
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FEABENCH: EVALUATING LANGUAGE MODELS ON
MULTIPHYSICS REASONING ABILITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Building precise simulations of the real world and invoking numerical solvers to
answer quantitative problems is an essential requirement in engineering and sci-
ence. We present FEABench, a benchmark to evaluate the ability of large lan-
guage models (LLMs) and LLM agents to simulate and solve physics, mathemat-
ics and engineering problems using finite element analysis (FEA). We introduce a
multipronged evaluation scheme to investigate the ability of LLMs to solve these
problems end-to-end by reasoning over natural language problem descriptions and
operating COMSOL Multiphysics®, an FEA software, to compute the answers.
In addition to testing state of the art LLMs, we design a language model agent
equipped with the ability to interact with the software through its Application
Programming Interface (API), examine its outputs and use tools to improve its so-
lutions over multiple iterations. Our best performing strategy generates executable
API calls 88% of the time. However, this benchmark still proves to be challenging
enough that the LLMs and agents we tested were not able to completely and cor-
rectly solve any problem. LLMs that can successfully interact with and operate
FEA software to solve problems such as those in our benchmark would push the
frontiers of automation in engineering. Acquiring this capability would augment
LLMs’ reasoning skills with the precision of numerical solvers and advance the
development of autonomous systems that can tackle complex problems in the real
world.

1 INTRODUCTION

While there has been a series of works demonstrating the significant potential of large language
models (LLMs) on analytical mathematical and scientific reasoning (Lewkowycz et al., 2022; Yang
et al., 2024b; Hendrycks et al., 2021; Rein et al., 2023; Trinh et al., 2024), addressing the degree of
complexity required in numerical simulation-intensive science and engineering workflows remains
an outstanding challenge. Many quantitative tasks that form the cornerstone of these workflows
require numerical analysis performed with sophisticated computational modeling software. For ex-
ample, the development of a modern smartphone requires detailed modeling of the mechanical,
thermal, and electrical behaviors of its many subcomponents. Finite element analysis (FEA) (eg:
Courant et al. (1994)) software develops approximate solutions to the underlying partial differential
equations for a physical system, by building discretizations (or meshes) over geometries. The result-
ing equations are then solved numerically. The vast relevance of FEA to domains like mechanical,
biomedical and aerospace engineering, consumer electronics, manufacturing, and scientific research
has given rise to software such as Ansys®(Ansys, Inc.), Abaqus®FEA (Dassault Systèmes), and
COMSOL Multiphysics®(COMSOL Multiphysics®, b; Multiphysics, 1998), that are indispensable
to modeling complex systems with the interplay of non-trivial geometries, and multiple physical
phenomena.

Despite the potential impact, the application of LLMs to numerical analysis tasks like FEA remains
largely unexplored. In this paper, we begin to bridge this gap by asking whether LLMs and LLM-
agents can be used to solve problems using finite element analysis (FEA). This task requires the
ability to reason over a natural language problem description, plan actions needed to solve the prob-
lem and successfully operate FEA software. We selected COMSOL Multiphysics®as the framework
for our benchmark because it supports a wide range of physics models and is extensively used for
commercial engineering analysis as well as for scientific research. However, because the FEA work-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

��
���	��
�������������	������������
�����	��
���
����������
�	���
��������������������
�������������������

����������������

�	��� ��
��
���������
�� ���������������������
�������������������

��	������������������������� ����������� ���
���������������������
�	��������������������������������������
���������	���
������������������������������������	��	���	������������
���
	���
���
������������ _������������������������
�
��������������������������	�������������
��������������
��������
���������������������������
�����������	�����������������������������

���
	���	
������	

�

��������
�������	

��

���
��
���
��� ����	

��� ������	
�

�����
����	���

�

��	����
���������������	����
������� �����

Figure 1: Left: Model Specifications for one of the heat transfer problems. Abbreviated here, see
Appendix B.1.3 for full text. Right: Distribution of FEABench Gold problems by physics domain.

flow is relatively canonical, the reasoning approach for modeling is similar to other FEA software,
and all problems typically involve a shared conceptual breakdown into a sequence of steps that in-
volve defining 1) Geometry, 2) Material properties, 3) Physics, 4) Mesh 5) Numerical Analysis and
Solver settings, and 6) Postprocessing (details in Appendix D.2).

Our contributions are the following:

• We create a benchmark intended for LLM and agentic research. The benchmark consists of
(1) FEABench Gold: 15 manually verified problems, in addition to (2) FEABench Large:
a larger set of 200 algorithmically parsed problems. The problems in FEABench Gold
are (a) quantitatively verifiable, that is, if solved completely and correctly, a desired target
value will be computed and exported to a table, (b) manually confirmed to have input
problem descriptions that are self sufficient and do not omit information necessary to solve
the problem (c) manually verified to be solvable, i.e. we confirmed that if the steps to
model the problem are followed faithfully in COMSOL Multiphysics® the desired target
value is computed. The target values are expected to be largely independent of the modeling
software. The objective of the LLM is to read the problem specification and interact with
the software by reasoning over the problem and operating COMSOL Multiphysics®. The
skills this requires of an LLM include the ability to correctly (a) infer spatial dimensions,
representations of objects as compositions of geometrical primitives, and required physics
features like boundary conditions and their properties, (b) follow instructions that describe
the association of these features with geometrical entities and analysis steps and finally, (c)
generate the sequence of Java calls to the API that encode these decisions.

• We further define two versions of the tasks in FEABench Gold– ModelSpecs and Plan , to
probe different versions of task complexity.

• We introduce a holistic evaluation strategy with intermediate metrics that seek to measure
different facets of the ‘distance to the correct solution’. We benchmark different SOTA
LLMs on their baseline (single-turn) performance with these metrics.

• Finally, we design an interface in which an LLM can interact with the COMSOL
Multiphysics® API and with specialized auxiliary functions and can use execution feed-
back to improve its solution over multiple turns. To mitigate the lack of familiarity of
LLMs with COMSOL Multiphysics® as a domain-specific language, one of the tools in
our agentic environment is a retriever that looks up a corpus of LLM-generated annotations
of individual code blocks.

2 DATASETS

FEABench Gold The benchmark problems are derived from tutorials in the COMSOL
Multiphysics® Application Gallery and are often based on established validation problems or other
sources (eg: Melnik & Willatzen (2003); National Agency for Finite Element Methods & Standards
(Great Britain) (1990)). The input is a natural language problem description with a specific target

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: Summary of Evaluation Metrics

METRIC ARTIFACTS SKILLS MEASURED

Correctness Alignment Physics Reasoning

Executability API Messages X
Model Tree Score Model Tree X
Code Similarity Score Code X

Physics Metrics Physics Code
Interface Factuality X
Recall Metrics X X
Feature Dimension X X

Target Value Metrics Output Table X X X

quantity that needs to be computed (Figure 1). The problems span a range of real world / mathemat-
ical systems including the dynamics of a Lorenz attractor, heat transfer in objects, eigenfrequency
analysis of a quantum dot and a beam. Each entry consists of the following main fields:

• Model Specifications: A complete description of the FEA task, including geometry, ma-
terial properties, physics specifications, initial/boundary conditions, and the output to be
computed. This field is intended to be general enough to be relevant to softwares or ap-
proaches other than COMSOL Multiphysics®, yet unambiguous about details such as ma-
terial properties.

• Selection Information: An engineer would typically identify spatial information like ge-
ometric selections (points, boundaries, and domains) using the Graphical User Interface
(GUI). We provide this field as a substitute for images for LLMs and agents without the
ability to receive visual input from the GUI. This information is valid as long as the agent
chooses to construct the geometry in a manner that is reasonably similar to the construction
of the ground truth (GT) geometry.

• Plan: Step-by-step instructions to solve the problem using COMSOL Multiphysics®.
• Target Description: A brief phrase describing the quantity that needs to be computed.
• Target Value: The correct value of the target physical quantity.
• Ground Truth Code: Lines of COMSOL Multiphysics®API calls that can be executed to

build a model that successfully computes the target value.
• Model Tree: Executing COMSOL Multiphysics®calls can be regarded as modifying a tree

with certain predefined branches such as geometry and physics. The model generated by
executing code can thus be represented in a condensed form as a model tree (see Appendix
B.1.3). This is a high-level lossy representation of a solution path, as the code cannot be
exactly recovered from the model tree.

Converting a tutorials to verifiable benchmark problems requires ensuring that an artifact can be
computed from it, generating inputs and the GT solution and verifying that it computes the correct
target value (Appendix B). Unless otherwise specified, all experiments are on FEABench Gold.

FEABench Large We further evaluate SOTA LLMs on a larger dataset consisting of 200 COM-
SOL Multiphysics® Application Gallery tutorial problems. Since these are algorithmically parsed
from tutorials, and most tutorials are for demonstrative purposes, the problems are not structured so
as to export a verifiable numerical artifact. They may instead instruct the user to generate specific
plots or compute multiple values. The input consists of a field termed ‘Plan’, which corresponds
to the Modeling Instructions in the tutorial. This specifies explicit instructions (similar in nature to
the Plan field in FEABench Gold). We additionally save the ground truth API calls in ‘Code’ after
running some preprocessing steps on the ground truth API calls, in order to resemble the format of
the code in FEABench Gold.

Annotated Library We additionally generate a set of 768 annotated code snippets, by querying
an LLM (Gemini-1.5-Flash) to translate code blocks to natural language summaries. The library is
structured by the branch of code. Unlike the previous two datasets described, we do not use this for
evaluation. This is used to retrieve relevant snippets in our agent system.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 EVALUATION METRICS

Reasoning correctly about the problem and issuing the right calls to operate the API poses a chal-
lenging task for even SOTA LLMs, since a model will only be able to compute the correct target
value if it was able to generate all the code necessary to set up and solve the model successfully. This
makes conventional code evaluation metrics such as the ‘pass@k’ metric (Chen et al., 2021; Kulal
et al., 2019) harder to apply to this setting, since most solutions are unable to completely solve the
problem. We introduce a multipronged evaluation strategy with metrics that measure the correctness
of the solution, even when a target value could not be computed (Table 1). These additional metrics
offer the advantage of being continuous, unlike the relative error, which can only be computed if the
LLM’s solution computed a ‘valid’ target value. Metrics denoted by † require execution of the API
calls. We delineate the metrics, and the facets they probe here:.

• Executability†: Executable lines as a fraction of parsed API calls in an LLM solution. The
COMSOL sandbox returns a ‘reply’ to each line of code. A given line may be invalid if it
is syntactically incorrect or if it refers to an invalid action (like modifying a property under
a non-existent node).

• Model Tree Score†: Similarity score between the LLM solution’s model tree and a GT
tree. This is normalized so that a solution with no parsed lines of code is scored 0. If it
was equivalent to the GT tree, the score would be 1. This measures the alignment of the
model’s solution path with a successful path.

• Code Similarity Score: Simple similarity score between the solution and the GT code.
We mainly report this metric as a baseline measure of code similarity, and to motivate our
introduction of domain-specific metrics. The preponderance of boilerplate syntax, along
with the fact that two different code blocks could generate equivalent model subtrees, are
factors that contribute to the lack of meaningful variation of this metric across experiments.

• Physics Metrics: The metrics above analyzed the entire solution or its derived artifacts.
The code is a basis to represent the actions the LLM takes to model the problem. Since
the physics block is both the most diverse across problems and the most challenging (Fig-
ure 4), we additionally evaluate specifically the LLM’s physics actions. The most basic
physics action sequence involves: Create Interface (eg: HeatTransfer) → Create Feature
under Interface (eg: TemperatureBoundary) → Modify Feature Properties (eg: T0, to set
a temperature). Our Physics Metrics include (a) Interface Factuality: What fraction of
interfaces created by the LLM are real COMSOL Multiphysics®interfaces and not halluci-
nated? (b) Interface / Feature / Feature Property Recall: How many interfaces / features
/ feature properties created / modified by the GT solution were also in the LLM solution?
(c) Feature Dimension: For features created by both, does the feature’s spatial dimension
match? As an example, if an LLM chose to set a temperature boundary condition on a 1D
geometry, this metric would check whether it correctly deduced that the boundary condi-
tion should be 0 dimensional (i.e. a point), by comparing the dimension with that of the
boundary condition in the GT solution. While these metrics offer a granular look into the
LLM’s physics reasoning path, some nested physics metrics, such as ‘Feature Dimension’
will not be valid for a problem when there is no overlap between the GT and the LLM code:
we mask out these problems while computing the means for that metric.

• Target Relative Error†: At evaluation, we entask an LLM (Gemini-1.5-Pro) to check
that the computed value in the exported table matches the target description and that the
exported quantity is not a default value, and to parse the response, if so. Valid Target is
the number of problems in the benchmark for which the LLM judges the exported table to
be valid. We then compute the relative error between the last value in the exported table
and the GT answer. Relative Error | Strict computes the mean relative error only over
problems for which Valid Target is True, AND the relative error is less than 10%. Relative
Error | Strict is the principal metric we use to assess whether the problem was truly solved.

4 SINGLE-QUERY LLMS

In all experiments, the LLM agent should return a Solution that consists of the API calls that solve
the problem. A correct solution, when executed, will compute the Target Value. The Ground Truth
Code field is one such example of a correct solution. Either of the following comprise self-sufficient

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

problem formulations for an LLM to solve: (1) Model Specifications + Selection Information, or
(2) Implementation Plan. Two versions of this task are thus definedfor FEABench Gold: (1) the
ModelSpecs task, in which the problem description for each problem are the Model Specifications
and Selection Information fields. (2) The Plan task, in which the problem description for each
problem is the Plan field. ModelSpecs most closely resembles a naturally occurring real-world
description.

