Benchmarking LL.Ms on Extracting Polymer Nanocomposite Samples

Anonymous ACL submission

Abstract

This paper investigates the use of large lan-
guage models (LLMs) for extracting sample
lists of polymer nanocomposites (PNCs) from
materials science research papers. The chal-
lenge lies in the complex nature of PNC sam-
ples, which have numerous attributes scattered
throughout the text. To address this, we intro-
duce a new benchmark and a novel evaluation
technique for this task and examine different
LLM prompting strategies: end-to-end prompt-
ing to directly generate entities and their rela-
tions, as well as a Named Entity Recognition
and Relation Extraction (NER+RE) approach,
where entities are first identified, followed by
relation classification. We also incorporate self-
consistency to improve LLM performance. Our
findings show that even advanced LLMs, such
as GPT-4 Turbo, struggle to extract all of the
samples from an article. However, condensing
the articles into the relevant sections can help.
Finally, we analyze the errors encountered in
this process, categorizing them into three main
challenges, and discussing potential strategies
for future research to overcome them.

1 Introduction

Research publications are the main source for the
discovery of new materials in the field of mate-
rials science, providing a vast array of essential
data. The creation of structured materials databases
from these publications is essential for enhanc-
ing the speed and efficiency of material discov-
ery. This is evident in the achievements of Al
tools such as GNoME (Merchant et al., 2023). Yet,
the unstructured presentation of this data in jour-
nals makes it challenging to extract valuable in-
formation and utilize it for future discoveries (Ho-
rawalavithana et al., 2022). Furthermore, manually
sorting through articles to extract details about ma-
terials—such as their structure, processing, and
properties—is time-consuming and prone to errors.
Hence, there’s a growing need for an automated

Article:

A surfactant-stabilized aqueous
suspension of poly(styrene-co-butyl
acrylate), P(S-BuA),...

The aim of this study is thus to check
the efficiency of multi-walled carbon
nanotubes (MWNTS)...

PNC Sample List:

{

“Matrix Chemical Name™: “poly[(butyl acrylate)
-co-styrene]”,

“Matrix Abbreviation™: “P(S-BuA)”,
“Filler Chemical Name”: “cellulose nanofibrils”,
“Filler Abbreviation”: null,
“Filler Composition Mass”: null,
“Filler Composition Volume”: “0.06™

...to compare it with that of cellulose )
nanofibrils... {

“Matrix Chemical Name”: “poly[(butyl acrylate)
-co-styrene]”,

“Matrix Abbreviation”: “P(S-BuA)”,

“Filler Chemical Name™: “multi-walled carbon
nanotubes”,

“Filler Abbreviation™: null,

“Filler Composition Mass”: null,

“Filler Composition Volume”: “0.005”

For higher nanotube contents (0.5 and...

Sample reinforced with nano fillers
contents of up to 6vol% for cellulosic
nanofibrils...

Figure 1: A snippet from a PNC research article (Dal-
mas et al., 2007) and the extracted PNC sample list from
the NanoMine database. Note how information for a
single sample is extracted from multiple parts of the
article text.

system that can transform these valuable data into
a structured, machine-readable format for more
efficient retrieval and analysis (Yang, 2022).

Scientific papers on polymer nanocomposites
(PNCs) include detailed descriptions of sam-
ple compositions, crucial for understanding their
unique properties. PNCs are critical in material sci-
ence, combining polymer matrices with nanoscale
fillers to yield composites with tailored mechan-
ical, thermal, and electrical characteristics. The
diversity of PNCs is derived from various matrix
and filler combinations, each altering the material’s
properties. Extracting this data is challenging due
to the scattered nature of information across texts,
figures, and tables, and the complexity of N-ary
relationships where multiple attributes define each
sample (Figure 1).

In this paper, we use the NanoMine (Zhao et al.,
2018) data repository to construct PNCExtract, a
benchmark designed for extracting PNC sample
lists from scientific texts using large language mod-



