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Abstract

This paper investigates the use of large lan-001
guage models (LLMs) for extracting sample002
lists of polymer nanocomposites (PNCs) from003
materials science research papers. The chal-004
lenge lies in the complex nature of PNC sam-005
ples, which have numerous attributes scattered006
throughout the text. To address this, we intro-007
duce a new benchmark and a novel evaluation008
technique for this task and examine different009
LLM prompting strategies: end-to-end prompt-010
ing to directly generate entities and their rela-011
tions, as well as a Named Entity Recognition012
and Relation Extraction (NER+RE) approach,013
where entities are first identified, followed by014
relation classification. We also incorporate self-015
consistency to improve LLM performance. Our016
findings show that even advanced LLMs, such017
as GPT-4 Turbo, struggle to extract all of the018
samples from an article. However, condensing019
the articles into the relevant sections can help.020
Finally, we analyze the errors encountered in021
this process, categorizing them into three main022
challenges, and discussing potential strategies023
for future research to overcome them.024

1 Introduction025

Research publications are the main source for the026

discovery of new materials in the field of mate-027

rials science, providing a vast array of essential028

data. The creation of structured materials databases029

from these publications is essential for enhanc-030

ing the speed and efficiency of material discov-031

ery. This is evident in the achievements of AI032

tools such as GNoME (Merchant et al., 2023). Yet,033

the unstructured presentation of this data in jour-034

nals makes it challenging to extract valuable in-035

formation and utilize it for future discoveries (Ho-036

rawalavithana et al., 2022). Furthermore, manually037

sorting through articles to extract details about ma-038

terials—such as their structure, processing, and039

properties—is time-consuming and prone to errors.040

Hence, there’s a growing need for an automated041

Article:  
A surfactant-stabilized aqueous 
suspension of poly(styrene-co-butyl 
acrylate), P(S-BuA),…


The aim of this study is thus to check 
the efficiency of multi-walled carbon 
nanotubes (MWNTs)…


…to compare it with that of cellulose 
nanofibrils…


For higher nanotube contents (0.5 and…


Sample reinforced with nano fillers 
contents of up to 6vol% for cellulosic 
nanofibrils…


PNC Sample List: 
{

   “Matrix Chemical Name”: “poly[(butyl acrylate)


-co-styrene]”,

   “Matrix Abbreviation”: “P(S-BuA)”,

   “Filler Chemical Name”: “cellulose nanofibrils”,

   “Filler Abbreviation”: null,

   “Filler Composition Mass”: null,

   “Filler Composition Volume”: “0.06”

}

{

   “Matrix Chemical Name”: “poly[(butyl acrylate)


-co-styrene]”,

   “Matrix Abbreviation”: “P(S-BuA)”,

   “Filler Chemical Name”: “multi-walled carbon


nanotubes”,

   “Filler Abbreviation”: null,

   “Filler Composition Mass”: null,

   “Filler Composition Volume”: “0.005”

}


Figure 1: A snippet from a PNC research article (Dal-
mas et al., 2007) and the extracted PNC sample list from
the NanoMine database. Note how information for a
single sample is extracted from multiple parts of the
article text.

system that can transform these valuable data into 042

a structured, machine-readable format for more 043

efficient retrieval and analysis (Yang, 2022). 044

Scientific papers on polymer nanocomposites 045

(PNCs) include detailed descriptions of sam- 046

ple compositions, crucial for understanding their 047

unique properties. PNCs are critical in material sci- 048

ence, combining polymer matrices with nanoscale 049

fillers to yield composites with tailored mechan- 050

ical, thermal, and electrical characteristics. The 051

diversity of PNCs is derived from various matrix 052

and filler combinations, each altering the material’s 053

properties. Extracting this data is challenging due 054

to the scattered nature of information across texts, 055

figures, and tables, and the complexity of N -ary 056

relationships where multiple attributes define each 057

sample (Figure 1). 058

In this paper, we use the NanoMine (Zhao et al., 059

2018) data repository to construct PNCExtract, a 060

benchmark designed for extracting PNC sample 061

lists from scientific texts using large language mod- 062
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els (LLMs). PNCExtract focuses on the systematic063