First, three SOTA LLMs – Claude-3.5-Sonnet (Anthropic), GPT-4o (OpenAI) and Gemini-1.5-Pro
(Reid et al., 2024) – are tested on the ModelSpecs taskunder FEABench Gold:, given a one-shot
prompt (Table 3 and 4). We additionally evaluate three open-weights models with the same prompt
on the same task – CodeGemma-7B-IT (CodeGemma Team et al., 2024), Gemma-2-9B-IT, and
Gemma-2-27B-IT (Gemma Team et al., 2024). We then fix the LLM to Gemini-1.5-Pro and compare
performance on ModelSpecs vs Plan and with the list of physics interfaces and features in the
prompt context (PhyDoc In-Context) in Table 5 and 6. All prompts used are described in Appendix
H. In the experiments described so far, the LLM does not have the ability to interact with the API.
The tables for all experiments report the means and the standard errors on the mean across all the
problems that the experiment was run on. Some nested physics metrics, such as ‘Feature Dimension’
might not be valid for a specific problem, in case there was no matching feature between the ground
truth and the LLM code: we mask out these problems while computing the means for that specific
metric.

5 THE ELEMENTS OF AN LLM-MULTIPHYSICS API INTERFACE

Recent work has sought to explore the space of designing optimal Agent-Computer Interfaces (Yang
et al., 2024a; Wang et al., 2024b) primarily for software engineering. However, these frameworks
are mainly tailored to efficient codebase navigation, bug localization and testing: tasks crucial to
software development, but of limited relevance to FEA / numerical analysis workflows. Our single-
turn results, particularly on executability and hallucinated interfaces, highlight the need to ground
the LLM’s responses with feedback from and documentation about the API. Given a single try, the
LLM is likely to make some errors, and we hypothesize that receiving feedback informative of the
nature and location of the errors will allow it to correct those errors in a directed fashion. We thus
build an environment in which the LLM can interact with the API, receive feedback and attempt to
correct its solution. Our design includes the features below, aimed at addressing specific challenges
posed by FEA problems:

�������������������������������������

Last Solution's Execution Feedback 0###
model.component().create("comp1", true); -> Correct
model.component("comp1").geom().create("geom1", 2); ->
Correct...
model.study("std1").create("time", "Transient"); -> Correct
model.study("std1").feature("time").set("tlist",
"range(0,0.1,190)"); -> Correct
model.study("std1").run(); ->...Messages: The following
feature has encountered a problem: - Feature: Time-Dependent
Solver 1 (sol1/t1) Undefined material property 'k' required
by Solid 1...
model.result().numerical("ev1").set("coord", new String[]{"
0.1", "0.3"}); -> Error: Exception:...Unknown property.
 - Property: coord
	���
�����������������
�	���
���
���
��
������������������������������
��������������������

���������������������
���
���
�	����_�����������
�������������������
�	��������
��	���_�����������_����	��������_�����������������
���
���������������������
��
������������������������������� �������������������������
���
������� ���
���
������	��
���
���������������������
���
���������������������� ���
���
��
���
���������������������
���
��
���

1

1

2

2

3

4

4

3

Figure 2: The Evaluator’s feedback (left) is passed to the ToolLookupAgent, that calls tools and
returns their concatenated output. Violet, on the left indicates that the Verifier Feedback is returned
by an LLM, and on the right, denotes the arguments chosen by the ToolLookupAgent to call the tools
with. The numerical annotations highlight the correspondence between the errors and arguments.

Design Features

• LLM-Assisted Semantic Code Search: COMSOL Multiphysics® API code likely forms
only a minuscule fraction of code scraped from the internet. The lack of familiarity with

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

the exact syntax and options available makes translating verbatim natural language (NL)
instructions to code challenging, as evident in the low executability of even the Plan version
of the task in the Single-Query experiments (Table 5). We hypothesize that the reverse
direction is easier: i.e. given a code snippet a user / LLM can formulate an approximate NL
description of the API actions being executed by the snippet. We first generated an LLM-
annotated corpus of code snippets decomposed by the conceptual code block (‘Annotated
Library in Section 2). An LLM can generate a NL query or action under a branch, (eg:
‘Define the thermal properties...’ under ‘material’ in Tool Call # 3 in the right panel of
Figure 2) and receive pairs of (NL Annotation→ Code) that were closest to the NL query.
We introduce this component specifically to boost the ability of LLMs to understand how
to correctly generate syntactically correct calls in a low-resource scripting language like
COMSOL Multiphysics®. Appendix E.1.2 has examples of Annotation→ Code pairs.

• Feedback: The LLM solution generated after each turn is parsed and passed to the API that
returns linewise messages. Each line is then paired with either ‘Correct’ if the line executed
without error, or ‘Error’ and the specific message returned by the API. High executability
does not guarantee alignment or correctness, since API messages alone are not informative
about inconsistencies in the problem description, such as incorrect physical units. When
executability crosses 90%, we call a VerifierLLM to provide feedback (left panel, Figure
2). The API feedback provides a signal on syntactical correctness and the VerifierLLM
provides a signal on completeness.

• Analytical-Numerical Consistency: Several problems may allow a scientist to formulate an
approximate analytical guess for what the target value should be, even if the precise value
may only be derivable numerically. Using this principle, the VerifierLLM additionally sets
an analytical guess at the start of the Multi-Turn experiment, given the problem description
and compares the numerically computed target with the analytical guess.

5.1 AGENT SETUP

���������

��������������������������������
�����
	���

���������������

�������������������
�����
�����	�����

Solution N

���������������
����

��������������	
�������������
�����
���������������������
�����
��
������		�
�
���	����
��

������	
��	��� �
��	

�������������������

�	
��
����������
��	

Solution N-1

Figure 3: An overview of the agent and environment design, and the steps involved returning the
next solution.

We design a multi-agent system that interacts with the COMSOL Multiphysics®API, as well as
tools (or specialized functions) and incorporates the design features above. To minimize failures or
longer-than-desired chains of calls, we adopt an algorithmic sequence of agent calls except within
the ToolLookupAgent. Each agent has a specific role and input context.

CONTROLLERAGENT: The main agent that tries to solve the problem description by generating
solutions, interacting with the API and calling subagents.
Input Context: Problem description.
Components: Evaluator, ControllerSubAgent
Working: This samples an initial population of N(=20) solutions using PhyDoc In-Context. Each
solution is evaluated by the Evaluator. A fitness score, between 0 and 2, is computed for each
solution, using the following formula: Executability + ExportSuccessful where ExportSuccessful is

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

1 if (the solution computed a value AND had executability above 90%) and 0 if not. The controller
agent tracks a set of best replies using their fitness. The set of best replies stores at least B(=1)
solution, as well as all solutions that successfully computed a value. This agent also determines the
context to be sent to the CorrectorSubAgent, using the following algorithm:

• Solution to iterate on: We use an iteration criterion inspired by the Markov Chain Monte
Carlo (MCMC) acceptance criterion. The solution to iterate on (rendered in the prompt to
the CorrectorSubAgent as “CURRENT CODE”) is (a) the last solution if the last solution has
equal fitness as the best solution, and (b) the last solution if a random float between [0, 1]
is less than α = Last Fitness

Best F itness , else the best solution.

• ExecutionHistory: The best solutions, if not already used in context upto a maximum of 3
best solutions, in addition to the last N bad(=1) replies, if not already in context.

EVALUATOR: This returns the feedback for a solution in a ‘score’ dictionary (Left panel, Figure 2)
Input Context: An LLM solution.
Working: The evaluator always returns execution feedback and additionally includes subjective
feedback from a VerifierLLM if Executability exceeds 90%. Note, this evaluator is not aware of the
GT target value.

CORRECTORSUBAGENT: This returns an updated solution.
Input Context: Problem description, Current Code and Feedback, Execution History
Components: ToolLookupAgent
Working: This calls the ToolLookupAgent and retrieves its reply. It then includes this reply to the
rest of the context received from the ControllerAgent to propose the next solution.

TOOLLOOKUPAGENT: This calls tools and returns the information retrieved from them.
Input Context: Feedback
Components: ToolRegistry
Working: The LLM is shown tool descriptions and the input context and must return a list of tool
calls, as structured classes using the Langfun (Peng, 2023) package consisting of the tool name
and its arguments. If successfully parsed, each tool is called with its arguments and the replies are
concatenated (see Figure 2 for the feedback and reply for a single step). The tools in the registry are:

1. QUERYPHYSICSINTERFACES: This returns a list of valid physics interfaces.

2. QUERYPHYSICSFEATURES: This returns the features under an argument interface or a list
of known features under interfaces.

3. QUERYMODELTREEPROPERTIES: The LLM must call this tool with a path argument
(‘/physics/Heat Transfer in Solids/Solid 1’ in Figure 2) to receive the properties under the
node corresponding to path.

4. RETRIEVEANNOTATEDSNIPPETS: To call this tool, the LLM must specify a branch – one
of the conceptual blocks such as physics or geometry – and a query – a brief natural lan-
guage description of a specific step. In Figure 2, the LLM first called this tool with the
branch ‘geometry’ and the query ‘Create a 2D axisymmetric geometry in...’. A retriever
then looks up the annotated library and retrieves 3 annotations along with their code snip-
pets, most similar to the query made. Thus, this allows the LLM to search a library of code
snippets to find the correct ways to express certain steps in code, simulating how a human
unfamiliar with a coding language would look up similar examples of code.

At the end of this experiment, the CONTROLLERAGENT saves its best solutions as well as other
intermediate states. During evaluation, the best solutions are read in and evaluated. If there are
multiple best solutions (in cases where multiple solutions were able to compute a target value), the
top best solution is the one that maximizes the following formula: Executability + bool(Computed
Value) + [(1.0 - Target Relative Error) if (Target Relative Error<1) AND (Valid Target) else 0].
The three conditions together prioritize solutions that (1) had high executability, (2) were complete
enough to export any value, albeit incorrect or the wrong quantity and, (3) exported a ‘Valid Target’
within 100% of the desired value.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Comparison across models on FEABench Large.

Experiment Code
Similarity

Interface
Factuality

Interface
Recall

Feature
Recall

Feature
Property
Recall

Feature
Dimension

Claude 3.5 Sonnet 0.20±0.01 0.68±0.03 0.50±0.03 0.49±0.03 0.29±0.02 0.96±0.01
GPT-4o 0.15±0.01 0.66±0.03 0.48±0.03 0.26±0.03 0.20±0.02 0.82±0.05
Gemini-1.5-Pro 0.15±0.01 0.57±0.04 0.28±0.03 0.44±0.03 0.20±0.02 0.72±0.04

Table 3: Code Metrics: Comparison on ModelSpecs across LLMs.

Experiment Executability Model Tree Score Code Similarity Valid Target

Claude 3.5 Sonnet 0.79±0.03 0.69±0.07 0.19±0.03 1/15
GPT-4o 0.78±0.03 0.56±0.06 0.17±0.03 0/15
Gemini-1.5-Pro 0.60±0.05 0.46±0.07 0.17±0.03 0/15

Gemma-2-27B-IT 0.56±0.05 0.47±0.07 0.15±0.02 0/15
Gemma-2-9B-IT 0.44±0.06 0.28±0.06 0.11±0.02 0/15
CodeGemma-7B-IT 0.52±0.07 0.35±0.06 0.12±0.02 0/15

Table 4: Physics Metrics: Comparison on ModelSpecs across LLMs.

Experiment Interface
Factuality

Interface
Recall

Feature
Recall

Feature
Property
Recall

Feature
Dimension

Claude 3.5 Sonnet 0.85±0.10 0.71±0.13 0.80±0.10 0.22±0.10 0.95±0.05
GPT-4o 0.79±0.11 0.64±0.13 0.55±0.12 0.22±0.11 0.95±0.05
Gemini-1.5-Pro 0.54±0.14 0.43±0.14 0.39±0.10 0.15±0.09 0.86±0.14

Gemma-2-27B-IT 0.69±0.13 0.50±0.14 0.14±0.08 0.11±0.07 -
Gemma-2-9B-IT 0.70±0.15 0.43±0.14 0.06±0.04 0.07±0.07 -
CodeGemma-7B-IT 0.45±0.13 0.21±0.11 0.17±0.09 0.07±0.07 -

6 RESULTS

Comparison across LLMs: Although JAVA API commands to COMSOL Multiphysics®are
somewhat ‘out of distribution’ since they are unlikely to account for a significant fraction of code
in the LLM training data, we find that all models are able to generate code with moderately high
executability in the range 0.60-0.79, implying that LLMs appear to know the higher-level grammar
and syntax of COMSOL Multiphysics®API calls or are able to infer it from the one-shot example.
Getting more granular choices correct proves to be more challenging: LLMs are prone to halluci-
nating the interface choice (factuality between [0.54-0.85]). This is likely a significant contributor
to the non-executable lines because an invalid interface declaration will render all physics lines of
code acting under this interface invalid. We also compare the performance of the three LLMs on 200
problems in FEABench Large. Note, unlike the problems in the human-verified FEABench Gold,
these problems do not have a single final target artifact, so we only evaluate these against metrics that
don’t require execution. Claude 3.5-Sonnet consistently has the best performance on most metrics
on both benchmarks. The open-weights LLMs generally perform worse than closed-source LLMs,
especially on the alignment-probing metrics such as the Model Tree Score and Physics Recall met-
rics. The feature recall is so low for these problems, that the feature dimension metric can only be
evaluated for fewer than 5 problems in each of the experiments involving models in the Gemma
family.