els (LLMs). PNCExtract focuses on the systematic
extraction of N-ary relations across different parts
of full-length peer-reviewed PNC articles, captur-
ing the unique combination of matrix, filler, and
composition in each sample. Prior research on
information extraction from materials science lit-
erature, such as the works of Dunn et al. (2022),
Song et al. (2023a), and Xie et al. (2023), primar-
ily focused on information extraction from specific
sentences or passages. PNCExtract, on the other
hand, requires models to analyze entire papers to
aggregate information dispersed across the various
sections of a paper, a key challenge highlighted by
Hira et al. (2023). Consequently, we leverage the
advanced token limits of recent LLMs like GPT-4
Turbo (OpenAl, 2023) and LongChat (Dacheng Li*
and Zhang, 2023) in our study. We also introduce a
dual-metric evaluation system comprising a partial
metric for detailed analysis of each attribute within
an [N-ary extraction and a strict metric for assess-
ing overall accuracy. Unlike prior works in mate-
rials science that focused solely on an assessment
of binary relations (Dunn et al., 2022; Xie et al.,
2023; Song et al., 2023a; Wadhwa et al., 2023) or
used strict evaluation criteria (Cheung et al., 2023)
without recognizing partial matches, our method
provides a more comprehensive assessment that
acknowledges the complexity of PNC samples.
We explore two prompting strategies for LLMs
in a zero-shot context. The first approach aligns
with the principles of Named Entity Recognition
(NER) and Relation Extraction (RE), which we
refer to as NER+RE which involves a two-stage
pipeline: initially, entities within the text are iden-
tified, and subsequently, valid relations between
these entities are extracted, a technique also ex-
plored by Zhou et al. (2022) and Tang et al. (2023).
However, this approach can become expensive due
to the complexity of PNC samples, which feature
multiple attributes, leading to an exponential in-
crease in the number of candidate relations. Our
second prompting strategy adopts an end-to-end
(E2E) method by directly generating the N-ary ob-
jects. We find that the E2E approach works better
in terms of both accuracy and efficiency. More-
over, we present a simple extension to the self-
consistency technique (Wang et al., 2023b) for list-
based predictions by sampling multiple times from
the LLM and aggregating the lists through majority
voting. Our findings demonstrate that this approach
improves the accuracy of sample extraction.
Lastly, we discuss three primary challenges en-

countered when using LLMs for PNC sample ex-
traction. First, many samples are located within
tables and figures, indicating a need for multimodal
approaches. Second, there is variability in the ex-
pression of chemical names; LLMs often use se-
mantically correct but non-standard naming con-
ventions. Finally, the complexity of PNC samples,
with their various attributes and diverse chemical
names, poses a difficulty as LLMs struggle to differ-
entiate between them. Code for reproducing all ex-
periments is available at hidden. for.anonymity.

In summary, we make the following contribu-
tions:

* We introduce the PNCExtract benchmark with
a novel evaluation method to assess LLMs’
ability to extract PNC samples’ composition
from full-length research articles.

* We explore two prompting strategies,
NER+RE and E2E in a zero-shot context.
Our findings show that the E2E approach
is more accurate and efficient. Further-
more, we develop an extension to the
self-consistency technique, tailored for this
task, and demonstrate its effectiveness in
improving accuracy.

* We identify and discuss three challenges faced
in extracting PNC samples with LLMs and
suggest potential strategies to address them.

2 PNCExtract Benchmark

In this section we first describe our dataset, includ-
ing its source, information extraction tasks, prepro-
cessing, and statistics. Then we describe a novel
evaluation method for the described task.

2.1 Dataset

2.1.1 NanoMine Data Repository

NanoMine (Zhao et al., 2018) is a PNC data repos-
itory structured around an XML-based schema de-
signed for the representation and distribution of
nanocomposite materials data. The NanoMine
database, manually curated using Excel templates
provided to materials researchers, consists of a
broad array of potential schema entries. These
entries are categorized into several major sections,
such as Materials Composition, Processing, and
Properties. The Materials Composition section cov-
ers characteristics of the constituent materials, in-
cluding the polymer matrix and the filler particle.


hidden.for.anonymity

Processing details the description of chemical syn-
thesis. The Properties section provides measured
data on materials performance and response, with
each section containing numerous entries.

A typical sample in NanoMine uses only a frac-
tion of the possible 350 terms that keep evolving.
NanoMine database currently contains a list of 240
full-length scholarly articles and their correspond-
ing PNC sample lists. While NanoMine includes
various subfields, our study focuses on the “Mate-
rials Composition” section. This section compre-
hensively details the characteristics of constituent
materials in nanocomposites, including aspects like
the polymer matrix, filler particles, and their com-
positions (expressed in volume or weight fractions).
The reason for this focus is that determining which
samples’s composition were studied in a given pa-
per is the essential first step towards identifying and
understanding more complex properties of PNCs.
Out of the 240 articles, we focus on 193 and disre-
gard the rest due to having inconsistent format (see
Appendix A). These 193 articles contain a total of
1052 samples.

2.1.2 Dataset Curation and Cleaning

During our curation process, we selectively disre-
gard certain attributes from NanoMine based on
three criteria:

* Complexity in Extraction and Evaluation: At-
tributes that cannot be directly extracted with
a language model or evaluated are disregarded.
For example, intricate descriptions (such as
“an average particle diameter of 10 um”) are
excluded due to their complexity in evalua-
tion.

