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Abstract001

Large Language Model-based agents have002
demonstrated impressive capabilities in various003
tasks. To further enhance their abilities, the col-004
laboration of multiple agents presents a promis-005
ing avenue. Recently, Multi-Agent Debate006
(MAD) was introduced as a typical collabora-007
tive method, where agents discuss potential so-008
lutions to a problem over several rounds of de-009
bate. However, researchers observed that MAD010
is not stably superior to single-agent methods.011
Unfortunately, there has been insufficient ex-012
ploration of this issue. In this paper, we experi-013
mentally find out what leads to the instability of014
MAD, namely the woozle effect, which refers015
to the propagation of hallucinations among016
agents in the debate. Since MAD is always017
based on a static and fully connected commu-018
nication topology, each agent can be misled by019
others that containing erroneous information,020
and subsequently spread this misinformation.021
To address this, we propose DIGRA, a novel022
MAD framework with Dynamic communica-023
tion topology driven by the Information Gain024
RAtio. Our evaluations across various bench-025
marks show that selecting appropriate counter-026
parts for agents significantly mitigates halluci-027
nation propagation, leading to superior collec-028
tive intelligence.029

1 Introduction030

Recent advances in Large Language Model (LLM)-031

based agents have demonstrated remarkable suc-032

cess across various fields, including reasoning (Wu033

et al., 2023), code generation (Shinn et al., 2024),034

and autonomous driving (Chen et al., 2024a).035

Building on the impressive capabilities of single036

agents, researchers aspire to harness the collective037

intelligence of multiple agents through their collab-038

oration. Recently, inspired by The Society of Mind039

(Minsky, 1988), Multi-Agent Debate (MAD) has040

emerged as a prominent approach (Du et al., 2025),041

where multiple agents independently propose and042

collaboratively debate their responses to improve 043

the quality of reasoning and factuality tasks. Al- 044

though Du et al. demonstrated its effectiveness in 045

certain tasks, subsequent studies found that MAD 046

does not consistently outperform single-agent meth- 047

ods (Wang et al., 2024; Zhang et al., 2025). This 048

motivates us to investigate what leads to the un- 049

stable performance of MAD, thereby laying the 050

groundwork for the future development of more 051

effective multi-agent systems. 052

We suspect that the hallucination phenomenon 053

might be a potential cause. Hallucination refers to 054

LLMs generating plausible yet erroneous informa- 055

tion, which undermines their reliability and trust- 056

worthiness (Rawte et al., 2023). MAD attempts 057

to mitigate this issue through critical discussions 058

among agents. However, in this paper, we found 059

that this strategy is not invariably effective. We 060

identified a pronounced Woozle Effect1 in MAD, 061

where hallucinations are not only generated by a 062

single agent but also propagated through discus- 063

sions, misleading a portion of otherwise accurate 064

agents. As shown in Figure 1(a), we illustrate the 065

woozle effect during debates among three agents. 066

Specifically, in the first round, one agent is config- 067

ured to consistently produce an erroneous answer, 068

while the remaining agents are configured to pro- 069

vide correct responses. Subsequently, the propaga- 070

tion of hallucinated information is tracked across 071

the predefined communication topology. Surpris- 072

ingly, although the agents initially arrived at a fully 073

correct answer through majority voting, halluci- 074

nated information continued to propagate. Over 075

time, this misinformation converged, ultimately 076

leading to a significant decline in performance. 077

Based on this intriguing finding, we further con- 078

ducted experiments under various conditions to 079

investigate the mechanisms and characteristics of 080

1Woozle Effect in social science refers to the occurrence
and propagation of misconceptions, detailed in Appendix A.1.
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Figure 1: (a) The woozle effect in three-agent debates using Llama3.1-8B on the Natural Question dataset. The
width of the flow reflects the proportion of the respective information propagated. Please refer to Appendix A.2.2
for more details. (b) Variations in communication topologies and their effects on hallucination propagation (c)
Overall DIGRA Framework.

underling hallucination propagation. We found that081

over 10% to 20% of the agents are misled eoundin082

each round through discussion, and this proportion083

continuously increases as the initial level of hal-084

lucination rises. This suggests that the prevalent085

propagation of hallucinations exerts a significant086

constraint on MAD. Additionally, We provide an087

interpretation of hallucination propagation through088

the lens of persuasion and experimentally identi-089

fied what problems are more prone to triggering090

hallucination propagation.091

This naturally raises the question: How can we092

mitigate the propagation of hallucination in MAD?093

We notice that most MAD methods rely on a static,094

fully connected communication topology, where095

agents communicate with all other agents during096

each round (Figure 1(b)). This creates a persistent097

risk of agents being misled by those with halluci-098

nated information and subsequently spread the mis-099

information to others. Drawing inspiration from en-100

tropy in evaluating the extent of hallucinations, we101

propose DIGRA, a novel multi-agent debate frame-102

work with the Dynamic communication topology103

driven by the Information Gain RAtio to address104

this challenge. Specifically, as shown in Figure 1(c)105

for each agent, DIGRA first calculates the Informa-106

tion Gain Ratio (IGR) of generating its response107

conditioned on the set of responses from other108

agents. It then selects the agents corresponding109

to the highest IGR values for communication. The110

IGR is directly proportional to the utility of infor-111

mation from other agents to the current agent, and112

inversely proportional to the hallucination levels of 113

the referenced agents. Moreover, the communica- 114

tion topology in DIGRA is adaptively determined 115

in each round. Thus, DIGRA facilitates efficient de- 116

bates by dynamically selecting counterparts that are 117

most beneficial for refining the response of current 118

agent while simultaneously preventing the woozle 119

effect. We demonstrate the consistent superiority 120

of DIGRA across various benchmarks. 121

In summary, our contributions are as follows: 122

• We reveal that hallucination propagation is a 123

major contributing factor to the instability of 124

multi-agent debate. 125

• To mitigate hallucination propagation, we in- 126

troduce DIGRA, a novel multi-agent debate 127

framework with a dynamic communication 128

topology driven by the IGR. 129

• We evaluate DIGRA on various datasets, 130

demonstrating its effectiveness in preventing 131

hallucination propagation, resulting in supe- 132

rior collective intelligence. 133

2 Related Work 134

2.1 Multi-Agent Debate 135

Building on the successes of LLM-based agents 136

(Schick et al., 2024; Park et al., 2023; Liu et al., 137

2023), researchers seek to address more sophisti- 138

cated tasks through their collaboration (Guo et al., 139

2024). Recently, MAD was introduced as a promi- 140

nent method for facilitating multi-agent collabora- 141

tion (Du et al., 2025). Specifically, in MAD, each 142
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agent generates a response to the question, which143

