depth estimation on a mobile robot. In *Proceedings of the IEEE/CVF Winter*
 604 *Conference on Applications of Computer Vision*, pp. 1647–1657, 2020.

606 Dong Guo, Faming Wu, Feida Zhu, Fuxing Leng, Guang Shi, Haobin Chen, Haoqi Fan, Jian Wang,
 607 Jianyu Jiang, Jiawei Wang, et al. Seed1. 5-vl technical report. *arXiv preprint arXiv:2505.07062*,
 608 2025.

609 Mingfei Han, Linjie Yang, Xiaojun Chang, Lina Yao, and Heng Wang. Shot2story: A new bench-
 610 mark for comprehensive understanding of multi-shot videos. In *The Thirteenth International*
 611 *Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=FZv3kPHTtB>.

614 Lingyi Hong, Wenchao Chen, Zhongying Liu, Wei Zhang, Pinxue Guo, Zhaoyu Chen, and Wen-
 615 qiang Zhang. Lvos: A benchmark for long-term video object segmentation. In *Proceedings of the*
 616 *IEEE/CVF International Conference on Computer Vision*, pp. 13480–13492, 2023.

617 Lingyi Hong, Zhongying Liu, Wenchao Chen, Chenzhi Tan, Yuang Feng, Xinyu Zhou, Pinxue Guo,
 618 Jinglun Li, Zhaoyu Chen, Shuyong Gao, et al. Lvos: A benchmark for large-scale long-term
 619 video object segmentation. *arXiv preprint arXiv:2404.19326*, 2024.

621 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 622 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
 623 *arXiv:2410.21276*, 2024.

624 Xin Lai, Zhuotao Tian, Yukang Chen, Yanwei Li, Yuhui Yuan, Shu Liu, and Jiaya Jia. Lisa: Rea-
 625 soning segmentation via large language model. In *Proceedings of the IEEE/CVF Conference on*
 626 *Computer Vision and Pattern Recognition*, pp. 9579–9589, 2024.

628 Fuxin Li, Taeyoung Kim, Ahmad Humayun, David Tsai, and James M Rehg. Video segmentation
 629 by tracking many figure-ground segments. In *Proceedings of the IEEE international conference*
 630 *on computer vision*, pp. 2192–2199, 2013.

632 Minghan Li, Shuai Li, Xindong Zhang, and Lei Zhang. Univs: Unified and universal video segmen-
 633 tation with prompts as queries. In *Proceedings of the IEEE/CVF conference on computer vision*
 634 *and pattern recognition*, pp. 3227–3238, 2024.

635 Mingxing Li, Li Hu, Zhiwei Xiong, Bang Zhang, Pan Pan, and Dong Liu. Recurrent dynamic em-
 636 bedding for video object segmentation. In *Proceedings of the IEEE/CVF Conference on Computer*
 637 *Vision and Pattern Recognition*, pp. 1332–1341, 2022.

639 Yongqing Liang, Xin Li, Navid Jafari, and Jim Chen. Video object segmentation with adaptive fea-
 640 ture bank and uncertain-region refinement. *Advances in Neural Information Processing Systems*,
 641 33:3430–3441, 2020.

642 Lang Lin, Xueyang Yu, Ziqi Pang, and Yu-Xiong Wang. Glus: Global-local reasoning unified into a
 643 single large language model for video segmentation. In *Proceedings of the IEEE/CVF Conference*
 644 *on Computer Vision and Pattern Recognition*, 2025.

646 Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei
 647 Yang, Hang Su, Jun Zhu, et al. Grounding dino: Marrying dino with grounded pre-training for
 open-set object detection. *arXiv preprint arXiv:2303.05499*, 2023.

648 Matthias Muller, Adel Bibi, Silvio Giancola, Salman Alsubaihi, and Bernard Ghanem. Trackingnet:
 649 A large-scale dataset and benchmark for object tracking in the wild. In *Proceedings of the Euro-*
 650 *pean conference on computer vision (ECCV)*, pp. 300–317, 2018.

651

652 Peter Ochs, Jitendra Malik, and Thomas Brox. Segmentation of moving objects by long term video
 653 analysis. *IEEE transactions on pattern analysis and machine intelligence*, 36(6):1187–1200,
 654 2013.

655 Seoung Wug Oh, Joon-Young Lee, Kalyan Sunkavalli, and Seon Joo Kim. Fast video object seg-
 656 mentation by reference-guided mask propagation. In *Proceedings of the IEEE conference on*
 657 *computer vision and pattern recognition*, pp. 7376–7385, 2018.

658 Seoung Wug Oh, Joon-Young Lee, Ning Xu, and Seon Joo Kim. Video object segmentation us-
 659 ing space-time memory networks. In *Proceedings of the IEEE/CVF international conference on*
 660 *computer vision*, pp. 9226–9235, 2019.

661

662 Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Arbeláez, Alex Sorkine-Hornung, and
 663 Luc Van Gool. The 2017 davis challenge on video object segmentation. *arXiv preprint*
 664 *arXiv:1704.00675*, 2017.

665 Rui Qian, Shuangrui Ding, Xian Liu, and Dahua Lin. Semantics meets temporal correspondence:
 666 Self-supervised object-centric learning in videos. In *Proceedings of the IEEE/CVF International*
 667 *Conference on Computer Vision (ICCV)*, pp. 16675–16687, 2023.