Rarity in the Dataset: We also disregard at-
tributes infrequently occurring in NanoMine.
For instance, “Tacticity” is noted in only
0.05% of samples. This rarity might stem
from either its infrequent mention in research
papers or oversights by annotators.

Relative Importance: Attributes that are less
important for our analysis, such as “Manu-
facturer Or Source Name”, are also excluded.
Our focus is on extracting attributes that are
most relevant for identifying a nanocomposite
sample.

This filtering process retains 6 out of the 43 to-
tal attributes in the Materials Composition of
NanoMine.

2.1.3 Problem Definition

We define our dataset as D = {D1, Da, ..., Digs},
where each D; is a peer-reviewed paper included
in our study. Corresponding to each paper D,
there is an associated list of samples S;, compris-
ing various PNC samples. Formally, S; is defined
as S; = {s;1, Si2, - - -, Sin, }, Where s;; represents
the j-th PNC sample in the sample list of the i-
th paper, and n; denotes the total number of PNC
samples in S;. Each paper has 5.72 samples on
average. Each sample s;; is a JSON object with six
entries: Matrix Chemical Name, Matrix Chemical
Abbreviation, Filler Chemical Name, Filler Chem-
ical Abbreviation, Filler Composition Mass, and
Filler Composition Volume. Table 1 presents the
count of samples with each attribute marked as non-
null. The primary task involves extracting a set of
samples S; from a given paper D;.

Attribute Number of Samples

Matrix Chemical Name 1052
Matrix Chemical Abbreviation 864
Filler Chemical Name 1052
Filler Chemical Abbreviation 819
Filler Mass 624
Filler Volume 407

Table 1: Number of total samples for which each of the
attributes is non-null.

2.2 Evaluation Metrics

Our task involves evaluating the performance of our
model in predicting PNC sample lists. One natural
approach, also utilized by Cheung et al. (2023), is
to verify if there is an exact match between the pre-
dicted and the ground-truth samples. This method,
however, has a notable limitation, particularly due
to the numerous attributes that define a PNC sam-
ple. Under such strict evaluation criteria, a pre-
dicted sample is considered entirely incorrect if
even one attribute is predicted inaccurately, which
can be too strict considering the complexity and
attribute-rich nature of PNC samples.

Hence, we also propose a partial metric which
rewards predicted samples for partial matches to a
ground truth sample. However, computing such a
metric first requires identifying the optimal match-
ing between the predicted and ground truth sample
lists, for which we employ a maximum weight
bipartite matching algorithm. This approach ac-
knowledges the accuracy of a prediction even if not
all attributes are perfectly matched.
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Instruction: Please read the paragraphs and find all PNC
isamples...
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“Matrix Chemical Name”: “chemical_name”,
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Article: {“article text™:...}
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icomposition...
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Response:

“Matrix Chemical Names”: [“Epoxy resin, “Poly(vinylidene
fluoride)”, “Bisphenol-A epoxy resin” ],

“Filler Compositions™: [“1.01 vol.%”, “1.2 vol.%”, “30 vol.%”,
“60 vol.%”]

RE Step:
LLM

f

PNC Sample #1:

“Matrix Chemical Name”: “Poly(vinylidene fluoride)”, |

“Filler Composition”: “1.01 vol.%",

PNC Sample #n:
“Matrix Chemical Name”: “Poly(vinylidene fluoride)”, |

“Matrix Chemical Name”: “1.2 vol.%”",

Instruction: Is the following PNC sample
valid...Yes or No?

(Candid Sample #1:

/Article: {“article text”:...}

“Matrix Chemical Name”: “Epoxy resin”,i

“Filler Composition”
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Instruction: Is the following PNC sample
valid...Yes or No?
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—

Figure 2: Two prompting strategies for PNC sample extraction with LLM are presented. On the left, the end-to-end
(E2E) approach uses a single prompt to directly extract PNC samples. On the right, the NER+RE approach first
identifies relevant entities and then classifies their relations through yes/no prompts to validate PNC samples.

Additionally, we also apply a strict metric, simi-
lar to the approach of Cheung et al. (2023), where a
prediction is considered correct only if it perfectly
matches with the ground truth across all attributes
of a PNC sample.

Standardization of Prediction To accurately cal-
culate the partial and strict metrics, standardizing
predictions is essential. The variability in polymer
name expressions in scientific literature makes uni-
form evaluation challenging. For example, “silica”
and “silicon dioxide” are different terms for the
same filler. Our dataset from NanoMine uses a
standardized format for chemical names. To align
the predicted names with this standard, we use re-
sources by Hu et al. (2021), which lists 89 matrix
names with their standard names, abbreviations,
synonyms, and trade names, as well as, 159 filler
names with their standard names. We standardize
predicted chemical names by matching them to the
closest names in these lists and converting them
to their standard forms. Furthermore, our dataset
exclusively uses numerical values to represent com-
positions (e.g., a composition of “0.5vol.%” should
be listed as “0.005”). Predictions in percentage
format (like “0.5vol.%”) are thus converted to the
numerical format to align with the dataset’s repre-
sentation.