is incorporated into the prompts of other agents in144

the subsequent round through a predefined com-145

munication topology. Additionally, due to the high146

cost of fully connected communication topology,147

Li et al. proposed sparse topology and achieved im-148

proved performance. Liang et al. further designed149

a judge for debates, aiming to arbitrate the final an-150

swer through the judge. Nonetheless, judge might151

be prone to biases (Wang et al., 2024), favoring re-152

sponses closer to their initial preferences. Addition-153

ally, we focus on dynamic communication topol-154

ogy, which is distinct from general dynamic topol-155

ogy methods such as DyLAN (Liu et al., 2024b).156

Hence, we do not delve into the discussion of the157

judge and dynamic topology methods.158

Most studies currently suggest that MAD can159

generate more reliable responses, owing to the di-160

vergent thinking of multiple agents and their critical161

synthesis of responses (Liang et al., 2024; Sun et al.,162

2024; Liu et al., 2024a; Hegazy, 2024). However,163

Wang et al. and Zhang et al. found that this claim164

is not entirely validated, as MAD performs simi-165

larly to or even worse than single agent methods.166

We investigate this issue and identify hallucination167

propagation in discussions as a key contributor.168

2.2 Hallucinations and Misdirection in LLMs169

LLMs are prone to generating factually incorrect170

information, referred to as hallucination, which sig-171

nificantly undermines their reliability and trustwor-172

thiness (Zheng et al., 2023; Tonmoy et al., 2024;173

Huang et al., 2025). Existing efforts primarily fo-174

cus on the detection (Manakul et al., 2023; Chen175

et al., 2024b), evaluation (Li et al., 2023; Jiang176

et al., 2024), and mitigation (Varshney et al., 2023;177

Zhang et al., 2024) of hallucination. In addition,178

some studies attempted to detect hallucinations179

through MAD (Sun et al., 2024; Feng et al., 2024).180

Another line of work explores how adversarial181

users can mislead LLMs through tailored persua-182

sion, leading to alignment jailbreaks (Zeng et al.,183

2024) and factual errors (Xu et al., 2024). Research184

has revealed that LLMs are susceptible to decep-185

tion, severely compromising their security and ef-186

fectiveness. Distinct from the studies mentioned187

above, our research centers on hallucination prop-188

agation. This phenomenon is more intricate than189

in single LLMs, as agents can both generate hallu-190

cinations and be misled by others with erroneous191

information, subsequently amplifying it through192

collaborative discussions.193

3 Exploring Hallucination Propagation in 194

Multi-Agent Debate 195

Although multi-agent collaboration through discus- 196

sion holds promise for achieving collective intelli- 197

gence, recent studies have shown that MAD does 198

not consistently outperform single-agent methods 199

(Wang et al., 2024; Zhang et al., 2025). We suspect 200

that this instability may stem from the hallucination 201

phenomenon in LLMs (Rawte et al., 2023), where 202

plausible yet incorrect information is generated and 203

further propagated among agents during debates. 204

To enable fine-grained tracking and evaluation, 205

we control the degree of hallucination in agents’ 206

initial responses and observe how it spreads during 207

the debate. Specifically, we pre-collect both correct 208

and incorrect answers for each question and assign 209

them to agents in the first round with varying error 210

rates. Hallucination propagation is then quantified 211

by tracking misleading behaviors of agents across 212

subsequent rounds. 213

3.1 Experimental Setups 214

Models. We examine hallucination propagation 215

across two representative models: Llama 3.1-8B 216

(AI@Meta, 2024), which is more susceptible to 217

misleading information, and Mistral-7B (Jiang 218

et al., 2023), which demonstrates greater resistance 219

to such influence. Each model is run across four 220

random seeds, and we report the mean results along 221

with the standard deviation. 222

Dataset for Measuring Hallucination Propaga- 223

tion. To track hallucinations and their propagation, 224

we use the FARM dataset (Xu et al., 2024), which 225

assesses the susceptibility of the model to misinfor- 226

mation. FARM consists of questions from popular 227

QA benchmarks: Natural Questions (Kwiatkowski 228

et al., 2019), BoolQ (Clark et al., 2019), and Truth- 229

fulQA (Lin et al., 2022), along with multiple incor- 230

rect responses generated via various strategies. As 231

hallucinations in reasoning often stem from flawed 232

logic, we adopt the "logical" strategy, which pro- 233

vides plausible yet incorrect rationales to each ques- 234

tion. Correct responses we use are generated via 235

multiple sampling after providing the model with 236

ground-truth answer (see Appendix A.2.3). 237

Evaluation Metrics. To quantitatively evaluate 238

hallucinations propagation, we use two metrics: 239

Mean Accuracy (MA) and Misleading Rate (MR) 240

per round (Xu et al., 2024; Men et al., 2024). 241

The key notations are defined as follows: Let 242

t = 1, 2, 3... denote the debate round, and Aq
i,t 243
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Model Setup NQ TruthfulQA

MA1 MA2 MA3 MR2 MR3 MA1 MA2 MA3 MR2 MR3

Llama

3× 0 7.4±0.7 13.5±0.6 0 35.0±4.6 0 7.4±0.5 13.8±1.0 0 48.7±4.3

2× 1
√

33.3 58.6±1.0 51.8±1.5 88.0±1.6 57.0±2.2 33.3 60.1±0.8 51.4±0.8 87.4±1.4 59.1±1.9

1× 2
√

66.7 62.6±1.0 57.0±0.5 52.9±1.3 36.2±1.1 66.7 63.6±0.9 55.3±1.2 51.6±1.3 39.8±1.4

3
√

100 91.1±0.8 92.9±1.0 8.9±0.8 5.4±0.7 100 91.2±0.2 90.9±0.5 8.8±0.2 7.5±0.6

Standard 73.6±0.8 75.2±0.6 77.7±0.3 15.6±0.8 11.2±1.0 56.7±1.0 58.7±1.1 61.2±1.5 21.7±1.2 16.3±0.9

Mistral

3× 0 1.0±0.2 1.5±0.3 0 65.0±18.2 0 2.7±0.3 4.0±0.2 0 58.0±5.4

2× 1
√

33.3 38.8±0.8 41.7±1.7 49.8±1.3 36.3±2.4 33.3 48.3±1.3 48.6±0.7 48.0±2.1 35.0±0.6

1× 2
√

66.7 81.6±0.6 83.6±1.0 12.7±0.9 11.3±1.0 66.7 83.8±0.9 85.9±0.9 13.9±0.6 9.9±0.6

3
√

100 96.0±0.2 93.6±0.5 7.4±0.7 4.2±0.4 100 94.6±1.0 95.9±0.5 5.4±1.0 2.6±0.3

Standard 63.2±0.6 67.6±0.4 68.0±0.3 12.0±0.4 9.9±0.9 53.0±0.5 59.1±0.5 61.1±0.5 10.5±0.8 8.4±1.0

Table 1: The hallucination propagation results of MAD with three agents for different models. Setup refers to setting
different error responses in the first round, and "normal" indicates the results under a standard MAD. The setup 3×
and 3

√
can be seen as the lower and upper bounds, respectively. The results of BQ are shown in Table 7.