extraction of N -ary relations across different parts064

of full-length peer-reviewed PNC articles, captur-065

ing the unique combination of matrix, filler, and066

composition in each sample. Prior research on067

information extraction from materials science lit-068

erature, such as the works of Dunn et al. (2022),069

Song et al. (2023a), and Xie et al. (2023), primar-070

ily focused on information extraction from specific071

sentences or passages. PNCExtract, on the other072

hand, requires models to analyze entire papers to073

aggregate information dispersed across the various074

sections of a paper, a key challenge highlighted by075

Hira et al. (2023). Consequently, we leverage the076

advanced token limits of recent LLMs like GPT-4077

Turbo (OpenAI, 2023) and LongChat (Dacheng Li*078

and Zhang, 2023) in our study. We also introduce a079

dual-metric evaluation system comprising a partial080

metric for detailed analysis of each attribute within081

an N -ary extraction and a strict metric for assess-082

ing overall accuracy. Unlike prior works in mate-083

rials science that focused solely on an assessment084

of binary relations (Dunn et al., 2022; Xie et al.,085

2023; Song et al., 2023a; Wadhwa et al., 2023) or086

used strict evaluation criteria (Cheung et al., 2023)087

without recognizing partial matches, our method088

provides a more comprehensive assessment that089

acknowledges the complexity of PNC samples.090

We explore two prompting strategies for LLMs091

in a zero-shot context. The first approach aligns092

with the principles of Named Entity Recognition093

(NER) and Relation Extraction (RE), which we094

refer to as NER+RE which involves a two-stage095

pipeline: initially, entities within the text are iden-096

tified, and subsequently, valid relations between097

these entities are extracted, a technique also ex-098

plored by Zhou et al. (2022) and Tang et al. (2023).099

However, this approach can become expensive due100

to the complexity of PNC samples, which feature101

multiple attributes, leading to an exponential in-102

crease in the number of candidate relations. Our103

second prompting strategy adopts an end-to-end104

(E2E) method by directly generating the N -ary ob-105

jects. We find that the E2E approach works better106

in terms of both accuracy and efficiency. More-107

over, we present a simple extension to the self-108

consistency technique (Wang et al., 2023b) for list-109

based predictions by sampling multiple times from110

the LLM and aggregating the lists through majority111

voting. Our findings demonstrate that this approach112

improves the accuracy of sample extraction.113

Lastly, we discuss three primary challenges en-114

countered when using LLMs for PNC sample ex- 115

traction. First, many samples are located within 116

tables and figures, indicating a need for multimodal 117

approaches. Second, there is variability in the ex- 118

pression of chemical names; LLMs often use se- 119

mantically correct but non-standard naming con- 120

ventions. Finally, the complexity of PNC samples, 121

with their various attributes and diverse chemical 122

names, poses a difficulty as LLMs struggle to differ- 123

entiate between them. Code for reproducing all ex- 124

periments is available at hidden.for.anonymity. 125

In summary, we make the following contribu- 126

tions: 127

• We introduce the PNCExtract benchmark with 128

a novel evaluation method to assess LLMs’ 129

ability to extract PNC samples’ composition 130

from full-length research articles. 131

• We explore two prompting strategies, 132

NER+RE and E2E in a zero-shot context. 133

Our findings show that the E2E approach 134

is more accurate and efficient. Further- 135

more, we develop an extension to the 136

self-consistency technique, tailored for this 137

task, and demonstrate its effectiveness in 138

improving accuracy. 139

• We identify and discuss three challenges faced 140

in extracting PNC samples with LLMs and 141

suggest potential strategies to address them. 142

2 PNCExtract Benchmark 143

In this section we first describe our dataset, includ- 144

ing its source, information extraction tasks, prepro- 145

cessing, and statistics. Then we describe a novel 146

evaluation method for the described task. 147

2.1 Dataset 148

2.1.1 NanoMine Data Repository 149

NanoMine (Zhao et al., 2018) is a PNC data repos- 150

itory structured around an XML-based schema de- 151

signed for the representation and distribution of 152

nanocomposite materials data. The NanoMine 153

database, manually curated using Excel templates 154

provided to materials researchers, consists of a 155

broad array of potential schema entries. These 156

entries are categorized into several major sections, 157

such as Materials Composition, Processing, and 158

Properties. The Materials Composition section cov- 159

ers characteristics of the constituent materials, in- 160

cluding the polymer matrix and the filler particle. 161
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Processing details the description of chemical syn-162