Attribute Aggregation We implement an at-
tribute aggregation approach in our evaluation. For
the “Matrix” category, a prediction is considered
accurate if the model correctly identifies either the
“Matrix Chemical Name” or the “Matrix Abbrevia-
tion”. Similarly, in the “Filler” category, accuracy
is determined by the correct prediction of either
the “Filler Chemical Name” or the “Filler Abbre-
viation”. Lastly, for the “Composition” category,
a correct prediction may be based on either the
“Filler Composition Mass” or the “Filler Composi-
tion Volume”. This approach allows for a broader
assessment, capturing any correct form of attribute
identification without focusing on the finer details
of each attribute.

Partial-F1 This metric employs the F; score in
its calculation, which proceeds in two steps. Ini-
tially, an accuracy score is computed for each pair
of predicted and ground truth samples where we
compute the fraction of matches in the <Matrix,
Filler, Composition> trio across the two samples.
This process results in k x k score combinations,
where & and k represent the counts of predicted
and ground truth samples. The next step involves
translating these comparisons into an assignment
problem within a bipartite graph. Here, one set of
vertices symbolizes the ground truth samples, and
the other represents the predicted samples, with



edges denoting the F; scores between pairs. The
objective is to identify a matching that optimizes
the total F; score, which can be computed using
the Kuhn-Munkres algorithm (Kuhn, 1955)). in
O(n?) time (where n = max(k,k)). Note that
if k # k, a one-to-one match for each prediction
may not be necessary. Once matching is done,
we count all the correct, false positive, and false
negative predicted attributes (the attributes of all
the unmatched predicted samples and ground-truth
samples are considered false positives and false
negatives, respectively). Subsequently, we calcu-
late the micro-average Precision, Recall, and F;.

Strict-F1 For a stricter assessment, a sample is
labeled correct only if it precisely matches one in
the ground truth. Predictions not in the ground truth
are false positives, and missing ground truth sam-
ples are false negatives. This metric emphasizes
exact match accuracy.

3 Modeling Sample List Extractions from
Articles with LLMs

Our approach involves the application of LLMs to
the task defined in section 2.1.3. We adopt two
prompting methods: NER+RE and an End-to-End
(E2E) approach in a zero-shot context. Figure 2
illustrates both of these.

3.1 NER+RE Prompt

Building on previous research (Peng et al., 2017;
Jia et al., 2019; Viswanathan et al., 2021), which
treated /V-ary relation extraction as a binary clas-
sification task, our NER+RE method treats Rela-
tion Extraction (RE) as a question-answering pro-
cess, following the approach in Zhang et al. (2023).
This process is executed in two stages. Initially,
the model identifies named entities within the text.
Subsequently, it classifies /V-ary relations by trans-
forming the task into a series of yes/no questions
about these entities and their relations. For evalua-
tion, we apply only the strict metric, as the partial
metric is not suitable in this binary classification
context.!

The NER+RE approach becomes computation-
ally expensive during inference, especially as the
number of entities increases. This leads to an expo-
nential growth in potential combinations, expand-
ing the candidate space for valid compositions and

'While partial evaluation is theoretically possible by con-
sidering all potential samples identified in the NER step, such
an approach would yield limited insights.

consequently extending the inference time.

3.2 End-to-End Prompt

To address this challenge, we develop an End-to-
End (E2E) prompting strategy that directly extracts
JSON-formatted sample data from articles. This
E2E prompt method is designed to efficiently han-
dle the complexity and scale of extracting N-ary
relations from scientific texts, bypassing the limi-
tations of binary classification frameworks in this
context.

3.3 Self-Consistency

The self-consistency method (Wang et al., 2023b),
aims to enhance the reasoning abilities of LLMs.
Originally, this method relied on taking a majority
vote from several model outputs. For our purposes,
since the output is a set of answers rather than a
single one, we apply the majority vote principle to
the elements within these sets.

To implement this, we generate ¢ predictions
from the model, each at a controlled temperature
of 0.7. Our objective is to identify which samples
appear frequently across these multiple predictions
as a sign of higher confidence from the model.

During the evaluation, each model run generates
a list of predicted samples from a specific paper.
We refer to each list as the k-th prediction, de-
noted S, = {a¥,dk, ...,ak,}. For each predicted
element aé, we determine its match score matché»,
by counting how frequently it appears across all
predictions {S1, So, ..., S;}. This score can vary
from 1, meaning it appeared in only one prediction,
to ¢, indicating it was present in all predictions.

