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ABSTRACT

The attention mechanism in vision transformers (ViTs) plays a key role in visual
processing by leveraging contextual information. In this work, we explore the
possibility of guiding the attention mechanism to focus more on a region of in-
terest by introducing visual cues to the input while avoiding intervention on the
internals of the ViT. This enables interaction with the ViT to prompt the model
to capture more information from that area during inference. A recent discovery
shows that placing a red circle on the input to the CLIP vision encoder causes the
model to extract more information from that marked region. However, we find
that this emergent property is unique to CLIP and does not apply to other vision
encoders such as DINOv2. Thus, we explore identifying visual patterns that in-
fluence the attention of different ViTs through optimisation, instead of resorting
to prior knowledge and guesswork. We learn visual cues that added to any input
image would redirect the attention of the pre-trained ViT to its location. These
learned prompts are optimised in a self-supervised manner, without requiring an-
notations, and fine-tuning of the vision transformer. 1

1 INTRODUCTION

The attention mechanism Vaswani et al. (2017) in vision transformers leverages contextually relevant
visual information from the entire input image to form embeddings for each token. This process
dynamically adjusts the representation of each token, allowing the model to focus selectively on
relevant areas, and integrates this context into the embeddings. Such context-aware embeddings
lead to enhanced recognition of complex visual data Dosovitskiy et al. (2021). In our study, we
explore whether it is possible to direct the attention mechanism toward a specific input region by
introducing and constructing a marker for pre-trained vision transformer models. We pursue this
investigation to better understand what kind of visual information directs the attention mechanism
of various pre-trained vision transformers and to explore its potential for visual prompting. Visual
prompting Gu et al. (2023a) refers to approaches that embed visual cues into input images with the
goal of adapting vision foundation models for new tasks.

Adaptation to new tasks typically requires either pre-training the entire foundation model or fine-
tuning it, both of which are computationally expensive compared to prompting. Recent works in-
troduce manual prompting techniques, such as placing coloured circles Shtedritski et al. (2023) on
images or blurring regions Yang et al. (2024) around the prompted location, demonstrating their
effectiveness in adapting the CLIP vision encoder for fine-grained recognition tasks. However, us-
ing these manually engineered prompts relies on prior knowledge of biases or emergent properties
formed during training. Interestingly, it has been reported that CLIP’s training data already contains
similar markers and blur effects Shtedritski et al. (2023); Yang et al. (2024), with the marked po-
sitions often the focused content of the image, according to the corresponding caption, which may
explain the model’s responsiveness to these prompts.

In this work, we observe that this emergent property does not translate to other ViTs trained using
different learning paradigms. Notably, DINOv2 Oquab et al. (2023), a purely visual self-supervised
model, does not respond to red circles. Identifying visual prompts for a self-supervised encoder
like DINOv2 is particularly important because it extracts significantly richer features from images

1The code will be publically available.
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Figure 1: Learned Prompts for CLIPs Radford et al. (2021), SigLIP Zhai et al. (2023), DeiT Tou-
vron et al. (2021), DINOv2 Oquab et al. (2023). In our self-supervised framework, we learn a
prompt to draw the attention of ViT to a specific point where the prompt is applied. The prompt is
optimized for each vision encoder model specifically to generalize across different images.

and is increasingly prominent in the new generation of vision-language models Tong et al. (2024);
Kar et al. (2024) due to CLIP’s visual limitations Tong et al. (2024). We analyse attention across
layers and discover that adding a red circle to the CLIP vision encoder increases the attention scores
in the final layers to the red circle region. Based on this finding, we reverse-engineer the process
into an optimization problem Therefore, we propose learning prompts to guide the attention of
ViTs rather than manually designing them based on intuition. We engineer a visual prompt that
directs the attention of a specific pre-trained (and frozen) vision transformer (ViT Dosovitskiy et al.
(2021)) through a self-supervised approach. This eliminates the need for prior knowledge about
dataset biases, allowing prompts to be generated for a desired ViT. To create a visual pattern that
transfers across images for a specific pre-trained ViT, we draw inspiration from universal adversarial
patches Luo et al. (2024), leverage a convolutional network prior Ulyanov et al. (2018), and apply
the generative adversarial perturbations paradigm Poursaeed et al. (2018). This self-supervised
optimization approach generates a visual prompt that can be applied to any location in any image
and guides the model’s attention during inference without intervention on the hidden layers. The
optimised prompts shed insight into what input patterns guide the attention of deep layers of different
ViTs, for instance, we find out that the optimal visual pattern for a circular prompt is the ”red colour”.
Moreover, we confirm that directing attention to a region indeed leads to extracting more information
from that region.

