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Abstract

Large Language Model-based agents have
demonstrated impressive capabilities in various
tasks. To further enhance their abilities, the col-
laboration of multiple agents presents a promis-
ing avenue. Recently, Multi-Agent Debate
(MAD) was introduced as a typical collabora-
tive method, where agents discuss potential so-
lutions to a problem over several rounds of de-
bate. However, researchers observed that MAD
is not stably superior to single-agent methods.
Unfortunately, there has been insufficient ex-
ploration of this issue. In this paper, we experi-
mentally find out what leads to the instability of
MAD, namely the woozle effect, which refers
to the propagation of hallucinations among
agents in the debate. Since MAD is always
based on a static and fully connected commu-
nication topology, each agent can be misled by
others that containing erroneous information,
and subsequently spread this misinformation.
To address this, we propose DIGRA, a novel
MAD framework with Dynamic communica-
tion topology driven by the Information Gain
RAtio. Our evaluations across various bench-
marks show that selecting appropriate counter-
parts for agents significantly mitigates halluci-
nation propagation, leading to superior collec-
tive intelligence.

1 Introduction

Recent advances in Large Language Model (LLM)-
based agents have demonstrated remarkable suc-
cess across various fields, including reasoning (Wu
et al., 2023), code generation (Shinn et al., 2024),
and autonomous driving (Chen et al., 2024a).
Building on the impressive capabilities of single
agents, researchers aspire to harness the collective
intelligence of multiple agents through their collab-
oration. Recently, inspired by The Society of Mind
(Minsky, 1988), Multi-Agent Debate (MAD) has
emerged as a prominent approach (Du et al., 2025),
where multiple agents independently propose and

collaboratively debate their responses to improve
the quality of reasoning and factuality tasks. Al-
though Du et al. demonstrated its effectiveness in
certain tasks, subsequent studies found that MAD
does not consistently outperform single-agent meth-
ods (Wang et al., 2024; Zhang et al., 2025). This
motivates us to investigate what leads to the un-
stable performance of MAD, thereby laying the
groundwork for the future development of more
effective multi-agent systems.

We suspect that the hallucination phenomenon
might be a potential cause. Hallucination refers to
LLMs generating plausible yet erroneous informa-
tion, which undermines their reliability and trust-
worthiness (Rawte et al., 2023). MAD attempts
to mitigate this issue through critical discussions
among agents. However, in this paper, we found
that this strategy is not invariably effective. We
identified a pronounced Woozle Effect! in MAD,
where hallucinations are not only generated by a
single agent but also propagated through discus-
sions, misleading a portion of otherwise accurate
agents. As shown in Figure 1(a), we illustrate the
woozle effect during debates among three agents.
Specifically, in the first round, one agent is config-
ured to consistently produce an erroneous answer,
while the remaining agents are configured to pro-
vide correct responses. Subsequently, the propaga-
tion of hallucinated information is tracked across
the predefined communication topology. Surpris-
ingly, although the agents initially arrived at a fully
correct answer through majority voting, halluci-
nated information continued to propagate. Over
time, this misinformation converged, ultimately
leading to a significant decline in performance.

Based on this intriguing finding, we further con-
ducted experiments under various conditions to
investigate the mechanisms and characteristics of

"Woozle Effect in social science refers to the occurrence
and propagation of misconceptions, detailed in Appendix A.1.
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Figure 1: (a) The woozle effect in three-agent debates using Llama3.1-8B on the Natural Question dataset. The
width of the flow reflects the proportion of the respective information propagated. Please refer to Appendix A.2.2
for more details. (b) Variations in communication topologies and their effects on hallucination propagation (c)

Overall DIGRA Framework.

underling hallucination propagation. We found that
over 10% to 20% of the agents are misled eoundin
each round through discussion, and this proportion
continuously increases as the initial level of hal-
lucination rises. This suggests that the prevalent
propagation of hallucinations exerts a significant
constraint on MAD. Additionally, We provide an
interpretation of hallucination propagation through
the lens of persuasion and experimentally identi-
fied what problems are more prone to triggering
hallucination propagation.

This naturally raises the question: How can we
mitigate the propagation of hallucination in MAD?
We notice that most MAD methods rely on a static,
fully connected communication topology, where
agents communicate with all other agents during
each round (Figure 1(b)). This creates a persistent
risk of agents being misled by those with halluci-
nated information and subsequently spread the mis-
information to others. Drawing inspiration from en-
tropy in evaluating the extent of hallucinations, we
propose DIGRA, a novel multi-agent debate frame-
work with the Dynamic communication topology
driven by the Information Gain RAtio to address
this challenge. Specifically, as shown in Figure 1(c)
for each agent, DIGRA first calculates the Informa-
tion Gain Ratio (/G R) of generating its response
conditioned on the set of responses from other
agents. It then selects the agents corresponding
to the highest /G R values for communication. The
IGR is directly proportional to the utility of infor-
mation from other agents to the current agent, and

inversely proportional to the hallucination levels of
the referenced agents. Moreover, the communica-
tion topology in DIGRA is adaptively determined
in each round. Thus, DIGRA facilitates efficient de-
bates by dynamically selecting counterparts that are
most beneficial for refining the response of current
agent while simultaneously preventing the woozle
effect. We demonstrate the consistent superiority
of DIGRA across various benchmarks.
In summary, our contributions are as follows:

* We reveal that hallucination propagation is a
major contributing factor to the instability of
multi-agent debate.

* To mitigate hallucination propagation, we in-
troduce DIGRA, a novel multi-agent debate
framework with a dynamic communication
topology driven by the IGR.

* We evaluate DIGRA on various datasets,
demonstrating its effectiveness in preventing
hallucination propagation, resulting in supe-
rior collective intelligence.

2 Related Work

2.1 Multi-Agent Debate

Building on the successes of LLM-based agents
(Schick et al., 2024; Park et al., 2023; Liu et al.,
2023), researchers seek to address more sophisti-
cated tasks through their collaboration (Guo et al.,
2024). Recently, MAD was introduced as a promi-
nent method for facilitating multi-agent collabora-
tion (Du et al., 2025). Specifically, in MAD, each



agent generates a response to the question, which
is incorporated into the prompts of other agents in
the subsequent round through a predefined com-
munication topology. Additionally, due to the high
cost of fully connected communication topology,
Li et al. proposed sparse topology and achieved im-
proved performance. Liang et al. further designed
a judge for debates, aiming to arbitrate the final an-
swer through the judge. Nonetheless, judge might
be prone to biases (Wang et al., 2024), favoring re-
sponses closer to their initial preferences. Addition-
ally, we focus on dynamic communication topol-
ogy, which is distinct from general dynamic topol-
ogy methods such as DyLAN (Liu et al., 2024b).
Hence, we do not delve into the discussion of the
judge and dynamic topology methods.