We then apply a threshold « to filter the samples.
Those with a matchz- at or above « are retained,
as they were consistently predicted by the model.
Samples falling below this threshold suggest less
confidence in the prediction and are removed.

4 Experiments

4.1 Experimental Setup

Models We use LLaMA?2 models (Touvron et al.,
2023), LongChat model (Dacheng Li* and Zhang,
2023), GPT-4, and GPT-4 Turbo (OpenAl, 2023)
models for our experiments. LongChat is finetuned
from LLaMA models, which were originally pre-
trained with 2048 context length. LongChat is fine-
tuned to a context length of 16384. GPT-4 also
has a context length of 8000 tokens but the Turbo



Heatmap of Model Predictions vs Alpha Value
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Figure 3: Heatmap showing the strict sample-level F;
scores achieved by applying self-consistency across
varying numbers of GPT-4 Turbo (E2E) predictions at
different o values.

version increases this to 128k tokens. The experi-
ments are also done on two different setting where
we prompt a full-length paper and where we prompt
with a condensed paper.

Heuristics for Condensing Research Papers
within LLMs Token Limit LLMs come with
token limits, such as 8,192 tokens for the GPT-4
API and 4,096 for LLaMA?2. These limits pose
a challenge in processing entire research papers,
which often exceed these token counts. To address
this, we employ simple heuristics to condense the
articles effectively. We first divide each paper into
distinct sections - the abstract, introduction, ex-
periments, main text, results, and the captions for
figures and tables. We keep the title, abstract, and
captions for figures and tables unchanged due to
their conciseness and rich information content. For
the introduction, experiments, main text, and re-
sults, we selectively retain only those sentences
that contain a digit, which typically indicate cru-
cial composition details. The conclusion section is
completely left out, as it often contains repetitive
information.’

Setup We divide our dataset into 52 validation
articles and 141 test articles. We assess the per-
formance using micro average Precision, Recall,
and F1 scores, considering both strict and partial
metrics at the sample and property levels. We
also compare two different prompting strategies
NER+RE and E2E. Moreover, we consider the self-
consistency technique.

2We initially explored retrieval methods but our prelimi-
nary results suggested the heuristic-based approach is more
effective (Appendix D).

4.2 Results

In Table 2 we report the partial and strict metrics to
evaluate multiple models and settings. The results
highlight several key observations:

Performance Improvement with Condensed Pa-
pers The results indicate that models perform
better when provided with condensed versions of
papers. In particular, our optimal model, GPT-4
Turbo with self-consistency (SC), achieves a strict
F; score that is 3.4 points higher and a partial F;
score that is 4.0 points higher in the condensed pa-
per compared to the full paper setting. Moreover,
Table 3 reports the bootstrap analysis from 1000
resamplings, indicating a higher mean F; score
of 37.4 for GPT-4 Turbo on shorter documents
(0 — 8000 tokens) compared to a mean F; score of
28.5 on longer documents (8000 — 20000 tokens).

Comparative Performance: E2E vs. NER+RE:
In both condensed and full paper settings, the E2E
prompting method shows better performance com-
pared to the NER+RE approach. Specifically, E2E
exceeds NER+RE by 4.5 F; points in the con-
densed setting. This performance gap is attributed
to the higher precision of E2E. Furthermore, the
inference time of the GPT-4 Turbo (E2E) is 28
sec/article in the condensed paper setting, signifi-
cantly faster than 45 sec/article for GPT-4 Turbo
(NER+RE).

Impact of Self-consistency on PNC Sample Ex-
traction: To optimize the application of self-
consistency, we first determine the most effective
number of predictions to sample and the optimal
value for . Figure 3 shows that the optimal per-
formance is achieved with « at 2 and by sampling
6 predictions. Consequently, we employ these op-
timal settings for self-consistency on the test set.
The results, as reported in Table 2, show that self-
consistency enhances the strict and partial F; by
2.30 points and 3.3 points, respectively, in the con-
densed setting. In the full paper setting, the im-
provement is 5.5 points for strict and 3 points for
partial metric.

In addition to our evaluation centered on sam-
ple extraction, we present the F; scores for dif-
ferent attributes. Table 4 details the performance
of GPT-4 Turbo indicating that the model predicts
“Filler” attributes more accurately than “Composi-
tion”, which has lower performance metrics.



Model
Prec.