668 Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
 669 Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Va-
 670 sudev Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollar, and Christoph Fe-
 671 ichtenhofer. Sam 2: Segment anything in images and videos. In *The Thirteenth International*
 672 *Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=Ha6RTeWMd0>.

673

674 Tianhe Ren, Shilong Liu, Ailing Zeng, Jing Lin, Kunchang Li, He Cao, Jiayu Chen, Xinyu Huang,
 675 Yukang Chen, Feng Yan, Zhaoyang Zeng, Hao Zhang, Feng Li, Jie Yang, Hongyang Li, Qing
 676 Jiang, and Lei Zhang. Grounded sam: Assembling open-world models for diverse visual tasks,
 677 2024.

678

679 Hongje Seong, Junhyuk Hyun, and Euntai Kim. Kernelized memory network for video object seg-
 680 mentation. In *Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August*
 681 *23–28, 2020, Proceedings, Part XXII 16*, pp. 629–645. Springer, 2020.

682

683 Mennatullah Siam, Alex Kendall, and Martin Jagersand. Video class agnostic segmentation bench-
 684 mark for autonomous driving. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 685 *and Pattern Recognition*, pp. 2825–2834, 2021.

686

687 Hao Tang, Chenwei Xie, Haiyang Wang, Xiaoyi Bao, Tingyu Weng, Pandeng Li, Yun Zheng, and
 688 Liwei Wang. Ufo: A unified approach to fine-grained visual perception via open-ended language
 689 interface. *arXiv preprint arXiv:2503.01342*, 2025.

690

691 Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
 692 Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal under-
 693 standing across millions of tokens of context. *arXiv preprint arXiv:2403.05530*, 2024.

694

695 Yuanpeng Tu, Hao Luo, Xi Chen, Sihui Ji, Xiang Bai, and Hengshuang Zhao. Videoanydoor: High-
 696 fidelity video object insertion with precise motion control. *arXiv preprint arXiv:2501.01427*,
 697 2025.

698

699 Junke Wang, Dongdong Chen, Zuxuan Wu, Chong Luo, Chuanxin Tang, Xiyang Dai, Yucheng
 700 Zhao, Yujia Xie, Lu Yuan, and Yu-Gang Jiang. Look before you match: Instance understand-
 701 ing matters in video object segmentation. In *Proceedings of the IEEE/CVF conference on computer*
 702 *vision and pattern recognition*, pp. 2268–2278, 2023.

703

704 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 705 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
 706 world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024.

702 Qiangqiang Wu, Tianyu Yang, Wei Wu, and Antoni B Chan. Scalable video object segmentation
 703 with simplified framework. In *Proceedings of the IEEE/CVF International Conference on Com-*
 704 *puter Vision*, pp. 13879–13889, 2023.

705 Haozhe Xie, Hongxun Yao, Shangchen Zhou, Shengping Zhang, and Wenxiu Sun. Efficient regional
 706 memory network for video object segmentation. In *Proceedings of the IEEE/CVF conference on*
 707 *computer vision and pattern recognition*, pp. 1286–1295, 2021.

709 Ning Xu, Linjie Yang, Yuchen Fan, Dingcheng Yue, Yuchen Liang, Jianchao Yang, and Thomas
 710 Huang. Youtube-vos: A large-scale video object segmentation benchmark. *arXiv preprint*
 711 *arXiv:1809.03327*, 2018.

712 Bin Yan, Yi Jiang, Jiannan Wu, Dong Wang, Ping Luo, Zehuan Yuan, and Huchuan Lu. Universal
 713 instance perception as object discovery and retrieval. In *Proceedings of the IEEE/CVF Conference*
 714 *on Computer Vision and Pattern Recognition*, pp. 15325–15336, 2023.

716 Cilin Yan, Haochen Wang, Shilin Yan, Xiaolong Jiang, Yao Hu, Guoliang Kang, Weidi Xie, and
 717 Efstratios Gavves. Visa: Reasoning video object segmentation via large language models. In
 718 *European Conference on Computer Vision*, pp. 98–115. Springer, 2024.

719 Cheng-Yen Yang, Hsiang-Wei Huang, Wenhao Chai, Zhongyu Jiang, and Jenq-Neng Hwang. Samu-
 720 rai: Adapting segment anything model for zero-shot visual tracking with motion-aware memory.
 721 *arXiv preprint arXiv:2411.11922*, 2024.

723 Qiushi Yang, Yuan Yao, Miaomiao Cui, and Liefeng Bo. Mosam: Motion-guided segment anything
 724 model with spatial-temporal memory selection. *arXiv preprint arXiv:2505.00739*, 2025.

725 Zongxin Yang and Yi Yang. Decoupling features in hierarchical propagation for video object seg-
 726 mentation. *Advances in Neural Information Processing Systems*, 35:36324–36336, 2022.

728 Zongxin Yang, Yunchao Wei, and Yi Yang. Associating objects with transformers for video object
 729 segmentation. *Advances in Neural Information Processing Systems*, 34:2491–2502, 2021.