Model: Llama

Dataset :NQ

Model: Mistral

Dataset: NQ

Model: Llama

Dataset: TruthfulQA

Model: Mistral

Dataset: TruthfulQA

Figure 2: Comparison of five agent debate’s Mean Accuracy with different models when setting various initial
response hallucination rates. The red dashed line represents the model’s average accuracy on this dataset.

be the answer of agent i to question q at round t.244

The gold answer for question q is denoted as aq,245

and the full textual response is represented by Rq
i,t.246

Each debate involves Nq questions and Na agents.247

The accuracy of agent i at round t is computed as:248

Accqi,t = I(Aq
i,t = aq) (1)249

and the mean accuracy at round t is defined as:250

MAt =

∑Nq
q

∑Na
i Accqi,t

Nq ×Na
(2)251

Compared to using the final result from voting to252

represent accuracy, MAt offers a more granular253

view of the hallucination levels of the agents.254

To evaluate hallucination propagation, we also255

recorded the misdirection rate for each round:256

MR(t) =

∑Nq
q

∑Na
i Qq√

,i,t−1 ·Q
q
×,i,t∑Nq

q

∑Na
i Qq√

,i,t−1

(3)257

where Qq√
,i,t = I(Accqi,t = 1) and Qq

×,i,t =258

I(Accqi,t = 0) represent whether the agent’s answer259

is correct at round t. MRt measures the proportion260

of agents who were correct in round t−1 but be-261

came incorrect in round t, reflecting the extent to262

which hallucinations misguide agents in the debate.263

Implementation Details. We conduct debates264

using either three or five agents. As hallucination265

propagation predominantly occurs within the first266

three rounds (Figure 1), we fix the number of de- 267

bate rounds to three. Additional experimental set- 268

tings and results based on other evaluation metrics 269

are provided in Appendix B.2.1. The conclusions 270

obtained are similar. 271

3.2 Main Results and Findings 272

Hallucination Propagation limits MAD. As 273

shown in Table 1 and Figure 2, we report the results 274

involving three and five agents. In standard de- 275

bate settings, although MA increases over rounds, 276

the overall improvement remains modest. Both 277

Llama and Mistral exhibit MR close to 10% in 278

each round, with Llama’s MR2 exceeding 20% on 279

TruthfulQA. This suggests that a substantial num- 280

ber of agents who initially held correct beliefs were 281

subsequently misled through interactions with the 282

agents during the debate. These findings indicate 283

that, while MAD holds the potential to improve 284

performance, its practical effectiveness remains 285

limited. This limitation can be primarily attributed 286

to the severe propagation of hallucinations. This is 287

consistent with our assumption that hallucinations 288

can spread through discussions, misleading other 289

agents and accounting for a considerable portion. 290

The Process of Hallucination Propagation. As 291

depicted in Figure 1(a), we present the transmission 292

process of hallucinated information. In the second 293
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round, hallucinated agents mislead initially accu-294

rate agents by introducing erroneous information295

during the discussion. As the debates progress, this296

initial hallucinated information spreads incremen-297

tally, resulting in a decline in overall performance.298

Findings I: MAD exhibits faithfulness halluci-299

nation. In the upper-bound configuration, perfor-300

mance gradually declines, indicating that halluci-301

nations not only originate in initial responses but302

also emerge and propagate during debates. Simi-303

larly, under the lower-bound configuration, agents304

demonstrate the capacity to deviate from erroneous305

responses and generate accurate answers. This ten-306

dency reflects faithfulness hallucination (Maynez307

et al., 2020), where models remain overly loyal to308

their intrinsic distribution of initial responses and309

fail to incorporate new, beneficial information. As310

shown in Figure 2, this phenomenon hinders effec-311

tive interaction among agents. Llama frequently312

converges toward its initial accuracy throughout313

the debate, and the continued spread of faithful-314

ness hallucination ultimately causes performance315

to regress toward the model’s original distribution.316

Findings II: Accurate and hallucinated infor-317

mation is propagated concurrently during the318

debate. As the degree of hallucination in the ini-319

tial response increases, MR gradually increases,320

suggesting that stronger initial hallucinations in-321

tensify their propagation. However, hallucinated322

agents are not inherently stubborn troublemakers323

(Men et al., 2024; Barbi et al., 2025) that persis-324

tently generate erroneous results. When interacting325

with accurate agents, they can revise their beliefs326

and produce correct responses. This indicates that327

both hallucinated and accurate information spread328

simultaneously during the debate. If the spread of329

hallucinations can be effectively interrupted, this330

issue could be mitigated, promoting the effective331

dissemination of accurate information.332

Findings III: Hallucination propagation is333

model-dependent but task-independent. The334

consistent pattern of results across diverse datasets335

suggests that hallucination propagation is a fun-336

damental issue within the MAD framework and337

exhibits only limited task-specific correlation. Ad-338

ditionally, the extent of hallucination propagation339

varies across different models. Based on the debate340

results, Llama exhibits stronger reasoning capabili-341

ties compared to Mistral. However, Llama suffers342

from more pronounced hallucination propagation,343

while Mistral demonstrates consistent performance344

improvements across various settings. This sug-345

(a) Llama (b) Mistral

Figure 3: Robustness of Llama and Mistral in different
debate rounds. See Appendix A.3.3 for details.

gests that a model with stronger capabilities is not 346

inherently a more effective debater. This offer im- 347

portant insights for selecting a base model for multi- 348

agent collaboration, emphasizing the need to con- 349

sider the model’s capacity to resist misinformation. 350

351

3.3 Mechanism Analysis 352

We find that hallucination propagation is caused 353

by two types of hallucinations: (i) Explicit factual 354

hallucinations arise when agents adopt incorrect 355

knowledge. Despite the lack of credibility in peers’ 356

responses, their logical and confident reasoning 357

often leads other agents to adopt and imitate this 358

misinformation. As debates progress, these halluci- 359

nations accumulate and intensify across rounds. (ii) 360

Implicit behavioral hallucinations occur when 361

agents internalize behavioral hallucinations from 362

peers. As shown in Figure 3, we evaluate the ro- 363

bustness (defined as their ability to resist misinfor- 364

mation) of agents across different rounds (Xu et al., 365

2024). Over multiple rounds, agents’ erratic behav- 366

ior become internalized, reflecting susceptibility to 367

misleading patterns in the discussion. This leads 368

to a reduction in the model’s confidence in its own 369

responses, making it more susceptible to misinfor- 370

mation and more likely to generate hallucinations. 371

3.4 Locate Hallucination Propagation 372

We further investigate what questions are more sus- 373

ceptible to hallucination propagation. Specifically, 374

we record the model’s average accuracy for each 375

question by multiple sampling. This metric serves 376

as a proxy for question difficulty, such that consis- 377

tently low accuracy across multiple samples sug- 378

gests a higher level of difficulty. Based on this, we 379

categorize questions according to whether their ac- 380

curacy falls below or above a predefined threshold, 381

allowing us to identify scenarios in which halluci- 382

nation propagation is more likely to occur. 383

As shown in Figure 4(a), for relatively easy ques- 384

tions, model performance deteriorates over succes- 385
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(a) Easy questions ( ≥ Initial Accuracy % ) (b) Complex questions ( ≤ Initial Accuracy % )

Figure 4: Test results categorized by question difficulty
with 3 Llama agents on the NQ dataset. (a) and (b)
represent the test results for data below and above a
certain difficulty level, respectively. The results and
analysis of Mistral are shown in the Figure 7.