Strict
Recall F1

Partial
Prec. Rec. F1

Condensed Papers

LLaMA2-7b (E2E) 0.0
LLaMA2-7b Chat (E2E) 0.5
LongChat-7b-13k (E2E) 5.1

0.0 0.0 0.0 0.0 0.0
0.2 0.2 0.9 0.9 0.9
5.6 48 319 271 29.1

GPT-4 (E2E) 30.6 341 318 444 435 438

GPT-4 Turbo (E2E) 433 294 350 669 440 53.1

GPT-4 Turbo (NER+RE) 27.0 352 305 - - -

GPT-4 Turbo + SC (E2E)  45.0 31.8 373 697 474 564
Full Papers

LongChat-7b-13k (E2E) 53
GPT-4 Turbo (E2E) 37.8
GPT-4 Turbo (NER+RE) 31.9
GPT-4 Turbo + SC (E2E)  42.5

55 45 258 223 237
229 285 664 39.1 492
343 330 - - -
283 339 657 434 523

Table 2: Precision, Recall, and F; of different LLMs on condensed and full papers using strict and partial metrics.
The table includes GPT-4 Turbo with NER+RE and E2E prompting, as well as an enhancement on E2E using
self-consistency (SC). Models with limited context lengths are evaluated only in the condensed paper scenario.

Length Interval MeanF;  SD 95% CI
(0, 8000) 37.4 022  (33.0,41.7)
(8000, 20000) 28.5 05.0 (19.3,37.8)

Table 3: Comparison of mean F; scores, standard devia-
tions, and 95% confidence intervals for different token
length intervals.

Attributes Prec. Recall F;
Matrix 50.2 23.5 32.1
Filler 53.1 25.0 34.0

Composition  44.4 204 28.0

Table 4: Micro average precision, recall, and F; across
the attributes.

4.3 Analysis of Errors

Accurately extracting PNC samples is a complex
task, and even state-of-the-art LLMs fail to cap-
ture all the samples. We find that out of 1052
ground-truth samples, 773 were not identified in
the model’s predictions. Furthermore, 364 of the
664 predictions were incorrect. This section dis-
cusses three categories of challenges faced by cur-
rent models in sample extraction and proposes po-
tential directions for future improvements.

Compositions in Tables and Figures NanoMine
aggregates samples from the literature, including
those presented in tables and visual elements within
research articles. As demonstrated in the first ex-
ample of Figure 4, a sample is derived from the
inset of a graph. Our present approach relies solely
on language models. Future research could focus
on advancing models to extract information from

both textual and visual data through multimodal
methods.

Disentangling the Complex Components in PNC
Samples The composition of polymer nanocom-
posites (PNC) includes a variety of components
such as hardeners and surface treatment agents. A
common issue in our model’s predictions is incor-
rectly identifying these auxiliary components as
the main attributes. For example, the second row
in Figure 4 shows the model predicting the filler
material along with its surface treatments instead
of recognizing the filler by itself. Going forward,
enhancing the model to accurately distinguish and
classify the diverse elements in a PNC sample is a
key area for development.

Non-standard/Uncommon Chemical Name Pre-
dictions The expression of chemical names is
inherently complex, with multiple names often ex-
isting for the same material. In some cases, pre-
dicted chemical names are conceptually accurate
yet challenging to standardize. This suggests the
necessity for more sophisticated approaches that
can handle the diverse and complex representations
of chemical compounds. The third example in Fig-
ure 4 shows an example of this.

5 Related Work

Early works have focused on training models
specifically for the tasks of NER and RE. Building
on this, recently Wadhwa et al. (2023) and Wang
et al. (2023a) show that LLMs can effectively carry
out these tasks through prompting. Inspired by



Challenging Example

Ground-truth Sample

Predicted Sample

Explanation

Compositions in Tables and Figures

PS+4%TPP_70 °c
VL= 0.02 min” |

75°C
80°C

SH8%TPP  —
= 7%
P A €19 ]

T05 UL 115 12
1.01 102 103 104 105

{'Matrix Chemical Name': 'Polystyrene',
'Matrix Abbreviation': 'PS',

'Filler Chemical Name': ‘Tripheny!
phosphate’,

'Filler Abbreviation': 'TPP',

'Filler Mass': '0.08",

'Filler Volume': null}

'Matrix Abbreviation': 'PS',

'Filler Chemical Name': 'Tripheny!
phosphate’,

'Filler Abbreviation': 'TPP',

'Filler Mass': ‘0.04',

'Filler Volume': null}

{'Matrix Chemical Name': 'Polystyrene’,

The ground-truth sample with a
filler mass of 0.08, sourced from a
figure inset, was not mentioned in
the text and thus not captured.