730 Haobo Yuan, Xiangtai Li, Tao Zhang, Zilong Huang, Shilin Xu, Shunping Ji, Yunhai Tong, Lu Qi,
 731 Jiaoshi Feng, and Ming-Hsuan Yang. Sa2va: Marrying sam2 with llava for dense grounded under-
 732 standing of images and videos. *arXiv preprint arXiv:2501.04001*, 2025.

734 Jiaming Zhang, Yutao Cui, Gangshan Wu, and Limin Wang. Jointformer: A unified framework
 735 with joint modeling for video object segmentation. *IEEE Transactions on Pattern Analysis and*
 736 *Machine Intelligence*, pp. 1–17, 2025. doi: 10.1109/TPAMI.2025.3557841.

737 Junbao Zhou, Ziqi Pang, and Yu-Xiong Wang. Rmem: Restricted memory banks improve video ob-
 738 ject segmentation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 739 *Recognition*, pp. 18602–18611, 2024.

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **SUPPLEMENTARY MATERIALS**
757758 This supplementary material provides further details about our SeC framework and the SeCVOS
759 benchmark, including the model’s architecture and training, as well as the benchmark’s composition
760 and supported tasks. We also present additional ablation studies and qualitative results to further
761 validate the effectiveness of our approach. Additionally, we discuss current limitations, ethical
762 considerations and the intended scope of use for SeCVOS. A demo video and additional video cases
763 from the benchmark are also provided in the zip. The appendix is organized as follows:764

- 765 • Section A. SeC Training Details
- 766 • Section B. SeCVOS Benchmark Details
- 767 • Section C. Supplementary Experiment
- 768 • Section D. Evaluation Benchmark Details
- 769 • Section E. Limitations, Reproducibility, and Broader Impact
- 770 • Section F. LLM Usage

771772 **A SEC TRAINING DETAILS**
773774 We adopt a two-stage training approach: (1) training the pixel-level association memory module for
775 long-term temporal modeling, and (2) fine-tuning the LVLM-based semantic guidance module for
776 concept modeling.
777778 In the first stage, we train the pixel-level association memory using 2k videos from the SA-V training
779 set, selected based on the highest number of scene transitions as detected by SceneDetect. For each
780 video, 24 shuffled frames are randomly sampled for training. During this stage, only the memory
781 attention module is updated, while all other components remain frozen. The model is trained for 40
782 epochs with a batch size of 64 and a learning rate of 5×10^{-6} .783 In the second stage, we fine-tune InternVL 2.5-4B (Chen et al., 2024) on approximately 190k object
784 instances from the SA-V training set, each containing at least three visible masks. For each training
785 sample, 1 to 7 reference frames are randomly selected. Instead of overlaying an alpha-blended
786 object mask, we draw a green contour around the target object. This contour effectively highlights
787 the segmentation target without obstructing the visual features needed for LVLM-based perception.
788 Among these, 0 to 2 are distractor frames containing incorrect annotations, while the rest provide
789 valid visual prompts. Additionally, one non-overlapping query frame is included. All images are
790 resized to 448×448 resolution. We apply LoRA-based fine-tuning to the InternVL 2.5, while
791 keeping all SAM 2 parameters frozen. The model is trained for 3 epochs with a batch size of 64 and
792 a learning rate of 4×10^{-5} .793 All experiments are conducted on 8 NVIDIA A800 GPUs, and the loss function remains consistent
794 with that of SAM 2.795 **B SECVOS BENCHMARK DETAILS**
796797 **B.1 VIDEO DETAILS**
798799 The SeCVOS benchmark comprises a diverse collection of video sequences designed to rigorously
800 evaluate video object segmentation and tracking performance. The videos range from 6 to around
801 60 seconds in length and average 29.4 seconds. They span a variety of contexts including indoor,
802 outdoor, and animated scenes, and feature targets such as humans, vehicles, and animals. The
803 benchmark intentionally incorporates significant difficulties like abrupt scene transitions, rapid
804 object motion, and severe environmental interference, most notably frequent occlusions and the
805 intermittent appearance of targets. Each sequence is accompanied by meticulously reviewed,
806 high-quality ground-truth masks that capture the precise shape and positional evolution of the target over
807 time. Figure 6 provides examples of these annotations. The primary goal of SeCVOS is to advance
808 the state-of-the-art by challenging existing methods with dynamic and complex visual conditions.
809 We will release SeCVOS as an open-source benchmark to support future research in concept-driven
video object segmentation.