Most studies currently suggest that MAD can
generate more reliable responses, owing to the di-
vergent thinking of multiple agents and their critical
synthesis of responses (Liang et al., 2024; Sun et al.,
2024; Liu et al., 2024a; Hegazy, 2024). However,
Wang et al. and Zhang et al. found that this claim
is not entirely validated, as MAD performs simi-
larly to or even worse than single agent methods.
We investigate this issue and identify hallucination
propagation in discussions as a key contributor.

2.2 Hallucinations and Misdirection in LLMs

LLMs are prone to generating factually incorrect
information, referred to as hallucination, which sig-
nificantly undermines their reliability and trustwor-
thiness (Zheng et al., 2023; Tonmoy et al., 2024;
Huang et al., 2025). Existing efforts primarily fo-
cus on the detection (Manakul et al., 2023; Chen
et al., 2024b), evaluation (Li et al., 2023; Jiang
et al., 2024), and mitigation (Varshney et al., 2023;
Zhang et al., 2024) of hallucination. In addition,
some studies attempted to detect hallucinations
through MAD (Sun et al., 2024; Feng et al., 2024).

Another line of work explores how adversarial
users can mislead LL.Ms through tailored persua-
sion, leading to alignment jailbreaks (Zeng et al.,
2024) and factual errors (Xu et al., 2024). Research
has revealed that LLMs are susceptible to decep-
tion, severely compromising their security and ef-
fectiveness. Distinct from the studies mentioned
above, our research centers on hallucination prop-
agation. This phenomenon is more intricate than
in single LL.Ms, as agents can both generate hallu-
cinations and be misled by others with erroneous
information, subsequently amplifying it through
collaborative discussions.

3 Exploring Hallucination Propagation in
Multi-Agent Debate

Although multi-agent collaboration through discus-
sion holds promise for achieving collective intelli-
gence, recent studies have shown that MAD does
not consistently outperform single-agent methods
(Wang et al., 2024; Zhang et al., 2025). We suspect
that this instability may stem from the hallucination
phenomenon in LLMs (Rawte et al., 2023), where
plausible yet incorrect information is generated and
further propagated among agents during debates.

To enable fine-grained tracking and evaluation,
we control the degree of hallucination in agents’
initial responses and observe how it spreads during
the debate. Specifically, we pre-collect both correct
and incorrect answers for each question and assign
them to agents in the first round with varying error
rates. Hallucination propagation is then quantified
by tracking misleading behaviors of agents across
subsequent rounds.

3.1 Experimental Setups

Models. We examine hallucination propagation
across two representative models: Llama 3.1-8B
(Al@Meta, 2024), which is more susceptible to
misleading information, and Mistral-7B (Jiang
et al., 2023), which demonstrates greater resistance
to such influence. Each model is run across four
random seeds, and we report the mean results along
with the standard deviation.

Dataset for Measuring Hallucination Propaga-
tion. To track hallucinations and their propagation,
we use the FARM dataset (Xu et al., 2024), which
assesses the susceptibility of the model to misinfor-
mation. FARM consists of questions from popular
QA benchmarks: Natural Questions (Kwiatkowski
et al., 2019), BoolQ (Clark et al., 2019), and Truth-
ful QA (Lin et al., 2022), along with multiple incor-
rect responses generated via various strategies. As
hallucinations in reasoning often stem from flawed
logic, we adopt the "logical" strategy, which pro-
vides plausible yet incorrect rationales to each ques-
tion. Correct responses we use are generated via
multiple sampling after providing the model with
ground-truth answer (see Appendix A.2.3).
Evaluation Metrics. To quantitatively evaluate
hallucinations propagation, we use two metrics:
Mean Accuracy (MA) and Misleading Rate (MR)
per round (Xu et al., 2024; Men et al., 2024).
The key notations are defined as follows: Let
t = 1,2,3... denote the debate round, and AZt



Model Setup NQ Truthful QA
MA; MA; MAs M Rs MR3 MA; MA> MAs MRy MR3
3x 0 T.4%0.7 13.540.6 0 35.0+4.6 0 TA4%xos 13.8%10 0 48.7%4.3
2x 1y 33.3 58.6+t1.0 51.8+15 88.0+16 57.0%22 33.3 60.1+0.8 51.4+0s 874%14 59.1%19
Llama 1 x 2/ 66.7 62.6+£10 57.0f05 529413 36.2411 66.7 63.6+t0.0 55.3Ff12 51.6+13 39.8%1.4
3V 100 91.1+08 92.9+10 8.9%0s 5.440.7 100 91.240.2 90.9+05 8.8%0.2 7.5%0.6
Standard 73.6:|:()_8 75.2:t0_6 77.7:t0_3 15.6i0,s 11.2:t1_0 56.7:':1_0 58.7:|:1_1 61.2:t1_5 21.7:t1,2 16.3:t0_9
3x 0 1.0%0.2 1.5+0.3 0 65.0418.2 0 2.7+0.3 4.040.2 0 58.0%t5.4
Misral  2X 1V 333 38840s ALTEir 498+15 363404 333 483415 486407 480421 35.0%0s
1x2y/ 66.7 81.6+0.6 83.6F£1.0 12709 11.3%10 66.7 83.8+0.0 85.9%09 13.9%06 9.9%f0s
3y 100 96.0+0.2 93.6f05 T.4do.7 4.2+0.4 100 94.6t10 95.9%05 54410 2.6%0.3
Standard 632i0 6 676i04 Gsoiog 12.0ﬂ:0,4 9.9i049 530io 5 59,1i045 61.1i0,5 10.5ﬂ:0.g 8.41’:1.0

Table 1: The hallucination propagation results of MAD with three agents for different models. Setup refers to setting
different error responses in the first round, and "normal" indicates the results under a standard MAD. The setup 3 x
and 34/ can be seen as the lower and upper bounds, respectively. The results of BQ are shown in Table 7.
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Figure 2: Comparison of five agent debate’s Mean Accuracy with different models when setting various initial
response hallucination rates. The red dashed line represents the model’s average accuracy on this dataset.

be the answer of agent ¢ to question ¢ at round ¢.
The gold answer for question ¢ is denoted as a9,
and the full textual response is represented by R ,.
Each debate involves N, questions and N, agenfs.
The accuracy of agent ¢ at round ¢ is computed as:

three rounds (Figure 1), we fix the number of de-
bate rounds to three. Additional experimental set-
tings and results based on other evaluation metrics
are provided in Appendix B.2.1. The conclusions
obtained are similar.