Disentangling the Complex Components in PNC Samples

Copolymer grafted SiO2 nanoparticles with a

rubbery PHMA inner layer and a matrix

compatible PGMA outer layer were prepared

{'Matrix Chemical Name': 'DGEBA Epoxy
Resin',

'Matrix Abbreviation': 'epoxy',

'Filler Chemical Name': 'Silicon dioxide',
'Filler Abbreviation': 'Si0O2',

'Filler Mass’: null,

'Filler Volume’: ‘0.006’}

{'Matrix Chemical Name': 'DGEBA
Epoxy Resin',

'Matrix Abbreviation': ‘epoxy’,

'Filler Chemical Name': 'SiO2/PHMA/
PGMA',

'Filler Abbreviation’: null,

'Filler Mass': null,

‘Filler Volume’: ‘0.006’}

PHMA and PGMA are the
chemicals used in particle
surface treatment, not the
main filler.

Non-standard/Uncommon Chemical Name Predictions

...the preparation of organophilic clay through
the cationic exchange reactions with Na+-

montmorillonite clay.
The organophilic clay was prepared by a

{'Matrix Chemical Name': 'Epoxy resin’',
'Matrix Abbreviation': 'EPR',

'Filler Chemical Name':
'Montmorillonite',

'Filler Abbreviation’: null,

'Matrix Abbreviation': 'EPR',

'Filler Chemical Name': '‘Organophilic
clay modified with dodecyltriphenyl-
phosphonium',

{'Matrix Chemical Name': 'Epoxy resin',

The predicted filler name in this
case is conceptually correct.
However, it is not a standard or
commonly used chemical name.

cationic exchange method, which is a reaction
between the sodium cations of MMT clay and
both intercalation agents of dodecyltriphenyl-

phosphonium bromide

'Filler Mass': '0.01",
'Filler Volume': null}

'Filler Abbreviation’: null,
'Filler Mass': '0.01',
'Filler Volume': null}

Figure 4: Examples of challenges for LLMs, showcasing three categories of challenges encountered in capturing
accurate PNC sample compositions. Each row demonstrates a specific challenge, the ground-truth sample, the

model’s prediction, and a brief explanation of the issue."

these findings, our paper investigates the zero-shot
performance of LLMs in materials science.

In the specific area of models trained on a ma-
terials science corpus, MatSciBERT (Gupta et al.,
2022) employs a BERT (Devlin et al., 2018) model
trained specifically on a materials science corpus.
Song et al. (2023b) further developed HoneyBee,
a fine-tuned Llama-based model for materials sci-
ence. Our approach differs as we did not engage
in fine-tuning, focusing instead on zero-shot per-
formance. Additionally, we did not incorporate
MatSciBERT due to its restricted token context
and HoneyBee, as its model weights were not ac-
cessible during our research phase.

Similar to Dunn et al. (2022), Xie et al. (2023),
Tang et al. (2023) and Cheung et al. (2023) our
study also focuses on extracting N-ary relations
from materials science papers. However, our ap-
proach diverges in two significant aspects: we ana-
lyze entire papers for PNC sample extraction, not
just selected sentences or passages, and we extend
our evaluation to partial assessment of N-ary rela-
tions, rather than limiting it to binary assessments.

Moreover, Song et al. (2023a) develops a bench-
mark for BERT models on a materials science
dataset, focusing on traditional NLP tasks like NER
and RE. Our work, however, evaluates LLMs for

sample extraction from full-length papers, a do-
main where traditional NER and RE methods fall
short, and where models like BERT are not viable.

6 Conclusion and Future Works

We introduced PNCExtract, a benchmark focused
on extraction of PNC samples from materials
science articles. We evaluated NER+RE and
E2E prompting strategies on this benchmark and
adapted the self-consistency technique for list-
based predictions. Our results indicate that con-
densing materials science papers can notably im-
prove PNC sample extraction tasks. This finding
encourages future research to explore more sophis-
ticated retrieval methods for this task.

To overcome the challenges in PNC sample ex-
traction discussed in Section 4.3, future studies
could investigate multimodal strategies that inte-
grate text and visual data. Additionally, experiment-
ing with few-shot learning or fine-tuning methods
could lead to more precise chemical name gener-
ation. Implementing these advancements could
significantly enhance the performance of LLMs in
extracting PNC samples.



7 Limitation

Although our dataset comprises samples derived
from figures within the papers, the current paper
is confined to the assessment of language models
exclusively. We acknowledge that incorporating
multimodal models, which can process both text
and visual information, has the potential to enhance
the results reported in this paper. Another limita-
tion is that the NanoMine dataset, employed in our
analysis, is subject to human curation errors. Con-
sequently, our evaluation assumes the correctness
of the NanoMine dataset as ground truth, which
could influence the accuracy of our results. Future
research could enhance the validity of the eval-
uation by correcting the errors in the NanoMine
dataset. Additionally, our paper selectively exam-
ines a subset of attributes from PNC samples. Con-
sequently, we do not account for every possible
variable, such as “Filler Particle Surface Treatment.”
This limited attribute selection means we do not
distinguish between otherwise identical samples
when this additional attribute could lead to differ-
entiation. Acknowledging this, including a broader
range of attributes in future work could lead to the
identification of a more diverse array of samples.