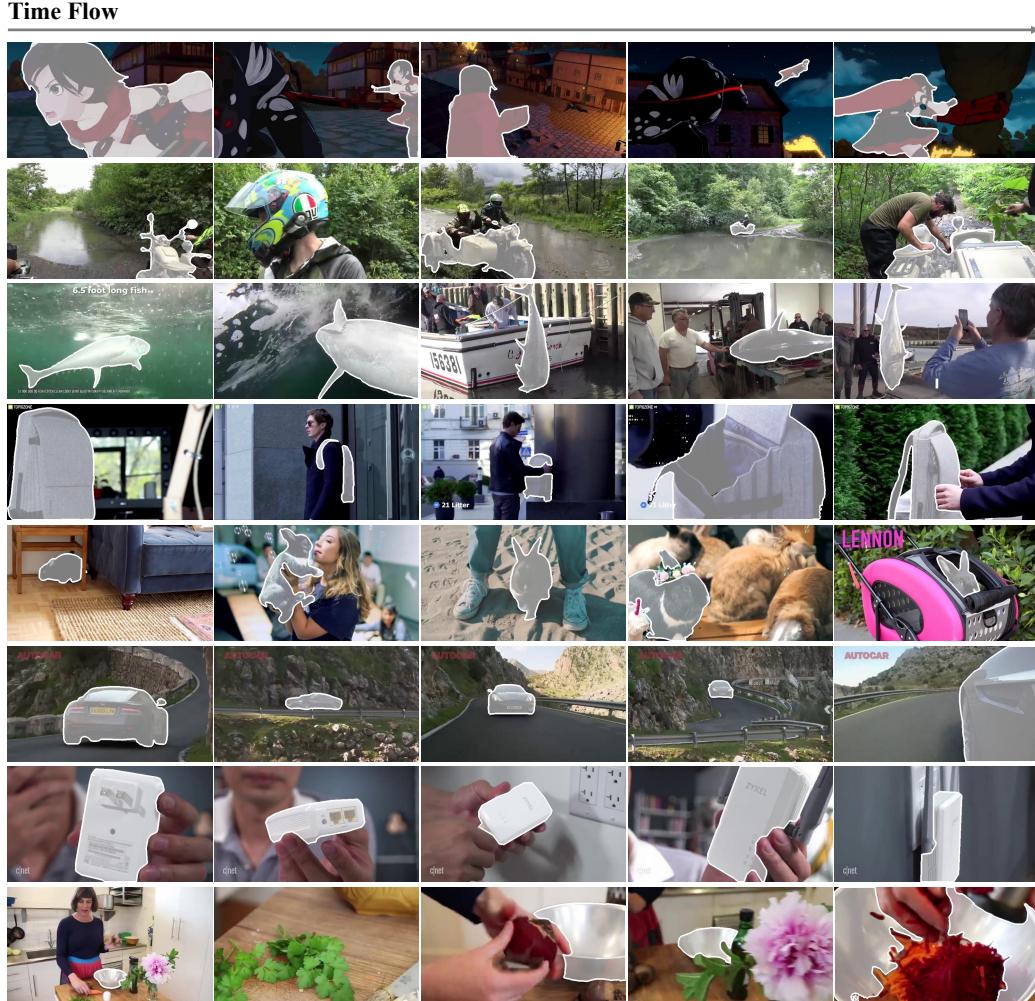


Figure 6: Example video sequences from the SeCVOS benchmark with overlaid target masks. Each row corresponds to frames from a single video sequence, illustrating the annotated object masks.

B.2 REFERRING VIDEO OBJECT SEGMENTATION ON SECVOIS

In addition to the semi-supervised Video Object Segmentation task, our proposed SeCVOS dataset also supports the Referring Video Object Segmentation task. In this task, we generate detailed descriptions for each object in the SeCVOS dataset. These descriptions are initially generated by the Gemini 2.5 Pro (Team et al., 2024) and subsequently refined through rigorous manual verification and editing to ensure accuracy. Figure 7 depicts several data samples, and notably, in the presence of visually similar distractor objects, we provide additional fine-grained descriptions to support precise model discrimination of the target objects.

Under this setting, we evaluated several state-of-the-art RefVOS methods, including both LVLM based approaches and traditional temporal propagation baselines. As shown in Table 10, the performance of all methods on the SecVOS benchmark remains limited. VISA (Yan et al., 2024) and GLUS-A (Lin et al., 2025) performed comparatively better, possibly because they were trained on datasets with more complex textual instructions, which helps with

Table 10: Performance comparison on Ref-SeCVOS.

Method	Total Params	Ref-SeCVOS		
		\mathcal{J}	\mathcal{F}	$\mathcal{J} \& \mathcal{F}$
<i>Propagation Based Method</i>				
Grounded SAM 2 (Ren et al., 2024)	400 M	48.4	49.3	48.9
SAMWISE (Cuttano et al., 2025)	210 M	54.1	53.9	54.0
<i>LVLM Based Method</i>				
VideoLISA (Bai et al., 2024)	3.8 B	43.7	41.8	42.8
Sa2VA (Yuan et al., 2025)	8 B	51.5	52.0	51.8
GLUS-A (Lin et al., 2025)	7 B	59.7	60.0	59.8
VISA (Yan et al., 2024)	7 B	60.4	58.6	59.5

Figure 7: Example video sequences and corresponding referring expressions from the SeCVOS.

cross-modal reasoning and object discrimination. Overall, these results highlight the challenges of the SeCVOS benchmark in terms of scene complexity, fine-grained language descriptions, and visual discrimination, indicating that there is still significant room for improvement in RefVOS.

C SUPPLEMENTARY EXPERIMENT

C.1 ADDITIONAL ABLATION STUDIES

In this section, we conduct further ablation studies to validate the design choices and robustness of our framework. We specifically investigate three aspects: the impact of the number of concept tokens, the framework’s independence from the choice of scene detector, and its resilience to noisy guidance from the LVLM.

Ablation on the number of concept tokens. To determine the ideal representational capacity, we investigated the effect of varying the number of concept tokens. As shown in Table 11, the results clearly indicate that increasing the token count from one to four yields no significant performance gains across all metrics. This outcome validates our use of a single, dense token embedding as a more efficient and equally effective approach compared to a multi-token representation for this task.