Acc{, = I(A], = a”) ey . R
' ' 3.2 Main Results and Findings
and the mean accuracy at round ¢ is defined as: Hallucination Propagation limits MAD. As
S Na s Ne Accl, shown in Table 1 and Figure 2, we report the results
MA, ==24 = " )

Ng X N,

Compared to using the final result from voting to
represent accuracy, M A; offers a more granular
view of the hallucination levels of the agents.

To evaluate hallucination propagation, we also
recorded the misdirection rate for each round:

N, N, q q
q a . )
SNy QL

involving three and five agents. In standard de-
bate settings, although M A increases over rounds,
the overall improvement remains modest. Both
Llama and Mistral exhibit M R close to 10% in
each round, with Llama’s M Ry exceeding 20% on
Truthful QA. This suggests that a substantial num-
ber of agents who initially held correct beliefs were
subsequently misled through interactions with the

ME() SN 2 Na z ) agents during the debate. These findings indicate
! v that, while MAD holds the potential to improve
where Q‘\I/ﬂ.’t = ]I(Accg,t = 1) and qu’i’t = performance, its practical effectiveness remains

I(Acc], = 0) represent whether the agent’s answer
is correct at round ¢. M R; measures the proportion
of agents who were correct in round ¢—1 but be-
came incorrect in round ¢, reflecting the extent to
which hallucinations misguide agents in the debate.
Implementation Details. We conduct debates
using either three or five agents. As hallucination
propagation predominantly occurs within the first

limited. This limitation can be primarily attributed
to the severe propagation of hallucinations. This is
consistent with our assumption that hallucinations
can spread through discussions, misleading other
agents and accounting for a considerable portion.

The Process of Hallucination Propagation. As
depicted in Figure 1(a), we present the transmission
process of hallucinated information. In the second



round, hallucinated agents mislead initially accu-
rate agents by introducing erroneous information
during the discussion. As the debates progress, this
initial hallucinated information spreads incremen-
tally, resulting in a decline in overall performance.
Findings I: MAD exhibits faithfulness halluci-
nation. In the upper-bound configuration, perfor-
mance gradually declines, indicating that halluci-
nations not only originate in initial responses but
also emerge and propagate during debates. Simi-
larly, under the lower-bound configuration, agents
demonstrate the capacity to deviate from erroneous
responses and generate accurate answers. This ten-
dency reflects faithfulness hallucination (Maynez
et al., 2020), where models remain overly loyal to
their intrinsic distribution of initial responses and
fail to incorporate new, beneficial information. As
shown in Figure 2, this phenomenon hinders effec-
tive interaction among agents. Llama frequently
converges toward its initial accuracy throughout
the debate, and the continued spread of faithful-
ness hallucination ultimately causes performance
to regress toward the model’s original distribution.
Findings II: Accurate and hallucinated infor-
mation is propagated concurrently during the
debate. As the degree of hallucination in the ini-
tial response increases, M R gradually increases,
suggesting that stronger initial hallucinations in-
tensify their propagation. However, hallucinated
agents are not inherently stubborn troublemakers
(Men et al., 2024; Barbi et al., 2025) that persis-
tently generate erroneous results. When interacting
with accurate agents, they can revise their beliefs
and produce correct responses. This indicates that
both hallucinated and accurate information spread
simultaneously during the debate. If the spread of
hallucinations can be effectively interrupted, this
issue could be mitigated, promoting the effective
dissemination of accurate information.

Findings III: Hallucination propagation is
model-dependent but task-independent. The
consistent pattern of results across diverse datasets
suggests that hallucination propagation is a fun-
damental issue within the MAD framework and
exhibits only limited task-specific correlation. Ad-
ditionally, the extent of hallucination propagation
varies across different models. Based on the debate
results, Llama exhibits stronger reasoning capabili-
ties compared to Mistral. However, Llama suffers
from more pronounced hallucination propagation,
while Mistral demonstrates consistent performance
improvements across various settings. This sug-

Robustness

0
NQ TruthfulQA BQ NQ

(a) Llama

TruthfulQA BQ

(b) Mistral

Figure 3: Robustness of Llama and Mistral in different
debate rounds. See Appendix A.3.3 for details.

gests that a model with stronger capabilities is not
inherently a more effective debater. This offer im-
portant insights for selecting a base model for multi-
agent collaboration, emphasizing the need to con-
sider the model’s capacity to resist misinformation.

3.3 Mechanism Analysis

We find that hallucination propagation is caused
by two types of hallucinations: (i) Explicit factual
hallucinations arise when agents adopt incorrect
knowledge. Despite the lack of credibility in peers’
responses, their logical and confident reasoning
often leads other agents to adopt and imitate this
misinformation. As debates progress, these halluci-
nations accumulate and intensify across rounds. (ii)
Implicit behavioral hallucinations occur when
agents internalize behavioral hallucinations from
peers. As shown in Figure 3, we evaluate the ro-
bustness (defined as their ability to resist misinfor-
mation) of agents across different rounds (Xu et al.,
2024). Over multiple rounds, agents’ erratic behav-
ior become internalized, reflecting susceptibility to
misleading patterns in the discussion. This leads
to a reduction in the model’s confidence in its own
responses, making it more susceptible to misinfor-
mation and more likely to generate hallucinations.

3.4 Locate Hallucination Propagation

We further investigate what questions are more sus-
ceptible to hallucination propagation. Specifically,
we record the model’s average accuracy for each
question by multiple sampling. This metric serves
as a proxy for question difficulty, such that consis-
tently low accuracy across multiple samples sug-
gests a higher level of difficulty. Based on this, we
categorize questions according to whether their ac-
curacy falls below or above a predefined threshold,
allowing us to identify scenarios in which halluci-
nation propagation is more likely to occur.

As shown in Figure 4(a), for relatively easy ques-
tions, model performance deteriorates over succes-
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Figure 4: Test results categorized by question difficulty
with 3 Llama agents on the NQ dataset. (a) and (b)
represent the test results for data below and above a
certain difficulty level, respectively. The results and
analysis of Mistral are shown in the Figure 7.

sive rounds. Conversely, Figure 4(b) illustrates that
for more complex questions, the debate process
leads to performance improvements and less hal-
lucination propagation. This finding suggests that
MAD is more effective in handling complex tasks,
whereas simpler tasks are more prone to inducing
and propagating hallucinations.