thesis. The Properties section provides measured163

data on materials performance and response, with164

each section containing numerous entries.165

A typical sample in NanoMine uses only a frac-166

tion of the possible 350 terms that keep evolving.167

NanoMine database currently contains a list of 240168

full-length scholarly articles and their correspond-169

ing PNC sample lists. While NanoMine includes170

various subfields, our study focuses on the “Mate-171

rials Composition” section. This section compre-172

hensively details the characteristics of constituent173

materials in nanocomposites, including aspects like174

the polymer matrix, filler particles, and their com-175

positions (expressed in volume or weight fractions).176

The reason for this focus is that determining which177

samples’s composition were studied in a given pa-178

per is the essential first step towards identifying and179

understanding more complex properties of PNCs.180

Out of the 240 articles, we focus on 193 and disre-181

gard the rest due to having inconsistent format (see182

Appendix A). These 193 articles contain a total of183

1052 samples.184

2.1.2 Dataset Curation and Cleaning185

During our curation process, we selectively disre-186

gard certain attributes from NanoMine based on187

three criteria:188

• Complexity in Extraction and Evaluation: At-189

tributes that cannot be directly extracted with190

a language model or evaluated are disregarded.191

For example, intricate descriptions (such as192

“an average particle diameter of 10 um”) are193

excluded due to their complexity in evalua-194

tion.195

• Rarity in the Dataset: We also disregard at-196

tributes infrequently occurring in NanoMine.197

For instance, “Tacticity” is noted in only198

0.05% of samples. This rarity might stem199

from either its infrequent mention in research200

papers or oversights by annotators.201

• Relative Importance: Attributes that are less202

important for our analysis, such as “Manu-203

facturer Or Source Name”, are also excluded.204

Our focus is on extracting attributes that are205

most relevant for identifying a nanocomposite206

sample.207

This filtering process retains 6 out of the 43 to-208

tal attributes in the Materials Composition of209

NanoMine.210

2.1.3 Problem Definition 211

We define our dataset as D = {D1, D2, . . . , D193}, 212

where each Di is a peer-reviewed paper included 213

in our study. Corresponding to each paper Di, 214

there is an associated list of samples Si, compris- 215

ing various PNC samples. Formally, Si is defined 216

as Si = {si1, si2, . . . , sini}, where sij represents 217

the j-th PNC sample in the sample list of the i- 218

th paper, and ni denotes the total number of PNC 219

samples in Si. Each paper has 5.72 samples on 220

average. Each sample sij is a JSON object with six 221

entries: Matrix Chemical Name, Matrix Chemical 222

Abbreviation, Filler Chemical Name, Filler Chem- 223

ical Abbreviation, Filler Composition Mass, and 224

Filler Composition Volume. Table 1 presents the 225

count of samples with each attribute marked as non- 226

null. The primary task involves extracting a set of 227

samples Ŝi from a given paper Di.

Attribute Number of Samples

Matrix Chemical Name 1052
Matrix Chemical Abbreviation 864
Filler Chemical Name 1052
Filler Chemical Abbreviation 819
Filler Mass 624
Filler Volume 407

Table 1: Number of total samples for which each of the
attributes is non-null.

228

2.2 Evaluation Metrics 229

Our task involves evaluating the performance of our 230

model in predicting PNC sample lists. One natural 231

approach, also utilized by Cheung et al. (2023), is 232

to verify if there is an exact match between the pre- 233

dicted and the ground-truth samples. This method, 234

however, has a notable limitation, particularly due 235

to the numerous attributes that define a PNC sam- 236

ple. Under such strict evaluation criteria, a pre- 237

dicted sample is considered entirely incorrect if 238

even one attribute is predicted inaccurately, which 239

can be too strict considering the complexity and 240

attribute-rich nature of PNC samples. 241

Hence, we also propose a partial metric which 242

rewards predicted samples for partial matches to a 243

ground truth sample. However, computing such a 244

metric first requires identifying the optimal match- 245

ing between the predicted and ground truth sample 246

lists, for which we employ a maximum weight 247

bipartite matching algorithm. This approach ac- 248

knowledges the accuracy of a prediction even if not 249

all attributes are perfectly matched. 250
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Instruction: Please read the paragraphs and find all PNC 
samples…

JSON Template: 
{


“Matrix Chemical Name”: “chemical_name”,

. . . 

}

Article: {“article text”:…} 

LLM

Response:  
PNC Sample #1:

{


“Matrix Chemical Name”: “Poly(vinylidene fluoride)”,

. . . 

“Filler Composition”: “1.01 vol.%”,

}


. . . 

PNC Sample #n: 

{


“Matrix Chemical Name”: “Poly(vinylidene fluoride)”,

. . . 

“Matrix Chemical Name”: “1.2 vol.%”,

}

Instruction: Please identify the matrix, filler, and 
composition…

Article: {“article text”:…} 

Response:  
“Matrix Chemical Names”: [“Epoxy resin, “Poly(vinylidene 
fluoride)”, “Bisphenol-A epoxy resin” ],


. . . 
“Filler Compositions”: [“1.01 vol.%”, “1.2 vol.%”, “30 vol.%”, 
“60 vol.%”]

Instruction: Is the following PNC sample 
valid…Yes or No?

Candid Sample #1: 

{


“Matrix Chemical Name”: “Epoxy resin”,

. . . 

“Filler Composition”: “1.01 vol.%”,

}

Article: {“article text”:…} 

LLM Response: No.

Instruction: Is the following PNC sample 
valid…Yes or No?

Candid Sample #m: 

{


“Matrix Chemical Name”: “Poly(vinylidene

 fluoride)”,


. . . 
“Filler Composition”: “1.01 vol.%”,


}

Article: {“article text”:…} 

LLM Response: Yes.

. 

. 

.

NER Step:

RE Step:

End-to-End Prompt:

LLM

Figure 2: Two prompting strategies for PNC sample extraction with LLM are presented. On the left, the end-to-end
(E2E) approach uses a single prompt to directly extract PNC samples. On the right, the NER+RE approach first
identifies relevant entities and then classifies their relations through yes/no prompts to validate PNC samples.