Robustness to Scene Detector Choice. To further validate our framework’s robustness with different scene detectors, we conducted a supplementary experiment comparing several different lightweight scene-change detection algorithms on SeCVOS. We compared our HSV-based method against techniques based on pixel-wise absolute difference (ABS DIFF), structural similarity (SSIM), optical flow (FLOW), and feature matching with Oriented FAST and Rotated BRIEF (ORB). As demonstrated in Table 12, our framework exhibits robustness to the choice of scene detector and performs competitively across all of them.

Table 11: Performance comparison of different number of concept tokens on SeCVOS.

#Concept Tokens	$\mathcal{J} \& \mathcal{F}$	\mathcal{J}	\mathcal{F}
1	70.0	69.7	70.2
2	70.0	69.7	70.3
4	69.9	69.6	70.2

Table 12: Performance comparison of different scene detectors on SeCVOS.

Scene Detector	$\mathcal{J} \& \mathcal{F}$	\mathcal{J}	\mathcal{F}
ABS DIFF	69.0	68.8	69.3
ORB	68.7	68.5	69.0
SSIM	69.3	69.1	69.6
FLOW	69.5	69.3	69.7
HSV (ours)	70.0	69.7	70.2

918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971

Robustness to Noisy LVLM Guidance. To assess the system’s resilience against unreliable outputs from the LVLM, we performed an additional experiment on SeCVOS. In this experiment, we forced LVLM intervention on every frame while intentionally introducing a varying number of incorrect masks(n) as input noise. As shown in Figure 8, the system’s performance degrades gracefully and consistently outperforms baselines as noise increases, rather than failing abruptly. A significant drop was observed only when the number of noisy frames exceeded the number of clean ones (*i.e.*, when $n > 4$). This resilience is attributed to two core design principles: 1) our framework fuses LVLM guidance with visual features rather than replacing them, which mitigates the impact of any single inaccurate mask; and 2) the LVLM was explicitly trained with noisy inputs, inherently improving its robustness.

C.2 ADDITIONAL QUALITATIVE RESULTS

To further illustrate our method’s capabilities, we present additional qualitative results for the SeCVOS and MOSE v2 benchmarks in Figure 9 and Figure 10, respectively.

We also provide some additional qualitative examples in Figure 12 to show SeC’s robustness in real applications. SeC maintains stable tracking in crowded scenes with heavy occlusions and reappearances, consistently follows distant vehicles under illumination changes in dashcam videos, and accurately distinguishes targets from distractors in wildlife footage. Together, these results confirm that SeC delivers more robust and reliable segmentations than pixel-matching-based methods under a variety of challenging conditions.

These visualizations demonstrate the robustness and effectiveness of our SeC in scenarios that closely approximate real-world conditions. Our method delivers consistently reliable tracking and segmentation, even within challenging videos featuring drastic appearance and scene variations.

D EVALUATION BENCHMARK DETAILS

To evaluate our method, we select seven standard VOS benchmarks. Following established evaluation protocols, we report the standard VOS metrics of region similarity (\mathcal{J}), contour accuracy (\mathcal{F}), and their average ($\mathcal{J}\&\mathcal{F}$) for SA-V, LVOS v2, MOSE v1 and DAVIS. For MOSE v2, we report the improved $\mathcal{J}\&\mathcal{F}$ score proposed by Ding et al. (2025a), and for M³-VOS, we report \mathcal{J} . The benchmarks used for evaluation are detailed as follows:

SA-V (Ravi et al., 2025) is a large-scale dataset for promptable video segmentation, containing over 50.9K video clips and 35.5M annotated masks. The dataset is divided into training, validation, and testing sets, with 155 videos for validation and 150 for testing. Its core challenge lies in segmenting small, occluded, and reappearing objects across diverse scenarios.

LVOS v2 (Hong et al., 2024) expands upon LVOS v1 for long-term video object segmentation. It is split into 420 videos for training, 140 for validation, and 160 for testing. The dataset includes 44 categories, with 12 of these deliberately held out from the training set to specifically evaluate the generalization capabilities of VOS models.

DAVIS 2017 (Pont-Tuset et al., 2017) is a foundational benchmark that established the standard for multi-object video segmentation, advancing from its single-object predecessor. It consists of 150 sequences, which are divided into 60 for training, 30 for validation, and 60 for testing. The dataset increases complexity with challenges like severe occlusions and fast motion.

YTVOS 2019 (Xu et al., 2018) is a benchmark designed to evaluate a model’s ability to generalize to unseen object categories. The 2019 version contains over 4,500 videos, with its validation and test sets including a mix of 65 “seen” categories from training and dozens of “unseen” categories.

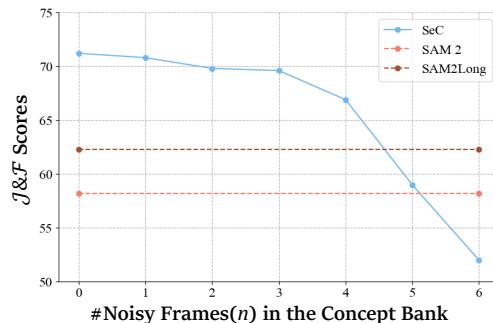


Figure 8: $\mathcal{J}\&\mathcal{F}$ Curve in terms of the number of noisy masks on SeCVOS. SeC degrades gracefully and consistently outperforms baselines.

which mitigates the impact of any single inaccurate mask; and 2) the LVLM was explicitly trained with noisy inputs, inherently improving its robustness.