2 RELATED WORK

Visual Prompting Prompting has been extensively studied in the NLP community Liu et al. (2023).
Recently, researchers have begun exploring the benefits of prompting in image recognition as well.
This involves adding a learnable modification to images to guide models towards specific predic-
tions Zhou et al. (2022b); Jia et al. (2022); Bahng et al. (2022); Shen et al. (2024); Gu et al. (2023a).
These prompt-tuning methods Jia et al. (2022); Bahng et al. (2022); Shen et al. (2024); Zhou et al.
(2022b) optimize a visual prompt that is appended and fixed to an input image. For instance, this
could involve appending optimizable pixel regions around the image. By doing so, these methods
enable the pre-trained model to adapt to new tasks without the need for retraining. This modification
is typically applied universally across different images. Follow up approaches have been proposed
to improve these visual prompts Zhou et al. (2022a); Zang et al. (2022); Khattak et al. (2023). More
recently, researchers have shown that manually crafted prompts, like a red circle, can effectively
guide the attention of models like CLIP when trained on datasets containing similar markers Sht-
edritski et al. (2023). Moreover, other biases, such as blurring, can be used for prompting Yang
et al. (2024). However, such attention-guiding prompts only work effectively on certain models. In
this study, we propose learning prompts (without fine-tuning the model) to guide the attention of
various models rather than manually designing them.
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Figure 2: Overview of our Self-supervised Prompt Optimization Framework: For a given im-
age random patch position, the patch (initially random noise) is processed through an auto-encoder
Neural Prior. A mask is applied to partially cover the image, preserving underlying information. Af-
ter passing through the frozen Vision Encoder, attention weights are extracted. The target attention
values are computed using a Gaussian distribution centered on the target location. During training,
the model learns a patch that minimizes the KL divergence loss between the CLS token’s attention
values and the target distribution.

Adversarial Patch The seminal work Papernot et al. (2016) demonstrates that adversarial examples
can be generated by altering just a few pixels in the input. This white-box attack Karmon et al.
(2018); Liu et al. (2019); Wang et al. (2021); Luo et al. (2021) method can deceive models by
targeting a very small area. Additionally, certain studies Brown et al. (2017); Liu et al. (2020) have
successfully developed universal, transferable, and targeted adversarial patches. These patches are
typically placed on the primary object within images. A related study Gu et al. (2022) found that
model attention can be drawn towards adversarial patches designed to mislead classification results.
Our visual prompt can similarly be viewed as an adversarial patch, aiming to divert model attention
away from its original focus, but for adapting model behavior towards useful tasks.

Transferability and Universality of Adversarial Perturbation The transferability of adversarial
perturbation describes the phenomenon that perturbations crafted for one model can deceive another,
even with a different architecture Gu et al. (2023b). Different from the transferability, the univer-
sality of adversarial perturbation is a property that the perturbation is still effective when it is added
to different input instances Chaubey et al. (2020). To improve transferability, we use generative
adversarial perturbations Poursaeed et al. (2018). A simple way to increase the universality is to
include various input images when optimizing an adversarial perturbation Moosavi-Dezfooli et al.
(2017), which we also leverage in this work. The transferability and universality of adversarial per-
turbation have also been studied Brown et al. (2017); Liu et al. (2020); Xiao et al. (2021). These
intriguing properties increase the threats in real-world applications. However, how to leverage the
two properties for good has not been explored in the community.

3 METHOD

Our goal is to learn a patch that, when applied to any part of an image, attracts more attention
than the initial underlying pixels of the image from the vision encoder, manipulating the image’s
final representation. We propose a self-supervised method to learn this patch using a frozen vision-
encoder and a collection of unlabeled images. We detail how the patch’s RGB color space is learned
via back-propagation of a self-supervised loss based on its location and attention values received.

Input with Prompt. We aim to discover a visual prompt (patch) that attracts the attention of a
transformer-based vision encoder toward a specific location. To achieve this, we work on the RGB
image input denoted as I ∈ Rn×n×3 where n is the number of pixels in one dimension of the image
and 3 indicates the three-dimensional color space. The prompt, denoted as P , is also in a similar
RGB color space and of size m×m (the impact of prompt size on performance is investigated in
section 4.1). The designated coordinates [i, j] within the image 0 ≤ i, j < n is then the exact pixel
location where the visual prompt will be centrally inserted on. By selecting coordinates only with
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criteria of 0 < i ± m
2 , j ±

m
2 < n, we ensure that the patch falls within the valid range, meaning

that no part of the patch extends beyond the boundaries of the image after it is inserted.