Additionally, we also apply a strict metric, simi-251

lar to the approach of Cheung et al. (2023), where a252

prediction is considered correct only if it perfectly253

matches with the ground truth across all attributes254

of a PNC sample.255

Standardization of Prediction To accurately cal-256

culate the partial and strict metrics, standardizing257

predictions is essential. The variability in polymer258

name expressions in scientific literature makes uni-259

form evaluation challenging. For example, “silica”260

and “silicon dioxide” are different terms for the261

same filler. Our dataset from NanoMine uses a262

standardized format for chemical names. To align263

the predicted names with this standard, we use re-264

sources by Hu et al. (2021), which lists 89 matrix265

names with their standard names, abbreviations,266

synonyms, and trade names, as well as, 159 filler267

names with their standard names. We standardize268

predicted chemical names by matching them to the269

closest names in these lists and converting them270

to their standard forms. Furthermore, our dataset271

exclusively uses numerical values to represent com-272

positions (e.g., a composition of “0.5vol.%” should273

be listed as “0.005”). Predictions in percentage274

format (like “0.5vol.%”) are thus converted to the275

numerical format to align with the dataset’s repre-276

sentation.277

Attribute Aggregation We implement an at- 278

tribute aggregation approach in our evaluation. For 279

the “Matrix” category, a prediction is considered 280

accurate if the model correctly identifies either the 281

“Matrix Chemical Name” or the “Matrix Abbrevia- 282

tion”. Similarly, in the “Filler” category, accuracy 283

is determined by the correct prediction of either 284

the “Filler Chemical Name” or the “Filler Abbre- 285

viation”. Lastly, for the “Composition” category, 286

a correct prediction may be based on either the 287

“Filler Composition Mass” or the “Filler Composi- 288

tion Volume”. This approach allows for a broader 289

assessment, capturing any correct form of attribute 290

identification without focusing on the finer details 291

of each attribute. 292

Partial-F1 This metric employs the F1 score in 293

its calculation, which proceeds in two steps. Ini- 294

tially, an accuracy score is computed for each pair 295

of predicted and ground truth samples where we 296

compute the fraction of matches in the <Matrix, 297

Filler, Composition> trio across the two samples. 298

This process results in k̂ × k score combinations, 299

where k̂ and k represent the counts of predicted 300

and ground truth samples. The next step involves 301

translating these comparisons into an assignment 302

problem within a bipartite graph. Here, one set of 303

vertices symbolizes the ground truth samples, and 304

the other represents the predicted samples, with 305

4



edges denoting the F1 scores between pairs. The306

objective is to identify a matching that optimizes307

the total F1 score, which can be computed using308

the Kuhn-Munkres algorithm (Kuhn, 1955)). in309

O(n3) time (where n = max(k̂, k)). Note that310

if k̂ ̸= k , a one-to-one match for each prediction311

may not be necessary. Once matching is done,312

we count all the correct, false positive, and false313

negative predicted attributes (the attributes of all314

the unmatched predicted samples and ground-truth315

samples are considered false positives and false316

negatives, respectively). Subsequently, we calcu-317

late the micro-average Precision, Recall, and F1.318

Strict-F1 For a stricter assessment, a sample is319

labeled correct only if it precisely matches one in320

the ground truth. Predictions not in the ground truth321

are false positives, and missing ground truth sam-322

ples are false negatives. This metric emphasizes323

exact match accuracy.324

3 Modeling Sample List Extractions from325

Articles with LLMs326

Our approach involves the application of LLMs to327

the task defined in section 2.1.3. We adopt two328

prompting methods: NER+RE and an End-to-End329

(E2E) approach in a zero-shot context. Figure 2330

illustrates both of these.331

3.1 NER+RE Prompt332

Building on previous research (Peng et al., 2017;333

Jia et al., 2019; Viswanathan et al., 2021), which334

treated N -ary relation extraction as a binary clas-335

sification task, our NER+RE method treats Rela-336

tion Extraction (RE) as a question-answering pro-337

cess, following the approach in Zhang et al. (2023).338

This process is executed in two stages. Initially,339

the model identifies named entities within the text.340

Subsequently, it classifies N -ary relations by trans-341

forming the task into a series of yes/no questions342

about these entities and their relations. For evalua-343

tion, we apply only the strict metric, as the partial344

metric is not suitable in this binary classification345

context.1346

The NER+RE approach becomes computation-347

ally expensive during inference, especially as the348

number of entities increases. This leads to an expo-349

nential growth in potential combinations, expand-350

ing the candidate space for valid compositions and351

1While partial evaluation is theoretically possible by con-
sidering all potential samples identified in the NER step, such
an approach would yield limited insights.