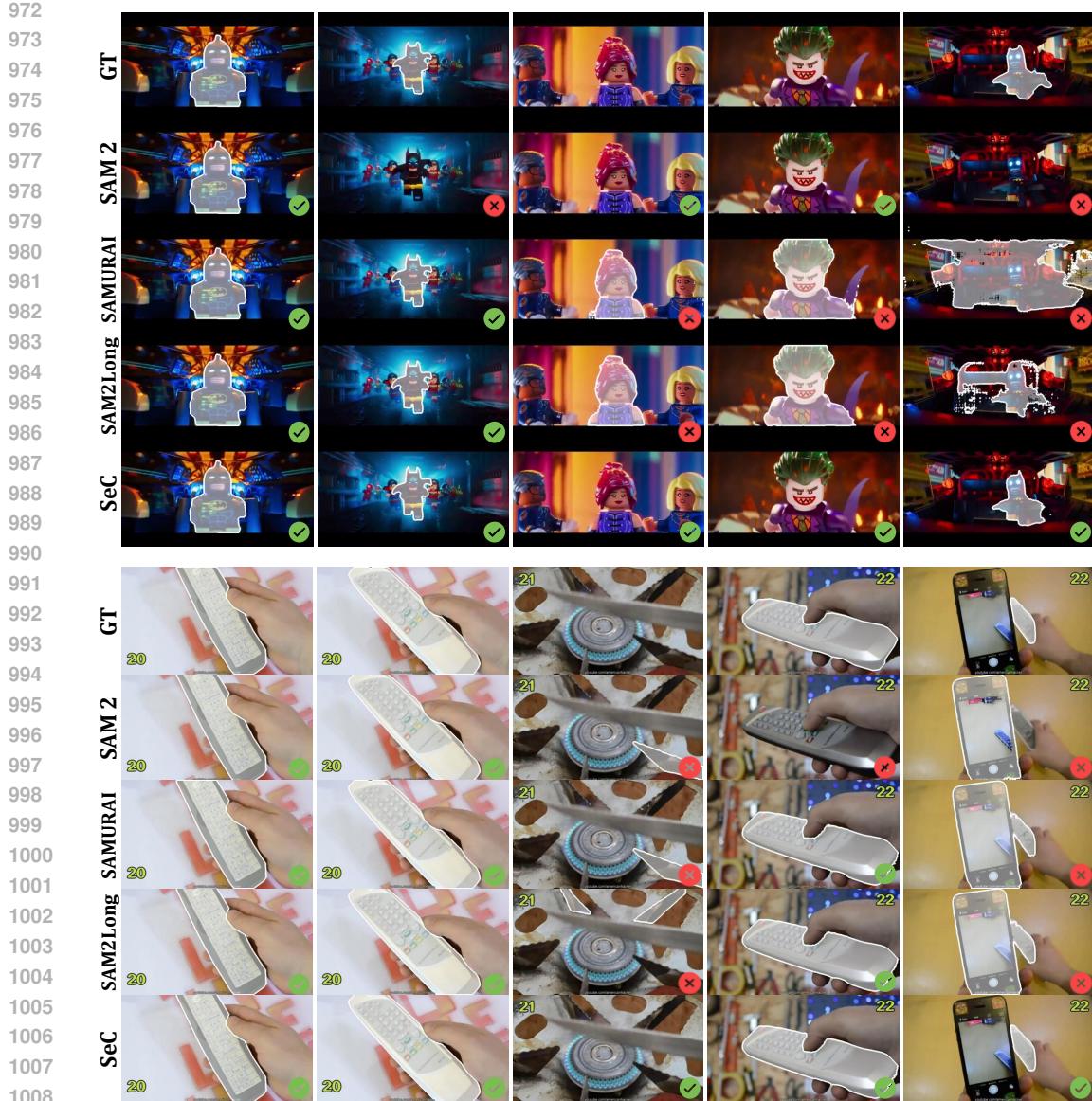


Figure 9: Additional qualitative comparison between SAM 2 (Ravi et al., 2025), SAMURAI (Yang et al., 2024), SAM2Long (Ding et al., 2025b) and SeC (ours) on the SeCVOS, with GT (Ground Truth) provided for reference.

MOSE v1 (Ding et al., 2023) is a large-scale benchmark created to evaluate VOS methods in complex, realistic scenarios where objects are not always salient or isolated. It contains 2,149 video clips with over 431,000 high-quality masks for 5,200 objects across 36 categories, which are divided into 1,507 videos for training, 311 for validation, and 331 for testing. The dataset is specifically designed to include challenging situations such as heavy object occlusion, crowded scenes, and frequent disappearance and reappearance of targets.

MOSE v2 (Ding et al., 2025a) builds upon MOSE v1 to expose the limitations of state-of-the-art VOS methods in complex, real-world scenarios. It consists of 5,024 videos and over 701,976 high-quality masks for 10,074 objects across 200 categories, which are split into 3,666 for training, 433 for validation, and 614 for testing. Compared to its predecessor, MOSE v2 introduces novel adversarial conditions such as adverse weather, low-light scenes, camouflaged objects and non-physical targets like shadows and reflections.