Explicit natural language instructions don’t always help. We now fix the LLM to Gemini-1.5-
Pro and examine whether the Plan task is easier. The comparison between task versions is of interest
since both demand slightly different skills. For a person attempting to solve this task, ModelSpecs
requires the individual to both infer implicit engineering and physical reasoning decisions to be
made (eg: for the problem in Figure 1, the LLM needs to infer that the correct representation of a

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 4: Block-wise executability across 300 samples of code with PhyDoc In-Context and Gemini-
1.5-Pro. The physics block has the lowest executability. Error bars denote standard deviations.

cylinder’s 2D cross-section is a rectangle) and further translate this to valid API calls. Plan explicitly
describes all steps to be followed in natural language and requires the LLM to only translate the steps
describing interactions with the GUI to valid calls. The comparison between the two tasks offers one
way to decouple the difficulty arising from making correct modelling decisions from translating the
decisions into calls with the correct syntax. If an LLM fared poorly at making the right modelling
decisions but could reliably translate natural language instructions to API calls, it would find Plan
an easier task. However, we find that a more explicit plan doesn’t consistently boost performance on
FEABench Gold. We hypothesize this could be due to the LLM hallucinating API calls by following
natural language instructions verbatim. For instance, for Heat Transfer problems, that account for
a considerable fraction of FEABench Gold, the natural language instructions in Plan instruct the
LM to construct a ‘Heat Transfer in Solids’ interface. However, the correct syntactical name of
the interface is HeatTransfer. This is also observable in the slight drop on Interface Factuality
between the two tasks in Table 6. Grounding the LLM with information about or interaction with
the API boosts performance. PhyDoc In-Context reduces interface hallucinations for both tasks
(factuality: 0.54→1.0, 0.38→0.85).

6.1 AGENT RESULTS

The interactive Multi-Turn Agent has the highest performance of all experiments on the ModelSpecs
task across several metrics including executability (0.62→0.88). Figure 4 analyzes the executability
across the initial ‘population’ of LLM solutions generated for the problems by breaking down line-
wise executability by the block of code the line belongs to. The physics block is the most challenging
to generate executable code given a single query, motivating our focus on evaluation metrics that
focus on the physics block and tools that seek to help ground the LLM’s code with physics-specific
information. Over the course of its trajectory, the agent proposes 40 solutions: 20 from oversampling
the initial prompt, and another 20 from correcting the best of the initial 20, and the best solution
is selected from the tracked best solutions. This allows us to include gains obtained both from
oversampling as well as from correction. For 5 problems, the best solution corresponded to one of
the initial population of solutions.

Although Relative Error | Strict is the principal metric one would ideally want to optimize for, we
do not report means over that metric here since the LLM was only able to compute a Valid Target
that was also within 10% of the correct answer for a single problem in the Multi-Turn Agent and
ModelSpecs + PhyDoc experiments. For this problem, the correct target value is 18.3◦ Celsius, and
the value exported by the LLM is 20◦ Celsius (specifically 19.999...◦ Celsius), which is a default
temperature in COMSOL Multiphysics®: this is an indicator of the solution not being solved cor-
rectly.While a stricter relative error threshold would filter out such serendipitous matches, this risks
filtering out problems in which a solution might be conceptually correct but differs from the target
because of say, differences in solver and mesh sizes. The inability to correctly answer any of these
problems attests to the unsolved challenge posed by FEABench Gold, and the need for devising
systems that are able to solve problems of this nature.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 5: Code Metrics: Comparison across tasks, prompts and agents.

Experiment Executability Model Tree
Score

Code
Similarity

Valid Target

ModelSpecs : One-Shot 0.60±0.05 0.46±0.07 0.17±0.03 0/15
ModelSpecs : PhyDoc In-Context 0.62±0.05 0.58±0.07 0.15±0.02 1/15
ModelSpecs : Multi-Turn Agent 0.88±0.03 0.56±0.08 0.17±0.03 2/15

Plan : One-Shot 0.54±0.03 0.39±0.03 0.21±0.03 0/15
Plan : PhyDoc In-Context 0.59±0.05 0.59±0.06 0.20±0.02 0/15

Table 6: Physics Metrics: Comparison across tasks, prompts and agents.

Experiment Interface
Factuality

Interface
Recall

Feature
Recall

Feature
Property
Recall

Feature
Dimension

ModelSpecs : One-Shot 0.54±0.14 0.43±0.14 0.39±0.10 0.15±0.09 0.86±0.14
ModelSpecs : PhyDoc In-Context 1.00±0.00 0.71±0.13 0.48±0.10 0.08±0.07 0.59±0.16
ModelSpecs : Multi-Turn Agent 0.93±0.07 0.79±0.11 0.75±0.09 0.24±0.10 0.89±0.07

Plan : One-Shot 0.38±0.14 0.36±0.13 0.43±0.11 0.32±0.11 0.79±0.15
Plan : PhyDoc In-Context 0.85±0.10 0.57±0.14 0.47±0.11 0.13±0.07 0.93±0.07

7 DISCUSSION

Our benchmark seeks to inspire rigorous evaluations of the capabilities of LLMs on solving prob-
lems that require simulating physical phenomena in the real world and performing numerical anal-
ysis. Such problems are ubiquitous in science and engineering, and solving them requires synthe-
sizing reasoning over the physics domain with the ability to leverage numerical analysis software
such as FEA. Although the problems in our benchmark are already challenging for SOTA LLMs,
an extension could be to use imported Computer-Aided Design (CAD)-built geometries to be more
aligned with industrial workflows. While datasets such as FEABench Large provide a useful sta-
tistical signal on the quality of code solutions generated across a large number of problems, adding
more human verified problems would be valuable.

Our multiphysics agentic interface devised the basic elements to facilitate LLMs to interact with the
API in a targeted fashion and we further designed one realization of an agentic framework that incor-
porates these elements. It would be valuable to port blocks such as the Evaluator and the specialized
functions into generalist agentic frameworks like AutoGPT and LangChain (Significant Gravitas;
Chase, 2022) to explore possible performance gains and understand the optimum way to distil vi-
sual information from the GUI. Using an LLM-annotated corpus to boost code executability might
facilitate code generation in other low-resource domain-specific language contexts. Conversely,
code generation approaches for other low-resource languages (Cassano et al., 2024) might reduce
the bottleneck of translating predefined decisions into code (the Plan task). We examined the perfor-
mance of a fine-tuned model relative to a baseline in Appendix G: while the fine-tuned checkpoint
can outperform the untuned checkpoint in a Zero-Shot setting, the untuned checkpoint prompted
with a One-Shot example outperforms both. Research (Ding et al., 2024) on increasing the effective
context lengths in fine-tuning will likely benefit our setting. Other work (Dziri et al., 2024) has
identified the challenge of getting transformers to reason over complex compositional tasks and it
would be interesting to explore whether alternative approaches could mitigate this.

Our dataset serves as a novel testbed to evaluate the ability of LLMs and agentic approaches to
interact with feedback from an execution environment, error-correct and learn how to master a rel-
atively unfamiliar software well enough to solve problems. The ability to quantitatively analyze a
problem and operate scientific software would augment LLMs’ reasoning skills with the numerical
precision and inbuilt checks offered by FEA software, and significantly push the ceiling on problems
that LLMs can currently accurately solve. Unlocking this ability would bring LLMs a step closer to
being able to serve as grounded ‘engineering assistants’ that can autonomously run precise simula-
tions to innovate and optimize designs and answer quantitative questions about physical phenomena
in the real world.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

8 REPRODUCIBILITY STATEMENT

We will release the complete set of benchmark problems for FEABench Gold. We will also release
the library of code block annotations used in the RetrieveAnnotatedSnippets tool. The prompts are
in the appendix. The code for the LLM agents, inference, prompts and evaluation of experiments
will additionally be made public on Github. A COMSOL Multiphysics®license will be needed
to run the Multi-Turn Agent experiment, and to compute the subset of execution-based metrics
(delineated in Section 3 by †). The bridge to communicate with COMSOL Multiphysics®from
Python is described in Appendix D.1 and the Python packages needed are open-source. The tutorial
documents and models used in FEABench Large are accessible on the internet on the COMSOL
Multiphysics®website. We will release the list of tutorial identifiers we used in our evaluation on
FEABench Large, as well as the code we used to preprocess the ground truth API calls in FEABench
Large.

REFERENCES

Jpype. Available online at: https://jpype.readthedocs.io/en/latest/.

Mph. Available online at: https://mph.readthedocs.io/en/1.2/.

COMSOL Multiphysics®. COMSOL Multiphysics®application gallery. Available online at:
https://www.comsol.com/models.

Google Cloud Vertex AI. Discoveryengine. URL https://cloud.google.com/
generative-ai-app-builder/docs/ranking.

Ansys, Inc. Ansys. Available online at: https://www.ansys.com/.

Anthropic. Claude 3.5 sonnet. https://www.anthropic.com/news/
claude-3-5-sonnet.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Kinjal Basu, Ibrahim Abdelaziz, Kelsey Bradford, Maxwell Crouse, Kiran Kate, Sadhana
Kumaravel, Saurabh Goyal, Asim Munawar, Yara Rizk, Xin Wang, et al. Nestful: A benchmark
for evaluating llms on nested sequences of api calls. arXiv preprint arXiv:2409.03797, 2024.

Andres M Bran, Sam Cox, Oliver Schilter, Carlo Baldassari, Andrew D White, and Philippe
Schwaller. Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint
arXiv:2304.05376, 2023.

Federico Cassano, John Gouwar, Francesca Lucchetti, Claire Schlesinger, Anders Freeman,
Carolyn Jane Anderson, Molly Q Feldman, Michael Greenberg, Abhinav Jangda, and Arjun
Guha. Knowledge transfer from high-resource to low-resource programming languages for code
llms. Proceedings of the ACM on Programming Languages, 8(OOPSLA2):677–708, 2024.

Harrison Chase. LangChain, October 2022. URL https://github.com/langchain-ai/
langchain.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

CodeGemma Team, Heri Zhao, Jeffrey Hui, Joshua Howland, Nam Nguyen, Siqi Zuo, Andrea Hu,
Christopher A Choquette-Choo, Jingyue Shen, Joe Kelley, et al. Codegemma: Open code models
based on gemma. arXiv preprint arXiv:2406.11409, 2024.

COMSOL Multiphysics®. Steady state 2d axisymmetric heat transfer with con-
duction, a. Available online at: https://www.comsol.com/model/
steady-state-2d-axisymmetric-heat-transfer-with-conduction-453.

11

https://jpype.readthedocs.io/en/latest/
https://mph.readthedocs.io/en/1.2/
https://www.comsol.com/models
https://cloud.google.com/generative-ai-app-builder/docs/ranking
https://cloud.google.com/generative-ai-app-builder/docs/ranking
https://www.ansys.com/
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://www.comsol.com/model/steady-state-2d-axisymmetric-heat-transfer-with-conduction-453
https://www.comsol.com/model/steady-state-2d-axisymmetric-heat-transfer-with-conduction-453

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

COMSOL Multiphysics®. COMSOL Multiphysics®, b. Available online at: https://www.
comsol.com/.

Richard Courant et al. Variational methods for the solution of problems of equilibrium and vibra-
tions. Lecture notes in pure and applied mathematics, pp. 1–1, 1994.

Dassault Systèmes. Abaqus, fea. Available online at: https://www.3ds.com/products/
simulia/abaqus.

Yiran Ding, Li Lyna Zhang, Chengruidong Zhang, Yuanyuan Xu, Ning Shang, Jiahang Xu, Fan
Yang, and Mao Yang. Longrope: Extending llm context window beyond 2 million tokens. arXiv
preprint arXiv:2402.13753, 2024.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, et al. Faith and fate: Limits of
transformers on compositionality. Advances in Neural Information Processing Systems, 36, 2024.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.
Gemma 2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118,
2024.

Google LLC. Google ai studio. Available online at: https://aistudio.google.com/.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded Padon, Alex Aiken, and Percy S
Liang. Spoc: Search-based pseudocode to code. Advances in Neural Information Processing
Systems, 32, 2019.

Varun Kumar, Leonard Gleyzer, Adar Kahana, Khemraj Shukla, and George Em Karniadakis.
Mycrunchgpt: A chatgpt assisted framework for scientific machine learning. arXiv preprint
arXiv:2306.15551, 2023.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay
Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quan-
titative reasoning problems with language models. Advances in Neural Information Processing
Systems, 35:3843–3857, 2022.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, 2022.

RVN Melnik and Morten Willatzen. Bandstructures of conical quantum dots with wetting layers.
Nanotechnology, 15(1):1, 2003.

Siddharth Mishra-Sharma, Yiding Song, and Jesse Thaler. Paperclip: Associating astronomical
observations and natural language with multi-modal models. arXiv preprint arXiv:2403.08851,
2024.

COMSOL Multiphysics. Introduction to comsol multiphysics®. COMSOL Multiphysics,
Burlington, MA, accessed Feb, 9(2018):32, 1998.

National Agency for Finite Element Methods & Standards (Great Britain). The Standard
NAFEMS Benchmarks. NAFEMS, 1990. URL https://books.google.ca/books?id=
lq5QAAAAYAAJ.

12

https://www.comsol.com/
https://www.comsol.com/
https://www.3ds.com/products/simulia/abaqus
https://www.3ds.com/products/simulia/abaqus
https://aistudio.google.com/
https://books.google.ca/books?id=lq5QAAAAYAAJ
https://books.google.ca/books?id=lq5QAAAAYAAJ

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Bo Ni and Markus J Buehler. Mechagents: Large language model multi-agent collaborations can
solve mechanics problems, generate new data, and integrate knowledge. Extreme Mechanics
Letters, 67:102131, 2024.