4 Mitigating Hallucination Propagation
in Multi-Agent Debate

Most existing MAD rely on predefined fully con-
nected communication topologies, which pose the
risk of one agent’s hallucinated information mis-
leading other originally correct agents (Figure 1(b)).
To address this, we aim to dynamically select the
most beneficial counterparts for agents. This en-
ables accurate information to reach hallucinated
agents while limiting the spread of hallucinations to
correct agents, thus promoting both robustness and
effective communication. Inspired by prior work
using entropy to quantify hallucinations, where
higher entropy of responses typically indicates
greater uncertainty of LLM, we introduce DIGRA,
a novel MAD framework that adopts dynamic com-
munication topology based on IGR.

4.1 Methodology

We first elaborate the calculations of entropy and
IG. Next, we introduce /G R in DIGRA, followed
by a detailed explanation of how DIGRA utilizes
this ratio to enable dynamic communication.
Mean Token Entropy (Fomicheva et al., 2020)
is the average entropy across all generated tokens,
with the entropy of a single token X defined as:

H(X) == pl(x)logp(z) €
zeV

where V denotes the vocabulary of the LLM and
p(x) represents the probability distribution over the
vocabulary during token generation.

Information Gain (/) quantifies the reduction
in uncertainty after the value of the conditional
variable is provided. In DIGRA, we define it as the
entropy reduction of the original response after the
agent ¢ considers the replies of other agents 7:

Ivat(j) = H(R;‘I,t) - H(Rg,t’f(% qu,t)) )

where H is the mean token entropy of the re-
sponse, i represents the current agent, and J =
{J1,J2, .-} C Ujx;j indicates the set of agents
communicating with agent ¢. The agents in J are
arranged in descending order of their entropy. f(-)
is a prompt template that transforms the responses
of the agents in J and the question ¢ into a format-
ted prompt (Appendix B.3). While /G can serve
as a criterion for selecting communication part-
ners, it ignores the entropy of the referenced agents.
Agents with high entropy, often due to hallucina-
tions, may lead to the propagation of hallucinations
after being referenced. Therefore, we introduce
IG R, which extends G by normalizing it with the
average entropy of the agents’ responses in 7.
Information Gain Ratio is defined as :
+IGL,(T)
IGRY,(T) = —— Lt (6)
e ﬁ djed H(R?,t)
As a more comprehensive criterion, I G R facilitates
communication with counterparts that are advan-
tageous to the current agent, while mitigating the
risk of referencing hallucinated agents. « is a hy-
perparameter used to balance entropy and /G, and
we set it to 0.2 (a detailed analysis is provided in
Appendix B.2.1)
The Detailed Process of DIGRA. DIGRA is
composed of two main steps. Firstly, DIGRA pre-
computes the /G R for potential communication
sets J of each agent. Secondly, DIGRA selects the
set of agents J* that maximizes the /GR as the
communication partners for agent 7.

Ji = argmax IGR] (T) (7
T CUj2:d
Furthermore, we draw on and use the early stop-
ping mechanism from Yin et al., where the debate
is terminated when all agents provide consistent
responses, or when an agent’s response remains
unchanged for two consecutive rounds.

4.2 Experimental Setups

Dataset and Evaluation Metric. = We employ
various benchmarks to evaluate the DIGRA’s capa-
bilities, including MMLU (Hendrycks et al., 2021),



Model Methods NQ BQ TruthfulQA GSM8K  MMLU  Avg.
CoT 73-2i0.8 67.8i1,0 57-0i1.3 77.8i1_5 62.5i1,1 67.7

CoT-SC(5) 784110 719412 60.510.5 82.0412 66.2404 T71.8

MAD(D =1) 783409 70.4418 62.441 5 77.8431 66.5439 71.1

Llama MADD =1) 80.2404 732417  61.2407 782405 655430 71.7
MAD(random) 79.011‘4 71.8:|:0_9 60.8:|:0.2 77.0:&3.0 63.5:&2.6 70.4

DIG 83.44197 779410 65.7407 80.5411 715439 75.8

DIGRA 85.0404 T78.7104 66.5111 84.2, 15 T1.84309 T77.2

Table 2: Comparison of accuracy of DIGRA against baseline methods. The optimal performance is highlighted in
bold, and the second-best performance is underlined. DIGRA is significantly better than CoT-SC and MAD with
DPuaiue < 0.005. The results of Mistral and more analysis are presented in the Appendix B.4.

GSMBS8K (Cobbe et al., 2021), Natural Questions
(Kwiatkowski et al., 2019), BoolQ (Clark et al.,
2019), and Truthful QA (Lin et al., 2022). We use
the majority voting as the final result of the debate,
and calculate accuracy accordingly.

Baselines. We compare DIGRA against the fol-
lowing baselines: (i) Chain-of-Thought (CoT):
CoT prompting enhances the reasoning capabilities
of LLMs through explicit intermediate reasoning
steps. This can be viewed as a single-agent method.
(i1) Self consistency (CoT-SC): CoT-SC samples
various reasoning paths and selects the most con-
sistent answer, thereby aggregating results from
multiple independent reasoning chains. We sample
five times of this method. Comparisons between
DIGRA with more sampling can be found in Figure
8. (ii1) Standard and Sparse MAD: Standard MAD
employs a fully connected topology for communi-
cation which confronts the challenge of hallucina-
tion propagation. Sparse MAD reduces commu-
nication costs by sparsifying the communication
topology of MAD. We denote the degree of spar-
sity by D = ﬁ, where d represents the number
of communicating agents. (iv) MAD (Random):
It randomly chooses both the communication part-
ners and the number of counterparts in each round,
thereby introducing randomness compared to a pre-
defined topology. (v) Dynamic communication
topology driven by the /G (DIG): DIG implements
a dynamic topology by maximizing /G, which in-
volves selecting the reference agents that are most
beneficial to the current agent.

Implementation Details. We follow the exper-
imental setup proposed by Du et al., employing
three agents in three debate rounds. To mitigate
the impact of sampling randomness when ¢t = 1,
all debate variants are initialized with the same
first-round responses generated by standard MAD.

In addition, we investigate the impact of hyper-
parameter settings in the Appendix B.2.

4.3 Main Results

Performance of DIGRA. Table 2 presents a per-
formance comparison between DIGRA and base-
line methods. The results indicate that MAD
does not consistently outperform single-agent ap-
proaches, particularly CoT-SC. This observation
aligns with the findings of Wang et al.; Zhang et al..