consequently extending the inference time. 352

3.2 End-to-End Prompt 353

To address this challenge, we develop an End-to- 354

End (E2E) prompting strategy that directly extracts 355

JSON-formatted sample data from articles. This 356

E2E prompt method is designed to efficiently han- 357

dle the complexity and scale of extracting N -ary 358

relations from scientific texts, bypassing the limi- 359

tations of binary classification frameworks in this 360

context. 361

3.3 Self-Consistency 362

The self-consistency method (Wang et al., 2023b), 363

aims to enhance the reasoning abilities of LLMs. 364

Originally, this method relied on taking a majority 365

vote from several model outputs. For our purposes, 366

since the output is a set of answers rather than a 367

single one, we apply the majority vote principle to 368

the elements within these sets. 369

To implement this, we generate t predictions 370

from the model, each at a controlled temperature 371

of 0.7. Our objective is to identify which samples 372

appear frequently across these multiple predictions 373

as a sign of higher confidence from the model. 374

During the evaluation, each model run generates 375

a list of predicted samples from a specific paper. 376

We refer to each list as the k-th prediction, de- 377

noted Sk = {ak1, ak2, ..., akm}. For each predicted 378

element aij , we determine its match score matchij , 379

by counting how frequently it appears across all 380

predictions {S1, S2, ..., St}. This score can vary 381

from 1, meaning it appeared in only one prediction, 382

to t, indicating it was present in all predictions. 383

We then apply a threshold α to filter the samples. 384

Those with a matchij at or above α are retained, 385

as they were consistently predicted by the model. 386

Samples falling below this threshold suggest less 387

confidence in the prediction and are removed. 388

4 Experiments 389

4.1 Experimental Setup 390

Models We use LLaMA2 models (Touvron et al., 391

2023), LongChat model (Dacheng Li* and Zhang, 392

2023), GPT-4, and GPT-4 Turbo (OpenAI, 2023) 393

models for our experiments. LongChat is finetuned 394

from LLaMA models, which were originally pre- 395

trained with 2048 context length. LongChat is fine- 396

tuned to a context length of 16384. GPT-4 also 397

has a context length of 8000 tokens but the Turbo 398
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Figure 3: Heatmap showing the strict sample-level F1

scores achieved by applying self-consistency across
varying numbers of GPT-4 Turbo (E2E) predictions at
different α values.

version increases this to 128k tokens. The experi-399

ments are also done on two different setting where400

we prompt a full-length paper and where we prompt401

with a condensed paper.402

Heuristics for Condensing Research Papers403

within LLMs Token Limit LLMs come with404

token limits, such as 8,192 tokens for the GPT-4405

API and 4,096 for LLaMA2. These limits pose406

a challenge in processing entire research papers,407

which often exceed these token counts. To address408

this, we employ simple heuristics to condense the409

articles effectively. We first divide each paper into410

distinct sections - the abstract, introduction, ex-411

periments, main text, results, and the captions for412

figures and tables. We keep the title, abstract, and413

captions for figures and tables unchanged due to414

their conciseness and rich information content. For415

the introduction, experiments, main text, and re-416

sults, we selectively retain only those sentences417

that contain a digit, which typically indicate cru-418

cial composition details. The conclusion section is419

completely left out, as it often contains repetitive420

information.2421

Setup We divide our dataset into 52 validation422

articles and 141 test articles. We assess the per-423

formance using micro average Precision, Recall,424

and F1 scores, considering both strict and partial425

metrics at the sample and property levels. We426

also compare two different prompting strategies427

NER+RE and E2E. Moreover, we consider the self-428

consistency technique.429

2We initially explored retrieval methods but our prelimi-
nary results suggested the heuristic-based approach is more
effective (Appendix D).

4.2 Results 430

In Table 2 we report the partial and strict metrics to 431

evaluate multiple models and settings. The results 432

highlight several key observations: 433

Performance Improvement with Condensed Pa- 434

pers The results indicate that models perform 435

better when provided with condensed versions of 436

papers. In particular, our optimal model, GPT-4 437

Turbo with self-consistency (SC), achieves a strict 438

F1 score that is 3.4 points higher and a partial F1 439

score that is 4.0 points higher in the condensed pa- 440

per compared to the full paper setting. Moreover, 441

Table 3 reports the bootstrap analysis from 1000 442

resamplings, indicating a higher mean F1 score 443

of 37.4 for GPT-4 Turbo on shorter documents 444

(0− 8000 tokens) compared to a mean F1 score of 445

28.5 on longer documents (8000− 20000 tokens). 446

Comparative Performance: E2E vs. NER+RE: 447

In both condensed and full paper settings, the E2E 448

prompting method shows better performance com- 449

pared to the NER+RE approach. Specifically, E2E 450

exceeds NER+RE by 4.5 F1 points in the con- 451

densed setting. This performance gap is attributed 452

to the higher precision of E2E. Furthermore, the 453

inference time of the GPT-4 Turbo (E2E) is 28 454

sec/article in the condensed paper setting, signifi- 455

cantly faster than 45 sec/article for GPT-4 Turbo 456

(NER+RE). 457

Impact of Self-consistency on PNC Sample Ex- 458

traction: To optimize the application of self- 459

consistency, we first determine the most effective 460

number of predictions to sample and the optimal 461

value for α. Figure 3 shows that the optimal per- 462

formance is achieved with α at 2 and by sampling 463

6 predictions. Consequently, we employ these op- 464

timal settings for self-consistency on the test set. 465

The results, as reported in Table 2, show that self- 466

consistency enhances the strict and partial F1 by 467

2.30 points and 3.3 points, respectively, in the con- 468

densed setting. In the full paper setting, the im- 469

provement is 5.5 points for strict and 3 points for 470

partial metric. 471

In addition to our evaluation centered on sam- 472

ple extraction, we present the F1 scores for dif- 473

ferent attributes. Table 4 details the performance 474

of GPT-4 Turbo indicating that the model predicts 475

“Filler” attributes more accurately than “Composi- 476

tion”, which has lower performance metrics. 477
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Model Strict Partial
Prec. Recall F1 Prec. Rec. F1