OpenAI. Hello GPT-4o. Available online at: https://openai.com/index/
hello-gpt-4o/.

Haining Pan, Nayantara Mudur, Will Taranto, Maria Tikhanovskaya, Subhashini Venugopalan,
Yasaman Bahri, Michael P Brenner, and Eun-Ah Kim. Quantum many-body physics calcula-
tions with large language models. arXiv preprint arXiv:2403.03154, 2024.

Daiyi Peng. Langfun, September 2023. URL https://github.com/google/langfun.

Shraman Pramanick, Rama Chellappa, and Subhashini Venugopalan. Spiqa: A dataset for multi-
modal question answering on scientific papers. arXiv preprint arXiv:2407.09413, 2024.

Python Software Foundation. difflib. Available online at: https://docs.python.org/3/
library/difflib.html.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789, 2023.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-
baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al.
Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv
preprint arXiv:2403.05530, 2024.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. arXiv preprint arXiv:2311.12022, 2023.

Khaled Saab, Tao Tu, Wei-Hung Weng, Ryutaro Tanno, David Stutz, Ellery Wulczyn, Fan Zhang,
Tim Strother, Chunjong Park, Elahe Vedadi, et al. Capabilities of gemini models in medicine.
arXiv preprint arXiv:2404.18416, 2024.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Zachary S Siegel, Sayash Kapoor, Nitya Nagdir, Benedikt Stroebl, and Arvind Narayanan. Core-
bench: Fostering the credibility of published research through a computational reproducibility
agent benchmark. arXiv preprint arXiv:2409.11363, 2024.

Significant Gravitas. AutoGPT. URL https://github.com/Significant-Gravitas/
AutoGPT.

Chuan Tian and Yilei Zhang. Optimizing collaboration of llm based agents for finite element anal-
ysis. arXiv preprint arXiv:2408.13406, 2024.

Minyang Tian, Luyu Gao, Shizhuo Dylan Zhang, Xinan Chen, Cunwei Fan, Xuefei Guo, Roland
Haas, Pan Ji, Kittithat Krongchon, Yao Li, et al. Scicode: A research coding benchmark curated
by scientists. arXiv preprint arXiv:2407.13168, 2024.

Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nature, 625(7995):476–482, 2024.

Karen D Wang, Eric Burkholder, Carl Wieman, Shima Salehi, and Nick Haber. Examining the
potential and pitfalls of chatgpt in science and engineering problem-solving. In Frontiers in
Education, volume 8, pp. 1330486. Frontiers Media SA, 2024a.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji.
Executable code actions elicit better llm agents. arXiv preprint arXiv:2402.01030, 2024b.

13

https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://github.com/google/langfun
https://docs.python.org/3/library/difflib.html
https://docs.python.org/3/library/difflib.html
https://github.com/Significant-Gravitas/AutoGPT
https://github.com/Significant-Gravitas/AutoGPT

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
arXiv preprint arXiv:2405.15793, 2024a.

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil,
Ryan J Prenger, and Animashree Anandkumar. Leandojo: Theorem proving with retrieval-
augmented language models. Advances in Neural Information Processing Systems, 36, 2024b.

Lin Yang, Shawn Xu, Andrew Sellergren, Timo Kohlberger, Yuchen Zhou, Ira Ktena, Atilla Kiraly,
Faruk Ahmed, Farhad Hormozdiari, Tiam Jaroensri, et al. Advancing multimodal medical capa-
bilities of gemini. arXiv preprint arXiv:2405.03162, 2024c.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

APPENDIX

A RELATED WORK

LLMs and Agents for Code Several studies have focused on benchmarking coding in general-
purpose programming languages, with a particular focus on software engineering tasks (Austin et al.,
2021; Chen et al., 2021; Jimenez et al., 2023; Li et al., 2022), and less commonly, science problems
(Tian et al., 2024). FEA software emerged because simulating and numerically solving real-world
problems from scratch in mainstream languages would require significantly more effort without
specialized packages. Other work in the LLM literature has focused on optimizing agent-tool call
and design such as the ReAct and CodeAct strategies (Wang et al., 2024b; Yao et al., 2022). Beyond
the realm of general-purpose programming, some works have sought to incorporate productivity
APIs such as those for weather, email among others into agentic workflows (Qin et al., 2023; Basu
et al., 2024). Our agentic approach shares similarities with the Reflexion strategy (Shinn et al.,
2024), although in our case the Evaluator mainly returns subjective feedback from the API, and only
queries its VerifierLLM when executability is already high.

LLMs for Science The utility of LLMs in science has been explored by evaluating their perfor-
mance on tasks in medicine (Saab et al., 2024; Yang et al., 2024c), theorem proving (Yang et al.,
2024b), examination problems of varying levels of difficulty (Hendrycks et al., 2021; Wang et al.,
2024a; Lewkowycz et al., 2022) and in specific domains such as physics and chemistry (Pan et al.,
2024; Bran et al., 2023). More recently, there have been efforts to examine whether LLMs can be
of utility in other aspects of the scientific process, such as developing hypotheses, reproducibility
of code and question-answering (Pramanick et al., 2024; Mishra-Sharma et al., 2024; Siegel et al.,
2024). Ni & Buehler (2024) and Tian & Zhang (2024) made a preliminary exploration into get-
ting LLMs to solve elasticity problems and in a human-in-the-loop setting and Kumar et al. (2023)
explored the role of LLMs on optimizing airfoils.

B DATASET CURATION

B.1 FEABENCH GOLD

B.1.1 SELECTION CRITERIA:

We chose tutorials that satisfied the following considerations:

1. Simpler Geometry: COMSOL Multiphysics®can be used to analyze the physics of systems
involving intricate geometries such as microwaves or transformers. In these cases, in prac-
tice, most problems involve importing a pre-built geometry object that might have been
built externally using Computer-Aided Design (CAD) software and to then perform the re-
maining analysis. Since we wanted to explore the ability to solve the problem end-to-end
and without requiring imports of derived objects, we restrict ourselves to problems that did
not require imports of geometry, or any other files.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

2. Tutorial / Code Simplicity: We additionally chose problems that did not involve multiple
‘Model’ JAVA classes and restricted ourselves to tutorial documents with fewer than 20
pages. The first requirement is a consequence of how our connection to the COMSOL
Multiphysics®sandbox is set up, and to make the problem easier for the models to attempt to
solve. We additionally ensured that the problems were amenable to computing a numerical
artifact.

3. Solving Speed: We also excluded any problems whose ground truth code took over a
minute to solve.

B.1.2 GENERATION PROCEDURE:

Without any modification, the tutorials might export a single value, a table, or not export any target
quantity at all, with the final output being qualitative in nature, such as in the form of plots or figures.
For our benchmark, however, we specifically wanted every problem to have a numerically verifiable
target value, in order for there to be an absolute notion of correctness (i.e. if the code was fully
correct, and aligned with the intent of the problem, it should be able to export this value). This also
enables easier evaluation of the problems. The following procedure and guidelines were adopted to
curate the benchmark:

• For an initial set of 2-3 problems, model specifications and plans were annotated by hand,
by an expert user of COMSOL Multiphysics®.

• For subsequent problems, we speed up the benchmark generation procedure by following
an initial LLM-assisted data generation process, with the final verification steps involving
humans. An LLM is provided with a tutorial, as well as a two-shot prompt with the expert
annotated model specifications.

• The LLM is entasked with returning a model specification for the tutorial that has the same
format. This requires the LLM to identify an appropriate target value from the tutorial
which it does from either the text or the figures, and returning a model specification for
computing this target value.

• The LLM is then asked to create a plan corresponding to the model specifications, using a
two-shot prompt with two plans. The utility of the tutorials are that the plan is closest to
the GUI instructions listed in the tutorial, while model specifications is more concise.

• A ground truth code that can compute the correct value is then generated for the problem.
We manually verify that the ground code when run, exports the desired target value. This
step also involves simultaneously ensuring that all information required to build the model
is contained in the plan, and in the model specifications by editing the LLM-generated
drafts and ensuring that no Translation Errors are encountered when parsing and executing
the ground truth code in COMSOL Multiphysics®using the bridge described in Appendix
D.1 or that any errors if encountered are in non-crucial lines and do not prevent the solu-
tion from being computed. Any missing or incorrect information is fixed, and the selec-
tion information field, that contains numerical identities of boundaries and points is also
created.

• We add an instruction to export the output to OUTPUT PATH/output.txt in the model
specifications and plan.

B.1.3 FIELDS FROM AN EXAMPLE ENTRY:

Here is an example of the information saved for one of the problems, comsol 453 based on
Steady-State 2D Axisymmetric Heat Transfer with Conduction, Heat Transfer Module Application
Gallery, COMSOL Multiphysics®v.6.1. COMSOL AB, Stockholm, Sweden, 2023 (COMSOL
Multiphysics®, a):
Model Specifications:

Finite Element Analysis Description: 2D Axisymmetric Steady-State Heat Conduction
in a Cylinder
ANALYSIS TYPE: Steady-state heat conduction with axisymmetric geometry.
GEOMETRY: * The domain is a cylindrical section defined by:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 5: Screenshot of the graphical user interface for the correctly solved problem in Figure 1.

• Inner radius: 0.02 m
• Outer radius: 0.1 m
• Height: 0.14 m

* The geometry represents a 2D cross-section of this cylinder, with the width corresponding
to the difference between the inner and outer cylindrical surfaces.
LOADING: * A constant heat flux of 5e5 W/m2 is applied to the inner cylindrical
surface, between z = 0.04 m and z= 1 m. The remaining portion of the inner cylindrical
surface is insulated.
BOUNDARY CONDITIONS: * The outer cylindrical surface, top surface, and bottom
surface have a uniform temperature of 273.15 [K].
MATERIAL PROPERTIES: * Thermal conductivity (k): 52 W/(m·K)
ELEMENT TYPES: The analysis can utilize 2D axisymmetric heat transfer elements.
MESHES: The default mesh can be used.
OUTPUT: The analysis should determine the temperature in Kelvins [K] (Kelvins are
the default units) at a specific point on the inner cylindrical surface:
* Radial Coordinate (r): 0.04 m * Axial Coordinate (z): 0.04 m
Export the table with the value to OUTPUT PATH/output.txt

Plan:

Implementing the 2D Axisymmetric Steady-State Heat Conduction in a Cylinder in
COMSOL Multiphysics:
1. Model Setup:
* **New Model:** Start COMSOL Multiphysics and create a new model.
* **Space Dimension:** Select ”2D Axisymmetric”.
* **Physics Interface:** Select ”Heat Transfer > Heat Transfer in Solids (ht)”.
* **Study Type:** Choose ”General Studies > Stationary”.

2. Geometry Definition:
* **Rectangle:** Create a rectangle representing the cross-section of the cylinder:
* Width: 0.08 m
* Height: 0.14 m
* Corner Position: (r, z) = (0.02, 0) m
* **Point:**
* In the r field, type 0.02 0.02
* In the z field, type 0.04 0.1

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

3. Definitions: * **Boundaries:** Define selections for the following boundaries:
* **Inner Cylinder Surface:** Left edge of the rectangle
* **Outer Cylinder Surface:** Right edge of the rectangle
* **Top Surface:** Top edge of the rectangle
* **Bottom Surface:** Bottom edge of the rectangle

4. Physics Settings: * **Heat Conduction, Solid:**
* For the Thermal Conductivity (k), choose User defined, and type 52 W/(m.K).
* Under Thermodynamics Solid, choose User defined for Cp and rho.
* Domain Selection:** Select all domains or Domain 1.
* **Boundary Conditions:**
* **Temperature:**
* In the Temperature section, type 273.15 [K] for T0.
* Select Boundaries 2, 5 and 6.
* **Heat Flux:**
* Apply a ”Heat Flux” boundary condition with a constant value q0 of 5e5 W/m2.
* Select Boundary 3.

5. Meshing:
* **Mesh Creation:** Use the default mesh.

7. Study Settings:
* **Solver Configuration:** Use default solver settings for the ”Stationary” study.

8. Analyzing Results:
* **Temperature at Target Point:**
* Create a ”Cut Point 2D” dataset at this location first and then use that dataset in the point
evaluation:
* Locate the Point Data section under Cut Point 2D and type R = 0.04 m, Z = 0.04 m
* Use a ”Point Evaluation” feature to evaluate the temperature (in K) at the target point.
* Export the table containing this value to OUTPUT PATH/output.txt.

Selection Information:

DOMAINS: Thermal Conductivity applies to the entire geometry, all domains, or Domain
1.
BOUNDARIES: * The temperature setting T 0 = 273.15 [K] applies to Boundaries 2, 5 and
6.
* The constant heat flux applies to Boundary 3.

Target Description: Temperature at the location R = 0.04 m, Z = 0.04 m in K.