Sparsifying the communication topology im-
proves debate performance. We attribute this im-
provement to the reduced risk of hallucination prop-
agation, as hallucinated information no longer influ-
ences all agents in a single round. The performance
of the random communication topology occasion-
ally surpasses that of standard MAD, highlighting
the importance of selecting appropriate communi-
cation partners for the debate. DIGRA consistently
outperforms MAD across multiple datasets, owing
to its dynamic topology based on /G R, which en-
ables agents to select the most beneficial communi-
cation partners. This design mitigates hallucination
propagation and promotes more effective debate.
Compared to single-agent methods, DIGRA sur-
passes CoT-SC by 5.2% on average. Notably, DIG
also achieves strong performance. However, as it
does not consider hallucination levels in the refer-
ence set, it may select suboptimal partners, partic-
ularly in the GSMSK task, where its performance
declines significantly. In contrast to DIG, DIGRA
simultaneously accounts for both information gain
and hallucination levels, enabling agents to select
more optimal communication topology and further
suppress the propagation of hallucinations.

Given that DIGRA solely modifies the agents’
communication topology, these results underscore
the potential of multi-agent approaches. By fos-
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Figure 5: Comparison of the correct and hallucinated
information flow ratios across different baselines.

Methods NQ  BQ TruthfulQA MMLU GSMSK
MADMD =3) 05 0.5 0.5 0.5 0.5
DIG 0.642 0.718 0.726 0.718  0.706
DIGRA 0.610_ 0.680 0.672 0.655  0.626

Table 3: Comparison of the degree of sparsification of
communication topologies across different methods.

tering collaboration among agents and reducing
the spread of hallucinations, DIGRA facilitates the
emergence of superior collective intelligence.
The reasonable sparsification of DIGRA. As
shown in Table 3, both DIGRA and DIG implement
a certain degree of sparsification in the communi-
cation topology, which reduces token costs during
execution. While DIG communicates with more
agents, its performance remains suboptimal. This
is primarily due to its failure to account for agents’
hallucination levels, resulting in the involvement
of irrelevant agents and the propagation of halluci-
nations. In contrast, DIGRA delivers superior per-
formance with lower communication costs, demon-
strating its exceptional performance.

Dynamic topology regulation of information
flow. Figure 5 shows the relative proportions of
erroneous information flowing into initially correct
agents and correct information flowing into ini-
tially incorrect agents. In comparison to standard
MAD, DIGRA and DIG both facilitate the influx of
correct information into hallucinating agents and
mitigate the spread of hallucinations. This finding
confirms that incorporating the dynamic commu-
nication topology that selects beneficial communi-
cation partners can enhance collaboration among
agents and foster superior collective intelligence.
Scalability Analysis. Although the effectiveness
of DIGRA has been validated on open-source 7B
and 8B models, its scalability remains uncertain.
Given that LLMs are trained on vast textual data
and possess the ability to capture complex lin-

Method - Entropy Source
= MAD-None
3 DIGRA-llama3.2-1b
DIGRA-llama3.2-3b
[ DIGRA-llama3.1-8b

en
[ DIGRA-Mistral-7b

Performance(%)
D N 3
(=) W (=)

i
W

50

GPT-40-mini

GPT-3.5-turbo

Figure 6: Results on MMLU with models using different
open-source model for entropy calculation.

guistic patterns, we assess DIGRA’s scalability
by employing various open-source LLMs (Mistral,
Llama, and Qwen (Yang et al., 2025)) of differ-
ent sizes as entropy estimators for larger-scale and
closed-source models (GPT?3.5-Turbo and GPT4o-
mini). As shown in Figure 6, DIGRA demonstrates
performance improvements with most models, in-
dicating that DIGRA has good scalability. These
results further indicate that mitigating hallucination
propagation improves debate performance even
with larger models. Notably, the magnitude of per-
formance improvement is not directly proportional
to the size of the entropy estimation model, imply-
ing that smaller high-quality models can be lever-
aged to optimize both computational efficiency and
performance enhancement.

5 Conclusion

In this paper, we focus on exploring what leads
to the unstable performance of MAD. Through
extensive experimentation, we found that this is-
sue can primarily be attributed to the woozle ef-
fect, which refers to the propagation of hallucina-
tions. During debates, hallucinations are not only
introduced by individual agents but also amplified
through repeated interactions, ultimately mislead-
ing agents that were initially accurate. To mitigate
this issue, we introduce DIGRA, a novel MAD
framework with a dynamic topology driven by in-
formation gain ratio. DIGRA dynamically selects
the most advantageous communication partners for
each agent, thereby correcting hallucinating agents
and mitigating the spread of hallucinations. DI-
GRA demonstrates consistent improvement vari-
ous datasets. Our findings address the challenges
hindering multi-agent performance, paving the way
for future multi-agent development.



6 Limitation

In this work, due to limitations in computational
resources, we did not select excessively LLMs or a
high number of agents for Debate. In the future, we
plan to develop toolkits and acceleration algorithms
to run simulations with a larger number of agents.

We aim to demonstrate the potential of dynamic
communication topologies in mitigating hallucina-
tion propagation within multi-agent collaboration.
Therefore, cost efficiency is not considered in this
study. We believe that DIGRA can be integrated
with techniques such as group debate(Wang et al.,
2024; Liu et al., 2024a) or dynamic programming
to optimize the efficiency of the search process.

The impact of roles on the debate process has
not been considered. Preliminary observations sug-
gest that dynamic topology can assist in identifying
more advantageous roles for communication re-
lated to the current question. In future work, the
role factor will be incorporated and the benefits of
dynamic topologies will be further investigated.

Additionally, we have only considered mean to-
ken entropy as the metric to validate the effective-
ness of the dynamic topology selection. In the
future, we will investigate more applicable met-
rics to help achieve better dynamic topologies and
superior collective intelligence.

7 Ethical Statement

In the future, with the continuous advancement
of LLMs and agent technologies, we foresee the
emergence of more sophisticated collective intelli-
gence, which requires multiple powerful agents to
be reliably trusted and capable of efficient interac-
tion. However, the instability exhibited by current
multi-agent debate has raised concerns about the
future development of collective intelligence. In
this work, we have made a significant step forward
by identifying that the limitation of MAD stems
from the propagation of hallucinations and further
mitigating this issue through the use of dynamic
topology.
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A The Woozle Effect: Hallucination
Propagation in Multi-Agent Debate

A.1 Term definition

The Woozle Effect is named after a concept in psy-
chology and research methodology, particularly in
the context of misinformation and the propagation
of unverified claims. In this bias, the initial source
of information may be questionable, but as it is
cited by others, it gains credibility. The repetition
of a claim, without proper verification or critical
scrutiny, leads to a situation where a concept or
finding is believed to be true simply due to its fre-
quency of appearance in literature or media.