The key point here is that by inserting we do not simply mean adding the values of the prompt pixel
with those of the image pixel. Rather, we aim to identify a general, universal patch that remains
effective when applied to different images and locations, regardless of the underlying pixel values.
To achieve this, we replace the values of the corresponding image pixels with those of the patch
pixels I[i − m

2 : i + m
2 , j −

m
2 : j + m

2 ] = P[:, :], a process we refer to as insertion of the
prompt into the image. To ensure the transferability of the visual prompt, the placement of the patch
is randomized across various locations within the image during the training. During the training
phase, for an input image, we select k random locations denoted by coordinates [i, j] within the
validity range criteria mentioned. The patch is then inserted on each coordinate one at a time. This
process is repeated for all images I in the dataset, resulting in a set of modified input images IP for
all samples. These modified images, with patches inserted at random locations, are then fed into the
vision encoder.

Transformer-based Vision Encoder. Within a transformer block with L layers and H attention
heads, we denote the attention values as Ai

l ∈ Rt×t, where A is the attention values of the ith head
of the layer l for an input image with t tokens. The output of the transformer encoder is typically
a contextualized representation of the image tokens, where each token has been influenced by its
surrounding tokens through the attention mechanism. This representation, often obtained from a
special token (e.g., the CLS token), can then be utilized for downstream vision tasks such as object
recognition or image classification. Our method leverages the attention values of the CLS token in
the last layer, averaged over the heads of that layer: ĀL[CLS, ∗] =

∑H
i=1 A

i
L[CLS, ∗].

Target Gaussian Map. When the prompt is applied to the input image on the pixel position [i, j], it
overlays on one or more tiles with the center [x, y], refer to Fig. 2. Assuming that the model divides
an n × n pixel image to t × t image tokens with each tile having the pixel size nt (n/t = nt),
the corresponding patch center [x, y] can be derived from its pixel position on the image [i, j] as:
x, y = (i/nt, j/nt).

To construct the target Gaussian map for the patch over the t × t token space, a 2D Gaussian dis-
tribution is employed. The Gaussian map G(x, y) at location [x, y] is represented by the probability
density function of a Gaussian distribution N(µ, σ2), where µ = (x, y) denotes the mean (center)
of the distribution, and σ is calculated from the Full Width at Half Maximum (FWHM), which in
our experiments is set to the patch size in token space m/nt: σ = (m/nt)/(2

√
2 ln(2)).

Neural Prior. To learn the optimized prompt, we aim to avoid the expensive need to fine-tune the
large-scale vision encoder by employing it solely in a frozen state. In this way, the only parameters
being updated through the training process are the pixel values of the prompt. However, a potential
barrier we may encounter in efficiently achieving the optimal patch is the limited learnable variables
within the pixel space Ulyanov et al. (2018); Khakzar et al. (2022). Thus we parameterize the patch
input space with a neural network as in Ulyanov et al. (2018). Such parameterization is also shown
to improve the transferability of optimized perturbations Poursaeed et al. (2018). we use a neural
prior f starting from randomly initialized weights, that receives a random prior input η ∈ m ×m
, and outputs an initial prompt Pprior = f(η) which is then masked by a predefined shape mask
P = Pprior ∗ Pmask and finally inserted centrally on the [i, j] pixel of the input image I to form
the input to the vision encoder: V iT (IP). Our neural prior f employs a CNN-based architecture, in
particular a U-Net with three layers of downsampling and three upsampling with Sigmoid activation
to ensure the values stay between [0, 1]. Leveraging shared spatial patterns among pixels in the patch
enables effective optimization during training which facilitates efficient visual prompt learning Krull
et al. (2019).