M³-VOS (Chen et al., 2025) introduces the novel challenge of segmenting objects that undergo significant morphological and appearance changes due to phase transitions (e.g., melting, dissolving,

Figure 10: Additional qualitative comparison between SAM 2 (Ravi et al., 2025), SAMURAI (Yang et al., 2024), SAM2Long (Ding et al., 2025b) and SeC (ours) on the MOSE v2(Ding et al., 2025a).

flowing). Comprising 479 high-resolution videos, this benchmark directly challenges the core assumption of appearance consistency that underpins many VOS models by focusing on the physical dynamics of objects.

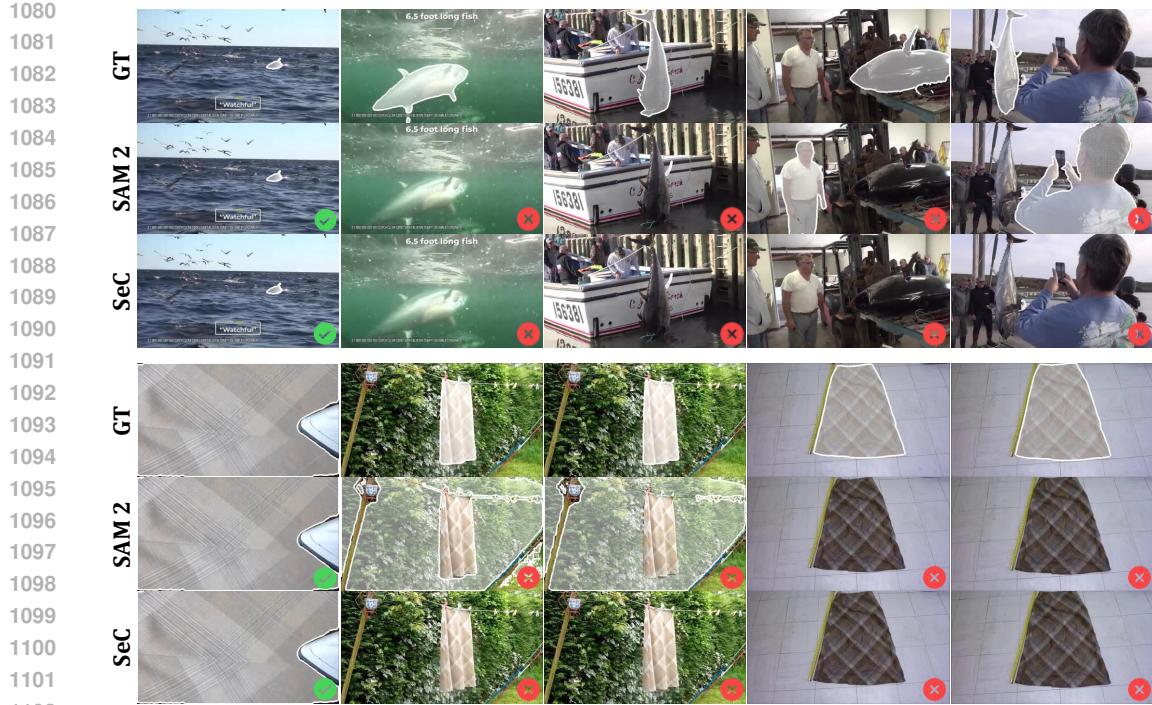


Figure 11: Additional failure case example from the SeCVOS benchmark.

E LIMITATIONS, REPRODUCIBILITY, AND BROADER IMPACT

E.1 LIMITATIONS

Despite its promising results, our work still leaves room for improvement. First, the current transition detection mechanism is lightweight and simple, but may fail in certain edge cases. As shown in the figure 11, SeC struggles when the encountered viewpoint deviates significantly from those observed during concept construction, or when the LVLM lacks sufficient prior knowledge to form a reliable concept of the target. A more robust approach would involve learning a dynamic indicator to decide when to invoke LVLM-based reasoning and better tolerate viewpoint variation. Second, although SeCVOS introduces multi-shot complexity, its overall video length remains shorter than that of existing datasets like LVOS (Hong et al., 2024). While SeCVOS already presents significant challenges for current methods, extending it with longer-duration videos would further evaluate the temporal reasoning capabilities of future models.

E.2 REPRODUCIBILITY

To ensure the reproducibility of our work and contribute to the broader academic community, we provide comprehensive details of our proposed Segment Concept (SeC) framework and experimental implementation in Section 3 and 5.1. Our framework are built upon the publicly available models (InternVL 2.5 and SAM 2) and experiments were conducted on standard public datasets (such as SA-V, LVOS, and MOSE). In line with this commitment, we will release our Semantic Complex Scenarios Video Object Segmentation (SeCVOS) benchmark, model checkpoints, and the complete source code for training and inference. We hope these resources will serve as a valuable reference for future VOS applications, fostering innovation and accelerating progress within the field.