The term Woozle Effect originates from A.A.
Milne’s 1926 children’s book Winnie-the-Pooh, in
which Pooh and Piglet embark on a hunt for an
imaginary creature called a "Woozle." In Chapter
3, titled "In which Pooh and Piglet Go Hunting and
Nearly Catch a Woozle", the two characters start
following what they believe are the tracks of a Woo-
zle in the snow. However, as they continue their
pursuit, the tracks mysteriously multiply, leading
them in circles. It is only when Christopher Robin
intervenes that they realize they have been follow-
ing their own tracks all along, believing them to
belong to the elusive Woozle. This scenario is an al-
legory for how people can be misled into following
faulty reasoning or unsubstantiated claims, much
like how Pooh and Piglet followed the erroneous
tracks. A contemporary example of the Woozle Ef-
fect can be observed in the field of medical research,
where unverified claims regarding the efficacy of
certain treatments or interventions are often cited
in multiple studies or articles. For instance, if a
non-peer-reviewed study suggests that a particular
herbal remedy can cure a common cold, this claim
might be referenced by other researchers and me-
dia outlets. Even though the original study might
have been flawed or inconclusive, its repeated men-
tion in various sources can create the illusion that
there is robust scientific support for the claim, thus
misleading the public into believing the remedy is
effective.

In the context of multi-agent debates, the Woozle
effect can be considered as the propagation of hal-
lucinations. The erroneous responses generated by
the agents are referenced and partially accepted by
other agents, and the hallucinations spread through
the predefined topology as a result of the discus-
sions.
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Parameters 3-Agents 5-Agents
Batch_size 8 6
Max_Tokens 1024 1024
Temperature 1.0 1.0
Top-p 1.0 1.0
Top-k 50 50

Table 4: Generation parameters settings.

A.2 Experiments Details

A.2.1 Supplementary settings

To improve experimental efficiency, we utilized the
VLLM library for inference acceleration, and the
parameters are set as shown in Table 4.

A.2.2 The Flow of Hallucinated and correct
information

In Figure 1, we illustrate the flow of hallucinations
and accurate information. In this section, we ex-
plain the experimental details. We assume that the
hallucinations in R(q, i,t) are caused by referenc-
ing the output of previous agents. If a referenced
agent j exhibits hallucinations at round ¢ — 1 and
Agent 7 also exhibits hallucinations at round ¢, we
consider it as the propagation of hallucinated in-
formation. The flow of accurate information is
calculated in the same way. The accuracy of the
agent at each node is represented by its color and
is independent of its size.

A.2.3 Correct Data Sampling

We track the woozle effect in MAD through assign-
ing initial responses with varying levels of halluci-
nations. For hallucination responses, we employed
the answer from the logical strategy in FARM. To
obtain accurate responses, we devised the follow-
ing collection strategy:

Assume that we need to obtain N (set to 5)
accurate responses to each question g .
step 1: We sample each question 50 times, assum-
ing the number of accurate responses is 1.
step 2: If ny > Ny, we randomly retain Ny
accurate responses. Otherwise, we proceed to step
3 to generate N,;; — np samples.
step 3: We provide the correct answers to the model
in advance and leverage the responses generated in
step 1 to form n;-shot examples to guide the model
in generating accurate responses.

To better align with the model’s output style, we
sample the accurate responses generated by Llama
and Mistral separately. As shown in Table 5, we
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illustrate the process of generating a correct sample
by Mistral.

Additionally, We use the proportion of correct
responses during the sampling process (step 1) to
represent the average accuracy of responses to the
question. This metric is used for analysis in Section
3.4.

A.3 Supplementary Experiments and
Analysis

A.3.1 Evaluation Metric

In Section 3.1, we used the average accuracy and
misguidance rate metrics to investigate the phe-
nomenon of hallucination propagation. Here, we
employ additional metrics for analysis.

Initial Misleading Rate (IMR). The misleading
rate primarily reflects the misguidance in the cur-
rent round of the debate. Here, we introduce the
IM R to observe the proportion of initially correct
responses that are misled as the debate progresses:

Zflvq Ziva (\]/,i,l ) Qi,i,t
DOAED DALX O

Here, IM R5 equals M R».

Correction Rate (CR). Considering that correct

information is also propagating, we use the correc-

tion rate,e to observe the propagation of correct
information:

IMR; =

®

N N,
c . Zq ¢ Zz ¢ z<,i,t71 'Q(z/,i,t
TSI
q i X,i,t—1

A.3.2 Full Results

In this section, we present all the results on the
FARM dataset with comprehensive evaluation met-
rics. We present the results of NQ in Table 6, the
results of BQ in Table 7, and the results of Truth-
ful QA in Table 8. Based on additional results, we
have derived the following supplementary conclu-
sions:

(i) IM R3 is generally lower than M R3, which
suggests that a significant portion of the subsequent
misguidance stems from agents corrected in the
second round. This underscores the agents’ vacilla-
tion.

(i1) The correction rat reflects the spread of accu-
rate information in MAD. However, under certain
settings, the C'R can be lower than the M R, indi-
cating that some challenging hallucination propa-
gation is difficult to correct and the spread of hallu-
cinations limits the performance of MAD.

€))



Question when did michael jordan come to the nba?

Option A) 1982 C) 1986 D) 1988

Prompt  Your task is to provide a detailed reasoning process for why the is the
correct to the following multiple-choice questions.

{question, option}

Here are the examples:

{examples generated in step 1}

Please assume that you do not know the premise and provide the reason for it to be the
correct answer. It means you need to get through your reasoning.
The last line of your response should be of the following format: ’ ,

Think step by step before answering.

Example Michael Jordan is widely recognized as one of the greatest basketball players in NBA
history. To determine the year when he joined the NBA, let’s consider some clues and
eliminate the incorrect answer choices.

A) 1982: Michael Jordan did not join the NBA in 1982. The 1981-1982 NBA season
marked Jordan’s last year playing college basketball for the University of North Carolina
at Chapel Hill.

Answer: Not Correct

C) 1986: Michael Jordan did not join the NBA in 1986. In 1985, Jordan led the Chicago
Bulls to their first playoff appearance and made the NBA All-Star team for the first time.
The following year, in 1986, Jordan reached his full potential and established himself as a
dominant player in the league.

Answer: Not Correct

D) 1988: Michael Jordan did not join the NBA in 1988. By this point, Jordan had already
been an NBA All-Star and an NBA champion (with the Bulls in 1985 and 1986). He was
considered one of the best players in the league, and there’s no reason to believe he would
join then.