sive rounds. Conversely, Figure 4(b) illustrates that386

for more complex questions, the debate process387

leads to performance improvements and less hal-388

lucination propagation. This finding suggests that389

MAD is more effective in handling complex tasks,390

whereas simpler tasks are more prone to inducing391

and propagating hallucinations.392

4 Mitigating Hallucination Propagation393

in Multi-Agent Debate394

Most existing MAD rely on predefined fully con-395

nected communication topologies, which pose the396

risk of one agent’s hallucinated information mis-397

leading other originally correct agents (Figure 1(b)).398

To address this, we aim to dynamically select the399

most beneficial counterparts for agents. This en-400

ables accurate information to reach hallucinated401

agents while limiting the spread of hallucinations to402

correct agents, thus promoting both robustness and403

effective communication. Inspired by prior work404

using entropy to quantify hallucinations, where405

higher entropy of responses typically indicates406

greater uncertainty of LLM, we introduce DIGRA,407

a novel MAD framework that adopts dynamic com-408

munication topology based on IGR.409

4.1 Methodology410

We first elaborate the calculations of entropy and411

IG. Next, we introduce IGR in DIGRA, followed412

by a detailed explanation of how DIGRA utilizes413

this ratio to enable dynamic communication.414

Mean Token Entropy (Fomicheva et al., 2020)415

is the average entropy across all generated tokens,416

with the entropy of a single token X defined as:417

H(X) = −
∑
x∈V

p(x) log p(x) (4)418

where V denotes the vocabulary of the LLM and419

p(x) represents the probability distribution over the420

vocabulary during token generation.421

Information Gain (IG) quantifies the reduction 422

in uncertainty after the value of the conditional 423

variable is provided. In DIGRA, we define it as the 424

entropy reduction of the original response after the 425

agent i considers the replies of other agents J : 426

IGq
i,t(J ) = H(Rq

i,t)−H(Rq
i,t|f(q,R

q
J ,t)) (5) 427

where H is the mean token entropy of the re- 428

sponse, i represents the current agent, and J = 429

{j1, j2, ...} ⊂ ∪j ̸=ij indicates the set of agents 430

communicating with agent i. The agents in J are 431

arranged in descending order of their entropy. f(·) 432

is a prompt template that transforms the responses 433

of the agents in J and the question q into a format- 434

ted prompt (Appendix B.3). While IG can serve 435

as a criterion for selecting communication part- 436

ners, it ignores the entropy of the referenced agents. 437

Agents with high entropy, often due to hallucina- 438

tions, may lead to the propagation of hallucinations 439

after being referenced. Therefore, we introduce 440

IGR, which extends IG by normalizing it with the 441

average entropy of the agents’ responses in J . 442

Information Gain Ratio is defined as : 443

IGRq
i,t(J ) =

α+ IGq
i,t(J )

1
|J |

∑
j∈J H(Rq

j,t)
(6) 444

As a more comprehensive criterion, IGR facilitates 445

communication with counterparts that are advan- 446

tageous to the current agent, while mitigating the 447

risk of referencing hallucinated agents. α is a hy- 448

perparameter used to balance entropy and IG, and 449

we set it to 0.2 (a detailed analysis is provided in 450

Appendix B.2.1) 451

The Detailed Process of DIGRA. DIGRA is 452

composed of two main steps. Firstly, DIGRA pre- 453

computes the IGR for potential communication 454

sets J of each agent. Secondly, DIGRA selects the 455

set of agents J ∗ that maximizes the IGR as the 456

communication partners for agent i. 457

J q
i,t

∗
= argmax

J⊂∪j ̸=ij
IGRq

i,t(J ) (7) 458

Furthermore, we draw on and use the early stop- 459

ping mechanism from Yin et al., where the debate 460

is terminated when all agents provide consistent 461

responses, or when an agent’s response remains 462

unchanged for two consecutive rounds. 463

4.2 Experimental Setups 464

Dataset and Evaluation Metric. We employ 465

various benchmarks to evaluate the DIGRA’s capa- 466

bilities, including MMLU (Hendrycks et al., 2021), 467
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Model Methods NQ BQ TruthfulQA GSM8K MMLU Avg.

Llama

CoT 73.2±0.8 67.8±1.0 57.0±1.3 77.8±1.5 62.5±1.1 67.7
CoT-SC(5) 78.4±1.0 71.9±1.2 60.5±0.5 82.0±1.2 66.2±2.4 71.8

MAD(D = 1) 78.3±0.9 70.4±1.8 62.4±1.5 77.8±3.1 66.5±3.2 71.1
MAD(D = 1

2 ) 80.2±0.4 73.2±1.7 61.2±0.7 78.2±2.2 65.5±3.0 71.7
MAD(random) 79.0±1.4 71.8±0.9 60.8±0.2 77.0±3.0 63.5±2.6 70.4

DIG 83.4±0.7 77.9±1.0 65.7±0.7 80.5±1.1 71.5±3.2 75.8

DIGRA 85.0±0.4 78.7±0.4 66.5±1.1 84.2±1.5 71.8±3.0 77.2

Table 2: Comparison of accuracy of DIGRA against baseline methods. The optimal performance is highlighted in
bold, and the second-best performance is underlined. DIGRA is significantly better than CoT-SC and MAD with
pvalue < 0.005. The results of Mistral and more analysis are presented in the Appendix B.4.

GSM8K (Cobbe et al., 2021), Natural Questions468

(Kwiatkowski et al., 2019), BoolQ (Clark et al.,469

2019), and TruthfulQA (Lin et al., 2022). We use470

the majority voting as the final result of the debate,471

and calculate accuracy accordingly.472

Baselines. We compare DIGRA against the fol-473

lowing baselines: (i) Chain-of-Thought (CoT):474

CoT prompting enhances the reasoning capabilities475

of LLMs through explicit intermediate reasoning476

steps. This can be viewed as a single-agent method.477

(ii) Self consistency (CoT-SC): CoT-SC samples478

various reasoning paths and selects the most con-479

sistent answer, thereby aggregating results from480

multiple independent reasoning chains. We sample481

five times of this method. Comparisons between482

DIGRA with more sampling can be found in Figure483

8. (iii) Standard and Sparse MAD: Standard MAD484

employs a fully connected topology for communi-485

cation which confronts the challenge of hallucina-486

tion propagation. Sparse MAD reduces commu-487

nication costs by sparsifying the communication488

topology of MAD. We denote the degree of spar-489

sity by D = d
Na−1 , where d represents the number490

of communicating agents. (iv) MAD (Random):491

It randomly chooses both the communication part-492

ners and the number of counterparts in each round,493

thereby introducing randomness compared to a pre-494

defined topology. (v) Dynamic communication495

topology driven by the IG (DIG): DIG implements496

a dynamic topology by maximizing IG, which in-497

volves selecting the reference agents that are most498

beneficial to the current agent.499

Implementation Details. We follow the exper-500

imental setup proposed by Du et al., employing501

three agents in three debate rounds. To mitigate502

the impact of sampling randomness when t = 1,503

all debate variants are initialized with the same504

first-round responses generated by standard MAD.505

In addition, we investigate the impact of hyper- 506

parameter settings in the Appendix B.2. 507

4.3 Main Results 508

Performance of DIGRA. Table 2 presents a per- 509

formance comparison between DIGRA and base- 510

line methods. The results indicate that MAD 511

does not consistently outperform single-agent ap- 512

proaches, particularly CoT-SC. This observation 513

aligns with the findings of Wang et al.; Zhang et al.. 514

Sparsifying the communication topology im- 515

proves debate performance. We attribute this im- 516

provement to the reduced risk of hallucination prop- 517

agation, as hallucinated information no longer influ- 518

ences all agents in a single round. The performance 519

of the random communication topology occasion- 520

ally surpasses that of standard MAD, highlighting 521

the importance of selecting appropriate communi- 522

cation partners for the debate. DIGRA consistently 523

outperforms MAD across multiple datasets, owing 524

to its dynamic topology based on IGR, which en- 525

ables agents to select the most beneficial communi- 526

cation partners. This design mitigates hallucination 527

propagation and promotes more effective debate. 528

Compared to single-agent methods, DIGRA sur- 529

passes CoT-SC by 5.2% on average. Notably, DIG 530

also achieves strong performance. However, as it 531

does not consider hallucination levels in the refer- 532

ence set, it may select suboptimal partners, partic- 533

ularly in the GSM8K task, where its performance 534

declines significantly. In contrast to DIG, DIGRA 535

simultaneously accounts for both information gain 536

and hallucination levels, enabling agents to select 537

more optimal communication topology and further 538

suppress the propagation of hallucinations. 539

Given that DIGRA solely modifies the agents’ 540

communication topology, these results underscore 541

the potential of multi-agent approaches. By fos- 542
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Figure 5: Comparison of the correct and hallucinated
information flow ratios across different baselines.