E.3 BROADER IMPACT

The SeCVOS benchmark is constructed using only publicly available video data, which is used exclusively for academic research purposes. All annotation work was performed by volunteers who

1134 were fully informed about the nature of the project. No private, sensitive, or restricted data were
1135 used.

1136
1137 The goal of our research is to support the development of technologies that can positively impact so-
1138 ciety, such as autonomous systems, assistive technologies, and tools for enhanced human-computer
1139 interaction. However, we acknowledge the potential risks associated with the misuse of segmen-
1140 tation technologies, including privacy concerns and unauthorized surveillance. We encourage the
1141 responsible use of our benchmark and methods, and explicitly discourage any applications that may
1142 infringe upon personal privacy or be deployed for harmful purposes.

1143 All annotations and experimental results presented in this work were generated solely for research
1144 purposes and adhere to ethical guidelines regarding the use of public visual data within the academic
1145 community.

1146 F LLM USAGE

1147 During the writing process, we utilized Large Language Models (LLMs) as a tool to aid in editing
1148 and polishing the language. The core ideas, analysis, and conclusions presented in this paper are the
1149 work of the authors. The LLMs were used solely to improve grammar, clarity, and readability.

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

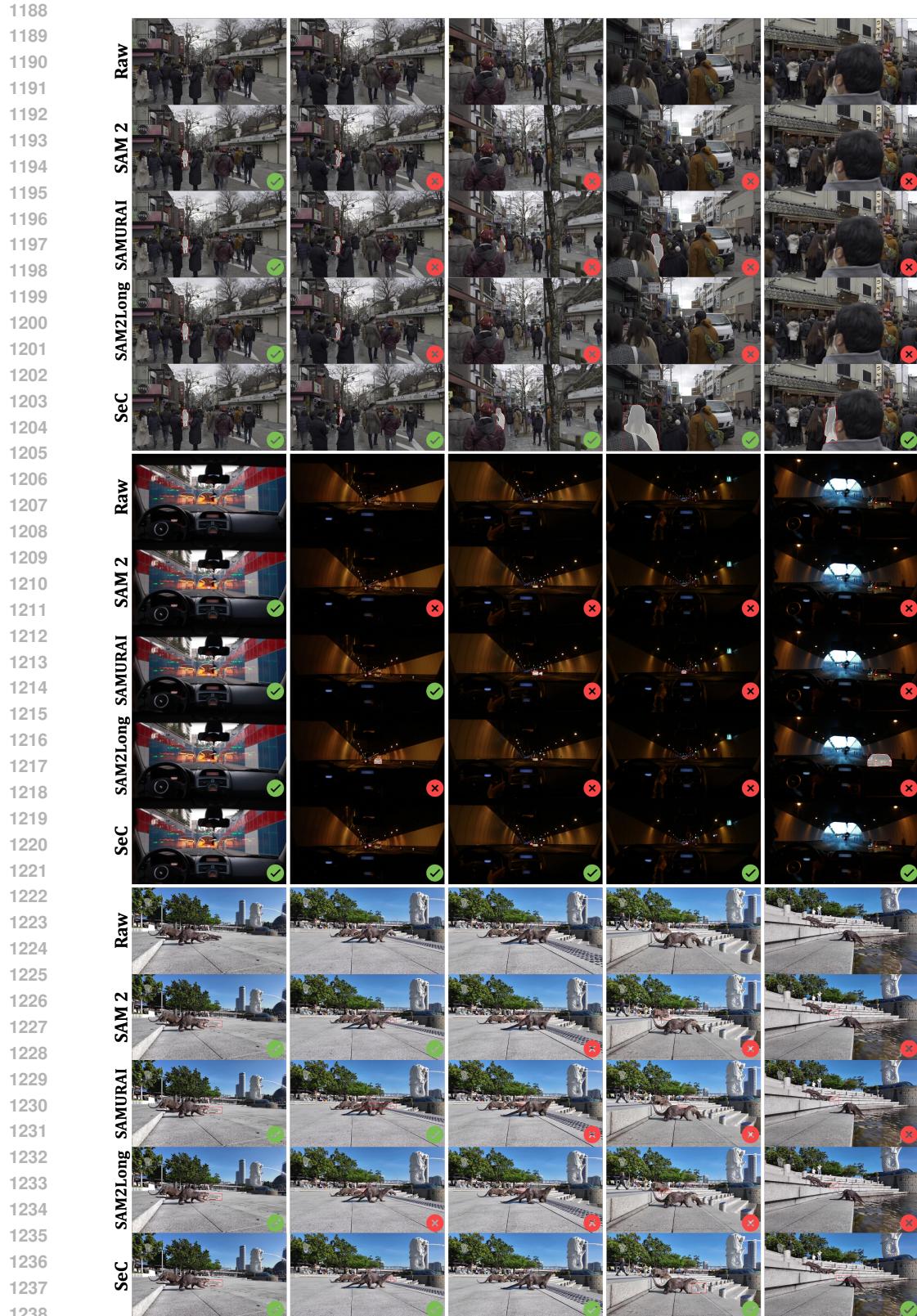


Figure 12: Additional qualitative comparison between SAM 2 (Ravi et al., 2025), SAMURAI (Yang et al., 2024), SAM2Long (Ding et al., 2025b) and SeC (ours) on scenes with complex motion, occlusion, or lighting variations, with the raw image provided for reference.