Answer: Not Correct

B) 1984: The strongest evidence for Michael Jordan joining the NBA in this year comes
from the fact that he was drafted 3rd overall by the Chicago Bulls in the 1984 NBA draft,
which took place on June 27, 1984.

Table 5: A correct response of question in Nq generated by Mistral. Green text represents the correct answer, while
red text represents the incorrect option.

Model Setup MA; MAs MAs3 M Ry|IM Ry MR3 IMRs CRy CR3
3x 0 7.4:‘:0_7 13.5:&0,7 0 35~0j:4.6 0 7.4:5:0_7 9.4:5:.0.3
2x1y/ 33.3 58.6110 Hl.8415 88.0116 57.0122 16.6108 819198 64.14711
Llama 1 x 2/ 66.7 62.6410 57.0405 529413 36.2411 41.8407 93.6411 457113

3y 100.0 91.1408 92.9410 89408 5.4407 71410 0.0400 75.5443
Standard 73-610.8 75-210.6 77.710_3 15.610,8 11211.0 8.9i0_3 49.311,9 44.113,0
3x 0 1.010,2 1-5i0.3 0 65~0i18.2 0 l.Oio,Q 1.2;&0,2

2x1y/ 33.3 38.840.8 41.7417 49.8413 36.3424 D55.2400 33.2414 277416

Mistral 1 x 24/ 66.7 81.6406 83.6+10 12.740.9 113410 159414 70.1416 60.9495
3y 100.0 96.0402 93.6405 Tdio7 4.2404 6.4105 0 66.0435

Standard 63.249¢ 67.6404 68.040.3 12.040.4 99409 119409 32.6409 21.8412

Table 6: The hallucination propagation results of NQ. Setup refers to setting different error responses in the first
round, and "normal" indicates the results under a standard MAD. The setup 3x and 3,/ can be seen as the lower
and upper bounds, respectively.
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(iii) On the BQ dataset, Llama exhibited more
severe hallucination propagation, with the average
accuracy even decreasing as the debate progressed.
This is due to the fact that BQ consists of boolean
questions, which are more prone to misleading the
agents.

A.3.3 Robustness Testing

We adopt the implicit belief checking method pro-
posed by (Xu et al., 2024). to evaluate model ro-
bustness. Specifically, we utilize the "logical” strat-
egy from the FARM dataset to conduct multiple
rounds of misleading interventions based on the
agent’s interaction history. If the agent maintains
correct beliefs despite these misleading cues, it is
considered robust.

A.3.4 Locate Hallucination Propagation

In Section 3.4, we only discussed Llama’s re-
sponses to questions of varying difficulty. in
this section, we present and discuss Mistral’s re-
sults. Similar with Llama, hallucination propaga-
tion tends to occur in simpler questions, whereas
more difficult questions often show consistent im-
provements. In contrast, Mistral demonstrates
higher stability and is able to achieve performance
improvements over a broader range through Debate
(Figure 7).

B DIGRA: Mitigating the hallucination
propagation in Multi-Agent Debate

B.1 Communication Topology in MAD

We present different communication topologies in
Figure 1(b). From the figure, we observe that when
a single agent exhibits hallucinations, the risk of
hallucination propagation is highest with the pre-
defined static topology. Sparse communication re-
duces the hallucination propagation to some extent,
but it cannot fully resolve the issue. By leverag-
ing dynamic topologies to select the most advanta-
geous communication partners, the propagation of
hallucinations can be mitigated.

B.2 Hyper-Parameter Analysis

B.2.1 Balance of /G R and Hallucination level

In the formula of IGR, we introduce the hyperpa-
rameter « to balance the entropy of the reference
agents and the information gain. In this section,
we analyze the impact of different values for this
parameter. As shown in Table 9, the performance
exhibits a trend of first increasing and then decreas-
ing as the « increases. When « is too small, the
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importance of entropy is overlooked, leading to the
selection of agents with high hallucination levels
for communication. When « is too large, the in-
formation gain is ignored, and the selected agents
may lack significant reference value for the current
agent. When « is set to 0.5, DIGRA achieved sig-
nificant improvement, suggesting that an optimal
balance between information gain and entropy of
agents yields enhanced performance. In our experi-
ment, we pre-set this value without further tuning
« , indicating that DIGRA holds greater potential
for achieving even better performance.

B.2.2 Debate Rounds

In Figure 9, we present the performance changes
across different debate rounds. While MAD ex-
hibits unstable performance as the debate pro-
gresses, DIGRA consistently achieves stable per-
formance improvements through the debate pro-
cess. This indicates that the accumulation of hallu-
cination propagation over successive debate rounds
hinders MAD from achieving better performance.
However, a dynamic communication topology can
mitigate hallucination propagation and facilitate
more effective debates among agents.

B.3 The Details of DIGRA
B.3.1 Calculation of information gain ratio

In this section, we will explain how information
gain ratio is computed using the specific prompt
template. As shown in Table 10, we first concate-
nate the responses of agents in (J with the prompt
of the original question into the predefined tem-
plate. Then, we set the output of the current agent
and perform forced decoding to compute the en-

tropy.

B.3.2 Early stoping in DIGRA

Since hallucinations exhibit diffusion characteris-
tics, the early stopping mechanism we designed
helps mitigate this issue. Specifically, our early
stopping mechanism is based on the following prin-
ciples:

(1) All agents reach a consensus and provide an
answer (i.e., the answer is not None).

(i1) One agent’s opinion is consistent for two
consecutive rounds and the answer is not None.

(iii)) For terminated agents, we assume that
a g
R = iy



Model ~ Setup ~ MA,  MA,  MA; MRy|IMR, MRy IMRy; CR,  CRs
3x 0 153102 30.9404 0 359115 0 153102 24.9:04
2x1y 333 585405 55.4i14  92.2i02 528117 192116 83.8109 67.0153
Llama 1x2,/  66.7 561104 49.6115  63.1u04 447109 48.6x11 945111 42.3150
3/ 100.0 843104 76.2407 157104 179014 238.07 0 44.9.40
Standard 68.1:110 70.1i0s 68.940s 233114 217104 189105 56.0111 46.8151
3x 0 55506  9.1:0o 0 433139 0 55106 6.3x07
2x1y 333 556106 56.9:14 353108 249108 4l.1iog 5l.ligs 34.0i0s
Mistral 1 x2y/  66.7 854117 865114  85i10 83108 128116 73.3114 55.Ti40
3/ 100.0 984104 96.7i02  2.9:i03 22102 34i03 00100 549444
Standard  68.5:10 70.3107 70.610s  5.4iog 42103 4.8i07 174115 109409

Table 7: The hallucination propagation results of BQ. Setup refers to setting different error responses in the first
round, and "normal” indicates the results under a standard MAD. The setup 3x and 3,/ can be seen as the lower
and upper bounds, respectively.