Methods NQ BQ TruthfulQA MMLU GSM8K
MAD(D = 1

2
) 0.5 0.5 0.5 0.5 0.5

DIG 0.642 0.718 0.726 0.718 0.706
DIGRA 0.610 0.680 0.672 0.655 0.626

Table 3: Comparison of the degree of sparsification of
communication topologies across different methods.

tering collaboration among agents and reducing543

the spread of hallucinations, DIGRA facilitates the544

emergence of superior collective intelligence.545

The reasonable sparsification of DIGRA. As546

shown in Table 3, both DIGRA and DIG implement547

a certain degree of sparsification in the communi-548

cation topology, which reduces token costs during549

execution. While DIG communicates with more550

agents, its performance remains suboptimal. This551

is primarily due to its failure to account for agents’552

hallucination levels, resulting in the involvement553

of irrelevant agents and the propagation of halluci-554

nations. In contrast, DIGRA delivers superior per-555

formance with lower communication costs, demon-556

strating its exceptional performance.557

Dynamic topology regulation of information558

flow. Figure 5 shows the relative proportions of559

erroneous information flowing into initially correct560

agents and correct information flowing into ini-561

tially incorrect agents. In comparison to standard562

MAD, DIGRA and DIG both facilitate the influx of563

correct information into hallucinating agents and564

mitigate the spread of hallucinations. This finding565

confirms that incorporating the dynamic commu-566

nication topology that selects beneficial communi-567

cation partners can enhance collaboration among568

agents and foster superior collective intelligence.569

Scalability Analysis. Although the effectiveness570

of DIGRA has been validated on open-source 7B571

and 8B models, its scalability remains uncertain.572

Given that LLMs are trained on vast textual data573

and possess the ability to capture complex lin-574

Figure 6: Results on MMLU with models using different
open-source model for entropy calculation.

guistic patterns, we assess DIGRA’s scalability 575

by employing various open-source LLMs (Mistral, 576

Llama, and Qwen (Yang et al., 2025)) of differ- 577

ent sizes as entropy estimators for larger-scale and 578

closed-source models (GPT3.5-Turbo and GPT4o- 579

mini). As shown in Figure 6, DIGRA demonstrates 580

performance improvements with most models, in- 581

dicating that DIGRA has good scalability. These 582

results further indicate that mitigating hallucination 583

propagation improves debate performance even 584

with larger models. Notably, the magnitude of per- 585

formance improvement is not directly proportional 586

to the size of the entropy estimation model, imply- 587

ing that smaller high-quality models can be lever- 588

aged to optimize both computational efficiency and 589

performance enhancement. 590

5 Conclusion 591

In this paper, we focus on exploring what leads 592

to the unstable performance of MAD. Through 593

extensive experimentation, we found that this is- 594

sue can primarily be attributed to the woozle ef- 595

fect, which refers to the propagation of hallucina- 596

tions. During debates, hallucinations are not only 597

introduced by individual agents but also amplified 598

through repeated interactions, ultimately mislead- 599

ing agents that were initially accurate. To mitigate 600

this issue, we introduce DIGRA, a novel MAD 601

framework with a dynamic topology driven by in- 602

formation gain ratio. DIGRA dynamically selects 603

the most advantageous communication partners for 604

each agent, thereby correcting hallucinating agents 605

and mitigating the spread of hallucinations. DI- 606

GRA demonstrates consistent improvement vari- 607

ous datasets. Our findings address the challenges 608

hindering multi-agent performance, paving the way 609

for future multi-agent development. 610
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6 Limitation611

In this work, due to limitations in computational612

resources, we did not select excessively LLMs or a613

high number of agents for Debate. In the future, we614

plan to develop toolkits and acceleration algorithms615

to run simulations with a larger number of agents.616

We aim to demonstrate the potential of dynamic617

communication topologies in mitigating hallucina-618

tion propagation within multi-agent collaboration.619

Therefore, cost efficiency is not considered in this620

study. We believe that DIGRA can be integrated621

with techniques such as group debate(Wang et al.,622

2024; Liu et al., 2024a) or dynamic programming623

to optimize the efficiency of the search process.624

The impact of roles on the debate process has625

not been considered. Preliminary observations sug-626

gest that dynamic topology can assist in identifying627

more advantageous roles for communication re-628

lated to the current question. In future work, the629

role factor will be incorporated and the benefits of630

dynamic topologies will be further investigated.631

Additionally, we have only considered mean to-632

ken entropy as the metric to validate the effective-633

ness of the dynamic topology selection. In the634

future, we will investigate more applicable met-635

rics to help achieve better dynamic topologies and636

superior collective intelligence.637

7 Ethical Statement638

In the future, with the continuous advancement639

of LLMs and agent technologies, we foresee the640

emergence of more sophisticated collective intelli-641

gence, which requires multiple powerful agents to642

be reliably trusted and capable of efficient interac-643

tion. However, the instability exhibited by current644

multi-agent debate has raised concerns about the645

future development of collective intelligence. In646

this work, we have made a significant step forward647

by identifying that the limitation of MAD stems648

from the propagation of hallucinations and further649

mitigating this issue through the use of dynamic650

topology.651
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A The Woozle Effect: Hallucination 878

Propagation in Multi-Agent Debate 879

A.1 Term definition 880

The Woozle Effect is named after a concept in psy- 881

chology and research methodology, particularly in 882

the context of misinformation and the propagation 883

of unverified claims. In this bias, the initial source 884

of information may be questionable, but as it is 885

cited by others, it gains credibility. The repetition 886

of a claim, without proper verification or critical 887

scrutiny, leads to a situation where a concept or 888

finding is believed to be true simply due to its fre- 889

quency of appearance in literature or media. 890

The term Woozle Effect originates from A.A. 891

Milne’s 1926 children’s book Winnie-the-Pooh, in 892

which Pooh and Piglet embark on a hunt for an 893

imaginary creature called a "Woozle." In Chapter 894

3, titled "In which Pooh and Piglet Go Hunting and 895

Nearly Catch a Woozle", the two characters start 896

following what they believe are the tracks of a Woo- 897

zle in the snow. However, as they continue their 898

pursuit, the tracks mysteriously multiply, leading 899

them in circles. It is only when Christopher Robin 900

intervenes that they realize they have been follow- 901

ing their own tracks all along, believing them to 902

belong to the elusive Woozle. This scenario is an al- 903

legory for how people can be misled into following 904

faulty reasoning or unsubstantiated claims, much 905

like how Pooh and Piglet followed the erroneous 906

tracks. A contemporary example of the Woozle Ef- 907

fect can be observed in the field of medical research, 908

where unverified claims regarding the efficacy of 909

certain treatments or interventions are often cited 910

in multiple studies or articles. For instance, if a 911

non-peer-reviewed study suggests that a particular 912

herbal remedy can cure a common cold, this claim 913

might be referenced by other researchers and me- 914

dia outlets. Even though the original study might 915

have been flawed or inconclusive, its repeated men- 916

tion in various sources can create the illusion that 917

there is robust scientific support for the claim, thus 918

misleading the public into believing the remedy is 919

effective. 920

In the context of multi-agent debates, the Woozle 921

effect can be considered as the propagation of hal- 922

lucinations. The erroneous responses generated by 923

the agents are referenced and partially accepted by 924

other agents, and the hallucinations spread through 925

the predefined topology as a result of the discus- 926

sions. 927
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Parameters 3-Agents 5-Agents
Batch_size 8 6
Max_Tokens 1024 1024
Temperature 1.0 1.0
Top-p 1.0 1.0
Top-k 50 50

Table 4: Generation parameters settings.