Objective Function. Assuming that an image with a patch applied on it IP = Insert(I,P, [i, j])
is the input to the V iT , we define mean of last-layer attention values over attention heads of the
vision encoder model as Āl = Attention(V iT (IP)). Our objective is to train the deep neural
prior to output a prompt P such that it enhances the attention Āl at corresponding token at x, y =
(i/nt, j/nt) with nt × nt indicating the number of pixels in a token. Having this objective in mind,
we calculate the final self-supervised loss as follows:

L(I, [i, j]) = LKL(ĀL[CLS, ∗],G(x, y)) (1)
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Algorithm 1 Learning Prompt with Predefined Shape

Require: I, η, nt ▷ Image Collection, Patch Prior Noise, n2
t = pixel size of a ViT tile

n = PIXEL SIZE(I) ▷ Image size: n× n
1: for I ∈ I do
2: P ← fθ(η) ▷ Generate patch from patch prior
3: [i, j]← RANDOM(n)
4: x, y ← i/nt, j/nt ▷ Find corresponding token coordinates
5: Ip ← INSERT(I, P, [i, j])
6: ĀCLS ← ATTENTION(VIT(Ip)) ▷ Get the averaged attention values for CLS over all

heads
7: l← LKL(ĀCLS , GAUSSMAP(x, y))
8: θ ← ADAMW(θ, l) ▷ Update the model parameters using AdamW optimizer
9: end for

where LKL is the KL-Divergence loss, Throughout the training process, the encoder remains frozen,
and only the weights of the neural prior undergo updates as a result of the back-propagating of the
defined self-supervised loss.

4 EXPERIMENTS

In the following, we first present the learned prompts for CLIP-B/32 and CLIP-L/14, discussing
several design considerations and their impacts. We then evaluate the effectiveness of the prompts
in the context of Naming Keypoints task. We take it a step further by learning prompts for SigLIP
Zhai et al. (2023), DeiT Touvron et al. (2021), and DINOv2 Oquab et al. (2023), each of which
either features a slightly different encoder architecture, or has a different training objective function,
or varies in pretraining datasets. Finally, we compare how the prompts impact their attention through
layers.

Implementation Details and Settings. All the vision encoders used are pretrained models available
from publicly accessible libraries such as Hugging Face Transformers Wolf et al. (2019) and PyTorch
Hub Paszke et al. (2017). Unless specified, we use a learning rate of 1e-3 and batch size of 32 and
train our framework for 10 epochs. All experiments were conducted on a machine equipped with a
single NVIDIA A100 GPU with 80GB of memory.

Datasets and Evaluation Metric. Training: Our framework is trained using a subset of ImageNet,
specifically 10 categories from Deng et al. (2009); Howard (2019), which provides over 13k di-
verse samples, enhancing the generalizability of our self-supervised method that does not rely on
labeled classes, avoiding the resource demands of using the full ImageNet dataset. Evaluation: We
evaluate our learned prompt on the CUB-200-2011 test set Wah et al. (2011), containing 5794 bird
images with 15 annotated body-part keypoints, by positioning the prompt on these keypoints and
measuring the accuracy based on the number of correctly identified body parts. To further evalu-
ate our learned prompt, we test its performance also on the RefCOCO Kazemzadeh et al. (2014),
RefCOCO+Kazemzadeh et al. (2014), and RefCOCOgMao et al. (2016) datasets which consist of
images, annotated with bounding boxes around objects in it, each of which is paired with expres-
sions. More dataset details are in the appendix.

Models and Baselines. Specifically, CLIP-B/32 and CLIP-L/14 are employed for their robust zero-
shot learning capabilities, leveraging large-scale vision-language pretraining. SigLIP integrates im-
age and language understanding in a synergistic manner. DeiT and DINOv2 are utilized for their
state-of-the-art performance in vision transformer architectures, with DeiT focusing on efficient
training and DINOv2 providing self-supervised learning benefits. The baseline for comparison in-
volves using the cropped region over the object bounding box in the RefCOCO dataset family. This
approach isolates the relevant object from the surrounding context, allowing for a focused evaluation
of keypoint identification accuracy. Additionally, random location baselines are employed to assess
the robustness of our method against random visual prompts.

4.1 GUIDING ATTENTION TO NAME KEYPOINTS
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Table 1: Vanilla Patches and Scale Con-
straints. Accuracies on CUB for CLIP-
B/32 and CLIP-L/14 while the patch dimen-
sions are set according to their token sizes.

Dim CLIP-B Dim CLIP-L
32x32 10.97 14x14 12.86
48x48 9.85 28x28 16.04
64x64 9.71 42x42 17.41
80x80 7.35 56x56 13.68

We begin with a basic prompt, the vanilla patch,
a simple filled square without shape masking. We
train patches of different sizes for the CLIP-B/32 and
CLIP-L/14 models, matching the token dimensions of
each. Since CLIP models divide images into tokens
(base model: 32 × 32, large model: 14 × 14), our
one-token-sized prompt has varying pixel dimensions
accordingly.