Target Value: 333

Target Units: K

Ground Truth Code:

model.component().create("comp1", true);

model.component("comp1").geom().create("geom1", 2);
model.component("comp1").geom("geom1").axisymmetric(true);

...
model.component("comp1").physics().create("ht", "HeatTransfer", "

geom1");
...
model.component("comp1").physics("ht").create("temp1", "

TemperatureBoundary", 1);

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

model.component("comp1").physics("ht").feature("temp1").set("T0",
"273.15[K]");

...
model.result().table("tbl1").comments("Point Evaluation 1");
model.result().numerical("pev1").set("table", "tbl1");
model.result().numerical("pev1").setResult();
model.result().table("tbl1").save("OUTPUT_PATH/output.txt");

Model Tree:

model
parameters

Parameters 1
functions

Analytic
Analytic
Blackbody Radiation Intensity

components
Component 1

geometries
Geometry 1

Rectangle 1
Point 1
Form Union

...
physics

Heat Transfer in Solids
Solid 1

Opacity 1
Initial Values 1
Axial Symmetry 1
Thermal Insulation 1
Isothermal Domain Interface 1

Layer Opacity 1
Local Thermal Nonequilibrium Boundary 1
Opaque Surface 1
Continuity 1
Temperature 1
Heat Flux 1

...
studies

Study 1
Stationary

solutions
Solution 1

Compile Equations: Stationary
Dependent Variables 1

Temperature (comp1.T)
Stationary Solver 1

Direct
Advanced
Fully Coupled 1
Direct, heat transfer variables (ht)
AMG, heat transfer variables (ht)

Incomplete LU
batches

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

datasets
Study 1//Solution 1
Cut Point 2D 1

evaluations
Point Evaluation 1

tables
Table 1

plots
exports

B.2 FEABENCH LARGE

The input field in FEABench Large is the ‘Modeling Instructions’ section of the tutorial. The
output field is the code in the first run function of the exported Java file of the built COMSOL
Multiphysics®model with the following postprocessing steps applied: we append to the last line of
each ‘study’ code block in the model with a model.study("study tag").run(); where
”study tag” will typically be “std1” or “std2”, and remove the block of ‘solver’ code. While the
choice of including the code only in the first run function might make the mapping between instruc-
tions and lines of code less one to one in problems with more than one run function, this choice
makes this dataset and the style of code resemble the constraints in FEABench Gold. We make the
‘study / solver’ changes because the ‘model.sol’ code consists of a larger block of automatically pop-
ulated lines that bear little resemblance to no resemblance to the original problem specification, and
often correspond to a single ‘Compute’ step in the GUI. Adding the ‘.run();’ line prompts COMSOL
Multiphysics®to use its default solver best configured to solve the problem depending on the physics
and nature of the analysis performed. This is also a pattern guiding our prompt design across tasks.
The prompt used for this experiment is similar to the Plan One-Shot prompt.

C EVALUATION DETAILS

C.1 EXECUTABILITY

The LLM output is first parsed to identify the block with Java API calls, and further parsed to
pythonize the lines (Appendix D.1). This filters out lines that are not code or cannot be pythonized
and results in a sequence of COMSOL Multiphysics®API calls and their ‘pythonized’ counterparts,
all of which start with model. and end with ’;’.

The pythonized lines are then passed to the MPh client, and replies for each line are received. We
parse API replies using the following patterns. A reply containing any of the following [‘Messages’,
‘has no attribute’, ‘No matching overloads’, ‘invalid syntax’, ‘Exception’, ‘is not defined’] are con-
sidered Syntax Errors. Replies with [‘Ambiguous’, ‘comma’, ‘No Model set’] are Translation errors.
The last category category is rare in our experiments and are occasionally encountered when we
tested adding new problems to the benchmark that contained lines that weren’t translated correctly
in the query: the first two flag errors in the query to COMSOL Multiphysics®via Mph, while the last
indicates that an action is being done on a non-existent model, which is inconsistent with the setup
of the code. All other replies are designated Correct.

Executability =
CorrectLines

TotalParsedLines
(1)

C.2 CODE SIMILARITY SCORE

We use the difflib (Python Software Foundation) package, that computes a score between 0 and 1 as
a measure of string similarity, using the ratio of the lengths of the longest matched subsequences to
the ratio of the lengths of strings being compared. Code Similarity reflects this score between the
generated code and the ground truth code. It is not surprising that this metric has the least change
since significantly different blocks of code might yield the same answer. As a specific example, a

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

model.study("std1").run(); will leverage COMSOL Multiphysics®’s default numerical
solver for the problem. However, this could also be represented explicitly using large blocks of
model.sol("sol1")... lines in the Ground Truth Code field.

C.3 MODEL TREE SCORE

The model tree representation of the model built by the language model can be extracted, and one
can use the same similarity score as above to compute a similarity score relative to the target tree.
We expect this to be a more reliable measure of alignment since different blocks of code that build
the same model will have the same model tree (addressing the case described in Code Similarity).
Using the formula below, the score will be 1.0 if the trees are identical, and 0.0 if the trees are
equivalent to a tree before any code is run.

ModelTreeScore =
Score(LM,GT)− Score(Empty,GT)

1.0− Score(Empty,GT)
(2)

The following is an empty tree, corresponding to a model that has only been initialized, before any
code is run.

model
parameters

Parameters 1
functions
components
geometries
views
selections
coordinates
variables
couplings
physics
multiphysics
materials
meshes
studies
solutions
batches
datasets
evaluations
tables
plots
exports

C.4 VALID TARGET

There are various ways in which computing the correct value and exporting it to a table may fail:
a) the LLM’s code forgets the export command to the API and no table is exported b) an empty
table is exported or, c) a table containing an incorrect value is exported, such as a default value
or the wrong quantity (eg: time instead of temperature). Failure modes b) and c) are far more
common than a) and occur when the code is not fully correct and the partially constructed COMSOL
Multiphysics®model exports nothing or an incorrect value. For instance, a partially solved model
that was asked to compute the temperature at time=190s might export a table where the last value was
190 but because of errors in model construction, no temperature was exported. In such a case if the
ground truth answer is say, 185◦C, without verifying the physical quantity, one would mistakenly
evaluate the algorithmically parsed figure 190 to be quite close to the target. In other cases, the
software might export a default such as 293.15 K if the solver did not solve correctly.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

If a table containing the target quantity is exported, it is first read and parsed. The last value in the
table is algorithmically extracted. To address this problem, we ask an LLM (Gemini-1.5-Pro), to
extract the exported value and units from the table, if it is a match for the target description, and
minimize the chances of incorrectly evaluating these failure modes as valid solutions.

Evaluate Prompt

You are provided with a table that was exported by a model built in COMSOL. The table *
should * contain the EXPECTED TARGET QUANTITY. The following failure modes may
occur when the model is not built correctly:
1. The table might be empty or might export a physical quantity that is different from the
expected target quantity.
2. The table might export the same physical quantity, but the quantity is just an initial or
boundary condition, or a default value that was exported, instead of the result of genuinely
numerically solving the problem. You can find numbers already in the problem description
in ‘PROBLEM‘. Default values include 20degreesCelsius, 293.15 K, 0 etc.
Carefully examine the ‘TABLE‘ and compare it with the units and description of the ex-
pected target quantity and the numbers in ‘PROBLEM‘ to assess whether the table exported
a value that was the result of genuinely numerically solving the problem. You must return
TARGET VALUE and TARGET UNITS in json format if the table was the result of gen-
uinely solving the model, computing a solution and exporting it. Return ‘N/A‘ for both fields
if the table suffers from either of the failure modes described above.

−−−−−
PROBLEM: {{ p r o b l e m d e s c r i p t i o n }}

−−−−−

EXPECTED TARGET QUANTITY: {{ t a r g e t d e s c r i p t i o n }}

TABLE: {{ t a b l e }}

REPLY:

We then compute the number of problems for which the LM was able to parse the reply and convert
it to a JSON. This fraction is the number we report as Valid Target.

C.5 RELATIVE ERROR | STRICT

Our strict filter for whether a model has truly solved the problem is to take the subset of problems for
which the problem was judged to be a valid export by the LLM, and to consider the algorithmically
parsed last value. We then compute the relative error of this value against the ground truth target
value. If this value is less than 10%, we consider it valid.

C.6 PHYSICS METRICS

The interface lines are parsed from the ground truth code by finding lines that fit the regex pattern for
interface creation. Likewise for the feature creation and feature property modification lines. Each
of these lines of codes can be considered as an “Action” consisting of an Action Type (eg: Create
Interface) with corresponding Arguments (eg: Interface tag, Name of the Interface, Geometry).

Create Interface: model.component("comp1").physics().create("Interface tag",
"InterfaceName", "Geometry tag");

Eg: model.component("comp1").physics().create("ht", "HeatTransfer",
"geom1");

Create Feature: model.component("comp1").physics("Interface tag").create("
Feature tag", "FeatureName", Dimension);

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Eg: model.component("comp1").physics("ht").create("temp1",
"TemperatureBoundary", 1);

Modify Feature Property: model.component("comp1").physics("Interface tag")
.feature("Feature tag").set("Param", "Value");

Eg: model.component("comp1").physics("ht").feature("temp1").set("T0",
"1000[degC]");

C.6.1 INTERFACE FACTUALITY

We check whether the Interface name exists in a list of known COMSOL Multiphysics®interfaces.
If it exists in this list, we assign it a factuality of 1, else 0.

C.6.2 INTERFACE RECALL

How many GT interface creation actions (ignoring Interface tag) were also in the LM code? This
checks whether the same interface was defined on the same geometry. ‘nan’ if there are no interfaces
in the GT (not encountered in our dataset).

C.6.3 FEATURE RECALL

Since multiple features may be created under the same interface (eg: 2 Boundary Conditions with
different temperatures), we compute the occurrences of each GT feature name in the GT code and
in the LM code, and a recall for each GT feature name, and then average over all GT features. In
our implementation, if no GT features are defined, a) AND no LM features are defined the recall is
1, b) but LM features are defined, the recall is 0.

C.6.4 FEATURE DIMENSION

Let Fc be all the GT features that are also created by the LM solution. Let Dimc be the set of Fc

such that the LM feature has the same dimension as the GT feature. Feature Dimension = |Dimc|
|Fc|

This is a correctness and physics reasoning metric as opposed to an alignment-focused metric since
creating a TemperatureBoundary with dimension 2 attempts to create a 2D temperature boundary
condition. Creating a TemperatureBoundary with dimension 1 attempts to create a temperature on
an edge. Thus this measures the LM’s ability to correctly deduce the spatial dimension of boundary
conditions or other features from the context of the problem.

C.6.5 FEATURE PROPERTY RECALL

This compares the modify feature property actions. It computes how many GT modify feature
property actions were also in the ground truth, ignoring differences in Interface tag and Feature tag.
If no GT properties are modified, a) AND no LM features are modified the recall is 1, b) but LM
features are modified, the recall is 0.

D QUERYING THE COMSOL MULTIPHYSICS®API FROM PYTHON

D.1 THE PYTHON-COMSOL MULTIPHYSICS®BRIDGE

The raw output of the LLM is a string containing COMSOL Multiphysics®API commands in Java.
An interface between Python and COMSOL Multiphysics®is needed to execute this code and inter-
act in other ways with the API. We use the Python package MPh (mph) and Rpyc for this. MPh
is a scripting interface built on JPype (jp) that enables a Python program to communicate with and
build a model in COMSOL Multiphysics®. Each Java API command in the LM’s output can be
‘pythonized’ algorithmically. In most cases, the pythonized line is near identical to the Java line.
However, due to differences in Java and Python syntax there exist some corner cases that need to
be handled separately. Eg: ‘new String[]’ is exclusively a Java construction, while the notation
for booleans in Python is True / False as opposed to true / false in Java. Thus a ‘pythonizer’ is
constructed that parses and translates Java API calls to their Python counterparts.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

The setup involves the following assumptions: an MPh client object is created. This behaves like a
stateful ‘sandbox’, where models can be built by LLMs, code can be evaluated, or information such
as the current state of the model tree, properties under a node and the exported table can be queried
and retrieved. Although multiple models can be created and set under the client, for simplicity we
work with settings that involve a single model. Before running a new solution, the existing model is
deleted and a new blank model is created. The LLM actions will modify this blank model. Thus, by
design, all lines of code the LLM outputs, should start with ‘model.’ and end with ‘;’.

D.2 COMSOL MULTIPHYSICS®CODE STRUCTURE

1. Geometry, if any: This involves identifying the dimensionality of the problem, and con-
structing a representation of the object being modelled, say a cup, by creating and com-
posing primitive shapes such as ellipses or rectangles to build the object. While already
constructed geometries can also be imported from other software such as CAD, in our
benchmark, we currently restrict ourselves to models for which we construct the geometry
from scratch in COMSOL. This typically starts with a ‘model.component(“comp1”).geom’
pattern.

2. Physics: This will include specifying all the physical conditions for the problem, including
initial or boundary conditions, forces, properties or in the case of mathematics problems,
the differential equation. This typically starts with a ‘model.component(“comp1”).physics’
pattern. Some problems may additionally have lines that begin with , and set up the cou-
pling between different kinds of physical phenomena. We categorize these lines, if any as
‘physics’ in Figure 4 and 6.

3. Material: Creating materials and assigning them to domains. One can either assign known
materials such as ‘Copper’ and the object will inherit the default properties of that mate-
rial, or define a blank material and its properties such as conductivity from scratch. This
typically starts with a ‘model.component(“comp1”).material’ pattern.

4. Mesh: Usually a shorter step that involves meshing the surfaces of the geometry to set up
elements. This typically starts with a ‘model.component(“comp1”).mesh’ pattern.

5. Study / Solver: This involves specifying the conditions of the analysis and solver, such
as the number of timesteps. While the solver code can be modified to override defaults,
COMSOL also has the ability to automatically populate the model with the default solvers
most apt for a given problem. This typically starts with a ‘model.study’ or ‘model.sol’
pattern respectively. In Figure 4 and 6, we categorize both patterns as ‘solver’.

6. Results: Once the numerical solver has completed the analysis, one will likely postpro-
cess the problem, in order to generate desired plots or tables. This typically starts with a
‘model.result’ pattern.