Condensed Papers

LLaMA2-7b (E2E) 0.0 0.0 0.0 0.0 0.0 0.0
LLaMA2-7b Chat (E2E) 0.5 0.2 0.2 0.9 0.9 0.9
LongChat-7b-13k (E2E) 5.1 5.6 4.8 31.9 27.1 29.1
GPT-4 (E2E) 30.6 34.1 31.8 44.4 43.5 43.8
GPT-4 Turbo (E2E) 43.3 29.4 35.0 66.9 44.0 53.1
GPT-4 Turbo (NER+RE) 27.0 35.2 30.5 - - -
GPT-4 Turbo + SC (E2E) 45.0 31.8 37.3 69.7 47.4 56.4

Full Papers

LongChat-7b-13k (E2E) 5.3 5.5 4.5 25.8 22.3 23.7
GPT-4 Turbo (E2E) 37.8 22.9 28.5 66.4 39.1 49.2
GPT-4 Turbo (NER+RE) 31.9 34.3 33.0 - - -
GPT-4 Turbo + SC (E2E) 42.5 28.3 33.9 65.7 43.4 52.3

Table 2: Precision, Recall, and F1 of different LLMs on condensed and full papers using strict and partial metrics.
The table includes GPT-4 Turbo with NER+RE and E2E prompting, as well as an enhancement on E2E using
self-consistency (SC). Models with limited context lengths are evaluated only in the condensed paper scenario.

Length Interval Mean F1 SD 95% CI

(0, 8000) 37.4 02.2 (33.0, 41.7)
(8000, 20000) 28.5 05.0 (19.3, 37.8)

Table 3: Comparison of mean F1 scores, standard devia-
tions, and 95% confidence intervals for different token
length intervals.

Attributes Prec. Recall F1

Matrix 50.2 23.5 32.1
Filler 53.1 25.0 34.0
Composition 44.4 20.4 28.0

Table 4: Micro average precision, recall, and F1 across
the attributes.

4.3 Analysis of Errors478

Accurately extracting PNC samples is a complex479

task, and even state-of-the-art LLMs fail to cap-480

ture all the samples. We find that out of 1052481

ground-truth samples, 773 were not identified in482

the model’s predictions. Furthermore, 364 of the483

664 predictions were incorrect. This section dis-484

cusses three categories of challenges faced by cur-485

rent models in sample extraction and proposes po-486

tential directions for future improvements.487

Compositions in Tables and Figures NanoMine488

aggregates samples from the literature, including489

those presented in tables and visual elements within490

research articles. As demonstrated in the first ex-491

ample of Figure 4, a sample is derived from the492

inset of a graph. Our present approach relies solely493

on language models. Future research could focus494

on advancing models to extract information from495

both textual and visual data through multimodal 496

methods. 497

Disentangling the Complex Components in PNC 498

Samples The composition of polymer nanocom- 499

posites (PNC) includes a variety of components 500

such as hardeners and surface treatment agents. A 501

common issue in our model’s predictions is incor- 502

rectly identifying these auxiliary components as 503

the main attributes. For example, the second row 504

in Figure 4 shows the model predicting the filler 505

material along with its surface treatments instead 506

of recognizing the filler by itself. Going forward, 507

enhancing the model to accurately distinguish and 508

classify the diverse elements in a PNC sample is a 509

key area for development. 510

Non-standard/Uncommon Chemical Name Pre- 511

dictions The expression of chemical names is 512

inherently complex, with multiple names often ex- 513

isting for the same material. In some cases, pre- 514

dicted chemical names are conceptually accurate 515

yet challenging to standardize. This suggests the 516

necessity for more sophisticated approaches that 517

can handle the diverse and complex representations 518

of chemical compounds. The third example in Fig- 519

ure 4 shows an example of this. 520

5 Related Work 521

Early works have focused on training models 522

specifically for the tasks of NER and RE. Building 523

on this, recently Wadhwa et al. (2023) and Wang 524

et al. (2023a) show that LLMs can effectively carry 525

out these tasks through prompting. Inspired by 526
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Challenging Example Ground-truth Sample Predicted Sample Explanation

{'Matrix Chemical Name': 'Polystyrene', 

'Matrix Abbreviation': 'PS', 

'Filler Chemical Name': 'Triphenyl 
phosphate', 

'Filler Abbreviation': 'TPP', 

'Filler Mass': '0.08', 

'Filler Volume': null}

The ground-truth sample with a 
filler mass of 0.08, sourced from a 
figure inset, was not mentioned in 
the text and thus not captured.

…the preparation of organophilic clay through 
the cationic exchange reactions with Na+-
montmorillonite clay.

{'Matrix Chemical Name': 'Epoxy resin', 

'Matrix Abbreviation': 'EPR', 

'Filler Chemical Name': 
'Montmorillonite', 

'Filler Abbreviation’: null, 

'Filler Mass': '0.01', 

'Filler Volume': null}

{'Matrix Chemical Name': 'Epoxy resin', 

'Matrix Abbreviation': 'EPR', 

'Filler Chemical Name': 'Organophilic 
clay modified with dodecyltriphenyl-
phosphonium', 

'Filler Abbreviation’: null, 

'Filler Mass': '0.01', 

'Filler Volume': null}

The predicted filler name in this 
case is conceptually correct. 
However, it is not a standard or 
commonly used chemical name.