Table 1 reports the accuracy of keypoint naming on
the CUB dataset. We select patch sizes proportional
to the tokens: 1, 2, 3, and 4 times larger for CLIP-
L/14. For CLIP-B/32, due to the substantial token
pixel size, we opt for prompts that are 1, 1.5, 2, and

2.5 times larger to avoid excessive pixel coverage by the patch. The visualizations of learned prompts
are available in the appendix.

The results indicate that for CLIP-B/32, the prompt size equal to 1 token yields the best performance,
whereas for CLIP-L/14, the 3-times larger prompt achieves the highest accuracy. Looking into this
deeper, this suggests that optimal accuracy is achieved when the prompt covers approximately the
same area size on the image (32×32 and 42×42) for both models. This may be because a too-large
patch, while better at manipulating the image, also covers more of it, leading to information loss and
lower performance.

Figure 3: Definiion
of λ for ring and
frame masks.

Beyond vanilla patch towards using shape masks: Initially, we used a
filled square for the prompt. Previous research suggests that the geometric
shape of the patch, particularly a circle or a square, impacts its effective-
ness Shtedritski et al. (2023); Bahng et al. (2022), with both square and cir-
cle shapes demonstrating strong performance. To investigate the influence
of prompt shape on performance in naming keypoints task for CLIP models,
we employ a square frame (two concentric squares) and a ring (two concen-
tric circles) as predefined shape masks. We define a thickness factor as λ =
inner Diameter
outer Diameter as depicted in Figure 3 and investigate the performance for
different thicknesses together with different patch sizes, again proportional to the model’s token
size.

What we observe from the performances in Table 2 is that the circle-shaped prompt yields higher ac-
curacy compared to the square-shaped prompt in general. For CLIP-B/32, the circle prompt achieves
the highest accuracy of 11.51, and the best square prompt yields slightly lower accuracy. For CLIP-
L/14, the difference is significant: the circle prompt reaches an accuracy of approximately 30.5,
whereas the square prompt only achieves about 20.5. The comparison of patch sizes reveals findings
consistent with the vanilla patch results. For CLIP-B/32, the optimal patch size remains the same as
the default size for one token. In contrast, for CLIP-L/14, the highest accuracy is obtained with a
prompt three times larger than one token of the large clip model, the size covering a similar number
of pixels.

The visualizations of the best-performing square frame and ring-shape prompts are available in the
appendix. Colors of red and pink are predominant for CLIP-B/32 and CLIP-L/14, respectively. It is
noteworthy that the optimal prompt learned for CLIP-L/14 is a pure red circle. Even when we use
a square shape prior, a red color emerges. Previously, Shtedritski et al. (2023) tried various manual
markers using intuition and identified a red circle as an effective prompt. Interestingly, their manual
marker seems to be the optimal marker for guiding the attention of CLIP-L/14. Though for CLIP-
B/32 the pure red circle is not optimum. This suggests it may be an emergent property that arises
with increasing scale.

Impact of Neural Priors: In Figure 5 we look into how the neural prior helps our prompt for an
enhanced attention manipulation of CLIP vision encoders. We examine the attention averaged values
of tokens in the area overlaid by the prompt before and after its application for over 1000 images
from MS COCO while the prompt location is random. By analyzing attention values across layers,
we can assess the prompt’s impact. Since attention values are relative, we define Attention Gain as
the ratio of the difference of averaged attention values of tokens influenced by the prompt to their
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(a) CLIP-B/32 (b) DINOv2-B

Figure 5: Neural Prior impor-
tance: How the learned prompt
influences the attention values
across layers with (green and
blue) or without (red) neural
prior. For both models, at-
tention gain when neural prior
is used sensibly increases, em-
phasizing its beneficial impact.

initial attention values without prompt. Figure 5 illustrates the attention gains for CLIP-B/32 and
DINOv2B across their different layers. For both models we observe that U-net neural prior sensibly
helps the prompt to learn the optimized pixel values for an increased attention gain. A complete plot
for all models is available in the appendix.

4.2 INVESTIGATING ATTENTION DYNAMICS IN VARIOUS VISION ENCODERS

Figure 4: Applying prompts on different
models. The relative attention gains, normal-
ized by the best-performing prompt of each
model.