E AGENT DETAILS

The agent experiment on a single problem takes slightly over 12 minutes (ranging from 7-17 min-
utes) on average per problem. The dominant factor contributing to this variability is the number of
LLM queries: in problems where executability crosses 0.90, there will be more LLM queries since
the Evaluator additionally calls the VerifierLLM. The FEA runtime is only a small fraction of this
time: parsing the LLM reply, evaluating it by executing it in COMSOL Multiphysics®and retrieving
API messages took around 0.9-1.5s for a single LLM reply. We used a subset of 5 problems to
compute these estimates.

E.1 TOOLS

In our implementation of the ToolLookupAgent, if the tool call fails, the ToolLookupAgent will
return an empty reply. Tool calls fail when the LLM is unable to generate a call that is formatted in
the way Langfun expects.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

E.1.1 QUERYMODELTREEPROPERTIES

In order to help the LLM learn how to appropriately format a valid path, say to the ‘Solid’ feature,
the current state of the model tree is shown to the ToolLookupAgent LLM. It also has a history of
unsuccessful (incorrectly formatted) paths in previous queries to this tool, in order to minimize the
chances of incorrectly calling this tool with an invalid path.

E.1.2 RETRIEVEANNOTATEDSNIPPETS

We use the Discovery Engine API (AI) with the model name ‘semantic-ranker-512-003’ to rank
and retrieve the top 3 annotations most similar to the query snippet. The annotation library was
generated by taking tutorials and splitting them into code blocks using the patterns described in D.2.
There are 768 pairs of annotations and snippets across all branches of code. Here is an example of
an annotation ‘summary’ and its snippet:

Summary: Defining a transient study with a time range from 0 to 0.025 seconds with a step of 1
second. The study will solve for the ”spf” physics interface, and a relative tolerance of 0.001 will be
used. The number of solver iterations will be automatically determined based on the time step.

Code:

model.study().create("std1");
model.study("std1").create("time", "Transient");
model.study("std1").feature("time").setSolveFor("/physics/spf", true);
model.study("std1").feature("time").set("tlist", "range(0,0.025,1)");
...
model.study("std1").feature("time").set("solnum", "auto");

E.2 ANALYSIS

Figure 6: Block-wise executability across the 300 initial samples of code (purple) with PhyDoc In-
Context and in the best solution (green) across all problems. Error bars denote standard deviations.

Figure 6 depicts the blockwise executability in the initial sample relative to the best solution across
problems. The standard deviations in the best case are higher since we have 1 best solution for each
problem, and 20 samples per problem in the initial population. Figure 7 plots the Executability as
well as the number of errors over solution iteration. The evolution of the metrics isn’t monotonic
and in some cases the agent gets stuck on the same solution for some iterations, or takes an incorrect
turn. We added the acceptance criterion to minimize the number of iterations required to “escape”
an incorrect turn.

F QUALITATIVE ANALYSIS

In Figure 8, we delve into the differences between the LLM-generated code for the ModelSpecs
task in the baseline (one-shot) setting with Gemini-1.5-Pro, relative to the ground truth code, for

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 7: Executability and number of errors over solutions returned by the ControllerAgent. The
scatter at 0 denotes the spread from the samples in the initial population and the black line denotes
the mean value for the metric at that state across all problems. Each colored line demarcates a
different problem.

���������
model.component().create("comp1", true);
model.component("comp1").geom().create("geom1", 3);
model.component("comp1").mesh().create("mesh1");
model.component("comp1").geom("geom1").create("r1", "Rectangle");
-> Messages: The requested geometry operation is unknown or
 cannot be created in this context.
model.component("comp1").geom("geom1").feature("r1").set("pos",
new double[]{0.02, 0}); -> Messages: Unknown feature. Tag: r1
model.component("comp1").geom("geom1").feature("r1").set("size",
new double[]{0.08, 0.14}); -> “”
model.component("comp1").geom("geom1").run();
model.component("comp1").material().create("mat1", "Common");
model.component("comp1").material("mat1").propertyGroup().create(
"def", "Constants");
model.component("comp1").material("mat1").propertyGroup("def").se
t("thermal_conductivity", "52[W/(m*K)]");
model.component("comp1").physics().create("ht",
"HeatTransferInSolids", "geom1"); -> Messages: Unknown physics
 interface.
model.component("comp1").physics("ht").feature("temp1").set("T0",
"273.15[K]"); -> Messages: Unknown feature. Tag: ht
model.component("comp1").physics("ht").create("hf1", "HeatFlux",
2); -> “”
model.component("comp1").physics("ht").feature("hf1").selection()
.set(3); -> “”
model.component("comp1").physics("ht").feature("hf1").set("q0",
"5e5[W/m^2]"); -> “”
model.component("comp1").mesh("mesh1").create("map1", "Map");
model.component("comp1").mesh("mesh1").feature("size").set("hauto
", 4);
model.component("comp1").mesh("mesh1").run();
model.study().create("std1");
model.study("std1").create("stat", "Stationary");
model.study("std1").feature("stat").setSolveFor("/physics/ht",
true); -> Messages: /physics/ht is not a valid path of a model
 entity.
model.study("std1").run();
model.result().numerical().create("pev1", "EvalPoint");
model.result().numerical("pev1").set("expr", new String[]{"T"});
model.result().numerical("pev1").set("unit", new String[]{"K"});
model.result().numerical("pev1").set("descr", new
String[]{"Temperature"});
model.result().numerical("pev1").set("geom", "geom1"); ->
Messages: Unknown property. Property: geom
model.result().numerical("pev1").set("x", 0.04); -> Messages:
 Unknown property. Property: x
model.result().numerical("pev1").set("y", 0.04); -> Messages:
 Unknown property. Property: y
model.result().table().create("tbl1", "Table");
model.result().table("tbl1").comments("Point Evaluation 1");
model.result().numerical("pev1").set("table", "tbl1");
model.result().numerical("pev1").setResult();
model.result().table("tbl1").save("OUTPUT_PATH/output.txt");

�����������������
model.component().create("comp1", true);
model.component("comp1").geom().create("geom1", 2);
model.result().table().create("tbl1", "Table");
model.component("comp1").geom("geom1").axisymmetric(true);
model.component("comp1").mesh().create("mesh1");
model.component("comp1").geom("geom1").create("r1", "Rectangle");
model.component("comp1").geom("geom1").feature("r1").set("pos",
new double[]{0.02, 0});
model.component("comp1").geom("geom1").feature("r1").set("size",
new String[]{"0.08 [m]", "0.14"});
model.component("comp1").geom("geom1").create("pt1", "Point");
model.component("comp1").geom("geom1").feature("pt1").set("p", new
String[]{"0.02 0.02", "0.04 0.1"});
model.component("comp1").geom("geom1").run();
model.component("comp1").physics().create("ht", "HeatTransfer",
"geom1");
model.component("comp1").physics("ht").create("temp1",
"TemperatureBoundary", 1);
model.component("comp1").physics("ht").feature("temp1").selection(
).set(2, 5, 6);
model.component("comp1").physics("ht").create("hf1",
"HeatFluxBoundary", 1);
model.component("comp1").physics("ht").feature("hf1").selection().
set(3);
model.result().table("tbl1").comments("Point Evaluation 1");
model.component("comp1").physics("ht").feature("solid1").set("k_ma
t", "userdef");
model.component("comp1").physics("ht").feature("solid1").set("k",
new int[][]{{52}, {0}, {0}, {0}, {52}, {0}, {0}, {0}, {52}});
model.component("comp1").physics("ht").feature("solid1").set("rho_
mat", "userdef");
model.component("comp1").physics("ht").feature("solid1").set("Cp_m
at", "userdef");
model.component("comp1").physics("ht").feature("temp1").set("T0",
"273.15[K]");
model.component("comp1").physics("ht").feature("hf1").set("q0_inpu
t", "5e5");
model.study().create("std1");
model.study("std1").create("stat", "Stationary");
<model.sol block>
model.result().dataset().create("rev1", "Revolve2D");
model.result().dataset().create("cpt1", "CutPoint2D");
model.result().numerical().create("pev1", "EvalPoint");
model.result().numerical("pev1").set("probetag", "none");
<model.sol block>
model.result().dataset("rev1").label("Revolution 2D");
model.result().dataset("rev1").set("startangle", -90);
model.result().dataset("rev1").set("revangle", 225);
model.result().dataset("cpt1").set("pointx", 0.04);
model.result().dataset("cpt1").set("pointy", 0.04);
model.result().numerical("pev1").set("data", "cpt1");
model.result().numerical("pev1").set("table", "tbl1");
model.result().numerical("pev1").setResult();
model.result().table("tbl1").save("OUTPUT_PATH/output.txt");

Figure 8: Comparing a Ground Truth code with the LLM-generated code. The ochre-colored lines
or arguments in the GT code demarcate lines or arguments that were modified or absent in the LLM
generated code. The green (red) lines in the LLM-generated code denote lines that were (were not)
executable. The arrows against the red lines show the abbreviated API message returned for each
non-executable line.

the problem in Appendix B.1.3. At a high-level, the LLM’s solution consists of API calls that
qualitatively posess the same structure and grammar as in the GT code. This is a problem that
requires the LLM to represent the cylindrical cross-section of a cylinder as a rectangle in 2D, with
the axisymmetric condition applied for rotational symmetry about the cylinder’s axis. The LLM

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 7: Code Metrics: Before and after Fine-Tuning Gemini-1.5-Flash-001.

Description Executability Model Tree
Score

Code Similarity Valid Target

FT | Zero-Shot 0.50±0.06 0.24±0.06 0.10±0.02 0/15
Baseline | Zero-Shot 0.08±0.03 0.16±0.05 0.08±0.01 0/15

Baseline | One-Shot 0.57±0.04 0.49±0.06 0.14±0.02 0/15

Table 8: Physics Metrics: Before and after Fine-Tuning Gemini-1.5-Flash-001.

Description Interface
Factuality

Interface
Recall

Feature
Recall

Feature
Property
Recall

Feature
Dimension

FT | Zero-Shot 0.42±0.15 0.36±0.13 0.13±0.09 0.15±0.09 -
Baseline | Zero-Shot - 0±0 0.20±0.11 0.07±0.07 -

Baseline | One-Shot 0.80±0.11 0.71±0.13 0.36±0.11 0.01±0.01 0.53±0.18

instead creates a 3D geometry and attempts to create a rectangle. This doesn’t work as is indicated
by the error message, since the rectangle is a 2D construct and cannot be directly created in 3D.
Since the rectangle creation action fails, no ‘r1’ node is created, and any subsequent actions that act
on the ‘r1’ node cannot be executed. This pattern of non-executability is also observed downstream,
where all actions on the ‘ht’ node are rendered invalid because the ‘ht’ node could not be created in
the first place. Note, if the LLM had chosen a 2D geometry, or a 2D axisymmetric geometry, the
geometry lines of code would have been correct. The reason they fail is because of an incorrect (3D
geometry) decision taken first.

Next, the LLM chooses to set the thermal conductivity under the materials node. These lines of code
are executable and this may be a valid choice, if the physics node is properly able to query properties
redefined under the materials node.

The LLM tries to create a ‘HeatTransferinSolids’ interface. This is a subtle error. Heat
Transfer in Solids is indeed the correct natural language name for this interface under COMSOL
Multiphysics®and is often referred to as such in documentation on the internet. However, this
is not the correct syntactical name for the interface, which, as can be seen in the GT code, is
‘HeatTransfer’. Errors like these are likely why the adding the list of physics interfaces and fea-
tures to the prompt (PhyDoc In-Context) improve performance on both tasks. Since the LLM’s
chosen interface and features differ from the ground truth in this example, the Interface Recall and
Feature Recall metrics are both 0, as is the Interface Factuality metric (since ‘HeatTransferinSolids’
does not exist). The GT code modifies 5 features, of which the LLM only modifies 1 (setting T0 to
273.15 K). Thus the Modify Feature Property score is 0.2.

In the results section, the model incorrectly attempts to set the properties ‘geom’, ‘x’ and ‘y; under
the point evaluation node. All three lines trigger ‘Unknown property’ exceptions.

G DOES FINE-TUNING BOOST PERFORMANCE?

The unfamiliarity of LLMs with permissible options and arguments to the COMSOL
Multiphysics®calls is a significant factor contributing to the difficulty of the benchmark. This raises
the prospect of exploring whether fine-tuning can boost the performance of LLMs on generating
code. We used the Google AI Studio platform (Google LLC) to tune the ‘gemini-1.5-flash-001-
tuning’ checkpoint on 180 problems in FEABench Large for 5 epochs. This platform imposed a
limit of 4 × 104 characters on the inputs and 5000 characters on the outputs. All but two of the
180 FEABench Large code outputs exceed this limit. We used a shorter, Zero-Shot prompt (with-
out the One-Shot example) and truncated the dataset’s inputs and outputs to adhere the limit during
fine-tuning.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

At inference time, we examine three LLMs x Prompting scenarios in terms of their performance on
the FEABench Gold problems and on the task ModelSpecs , namely (1) Baseline | Zero-Shot: the
untuned checkpoint (‘gemini-1.5-flash-001-tuning’) paired with a Zero-Shot prompt similar to that
used during training (2) FT | Zero-Shot: the Fine-Tuned model paired with the same prompt and,
(3) Baseline | One-Shot: the untuned checkpoint paired with the One-Shot prompt used in other
experiments in this paper.

With the Zero-Shot prompt, the untuned LLM performs abysmally on several metrics including
Executability. This is unsurprising, since the LLM sees no template for how its code should be
structured. In this setting, the Fine-Tuned LLM seems to offer advantages, in terms of enabling
the LLM to generate more executable code (Executability: 0.08 → 0.50). However, the untuned
LLM prompted with the One-Shot example outperforms the fine-tuned LLM across most metrics,
especially evident in the stark difference in the Physics Recall Metrics and the Model Tree Score.