Model  Setup ~ MA,  MAy,  MAs MRy|IMR, MRs IMRs  CRy CR;
3x 0 TAdros 138410 0 48.7443 0 Tdios 108411
2x1y 333  601i0g Hldiog  87.4s1a4  59.1u19 160105 839106 673105
Llama 1x2y/  66.7 654110 57.3116 493414 360103 413119 94.6105 44.813s
3y 100.0  91.2405 90.9405 8.8402 754106  9.lios 0 73.6116
Standard 56.7110 587111 612115  21.7412 163109 125110 331409 294415
3x 0 27103  4.040.2 0 58.045.4 0 27105  3.04002
2x 1y 333 483113 486107  48.04191 350106 458i14 46.5i18 333411
Mistral 1 x2,/  66.7 838109 859:09  13.9i06 99106 142408 79.1404 64.319
3y/ 100.0  94.6110 95.9405 54410 2.6103 41105 0 67.940.3
Standard 53.0105 59.1105 6l.1igs  10.540s 84410 94i06 247411 17.040s

Table 8: The hallucination propagation results of Truthful QA. Setup refers to setting different error responses in
the first round, and "normal" indicates the results under a standard MAD. The setup 3x and 3,/ can be seen as the
lower and upper bounds, respectively.
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Figure 7: Test results categorized by question difficulty with 3 Mistral agents on the NQ dataset. (a) and (b) represent
the test results for data above and below a certain difficulty level, respectively.
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Figure 8: Performance comparison between DIGRA and COT-SC under different sampling counts.

o 0.01 0.05 0.1 0.2 0.3 0.5 1.0

Accuracy 68.5i4,5 70‘0i4.1 69.814_7 71.813.0 70.8i3.5 74-0i4.2 70'8i3.6

Table 9: Accuracy (%) of DIGRA with different « on MMLU benchmark.

Response R{, Ry, Ri,

entropy order Rg’t > R%t > R'f’t

current agent agent 1

potential agents 7 {R%t} {Rgt} {jot, jot}

Prompt {Original prompt of ¢}

f(gq, qu,t) |l 7={3,2} These are the solutions to the problem from other agents:

One agent solution: ““ R1, «

One agent solution: “‘ Rg;t o

Using the reasoning from other agents as additional advice, can you
give an answer?

The last line of your response should be of the following format:

’Answer: SLETTER’ (without quotes) where LETTER is one of ABCD.
Think step by step before answering.

TG |1 H(R,) - BUG(RLIRY )
H(RY,) — HIG(R] R _ 3 ;)
H(R{,) —HUIG(R{,|RY 35, )
AR )~ EUGRL IRy )

IGR(R(i]7t‘R?77t) 1,t H(Rg t)lﬁt J={2}, = 0.69
a+H(R‘11’t)7H(IG(R(11,t|R§7:{2«3}vt) =091

T(H(RY ) +H(R],))

final communication agents agent 3

Table 10: Examples of DIGRA and details of the prompt template function.
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Model Methods NQ BQ TruthfulQA GSM8K  MMLU  Avg.
CoT 624107 64.0117 59.841.0 38.5435 054.8430 559

CoT-SC 679107 64.7107 60.1106 4284490 56.2108 58.3

MAD(D =1) 69.91093 679107 61.510.7 452413 564113 60.2

Mistral MAD(D = %) 65.8421 67.7105 61.910.4 388437 55.0412 H7.8
MAD(random) 69.149¢ 67.94056 61.2405 415497 53.8418 H&7

DIG 70.9406 68.610.8 614101 445135 56.2408 60.3

DIGRA 722111 68.71 06 61.640.3 47.0424 570116 61.3

Table 11: Comparison of accuracy of DIGRA with Mistral against baseline methods. The optimal performance is
highlighted in bold, and the second-best performance is underlined.

MAD
i DIGRA
)
8
2 701
<
E
‘E 68 1
o

66 1

i 2 3 4 5

Rounds

Figure 9: Results of Different Debate rounds using
Llama on MMLU.

B.4 Results of Mistral

Table 11 shows the results of Mistral. From prior
experiments, we found that although Mistral is less
capable than Llama 3.1, it exhibits better debat-
ing characteristics. Similarly, Mistral consistently
outperforms CoT-SC in MAD, indicating that the
model demonstrates strong resistance to hallucina-
tion propagation, thus showing effective collective
intelligence. Moreover, we discovered that the in-
troduction of DIGRA further boosts its debating
ability, leading to consistent improvements across
multiple datasets.

However, We observed that Mistral exhibits only
limited performance improvements. To investigate
this further, we conducted an in-depth analysis. As
previously discussed in Section 3.2 Findings II ,
Mistral is considered a better debater rather
than a better reasoner. Due to the relatively low
quality of its initial responses, even mitigating hal-
lucination propagation does not lead to substantial
performance gains through debate alone.
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Figure 10: Results on MMLU with Llama using differ-
ent open-source model for entropy calculation.

To validate this hypothesis, we conducted an ad-
ditional experiment in which the initial responses
were generated by Llama, while Mistral was used
as the reasoning agent during the debate. As shown
in Table 12, Mistral achieves greater performance
improvements than Llama under this setting, fur-
ther confirming that Mistral is a better debater. No-
tably, similar trends were also observed with GPT-
3.5 and GPT-4o.

B.5 Comparison Between DIGRA and
CoT-SC

In the main text, we report the performance of CoT-
SC with five samples. Here, we further compare DI-
GRA with CoT-SC under varying sampling counts.
As shown in Figure 8, even when the number of
CoT-SC samples increases to 50, its performance
still does not surpass that of DIGRA with only three
collaborating agents. This highlights the superior
performance of DIGRA and underscores the strong
potential of multi-agent collaboration.



Inference Model  First Round Responses ACC

Llama3.1-8B Llama3.1-8B 71.8+3.0
Mistral-7B Mistral-7B 57.0+ 1.6
Mistral-7B Llama3.1-8B 72.8+3.5

GPT40-mini GPT40-mini 75.5+0.5

GPT3.5-turbo GPT3.5-turbo 66 + 1.0

GPT3.5-turbo GPT40-mini 775+15

Table 12: Accuracy results under different inference and
response model settings.

B.6 Scalability of Llama

As shown in Figure 10, We also present results
using different models to estimate the entropy of
Llama. The findings are consistent with those re-
ported in the main text: the entropy estimator can
be a heterogeneous model, and smaller models may
even yield better results.

18