Various vision encoder models are trained on diverse
datasets, leading to behaviors that may differ from
CLIP models. More importantly, these vision foun-
dations use different training paradigms. CLIP vi-
sion encoder is trained with language supervision,
while DINOv2 is trained by self-supervision using
visual information only. Therefore, during train-
ing is no supervision signal for the model to learn
that colored markers (such as red circles) signify
the importance of the region the marker is placed.
Additionally, their architectural details might vary
slightly, e.g., SigLIP has no CLS token and instead
averages over tokens by an attention pooling mech-
anism. As a result, the optimal prompt to redirect
their attention can also be different. To investigate
this, we use a similar self-supervised training ap-
proach to learn prompts of SigLIP, DeiT, and DI-
NOv2 as well.

Table 2: Impact of prompt’s thickness and size: Accuracies on CUB to correctly identify the bird
body parts after applying the learned prompt on keypoints. Varying thickness ratios of frame and
ring masks are used over different prompt sizes, proportionate to the model’s token pixel size.

CLIP-B/32 prompt size CLIP-L/14 prompt size
Shape Thickness 1.0x 1.5x 2.0x 2.5x 1.0x 2.0x 3.0x 4.0x

Frame

0.5 10.58 10.03 9.14 9.31 13.06 16.36 19.24 13.47
0.6 9.77 9.83 8.66 8.16 11.88 14.86 15.77 15.22
0.7 10.05 9.57 8.36 8.44 11.88 13.99 19.61 18.03
0.8 10.67 8.97 8.20 8.61 12.66 17.15 18.87 18.77
0.9 9.72 9.92 7.75 7.52 13.36 16.27 20.47 15.83

Ring

0.5 9.92 9.473 9.10 8.74 8.59 17.03 16.87 24.23
0.6 11.27 10.846 9.10 9.44 13.23 13.15 23.81 25.42
0.7 10.89 10.945 9.27 9.11 8.98 15.90 28.93 29.25
0.8 11.47 11.091 9.86 10.66 13.51 21.15 28.78 29.03
0.9 10.70 11.24 10.34 10.79 12.89 26.25 25.58 26.93
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(a) CLIP-B/32 (b) CLIP-L/14 (c) SigLIP

(d) DeiT (e) DINOv2-B (f) DINOv2-L

Figure 6: Attention Gain throughout all layers of different models. The optimal learned prompt
for each model is applied to all other models to evaluate its effectiveness in increasing attention. We
observe that each model’s own learned prompt consistently achieves the highest attention gain.

Figure 1 shows the visualization of the learned op-
timized prompt for each vision encoder. The different appearance of the visual prompts confirms
that there is no single prompt that is universally optimal for all encoders. In Figure 7, we apply the
learned prompts on to three different locations on an image and compare the heatmap visualizations
of the prompted image with the original, unprompted image. For almost all encoders, the atten-
tion heatmap shifts towards the prompt location, demonstrating the effectiveness of our prompt in
manipulating the attention of the corresponding visual encoder models.

Will one model’s prompt work for the other? Figure 6 demonstrates the attention gain of each
model when the other model’s optimized prompt is applied to the same images. From Figures
6d, 6e, and 6f we can see that the unique prompts for DeiT and DINOv2-B and DINOv2-L draw
significantly larger attention to themselves compared to the CLIP-L/14 optimized prompt which is
a solid red circle, showing the power of our learning framework. This could confirm the suggestion
that the presence of red circles in the training data of CLIP models and SigLIP has made them
particularly sensitive to this predefined feature Shtedritski et al. (2023), which is not the case for
other vision encoders such as DeiT and DINOv2 models.

Figure 4 compares the attention gains in the last layer of each ViT model across six scenarios, where
a single optimized prompt is applied to the image set in each case. The values are normalized by
the best-performing prompt for each model. As shown in Figure 4, for nearly all models, their
respective optimized prompts yield the highest attention gains. This suggests that a tailored prompt
should be learned individually for each model to maximize its performance. More results about the
effectiveness of a prompt learned on a combination of models are in the appendix.

To evaluate the performance of learned prompts, we test them on CUB and RefCOCO, which
provide annotated image locations for specific body parts (CUB) and objects (RefCOCO). These
datasets were not used during training. In particular, evaluation of CLIP-B/32, CLIP-B/32, and
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Figure 7: How Attention Heatmap is changed after Applying the Learned Prompts. The optimal
visual prompts are not the same and each pretrained vision transformers model has its own unique
pattern. The prompt is optimized to generalize across images. Comparing attention heatmaps of
original (left) and prompted images (right) shows how well prompts focus attention on specific
locations.