The failure of fine-tuning in yielding significant gains can be attributed to several factors in this
experiment. First, the fine-tuned checkpoint overfits to the training distribution. Even when the code
is reasonably ‘executable’ (0.50), it is likely misaligned with what the prompt actually requires the
LLM to do – observe the Model Tree Score is 0.24 (FT) vs 0.49 (Baseline | One-Shot). This was
also qualitatively noticeable since the outputs during inference were also truncated midway, similar
to the truncated outputs in the training distribution.

Using the same checkpoint’s tokenizer, the median number of tokens in the input zero-shot prompt
and the output code, (before truncation) is 4036 and 7122 tokens respectively, across the 180 prob-
lems. The limits imposed during fine-tuning exacerbate the performance of the fine-tuned LLM.
Since the linewise mapping of the inputs (natural language modeling instructions) to code is not
one-to-one, the truncation only allows the LLM to see the first chunk of the correct answer. Lastly,
the training distribution is not identical to the test-time distribution: the FEABench Large inputs
use API-specific explicit instructions from the tutorials. The problem descriptions corresponding to
ModelSpecs are concise problem descriptions.

H PROMPTS

H.1 SINGLE QUERY PROMPTS

ModelSpecs | One-Shot

You are an experienced COMSOL engineer. You must solve the problem to compute the
desired TARGET QUANTITY by generating COMSOL JAVA API code. The model cre-
ation line “‘Model model = ModelUtil.create(”Model”);”’ has already been generated and
you should not repeat this line. All lines of code must begin with ‘model.‘
You must not generate any ‘model.sol...‘ solver code but should ensure that your
‘model.study...‘ block ends with a ‘model.study(”std1”).run();‘. This will automatically cre-
ate and run the default solver for the problem. Use the example provided below to infer how
to format your response and generate COMSOL code. ===
EXAMPLE 0:
PROBLEM DESCRIPTION: ## Stress Analysis of an Elliptic Membrane
ANALYSIS TYPE:
* Linear elastic, Plane Stress.
GEOMETRY:
* The domain is a quarter of an elliptical membrane.
* The outer curved edge is defined by the equation: (x/3.25)2 + (y/2.75)2 = 1
* The inner curved edge is defined by the equation: (x/2)2 + y2 = 1
* Thickness: 0.1 meters (uniform throughout)
* Labeled points: * Bottom Left Corner, Point O: (x = 2.0, y= 0)
LOADING:
* Uniform outward pressure of 10 MPa is applied on the outer curved edge, normal to the
boundary. * The inner curved edge is unloaded.
BOUNDARY CONDITIONS:

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

* Left Edge: Symmetry about the y-axis, implying zero displacement in the x-direction. *
Bottom Edge: Symmetry about the x-axis, implying zero displacement in the y-direction.
MATERIAL PROPERTIES:
* Isotropic: The material properties are the same in all directions. * Young’s Modulus (E):
2.1 x 1011 Pa * Poisson’s Ratio (ν): 0.3
ELEMENT TYPES:
* Plane stress: The analysis assumes the membrane is thin and subjected to in-plane loading.
MESHES:
* A mapped quadrilateral mesh over the entire Quarter-Symmetry Domain.
OUTPUT:
* The analysis aims to calculate the tangential edge stress (σyy) at point O.
Export the table containing this value to OUTPUT PATH/output.txt.
SELECTION IDENTITIES:
DOMAINS: Quarter-symmetry membrane: Domain 1
BOUNDARIES: Left edge, Symmetry Boundary Condition: Boundary 1
Bottom edge, Symmetry Boundary Condition: Boundary 2
Outer Curved Edge, Boundary Load: Boundary 4
POINTS:
O: Point 3
TARGET QUANTITY to be computed: Tangential stress (σyy) at point O in Pa. Export the
table containing this value to OUTPUT PATH/output.txt.
ANSWER:
java‘‘‘
model.component().create("comp1", true);
model.component("comp1").geom().create("geom1", 2);
model.component("comp1").mesh().create("mesh1");

model.component("comp1").geom("geom1").create("e1", "Ellipse");
model.component("comp1").geom("geom1").feature("e1").set("semiaxes

", new double[]{3.25, 2.75});
model.component("comp1").geom("geom1").feature("e1").set("angle",

90);
model.component("comp1").geom("geom1").create("e2", "Ellipse");
model.component("comp1").geom("geom1").feature("e2").set("semiaxes

", new int[]{2, 1});
model.component("comp1").geom("geom1").feature("e2").set("angle",

90);
model.component("comp1").geom("geom1").create("dif1", "Difference")

;
model.component("comp1").geom("geom1").feature("dif1").selection("

input").set("e1");
model.component("comp1").geom("geom1").feature("dif1").selection("

input2").set("e2");
model.component("comp1").geom("geom1").run();
model.component("comp1").geom("geom1").run("fin");

model.component("comp1").selection().create("sel1", "Explicit");
model.component("comp1").selection("sel1").geom("geom1", 0);
model.component("comp1").selection("sel1").set(3);
model.component("comp1").selection("sel1").label("O");

model.component("comp1").material().create("mat1", "Common");
model.component("comp1").material("mat1").propertyGroup().create("

Enu", "Young’s modulus and Poisson’s ratio");
model.component("comp1").material("mat1").propertyGroup("Enu").set

("E", "2.1e11");
model.component("comp1").material("mat1").propertyGroup("Enu").set

("nu", "0.3");

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

model.component("comp1").physics().create("solid", "SolidMechanics
", "geom1");

model.component("comp1").physics("solid").create("sym1", "
SymmetrySolid", 1);

model.component("comp1").physics("solid").feature("sym1").selection
().set(2);

model.component("comp1").physics("solid").create("sym2", "
SymmetrySolid", 1);

model.component("comp1").physics("solid").feature("sym2").selection
().set(1);

model.component("comp1").physics("solid").create("bndl1", "
BoundaryLoad", 1);

model.component("comp1").physics("solid").feature("bndl1").
selection().set(4);

model.component("comp1").physics("solid").prop("Type2D").set("
Type2D", "PlaneStress");

model.component("comp1").physics("solid").prop("d").set("d", ".1");
model.component("comp1").physics("solid").feature("bndl1").set("

LoadType", "FollowerPressure");
model.component("comp1").physics("solid").feature("bndl1").set("

FollowerPressure", "-10 [MPa]");

model.component("comp1").mesh("mesh1").create("map1", "Map");
model.component("comp1").mesh("mesh1").feature("size").set("hauto",

4);
model.component("comp1").mesh("mesh1").run();

model.study().create("std1");
model.study("std1").create("stat", "Stationary");
model.study("std1").feature("stat").setSolveFor("/physics/solid",

true);
model.study("std1").run();

model.result().numerical().create("pev1", "EvalPoint");
model.result().numerical("pev1").selection().named("sel1");
model.result().numerical("pev1").set("probetag", "none");

model.result().table().create("tbl1", "Table");
model.result().table("tbl1").comments("Point Evaluation 1");
model.result().numerical("pev1").set("table", "tbl1");
model.result().numerical("pev1").set("expr", new String[]{"solid.

syy"});
model.result().numerical("pev1").set("unit", new String[]{"N/mˆ2"})

;
model.result().numerical("pev1").set("descr", new String[]{"Stress

tensor, yy-component"});
model.result().numerical("pev1")

.set("const", new String[][]{{"solid.refpntx", "0", "
Reference point for moment computation, x-coordinate"}, {"
solid.refpnty", "0", "Reference point for moment
computation, y-coordinate"}, {"solid.refpntz", "0", "
Reference point for moment computation, z-coordinate"}});*

model.result().numerical("pev1").setResult();
model.result().table("tbl1").save("OUTPUT_PATH/output.txt");
‘‘‘

===
Now generate the JAVA API code to compute the target quantity for the problem below.
Export the table containing the target quantity to OUTPUT PATH/output.txt.

PROBLEM DESCRIPTION: {{ p r o b l e m d e s c r i p t i o n }}

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

TARGET QUANTITY to be computed : {{ t a r g e t d e s c r i p t i o n }}
s
ANSWER:

We used the prompt above for the ModelSpecs experiment with Gemini-1.5-Pro. We used an identi-
cal prompt for Claude-3.5-Sonnet and GPT-4o with the 3rd last line of code in the One-Shot example
(marked by *) deleted, since it prevented us from querying those LLMs. We also used the version
of the prompt with this line deleted for the Agent experiment using Gemini-1.5-Pro.

Plan | One-Shot

You are an experienced COMSOL engineer. You must generate the COMSOL API code
in JAVA to execute the steps described in the plan below to compute the desired TARGET
QUANTITY by generating COMSOL JAVA API code. The model creation line “‘Model
model = ModelUtil.create(”Model”);”’ has already been generated and you should not re-
peat this line. All lines of code must begin with ‘model.‘ You must not generate any
‘model.sol...‘ solver code but should ensure that your ‘model.study...‘ block ends with a
‘model.study(”std1”).run();‘. This will automatically create and run the default solver for
the problem.
Use the example provided below to infer how to format your response and generate
COMSOL code.
===
EXAMPLE 0:
PLAN: ## Implementing the Elliptic Membrane Analysis in COMSOL Multiphysics:
1. Model Setup:
* **New Model:** Start COMSOL Multiphysics and create a new model.
* **Space Dimension:** Select 2D for the space dimension.
* **Physics Selection:** Choose the ”Structural Mechanics Module” and select ”Solid
Mechanics” as the physics interface.
* **Study:** Create a new ”Stationary” study.
2. Geometry Creation:
* **Geometry Primitives:** Use the ”Ellipse” tool to create two quarter ellipses representing
the outer and inner boundaries. To get a quarter-symmetry geometry, limit the sector angle
to 90 degrees.
* Outer Ellipse: Center (0, 0), Semi-axes (3.25, 2.75) meters, sector angle = 90 degrees.
* Inner Ellipse: Center (0, 0), Semi-axes (2, 1) meters, sector angle = 90 degrees.
* **Boolean Operations:** Use the ”Difference” operation to subtract the inner ellipse from
the outer ellipse, creating the quarter-symmetry membrane geometry.
3. Definitions:
* **Points:** Create an explicit selection for Point O (Point 3).
4. Material Properties:
* **Material Definition:** In the ”Material” node, define a new material with the following
properties:
* Young’s Modulus (E): 2.1e11 Pa
* Poisson’s Ratio (ν): 0.3
5. Physics:
* **2D Approximation:** Use the ”Plane Stress” physics approximation, with a thickness
of 0.1 meters.
6. Boundary Conditions:
* **Symmetry:** * Select the bottom edge (Boundary 2) and apply a ”Symmetry” boundary
condition.
* Repeat the same for the left edge (Boundary 1).
* **Pressure Load:** Pressure load of 10e6 Pa acting outwards. * Select the outer curved
edge Boundary 4 and apply a ”Boundary Load” boundary condition with a ”Pressure load”
of magnitude of -10 MPa.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

7. Meshing: * **Mesh Creation:** Right-click on the ”Mesh” node and choose
”Mapped”. * **Mesh Size:** Adjust the mesh size settings to ”Fine”.
8. Study Setup: * **Study Type:** Choose a ”Stationary” study to analyze the static
equilibrium state. * **Solver Configuration:** Use the default solver settings.
9. Solving the Model: * **Compute:** Click on the ”Compute” button to run the finite
element analysis.
10. Post-Processing: * **Point Evaluation:** * Add a ”Point Evaluation” node to
extract the tangential stress (σyy) at point O. * Select point O. * Evaluate the expression
”solid.syy”. * Export the table containing this value to OUTPUT PATH/output.txt.
TARGET QUANTITY to be computed: Tangential edge stress σyy) at O in Pa.
ANSWER:
java‘‘‘
<<SAME AS CODE IN MODELSPECS ONE-SHOT PROMPT>>
‘‘‘

===
Now generate the JAVA API code to compute the target quantity for the problem be-
low, by following the plan described. Export the table containing the target quantity to
OUTPUT PATH/output.txt.