A.2 Experiments Details928

A.2.1 Supplementary settings929

To improve experimental efficiency, we utilized the930

VLLM library for inference acceleration, and the931

parameters are set as shown in Table 4.932

A.2.2 The Flow of Hallucinated and correct933

information934

In Figure 1, we illustrate the flow of hallucinations935

and accurate information. In this section, we ex-936

plain the experimental details. We assume that the937

hallucinations in R(q, i, t) are caused by referenc-938

ing the output of previous agents. If a referenced939

agent j exhibits hallucinations at round t− 1 and940

Agent i also exhibits hallucinations at round t, we941

consider it as the propagation of hallucinated in-942

formation. The flow of accurate information is943

calculated in the same way. The accuracy of the944

agent at each node is represented by its color and945

is independent of its size.946

A.2.3 Correct Data Sampling947

We track the woozle effect in MAD through assign-948

ing initial responses with varying levels of halluci-949

nations. For hallucination responses, we employed950

the answer from the logical strategy in FARM. To951

obtain accurate responses, we devised the follow-952

ing collection strategy:953

Assume that we need to obtain Nall (set to 5)954

accurate responses to each question q .955

step 1: We sample each question 50 times, assum-956

ing the number of accurate responses is n1.957

step 2: If n1 ≥ Nall, we randomly retain Nall958

accurate responses. Otherwise, we proceed to step959

3 to generate Nall − n1 samples.960

step 3: We provide the correct answers to the model961

in advance and leverage the responses generated in962

step 1 to form n1-shot examples to guide the model963

in generating accurate responses.964

To better align with the model’s output style, we965

sample the accurate responses generated by Llama966

and Mistral separately. As shown in Table 5, we967

illustrate the process of generating a correct sample 968

by Mistral. 969

Additionally, We use the proportion of correct 970

responses during the sampling process (step 1) to 971

represent the average accuracy of responses to the 972

question. This metric is used for analysis in Section 973

3.4. 974

A.3 Supplementary Experiments and 975

Analysis 976

A.3.1 Evaluation Metric 977

In Section 3.1, we used the average accuracy and 978

misguidance rate metrics to investigate the phe- 979

nomenon of hallucination propagation. Here, we 980

employ additional metrics for analysis. 981

Initial Misleading Rate (IMR). The misleading 982

rate primarily reflects the misguidance in the cur- 983

rent round of the debate. Here, we introduce the 984

IMR to observe the proportion of initially correct 985

responses that are misled as the debate progresses: 986

IMRt =

∑Nq
q

∑Na
i Qq√

,i,1 ·Q
q
×,i,t∑Nq

q

∑Na
i Qq√

,i,1

(8) 987

Here, IMR2 equals MR2. 988

Correction Rate (CR). Considering that correct 989

information is also propagating, we use the correc- 990

tion rate,e to observe the propagation of correct 991

information: 992

CRt =

∑Nq
q

∑Na
i Qq

×,i,t−1 ·Q
q√
,i,t∑Nq

q

∑Na
i Qq

×,i,t−1

(9) 993

A.3.2 Full Results 994

In this section, we present all the results on the 995

FARM dataset with comprehensive evaluation met- 996

rics. We present the results of NQ in Table 6, the 997

results of BQ in Table 7, and the results of Truth- 998

fulQA in Table 8. Based on additional results, we 999

have derived the following supplementary conclu- 1000

sions: 1001

(i) IMR3 is generally lower than MR3, which 1002

suggests that a significant portion of the subsequent 1003

misguidance stems from agents corrected in the 1004

second round. This underscores the agents’ vacilla- 1005

tion. 1006

(ii) The correction rat reflects the spread of accu- 1007

rate information in MAD. However, under certain 1008

settings, the CR can be lower than the MR, indi- 1009

cating that some challenging hallucination propa- 1010

gation is difficult to correct and the spread of hallu- 1011

cinations limits the performance of MAD. 1012
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Question when did michael jordan come to the nba?
Option A) 1982 B) 1984 C) 1986 D) 1988
Prompt Your task is to provide a detailed reasoning process for why the Answer: B) 1984 is the

correct to the following multiple-choice questions.
{question, option}
Here are the examples:
{examples generated in step 1}
Please assume that you do not know the premise and provide the reason for it to be the
correct answer. It means you need to get Answer: B) through your reasoning.
The last line of your response should be of the following format: ’Answer: B)’,
Think step by step before answering.

Example Michael Jordan is widely recognized as one of the greatest basketball players in NBA
history. To determine the year when he joined the NBA, let’s consider some clues and
eliminate the incorrect answer choices.
A) 1982: Michael Jordan did not join the NBA in 1982. The 1981-1982 NBA season
marked Jordan’s last year playing college basketball for the University of North Carolina
at Chapel Hill.
Answer: Not Correct
C) 1986: Michael Jordan did not join the NBA in 1986. In 1985, Jordan led the Chicago
Bulls to their first playoff appearance and made the NBA All-Star team for the first time.
The following year, in 1986, Jordan reached his full potential and established himself as a
dominant player in the league.
Answer: Not Correct
D) 1988: Michael Jordan did not join the NBA in 1988. By this point, Jordan had already
been an NBA All-Star and an NBA champion (with the Bulls in 1985 and 1986). He was
considered one of the best players in the league, and there’s no reason to believe he would
join then.
Answer: Not Correct
B) 1984: The strongest evidence for Michael Jordan joining the NBA in this year comes
from the fact that he was drafted 3rd overall by the Chicago Bulls in the 1984 NBA draft,
which took place on June 27, 1984.
Answer: B.

Table 5: A correct response of question in Nq generated by Mistral. Green text represents the correct answer, while
red text represents the incorrect option.

Model Setup MA1 MA2 MA3 MR2|IMR2 MR3 IMR3 CR2 CR3

Llama

3× 0 7.4±0.7 13.5±0.7 0 35.0±4.6 0 7.4±0.7 9.4±.0.3

2× 1
√

33.3 58.6±1.0 51.8±1.5 88.0±1.6 57.0±2.2 16.6±0.8 81.9±0.8 64.1±1.1

1× 2
√

66.7 62.6±1.0 57.0±0.5 52.9±1.3 36.2±1.1 41.8±0.7 93.6±1.1 45.7±1.8

3
√

100.0 91.1±0.8 92.9±1.0 8.9±0.8 5.4±0.7 7.1±1.0 0.0±0.0 75.5±4.3

Standard 73.6±0.8 75.2±0.6 77.7±0.3 15.6±0.8 11.2±1.0 8.9±0.3 49.3±1.9 44.1±3.0

Mistral

3× 0 1.0±0.2 1.5±0.3 0 65.0±18.2 0 1.0±0.2 1.2±0.2

2× 1
√

33.3 38.8±0.8 41.7±1.7 49.8±1.3 36.3±2.4 55.2±2.0 33.2±1.4 27.7±1.6

1× 2
√

66.7 81.6±0.6 83.6±1.0 12.7±0.9 11.3±1.0 15.9±1.4 70.1±1.6 60.9±2.5

3
√

100.0 96.0±0.2 93.6±0.5 7.4±0.7 4.2±0.4 6.4±0.5 0 66.0±3.5

Standard 63.2±0.6 67.6±0.4 68.0±0.3 12.0±0.4 9.9±0.9 11.9±0.9 32.6±0.9 21.8±1.2

Table 6: The hallucination propagation results of NQ. Setup refers to setting different error responses in the first
round, and "normal" indicates the results under a standard MAD. The setup 3× and 3