Copolymer grafted SiO2 nanoparticles with a 
rubbery PHMA inner layer and a matrix 
compatible PGMA outer layer were prepared

{'Matrix Chemical Name': 'DGEBA Epoxy 
Resin', 

'Matrix Abbreviation': 'epoxy', 

'Filler Chemical Name': 'Silicon dioxide', 

'Filler Abbreviation': 'SiO2', 

'Filler Mass’: null,   

'Filler Volume’: ‘0.006’}

{'Matrix Chemical Name': 'DGEBA 
Epoxy Resin', 

'Matrix Abbreviation': ‘epoxy', 

'Filler Chemical Name': 'SiO2/PHMA/
PGMA', 

'Filler Abbreviation’: null, 

'Filler Mass': null,  

‘Filler Volume’: ‘0.006’}

PHMA and PGMA are the 
chemicals used in particle 
surface treatment, not the 
main filler.

{'Matrix Chemical Name': 'Polystyrene', 

'Matrix Abbreviation': 'PS', 

'Filler Chemical Name': 'Triphenyl 
phosphate', 

'Filler Abbreviation': 'TPP', 

'Filler Mass': ‘0.04', 

'Filler Volume': null}

The organophilic clay was prepared by a 
cationic exchange method, which is a reaction 
between the sodium cations of MMT clay and 
both intercalation agents of dodecyltriphenyl-
phosphonium bromide

Compositions in Tables and Figures

Non-standard/Uncommon Chemical Name Predictions

Disentangling the Complex Components in PNC Samples

Figure 4: Examples of challenges for LLMs, showcasing three categories of challenges encountered in capturing
accurate PNC sample compositions. Each row demonstrates a specific challenge, the ground-truth sample, the
model’s prediction, and a brief explanation of the issue."

these findings, our paper investigates the zero-shot527

performance of LLMs in materials science.528

In the specific area of models trained on a ma-529

terials science corpus, MatSciBERT (Gupta et al.,530

2022) employs a BERT (Devlin et al., 2018) model531

trained specifically on a materials science corpus.532

Song et al. (2023b) further developed HoneyBee,533

a fine-tuned Llama-based model for materials sci-534

ence. Our approach differs as we did not engage535

in fine-tuning, focusing instead on zero-shot per-536

formance. Additionally, we did not incorporate537

MatSciBERT due to its restricted token context538

and HoneyBee, as its model weights were not ac-539

cessible during our research phase.540

Similar to Dunn et al. (2022), Xie et al. (2023),541

Tang et al. (2023) and Cheung et al. (2023) our542

study also focuses on extracting N -ary relations543

from materials science papers. However, our ap-544

proach diverges in two significant aspects: we ana-545

lyze entire papers for PNC sample extraction, not546

just selected sentences or passages, and we extend547

our evaluation to partial assessment of N -ary rela-548

tions, rather than limiting it to binary assessments.549

Moreover, Song et al. (2023a) develops a bench-550

mark for BERT models on a materials science551

dataset, focusing on traditional NLP tasks like NER552

and RE. Our work, however, evaluates LLMs for553

sample extraction from full-length papers, a do- 554

main where traditional NER and RE methods fall 555

short, and where models like BERT are not viable. 556

6 Conclusion and Future Works 557

We introduced PNCExtract, a benchmark focused 558

on extraction of PNC samples from materials 559

science articles. We evaluated NER+RE and 560

E2E prompting strategies on this benchmark and 561

adapted the self-consistency technique for list- 562

based predictions. Our results indicate that con- 563

densing materials science papers can notably im- 564

prove PNC sample extraction tasks. This finding 565

encourages future research to explore more sophis- 566

ticated retrieval methods for this task. 567

To overcome the challenges in PNC sample ex- 568

traction discussed in Section 4.3, future studies 569

could investigate multimodal strategies that inte- 570

grate text and visual data. Additionally, experiment- 571

ing with few-shot learning or fine-tuning methods 572

could lead to more precise chemical name gener- 573

ation. Implementing these advancements could 574

significantly enhance the performance of LLMs in 575

extracting PNC samples. 576
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7 Limitation577

Although our dataset comprises samples derived578

from figures within the papers, the current paper579

is confined to the assessment of language models580

exclusively. We acknowledge that incorporating581

multimodal models, which can process both text582

and visual information, has the potential to enhance583

the results reported in this paper. Another limita-584

tion is that the NanoMine dataset, employed in our585

analysis, is subject to human curation errors. Con-586

sequently, our evaluation assumes the correctness587

of the NanoMine dataset as ground truth, which588

could influence the accuracy of our results. Future589

research could enhance the validity of the eval-590

uation by correcting the errors in the NanoMine591

dataset. Additionally, our paper selectively exam-592

ines a subset of attributes from PNC samples. Con-593

sequently, we do not account for every possible594

variable, such as “Filler Particle Surface Treatment.”595

This limited attribute selection means we do not596

distinguish between otherwise identical samples597

when this additional attribute could lead to differ-598

entiation. Acknowledging this, including a broader599

range of attributes in future work could lead to the600

identification of a more diverse array of samples.601

8 Ethics Statement602

We do not believe there are significant ethical issues603

associated with this research.604
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{