PLAN: {{ p r o b l e m d e s c r i p t i o n }}
TARGET QUANTITY to be computed : {{ t a r g e t d e s c r i p t i o n }}
ANSWER:

We used the prompt above for the Plan experiment on Gemini-1.5-Pro

ModelSpecs +Phy-Doc

You are an experienced COMSOL engineer. You must solve the problem to compute the
desired TARGET QUANTITY by generating COMSOL JAVA API code. The model cre-
ation line “‘Model model = ModelUtil.create(”Model”);“‘ has already been generated and
you should not repeat this line. All lines of code must begin with ‘model.‘ You must not
generate any ‘model.sol...‘ solver code but should ensure that your ‘model.study...‘ block
ends with a ‘model.study(”std1”).run();‘. This will automatically create and run the default
solver for the problem.
You are provided with the list of valid physics interfaces and valid features under interfaces.
You must only use the interfaces in the available interfaces list.
===
AVAILABLE COMSOL PHYSICS INTERFACES:

[’BeamCrossSection’, ’PorousMediaFlowRichards’, ’
MoistureTransportInBuildingMaterials’, ’CreepingFlow’, ’
CathodicProtection’... <List of 140 Interface>...’LumpedBattery
’, ’CompressiblePotentialFlow’, ’BatteryBinaryElectrolyte’, ’
ColdPlasma’, ’LaplaceEquation’, ’DilutedSpeciesInPorousCatalysts
’]

AVAILABLE FEATURES UNDER INTERFACES:

{’ElectromagneticWavesBeamEnvelopes’: {’features’: [’
MatchedBoundaryCondition’, ’SymmetryPlane’, ’Scattering’, ’
TransitionBoundaryCondition’, ’Impedance’, ’Port’, ’
FieldContinuity’], ’physics_tags’: [’ewbe’]}, ’
TransientPressureAcoustics’: {’features’: [’InteriorSoundHard’,
’InteriorLumpedSpeakerBoundary’, ’TransientMonopoleLineSource’,
’CylindricalWaveRadiation’, ’Impedance’, ’
NonlinearAcousticsWestervelt’, ’Pressure’, ’PlaneWaveRadiation
’], ’physics_tags’: [’actd’, ’actd2’]}, ...<Interface-Feature
Mapping>...’PressureAcousticsAsymptoticScattering’: {’features’:
[], ’physics_tags’: [’paas’]}, ’

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

ElectromagneticWavesBoundaryElements’: {’features’: [], ’
physics_tags’: [’embe’]}, ’WallDistance’: {’features’: [’Wall’],
’physics_tags’: [’wd’, ’wd2’]}}

===
Use the example provided below to infer how to format your response and generate
COMSOL code.
===
EXAMPLE 0: <Same Example as in the ModelSpecs One-Shot Prompt>
=== Now generate the JAVA API code to compute the target quantity for the problem below.
Export the table containing the target quantity to OUTPUT PATH/output.txt.

PROBLEM DESCRIPTION: {{ p r o b l e m d e s c r i p t i o n }}
TARGET QUANTITY to be computed : {{ t a r g e t d e s c r i p t i o n }}
ANSWER:

We use the prompt above for the ModelSpecs + PhyDoc experiment, as well as to sample the initial
population in the Multi-Turn Agent experiment. In the latter case, we removed the 3rd last line of
code in the One-Shot example.

Plan +Phy-Doc

You are an experienced COMSOL engineer. You must generate the COMSOL API code
in JAVA to execute the steps described in the plan below to compute the desired TARGET
QUANTITY by generating COMSOL JAVA API code. The model creation line “‘Model
model = ModelUtil.create(”Model”);“‘ has already been generated and you should not re-
peat this line. All lines of code must begin with ‘model.‘ You must not generate any
‘model.sol...‘ solver code but should ensure that your ‘model.study...‘ block ends with a
‘model.study(”std1”).run();‘. This will automatically create and run the default solver for
the problem.
You are provided with the list of valid physics interfaces and features under each interface.
You must only use the interfaces and features in these lists:
===
AVAILABLE COMSOL PHYSICS INTERFACES:
[’BeamCrossSection’, ’PorousMediaFlowRichards’, ’

MoistureTransportInBuildingMaterials’, ’CreepingFlow’, ’
CathodicProtection’... <List of 140 Interface>...’LumpedBattery
’, ’CompressiblePotentialFlow’, ’BatteryBinaryElectrolyte’, ’
ColdPlasma’, ’LaplaceEquation’, ’DilutedSpeciesInPorousCatalysts
’]

AVAILABLE FEATURES UNDER EACH INTERFACE:
{’ElectromagneticWavesBeamEnvelopes’: {’features’: [’

MatchedBoundaryCondition’, ’SymmetryPlane’, ’Scattering’, ’
TransitionBoundaryCondition’, ’Impedance’, ’Port’, ’
FieldContinuity’], ’physics_tags’: [’ewbe’]}, ’
TransientPressureAcoustics’: {’features’: [’InteriorSoundHard’,
’InteriorLumpedSpeakerBoundary’, ’TransientMonopoleLineSource’,
’CylindricalWaveRadiation’, ’Impedance’, ’
NonlinearAcousticsWestervelt’, ’Pressure’, ’PlaneWaveRadiation
’], ’physics_tags’: [’actd’, ’actd2’]}, ...<Interface-Feature
Mapping>...’PressureAcousticsAsymptoticScattering’: {’features’:
[], ’physics_tags’: [’paas’]}, ’

ElectromagneticWavesBoundaryElements’: {’features’: [], ’
physics_tags’: [’embe’]}, ’WallDistance’: {’features’: [’Wall’],
’physics_tags’: [’wd’, ’wd2’]}}

===
Now use the example provided below to infer how to format your response and generate
COMSOL code.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

===
EXAMPLE 0: PLAN: ...<Same as the One-Shot Example in Plan above>...
===
=== Now generate the JAVA API code to compute the target quantity for the problem be-
low, by following the plan described. Export the table containing the target quantity to
OUTPUT PATH/output.txt.

PLAN: {{ p r o b l e m d e s c r i p t i o n }}
TARGET QUANTITY to be computed : {{ t a r g e t d e s c r i p t i o n }}
ANSWER:

H.2 MULTI-TURN AGENT PROMPTS

The following prompt is used in the ToolLookupAgent to call tools. tool snippet is populated
with the descriptions of each tool. state info is the execution and verifier feedback for the
solution to iterate upon (left panel of Figure 2).

Tool Selection

You are a COMSOL engineer. You are attempting to gather information relevant to execution
feedback that you received from the COMSOL client after you executed some code. The
relevant information can be queried as ‘ToolCall‘. Each ‘ToolCall‘ must consist of str along
with the relevant arguments, if any. A ToolCall may or may not require arguments. Identify
the relevant tool calls and return your reply as a ‘ToolCalls‘ object, which consists of a list
of ‘ToolCall‘s.
===
Here is some information on each tool

{{ t o o l s n i p p e t }}
===
Now return the relevant ToolCallList for the following execution feedback / error message.

FEEDBACK: {{ s t a t e i n f o }}

Correction Prompt

You are an engineer solving the following PROBLEM in COMSOL, by generating a solution
that consists of the JAVA COMSOL API code needed to solve the problem. You have so far
generated the code in CODE. On executing the lines in CODE you encountered the issue de-
scribed in CURRENT EXECUTION FEEDBACK. CURRENT EXECUTION FEEDBACK
is formatted as ‘Line → Status: Error (if Status=‘Error‘)‘ where Status is ‘Correct‘ if the
line of code was able to execute and ‘Error‘ if it raised an error. You have additionally been
provided with EXECUTION HISTORY which is a record of some of your previous code
solutions and their execution results. You may use it as relevant context to understand what
blocks of code work and what you’ve already tried.
You must return a BETTER solution by correcting lines of code that raised errors, or sub-
stituting blocks of code with other equivalent code snippets that would solve the problem.
The solution must be a full contiguous block of CODE. Use the example provided below to
understand how to format your CODE.
===
EXAMPLE 0:
PROBLEM:* Select 2D for the space dimension.
* Select Fluid Flow > Single-Phase Flow > Laminar Flow (spf).
* Create a Stationary Study
* Insert a geometry from file.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Parameters
* Name Expression Description
* Re 100 Reynolds number
* rho0 1e3 [kg/m3] Density

CODE:

java‘‘‘
model.component().create("comp1", true);

model.component("comp1").geom().create("geom1", 2);

model.component("comp1").mesh().create("mesh1");

model.component("comp1").physics().create("spf", "FluidFlow", "
geom1");

model.study().create("std1");
model.study("std1").create("stat", "Stationary");
model.study("std1").feature("stat").setSolveFor("/physics/spf",

true);
model.study("std1").run();
model.component("comp1").geom("geom1").insertFile("fname.mph", "

geom1");
model.component("comp1").geom("geom1").run("fin");

model.param().label("Geometrical Parameters");
model.param().create("par2");
model.param("par2").set("Re", "100");
model.param("par2").descr("Re", "Reynolds number");
model.param("par2").set("rho0", "1e3[kg/mˆ3]");
model.param("par2").descr("rho0", "Density");
...
‘‘‘

EXECUTION HISTORY: CURRENT EXECUTION FEEDBACK:

model.component().create("comp1", true); -> Correct
model.component("comp1").geom().create("geom1", 2); -> Correct
model.component("comp1").mesh().create("mesh1"); -> Correct
model.component("comp1").physics().create("spf", "FluidFlow", "

geom1"); -> Error: Exception com.comsol.util.exceptions.
FlException: Unknown Interface

Messages:
Unknown Interface
- Interface: FluidFlow

...

The following information may be useful to you:
RELEVANT INFORMATION: -
NEW CODE: The Interface ‘FluidFlow‘ is not a valid physics interface. LaminarFlow is a
valid COMSOL physics interface. I will replace FluidFlow with LaminarFlow and return
the entire code block.

java‘‘‘
model.component().create("comp1", true);
model.component("comp1").geom().create("geom1", 2);
model.component("comp1").mesh().create("mesh1");
model.component("comp1").physics().create("spf", "LaminarFlow", "

geom1");
model.study().create("std1");
model.study("std1").create("stat", "Stationary");
model.study("std1").feature("stat").setSolveFor("/physics/spf",

true);

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

model.study("std1").run();
model.component("comp1").geom("geom1").insertFile("fname.mph", "

geom1");
model.component("comp1").geom("geom1").run("fin");

model.param().label("Geometrical Parameters");
model.param().create("par2");
model.param("par2").set("Re", "100");
model.param("par2").descr("Re", "Reynolds number");
model.param("par2").set("rho0", "1e3[kg/mˆ3]");
model.param("par2").descr("rho0", "Density");
‘‘‘

===
Here are some example errors, their causes, and example actions that should be taken to
address them:
1. Error: ‘Unknown feature‘... Cause: The feature either does not ex-
ist, or is created under the wrong node. It’s possible that a feature may be
a defined under another feature of the interface, instead of under the inter-
face directly. Eg: ‘model.component(”comp1”).physics(”int1”).feature(”f2”)...‘
might raise an error because the correct pattern is
‘model.component(”comp1”).physics(”int1”).feature(”f1”).feature(”f2”)...‘ Action: Ensure
the feature actually exists and substitute it with a similar sounding feature if it doesn’t, or
define it under the correct node.
2. Error: ‘Undefined material property ’A’ required by FeatureNode F. Cause: An essential
property needed by F (usually a solver/physics node) has not been defined correctly. Action:
Edit the code where ‘A‘ is defined. Try to set the property in one of the following ways
instead. a) Easier Way. You can define a ”userdefined” property under the appropriate
feature branch of the ‘physics‘ branch. The code in this case looks like:

‘‘‘
model.component("comp1").physics("int1").feature("f1").set("A", "

userdef");
model.component("comp1").physics("int1").feature("f1").set("A", "

A_value");
‘‘‘

You must have the first line, that sets the property to ‘userdef‘ in this case, otherwise f1
might not be able to see A value.
b) Harder Way. The property value is defined under the appropriate propertygroup of the
material. The code should look like this:

‘‘‘model.component("comp1").material("mat1").propertyGroup("def").
set("density", "7200");‘‘‘

If the property is defined under another propertygroup of the material, the physics branch
will sometimes not know where to look, and the code could fail silently.
3. Error: The code saves a value but it’s far from the expected value, even though the
code is executable. Cause: There might be an issue with the study code. You might be
missing study settings or the ‘study.run();‘ line which is essential for the default numerical
solver to run. You should also preferably not generate any ‘model.sol‘ lines and ensure that
the ‘model.study..‘ block ends with ‘model.study.run();‘ as this automatically chooses the
default COMSOL solver for the problem and runs it. Action: Try to redefine the .study()
code so it includes only the bare minimum described in ‘Cause‘.
4. Error: ‘Feature cannot be created in dimension‘. Cause: The feature is being created
in a dimension inconsistent with the dimension of the problem. Action: Examine what the
dimension of the goemetry is and reassess what the correct dimension of the feature should
be. For example, a domain feature will typically have the same dimension as the geometry
and a boundary feature will have D geom -1.
5. Error: ‘SelectionOutOfBoundsException: Illegal input vector illegal entity number.‘
Cause: An incorrect or non-existent entity number has been assigned. Action: Please

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

recheck the SELECTION INFORMATION and ensure your code is exactly consistent with
it.
Note, this is NOT an exhaustive list, and several other errors can occur. Read the error
messages carefully, as they typically provide hints about the cause.
===
Now return the corrected code for the following problem:

PROBLEM: {{problem}}

EXECUTION HISTORY: {{ h i s t o r y }}

CURRENT CODE:
‘ ‘ ‘
{{ code }}
‘ ‘ ‘

CURRENT EXECUTION FEEDBACK: {{ s t a t e i n f o }}
The following information may be useful to you:

RELEVANT INFORMATION: {{ t o o l l o o k u p }}

CORRECTED CODE:

36

	Introduction
	Datasets
	Evaluation Metrics
	Single-Query LLMs
	The Elements of an LLM-Multiphysics API Interface
	Agent Setup

	Results
	Agent Results

	Discussion
	Reproducibility Statement
	Related Work
	Dataset Curation
	FEABench Gold
	Selection Criteria:
	Generation Procedure:
	Fields from an example entry:

	FEABench Large

	Evaluation Details
	Executability
	Code Similarity Score
	Model Tree Score
	Valid Target
	Relative Error | Strict
	Physics Metrics
	Interface Factuality
	Interface Recall
	Feature Recall
	Feature Dimension
	Feature Property Recall

	Querying the COMSOL Multiphysics®API from Python
	The Python-COMSOL Multiphysics®Bridge
	COMSOL Multiphysics®Code Structure

	Agent Details
	Tools
	QueryModelTreeProperties
	RetrieveAnnotatedSnippets

	Analysis

	Qualitative Analysis
	Does fine-tuning boost performance?
	Prompts
	Single Query Prompts
	Multi-Turn Agent Prompts