8 Ethics Statement

We do not believe there are significant ethical issues
associated with this research.
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PNC Sample:
{

“Matrix Chemical Name”: “polystyrene”,

“Matrix Abbreviation”: “PS”,

“Filler Chemical Name”: [“octyldimethylmethoxysilane”,
“silica”]

“Filler Abbreviation”: “ODMMS”,

“Filler Composition Mass”: null,

“Filler Composition Volume”: null

Figure 5: An inconsistent sample in NanoMine that we
exclude from our dataset.
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A Processing NanoMine

In the sample composition section of NanoMine,
various attributes describe the components of a
sample. For our analysis, we focus on six specific
attributes. Nonetheless, we encounter instances
where the formatting in NanoMine is inconsistent.
We excluded those articles. This is because our
data processing and evaluation require a uniform
structure. For example, in Figure 5, we identify
an example of an inconsistency where the “Filler
Chemical Name” is presented as a list rather than
a single value, which deviates from the standard
JSON format we expect. This inconsistency makes
the sample incompatible with our dataset’s format,
leading to its removal from our analysis.
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B Terms of Use

We used OpenAl (gpt-4 and gpt-4-1106-preview),
Llama2, LongChat models, and NanoMine data
repository in accordance with their licenses and
terms of use.

C Computational Experiments Details

Models Details All of the open-sourced mod-
els used in our experiments (e.g. Llama2 and
LongChat) have 7 billion parameters.

Computational Budget We perform all of the
experiments with one NVIDIA RTX A6000
GPU. Each of the experiments with Llama2 and
LongChat took 2 — 3 hours.

Hyperparameter Settings For all experiments,
except those involving self-consistency, the temper-
ature parameter is set to zero to ensure consistent
evaluation of the models. In the case of the self-
consistency experiment, we determine the optimal
value for the a threshold by tuning « on the vali-
dation set, where we explore within the range of
{2,3,4,5,6} to identify the optimal value of c.
Based on this tuning process, we set the « thresh-
old to 2.

D Condensing Papers with Retrieval
Methods

Initially, we employed the dense passage retrieval
method for condensing research articles. This tech-
nique involved segmenting the articles into smaller
chunks and then using OpenAl embeddings to gen-
erate embedding vectors with the GPT-4 model.
These vectors were subsequently used to perform
a semantic search, identifying chunks closest to a
specified query. Although this method was consid-
ered, the heuristics-based approach proved more
effective, as the results from the retrieval models
did not perform as well when used to prompt LLMs
for our extraction tasks. This suggests that future
work could explore developing more advanced re-
trieval modls for this purpose.

E Prompts

In this section, we present all the prompts used in
our experiments.

E.1 E2E Prompt
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Please read the following paragraphs,
find all the nano-composite samples,
and then fill out the given JSON
template for each one of those
nanocomposite samples. If there are
multiple Filler Composition Mass/
Volume for a unique set of Matrix/
Filler Chemical Name, please give a
list for the Composition. If an
attribute is not mentioned in the
paragraphs fill that section with
null”. Mass and Volume Composition
should be followed by a %.

"

n

"Matrix Chemical Name":
chemical_name”,
"Matrix Chemical Abbreviation":

abbreviation”,
"Filler Chemical Name":
chemical_name”,
"Filler Chemical Abbreviation":
abbreviation”,
"Filler Composition Mass":
mass_value”,
"Filler Composition Volume":
volume_value"”

n

n

n

3

[PAPER SPLIT]

E.2 NER prompt

Please identify the matrix name(s),
filler name(s), and filler
composition fraction(s). Here is an
example of what you should return:

{
"Matrix Chemical Names”: ["Poly(
vinyl acetate)”, "Glycerol”"],
"Matrix Chemical Abbreviation”: ["
PVAc"],
"Filler Chemical Names"”: ["Silicon
dioxide"],
"Filler Chemical Abbreviation”: ["
$io2"7,
"Filler Composition Fraction”:
["6%", "12%", "20%", "23%",
"32%"]
}

[PAPER SPLIT]

E.3 RE Prompt

Is the following sample a valid polymer
nanocomposite sample mentioned in
the article? Yes or No?

Sample:
[JSON OBJECT]

Article:
[PAPER SPLIT]
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