√
can be seen as the lower

and upper bounds, respectively.
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(iii) On the BQ dataset, Llama exhibited more1013

severe hallucination propagation, with the average1014

accuracy even decreasing as the debate progressed.1015

This is due to the fact that BQ consists of boolean1016

questions, which are more prone to misleading the1017

agents.1018

A.3.3 Robustness Testing1019

We adopt the implicit belief checking method pro-1020

posed by (Xu et al., 2024). to evaluate model ro-1021

bustness. Specifically, we utilize the "logical" strat-1022

egy from the FARM dataset to conduct multiple1023

rounds of misleading interventions based on the1024

agent’s interaction history. If the agent maintains1025

correct beliefs despite these misleading cues, it is1026

considered robust.1027

A.3.4 Locate Hallucination Propagation1028

In Section 3.4, we only discussed Llama’s re-1029

sponses to questions of varying difficulty. in1030

this section, we present and discuss Mistral’s re-1031

sults. Similar with Llama, hallucination propaga-1032

tion tends to occur in simpler questions, whereas1033

more difficult questions often show consistent im-1034

provements. In contrast, Mistral demonstrates1035

higher stability and is able to achieve performance1036

improvements over a broader range through Debate1037

(Figure 7).1038

B DIGRA: Mitigating the hallucination1039

propagation in Multi-Agent Debate1040

B.1 Communication Topology in MAD1041

We present different communication topologies in1042

Figure 1(b). From the figure, we observe that when1043

a single agent exhibits hallucinations, the risk of1044

hallucination propagation is highest with the pre-1045

defined static topology. Sparse communication re-1046

duces the hallucination propagation to some extent,1047

but it cannot fully resolve the issue. By leverag-1048

ing dynamic topologies to select the most advanta-1049

geous communication partners, the propagation of1050

hallucinations can be mitigated.1051

B.2 Hyper-Parameter Analysis1052

B.2.1 Balance of IGR and Hallucination level1053

In the formula of IGR, we introduce the hyperpa-1054

rameter α to balance the entropy of the reference1055

agents and the information gain. In this section,1056

we analyze the impact of different values for this1057

parameter. As shown in Table 9, the performance1058

exhibits a trend of first increasing and then decreas-1059

ing as the α increases. When α is too small, the1060

importance of entropy is overlooked, leading to the 1061

selection of agents with high hallucination levels 1062

for communication. When α is too large, the in- 1063

formation gain is ignored, and the selected agents 1064

may lack significant reference value for the current 1065

agent. When α is set to 0.5, DIGRA achieved sig- 1066

nificant improvement, suggesting that an optimal 1067

balance between information gain and entropy of 1068

agents yields enhanced performance. In our experi- 1069

ment, we pre-set this value without further tuning 1070

α , indicating that DIGRA holds greater potential 1071

for achieving even better performance. 1072

B.2.2 Debate Rounds 1073

In Figure 9, we present the performance changes 1074

across different debate rounds. While MAD ex- 1075

hibits unstable performance as the debate pro- 1076

gresses, DIGRA consistently achieves stable per- 1077

formance improvements through the debate pro- 1078

cess. This indicates that the accumulation of hallu- 1079

cination propagation over successive debate rounds 1080

hinders MAD from achieving better performance. 1081

However, a dynamic communication topology can 1082

mitigate hallucination propagation and facilitate 1083

more effective debates among agents. 1084

B.3 The Details of DIGRA 1085

B.3.1 Calculation of information gain ratio 1086

In this section, we will explain how information 1087

gain ratio is computed using the specific prompt 1088

template. As shown in Table 10, we first concate- 1089

nate the responses of agents in J with the prompt 1090

of the original question into the predefined tem- 1091

plate. Then, we set the output of the current agent 1092

and perform forced decoding to compute the en- 1093

tropy. 1094

B.3.2 Early stoping in DIGRA 1095

Since hallucinations exhibit diffusion characteris- 1096

tics, the early stopping mechanism we designed 1097

helps mitigate this issue. Specifically, our early 1098

stopping mechanism is based on the following prin- 1099

ciples: 1100

(i) All agents reach a consensus and provide an 1101

answer (i.e., the answer is not None). 1102

(ii) One agent’s opinion is consistent for two 1103

consecutive rounds and the answer is not None. 1104

(iii) For terminated agents, we assume that 1105

Rq
i,t+1 = Rq

i,t. 1106
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Model Setup MA1 MA2 MA3 MR2|IMR2 MR3 IMR3 CR2 CR3

Llama

3× 0 15.3±0.2 30.9±0.4 0 35.9±1.5 0 15.3±0.2 24.9±0.4

2× 1
√

33.3 58.5±0.5 55.4±1.4 92.2±0.2 52.8±1.7 19.2±1.6 83.8±0.9 67.0±3.3

1× 2
√

66.7 56.1±0.4 49.6±1.5 63.1±0.4 44.7±2.9 48.6±1.1 94.5±1.1 42.3±3.0

3
√

100.0 84.3±0.4 76.2±0.7 15.7±0.4 17.9±1.4 23.8±0.7 0 44.9±4.0

Standard 68.1±1.0 70.1±0.8 68.9±0.8 23.3±1.4 21.7±0.4 18.9±0.5 56.0±1.1 46.8±3.1

Mistral

3× 0 5.5±0.6 9.1±0.9 0 43.3±3.9 0 5.5±0.6 6.3±0.7

2× 1
√

33.3 55.6±0.6 56.9±1.4 35.3±0.8 24.9±0.8 41.1±2.6 51.1±0.5 34.0±2.3

1× 2
√

66.7 85.4±1.1 86.5±1.4 8.5±1.0 8.3±0.8 12.8±1.6 73.3±1.4 55.7±4.0

3
√

100.0 98.4±0.4 96.7±0.2 2.9±0.3 2.2±0.2 3.4±0.3 0.0±0.0 54.9±4.4

Standard 68.5±1.0 70.3±0.7 70.6±0.8 5.4±0.6 4.2±0.3 4.8±0.7 17.4±1.2 10.9±0.9

Table 7: The hallucination propagation results of BQ. Setup refers to setting different error responses in the first
round, and "normal" indicates the results under a standard MAD. The setup 3× and 3

√
can be seen as the lower

and upper bounds, respectively.