SigLIP is possible dou to the fact that a text encoder is matched with the embeddings out of their
vision encoders. We use the blurring strategy as the baseline, which has been identified as the most
effective visual marker for annotated data in previous research Yang et al. (2024). The blurring is
done by averaging method with a kernel size of 5 over the area around the bounding box for Re-
fCOCO and defining a square similar to the prompt size for CUB, while keeping the area within
the bounding box with the original resolution. In Table 3, we can see our learned prompts signif-
icantly improve the accuracy on CUB dataset. For RefCoCo, our learned prompt notably exceeds
the blurring in CLIP-L/14 and SigLIP. These findings underscore the effectiveness of our approach,
especially when the context of the image is important.

5 APPLICATION AND FUTURE WORK

The significance of optimizing prompts for self-supervised models such as DINOv2: To further
evaluate the effectiveness of our prompts, we use the MLLM (Multimodal Large Language Model)

Table 3: Performance comparison on classification task for different methods across datasets:
While Blurring previously showed the highest performance among other location-controllable visual
prompts Yang et al. (2024), our learned prompt, specific to the model, demonstrates an exceeded
performance for 2 out of 3 models on RefCoCo sets and 3 out of 3 models on CUB.

Encoder Prompt CUB RefCOCO RefCOCO+ RefCOCOg
K2N TestA TestB Val TestA TestB Val Test val

CLIP-B/32 Blur 7.4 39.6 41.1 40.0 39.5 41.2 40.0 41.3 41.1
32 × 32 11.39 37.7 40.9 39.3 38.5 40.2 38.5 39.1 39.0

CLIP-L/14 Blur 11.0 42.5 41.6 41.2 43.3 41.2 41.9 42.9 43.2
42 × 42 29.7 49.5 43.9 46.7 51.3 46.2 48.1 50.4 49.0

SigLIP Blur 13.1 42.9 41.3 41.8 43.6 43.0 42.8 44.2 44.5
48 × 48 30.8 43.7 43.5 42.9 45.1 43.8 44.0 45.1 45.0

9
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Figure 8: Prompting applications for the new generation of Vision Language Models: New vi-
sion language models are moving beyond clip vision encoders towards using richer vision encoders
such as DINOv2. Therefore it becomes progressively necessary to identify visual prompts for the
new generation of models. This figure depicts an example to show the potential of using the opti-
mized prompts in the new generation of vision-language models, in this case, LLaVA+MoF Tong
et al. (2024) on examples from the MMVP dataset.

introduced in Tong et al. (2024), which uses an Interleaved Mixture-of-Features approach to spa-
tially leverage interleaving CLIP and DINOv2 visual tokens after an adapter. In Figure 8, we com-
pare Tong et al. (2024) model’s performance with and without our unique CLIP-L/14 and DINOv2
prompts applied to the image input to see if it improves the question answering responses of their
model on proposed MMVP (Multimodal Visual Pattern) Benchmark. The examples demonstrate
that our prompts enable the model to generate more accurate answers, which means they create im-
proved embeddings. This indicates that our attention-guiding prompts have promising applications
in a variety of vision tasks that can be explored in future works.

Limitations of our method: While our method is self-supervised and does not rely on annotated
training data, a key limitation is that its application and effectiveness still require annotated datasets,
such as CUB, for downstream tasks during inference. An interesting direction for future work would
be exploring methods to infer optimal locations for applying our learned prompts without rely-
ing on such annotations. Another limitation involves vision-only encoders like DINOv2 and DeiT,
which lack zero-shot classification capabilities, preventing us from evaluating our approach on these
models, unlike the CLIP family. Moreover, our work is constrained to open-source models, which
presents a challenge for learning prompts on proprietary models due to the inaccessibility of their
hidden states and attention values. Additionally, in our proposed framework, we only focused on
learning prompts within the RGB space and relied on predefined shape masks. Future work could
involve incorporating strategies for learning the shapes themselves, further enhancing the model’s
adaptability and precision.

6 CONCLUSION

In this work, we proposed a self-supervised optimization-based visual prompting technique for
guiding the attention of vision transformers, thereby avoiding the limitations of manually crafted
prompts. Our method demonstrated the ability to guide the attention of various vision transformer
models, such as the CLIP family, SigLIP, DeiT, and DINOv2, without requiring prior knowledge of
dataset biases and without fine-tuning the models. The transferability of the prompt across different
images was accomplished by leveraging a deep network prior. Our experiments confirmed that the
learned prompts successfully redirect the attention of not only the CLIP family of models which are
trained with language supervision, but also the purely self-supervised models such as DINOv2. As
new vision language foundation models are leveraging the self-supervised vision encoders for their
superior ability to extract visual features, the proposed optimization-based proves to be helpful for
prompting upcoming models.
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A APPENDIX

Table 4: This compares the performance of different methods across various datasets, highlighting
that the Crop method excels in RefCOCO tasks, while the Blur method also shows strong results
there. In contrast, both methods struggle in the CUB dataset, where contextual information is essen-
tial for accurate animal detection.