    “Matrix Chemical Name”: “polystyrene”,

    “Matrix Abbreviation”: “PS”,

    “Filler Chemical Name”: [“octyldimethylmethoxysilane”,


 “silica”]

    “Filler Abbreviation”: “ODMMS”,

    “Filler Composition Mass”: null,

    “Filler Composition Volume”: null

}

Figure 5: An inconsistent sample in NanoMine that we
exclude from our dataset.
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A Processing NanoMine 760

In the sample composition section of NanoMine, 761

various attributes describe the components of a 762

sample. For our analysis, we focus on six specific 763

attributes. Nonetheless, we encounter instances 764

where the formatting in NanoMine is inconsistent. 765

We excluded those articles. This is because our 766

data processing and evaluation require a uniform 767

structure. For example, in Figure 5, we identify 768

an example of an inconsistency where the “Filler 769

Chemical Name” is presented as a list rather than 770

a single value, which deviates from the standard 771

JSON format we expect. This inconsistency makes 772

the sample incompatible with our dataset’s format, 773

leading to its removal from our analysis. 774
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B Terms of Use775

We used OpenAI (gpt-4 and gpt-4-1106-preview),776

Llama2, LongChat models, and NanoMine data777

repository in accordance with their licenses and778

terms of use.779

C Computational Experiments Details780

Models Details All of the open-sourced mod-781

els used in our experiments (e.g. Llama2 and782

LongChat) have 7 billion parameters.783

Computational Budget We perform all of the784

experiments with one NVIDIA RTX A6000785

GPU. Each of the experiments with Llama2 and786

LongChat took 2− 3 hours.787

Hyperparameter Settings For all experiments,788

except those involving self-consistency, the temper-789

ature parameter is set to zero to ensure consistent790

evaluation of the models. In the case of the self-791

consistency experiment, we determine the optimal792

value for the α threshold by tuning α on the vali-793

dation set, where we explore within the range of794

{2, 3, 4, 5, 6} to identify the optimal value of α.795

Based on this tuning process, we set the α thresh-796

old to 2.797

D Condensing Papers with Retrieval798

Methods799

Initially, we employed the dense passage retrieval800

method for condensing research articles. This tech-801

nique involved segmenting the articles into smaller802

chunks and then using OpenAI embeddings to gen-803

erate embedding vectors with the GPT-4 model.804

These vectors were subsequently used to perform805

a semantic search, identifying chunks closest to a806

specified query. Although this method was consid-807

ered, the heuristics-based approach proved more808

effective, as the results from the retrieval models809

did not perform as well when used to prompt LLMs810

for our extraction tasks. This suggests that future811

work could explore developing more advanced re-812

trieval modls for this purpose.813

E Prompts814

In this section, we present all the prompts used in815

our experiments.816

E.1 E2E Prompt817

818

Please read the following paragraphs , 819
find all the nano -composite samples , 820
and then fill out the given JSON 821

template for each one of those 822
nanocomposite samples. If there are 823
multiple Filler Composition Mass/ 824
Volume for a unique set of Matrix/ 825
Filler Chemical Name , please give a 826
list for the Composition. If an 827
attribute is not mentioned in the 828
paragraphs fill that section with " 829
null". Mass and Volume Composition 830
should be followed by a %. 831

832
{ 833

"Matrix Chemical Name": " 834
chemical_name", 835

"Matrix Chemical Abbreviation ": " 836
abbreviation", 837

"Filler Chemical Name": " 838
chemical_name", 839

"Filler Chemical Abbreviation ": " 840
abbreviation", 841

"Filler Composition Mass": " 842
mass_value", 843

"Filler Composition Volume ": " 844
volume_value" 845

} 846
847

[PAPER SPLIT] 848849

E.2 NER prompt 850

851
Please identify the matrix name(s), 852

filler name(s), and filler 853
composition fraction(s). Here is an 854
example of what you should return: 855

856
{ 857

"Matrix Chemical Names": ["Poly( 858
vinyl acetate)", "Glycerol"], 859

"Matrix Chemical Abbreviation ": [" 860
PVAc"], 861

"Filler Chemical Names": [" Silicon 862
dioxide"], 863

"Filler Chemical Abbreviation ": [" 864
SiO2"], 865

"Filler Composition Fraction ": 866
["6%", "12%", "20%", "23%", 867
"32%"] 868

} 869
870

[PAPER SPLIT] 871872

E.3 RE Prompt 873

874
Is the following sample a valid polymer 875

nanocomposite sample mentioned in 876
the article? Yes or No? 877

878
Sample: 879
[JSON OBJECT] 880

881
Article: 882
[PAPER SPLIT] 883884
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