Model Setup MA1 MA2 MA3 MR2|IMR2 MR3 IMR3 CR2 CR3

Llama

3× 0 7.4±0.5 13.8±1.0 0 48.7±4.3 0 7.4±0.5 10.8±1.1

2× 1
√

33.3 60.1±0.8 51.4±0.8 87.4±1.4 59.1±1.9 16.1±0.5 83.9±0.6 67.3±0.5

1× 2
√

66.7 65.4±1.0 57.3±1.6 49.3±1.4 36.0±0.3 41.3±1.9 94.6±0.5 44.8±3.8

3
√

100.0 91.2±0.2 90.9±0.5 8.8±0.2 7.5±0.6 9.1±0.5 0 73.6±1.6

Standard 56.7±1.0 58.7±1.1 61.2±1.5 21.7±1.2 16.3±0.9 12.5±1.0 33.1±0.9 29.4±1.5

Mistral

3× 0 2.7±0.3 4.0±0.2 0 58.0±5.4 0 2.7±0.3 3.0±0.2

2× 1
√

33.3 48.3±1.3 48.6±0.7 48.0±2.1 35.0±0.6 45.8±1.4 46.5±1.8 33.3±1.1

1× 2
√

66.7 83.8±0.9 85.9±0.9 13.9±0.6 9.9±0.6 14.2±0.8 79.1±2.4 64.3±2.2

3
√

100.0 94.6±1.0 95.9±0.5 5.4±1.0 2.6±0.3 4.1±0.5 0 67.9±2.3

Standard 53.0±0.5 59.1±0.5 61.1±0.5 10.5±0.8 8.4±1.0 9.4±0.6 24.7±1.1 17.0±0.8

Table 8: The hallucination propagation results of TruthfulQA. Setup refers to setting different error responses in
the first round, and "normal" indicates the results under a standard MAD. The setup 3× and 3

√
can be seen as the

lower and upper bounds, respectively.

Figure 7: Test results categorized by question difficulty with 3 Mistral agents on the NQ dataset. (a) and (b) represent
the test results for data above and below a certain difficulty level, respectively.

15



(a) MMLU (b) Nq

Figure 8: Performance comparison between DIGRA and COT-SC under different sampling counts.

α 0.01 0.05 0.1 0.2 0.3 0.5 1.0

Accuracy 68.5±4.5 70.0±4.1 69.8±4.7 71.8±3.0 70.8±3.5 74.0±4.2 70.8±3.6

Table 9: Accuracy (%) of DIGRA with different α on MMLU benchmark.

Response Rq
1,t Rq

2,t Rq
3,t

entropy order Rq
3,t > Rq

2,t > Rq
1,t

current agent agent 1

potential agents J {Rq
2,t} {Rq

3,t} {Rq
3,t, R

q
2,t}

Prompt {Original prompt of q}

f(q,Rq
J ,t)|J={3,2} These are the solutions to the problem from other agents:

One agent solution: “‘ Rq
3,t “‘

One agent solution: “‘ Rq
2,t “‘

Using the reasoning from other agents as additional advice, can you
give an answer?
The last line of your response should be of the following format:
’Answer: $LETTER’ (without quotes) where LETTER is one of ABCD.
Think step by step before answering.

IG(Rq
1,t|R

q
J ,t) H(Rq

1,t)−H(IG(Rq
1,t|R

q
J={2},t)

H(Rq
1,t)−H(IG(Rq

1,t|R
q
J={3},t)

H(Rq
1,t)−H(IG(Rq

1,t|R
q
J={3,2},t)

IGR(Rq
1,t|R

q
J ,t)

α+H(Rq
1,t)−H(IG(Rq

1,t|R
q
J={2},t)

H(Rq
2,t)

= 0.69

α+H(Rq
1,t)−H(IG(Rq

1,t|R
q
J={3},t)

H(Rq
3,t)

= 1.37

α+H(Rq
1,t)−H(IG(Rq

1,t|R
q
J={2,3},t)

1
2
(H(Rq

2,t)+H(Rq
3,t))

= 0.91

final communication agents agent 3

Table 10: Examples of DIGRA and details of the prompt template function.
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Model Methods NQ BQ TruthfulQA GSM8K MMLU Avg.

Mistral

CoT 62.4±0.7 64.0±1.7 59.8±1.0 38.5±3.5 54.8±3.0 55.9

CoT-SC 67.9±0.7 64.7±0.7 60.1±0.6 42.8±4.2 56.2±0.8 58.3

MAD(D = 1) 69.9±0.3 67.9±0.7 61.5±0.7 45.2±1.3 56.4±1.3 60.2

MAD(D = 1
2 ) 65.8±2.1 67.7±0.5 61.9±0.4 38.8±3.7 55.0±1.2 57.8

MAD(random) 69.1±0.6 67.9±0.6 61.2±0.5 41.5±2.7 53.8±1.8 58.7

DIG 70.9±0.6 68.6±0.8 61.4±0.1 44.5±3.8 56.2±0.8 60.3

DIGRA 72.2±1.1 68.7±0.6 61.6±0.3 47.0±2.4 57.0±1.6 61.3

Table 11: Comparison of accuracy of DIGRA with Mistral against baseline methods. The optimal performance is
highlighted in bold, and the second-best performance is underlined.

Figure 9: Results of Different Debate rounds using
Llama on MMLU.

B.4 Results of Mistral1107

Table 11 shows the results of Mistral. From prior1108

experiments, we found that although Mistral is less1109

capable than Llama 3.1, it exhibits better debat-1110

ing characteristics. Similarly, Mistral consistently1111

outperforms CoT-SC in MAD, indicating that the1112

model demonstrates strong resistance to hallucina-1113

tion propagation, thus showing effective collective1114

intelligence. Moreover, we discovered that the in-1115

troduction of DIGRA further boosts its debating1116

ability, leading to consistent improvements across1117

multiple datasets.1118

However, We observed that Mistral exhibits only1119

limited performance improvements. To investigate1120

this further, we conducted an in-depth analysis. As1121

previously discussed in Section 3.2 Findings II ,1122

Mistral is considered a better debater rather1123

than a better reasoner. Due to the relatively low1124

quality of its initial responses, even mitigating hal-1125

lucination propagation does not lead to substantial1126

performance gains through debate alone.1127

Figure 10: Results on MMLU with Llama using differ-
ent open-source model for entropy calculation.

To validate this hypothesis, we conducted an ad- 1128

ditional experiment in which the initial responses 1129

were generated by Llama, while Mistral was used 1130

as the reasoning agent during the debate. As shown 1131

in Table 12, Mistral achieves greater performance 1132

improvements than Llama under this setting, fur- 1133

ther confirming that Mistral is a better debater. No- 1134

tably, similar trends were also observed with GPT- 1135

3.5 and GPT-4o. 1136

B.5 Comparison Between DIGRA and 1137

CoT-SC 1138

In the main text, we report the performance of CoT- 1139

SC with five samples. Here, we further compare DI- 1140

GRA with CoT-SC under varying sampling counts. 1141

As shown in Figure 8, even when the number of 1142

CoT-SC samples increases to 50, its performance 1143

still does not surpass that of DIGRA with only three 1144

collaborating agents. This highlights the superior 1145

performance of DIGRA and underscores the strong 1146

potential of multi-agent collaboration. 1147
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Inference Model First Round Responses ACC
Llama3.1-8B Llama3.1-8B 71.8± 3.0
Mistral-7B Mistral-7B 57.0± 1.6
Mistral-7B Llama3.1-8B 72.8± 3.5

GPT4o-mini GPT4o-mini 75.5± 0.5
GPT3.5-turbo GPT3.5-turbo 66± 1.0
GPT3.5-turbo GPT4o-mini 77.5± 1.5

Table 12: Accuracy results under different inference and
response model settings.

B.6 Scalability of Llama1148

As shown in Figure 10, We also present results1149

using different models to estimate the entropy of1150

Llama. The findings are consistent with those re-1151

ported in the main text: the entropy estimator can1152

be a heterogeneous model, and smaller models may1153

even yield better results.1154
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