Encoder Prompt CUB RefCOCO RefCOCO+ RefCOCOg
K2N TestA TestB Val TestA TestB Val Test val

Random 8.2 36.9 39.5 37.8 36.9 39.7 37.9 39.5 39.1

CLIP-B/32
Crop 15.6 56.6 47.7 52.6 60.4 51.7 55.9 60.3 59.5
Blur 7.4 39.6 41.1 40.0 39.5 41.2 40.0 41.3 41.1

32 × 32 11.39 37.7 40.9 39.3 38.5 40.2 38.5 39.1 39.0

CLIP-L/14
Crop 18.5 58.8 47.8 53.5 63.5 51.4 57.5 61.2 60.6
Blur 11.0 42.5 41.6 41.2 43.3 41.2 41.9 42.9 43.2

42 × 42 29.7 49.5 43.9 46.7 51.3 46.2 48.1 50.4 49.0

SigLIP
Crop 19.6 62.6 51.3 57.9 66.8 56.7 62.3 69.2 68.5
Blur 13.1 42.9 41.3 41.8 43.6 43.0 42.8 44.2 44.5

48 × 48 30.8 43.7 43.5 42.9 45.1 43.8 44.0 45.1 45.0
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Figure 9: With our learned prompts, the model’s attention can be redirected to any location where
the prompt is inserted, regardless of the background colors or context.

Figure 10: Visualizations of vanilla patches learned for CLIP family models. Their size is propor-
tional to the token size of the model as demonstrated in the gray area.

The prompt has been developed, and the design configurations have been explored. Interest now lies
in evaluating its performance compared to baseline methods on different datasets. To this end, the
method is trained on the ImageNet dataset and tested on the CUB and RefCOCO datasets. These
datasets are new to the prompt and were not seen during the training phase. Additionally, the datasets
offer the advantage of annotated image locations with names of specific body parts or objects for
CUB and RefCOCO, respectively.

The baselines are defined as follows: *Random*, where areas are randomly selected; *Crop*, where
the area around the bounding box is removed for RefCOCO, and a square similar to the prompt
size is defined for CUB before cutting out that area; and *Blur*, which is similar to cropping but
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Figure 11: Visualizations of the prompts with the best performance on CUB dataset from Table 2
in the paper. We see that the red and pink color is predominant for both circle and rectangle shapes.

(a) CLIP-B/32 (b) CLIP-L/14

Figure 12: Attention Gain of all models with and without neural prior. We applied our learned
prompt to random locations on 1000 samples from the MS COCO dataset. We try to show how the
neural prior effects the improved performance of prompt in terms of attention gain.

with the outer area blurred using the averaging method with a kernel size of 5. As indicated by
the results presented in Table 4, superior performance in RefCOCO tasks is exhibited by the Crop
method, though its effectiveness diminishes when applied to the CUB dataset. In contrast, notable
improvements in RefCOCO tasks are shown by the Blur method.

It has been observed that RefCOCO object descriptions often focus solely on the target object rather
than relying heavily on scene context. This tendency explains the success of both the Blur and
Crop methods in this dataset. However, in the CUB dataset, the accurate recognition of animals
is challenging for the vision encoders, making it difficult for specific body parts to be detected.
Despite this challenge, the learned prompts generally outperform other baselines in the CUB dataset.
In RefCOCO tasks, second place is consistently achieved by the method, after the effective Crop
method. These findings underscore the effectiveness of the approach, especially when the context
of the image is important.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 13: When we trained the optimized prompt for a combination of models, their performance
in terms of normalized attention gain is different. Here we can conclude that there is no global
prompt that will perform best in all Vision Encoders at the same time.

(a) CLIP-B/32 (b) CLIP-L/14 (c) SigLIP

(d) DeiT (e) DINOv2 (f) DINOv2L

Figure 14: Attention Gain throughout all layers of different models. The optimal learned prompt
is compared with the baseline of a simple red circle manual marker. In CLIP family, the red circle
as a prompt is effective. However, for more recent models like DeiT and DINO family, this is too
simplistic. Our learned prompts exceed the manual marker of a red circle by far.
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