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Abstract

Geocoding is the task of converting location
mentions in text into structured geospatial data.
We propose a new architecture for geocoding,
SSPART, that first uses information retrieval
techniques to generate a list of candidate entries
from the geospatial ontology, and then reranks
the candidates using a transformer-based neural
network. The reranker compares the location
mention to each candidate entry, while incorpo-
rating additional information such as the entry’s
population, the entry’s type of location, and the
sentences surrounding the mention in the text.
Our proposed toponym resolution framework
achieves state-of-the-art performance on multi-
ple datasets. Code and models are available at
https://<anonymized>.

1 Introduction

Geospatial information extraction has seen a recent
surge in interest from the natural language pro-
cessing community due to its critical role in tasks
such as geographical document classification and
retrieval (Bhargava et al., 2017), historical event
analysis based on location data (Tateosian et al.,
2017), tracking the evolution and emergence of
infectious diseases (Hay et al., 2013), and disas-
ter response mechanisms (Ashktorab et al., 2014;
de Bruijn et al., 2018). Such information extraction
can be challenging because different geographical
locations can be referred to by the same place name
(e.g., San Jose in Costa Rica vs. San Jose in Cali-
fornia, USA), and different place names can refer
to the same geographical location (e.g., Leeuwar-
den and Ljouwert are two names for the same city
in the Netherlands). It is thus critical to resolve
these place names by linking them with their cor-
responding coordinates from a geospatial ontology
or knowledge base.

Geocoding, also called toponym resolution or
toponym disambiguation, is the subtask of geop-
arsing that disambiguates place names (known as

toponyms) in text. The goal of geocoding is, given
a textual mention of a location, to choose the corre-
sponding geospatial coordinates, geospatial poly-
gon, or entry in a geospatial database. Most exist-
ing geocoding systems produce geospatial ontology
entries by first generating candidate entries with
an information retrieval system and then reranking
those entries with a supervised feature-based clas-
sifier using a variety of hand-engineered heuristics
(Speriosu and Baldridge, 2013; Zhang and Gelern-
ter, 2014; DelLozier et al., 2015; Kamalloo and
Rafiei, 2018; Wang et al., 2019). More recently,
deep neural network approaches to geocoding have
been introduced that predict small tiles of the map
rather than ontology entries (Gritta et al., 2018; Car-
doso et al., 2019; Kulkarni et al., 2020). The neural
network approaches have been generally more suc-
cessful, but because of their output encoding, they
do not naturally produce an ontology entry, which
may contain a variety of metadata needed by a user.
We propose a new architecture SSPART (Search,
Sort by Population, And Rerank by Transformer),
shown in Figure 1, which has the advantages of
both: it uses pre-trained deep neural networks for
the improved robustness in matching place names,
while leveraging a generate-then-rank architecture
to produce ontology entries as output instead of
map tiles. SSPART generates candidate ontology
entries with an information retrieval system cou-
pled with a simple population heuristic, and then
uses a pre-trained transformer-based list-wise clas-
sifier to rerank the candidate entries based on an-
alyzing the place name, candidate ontology entry,
lexical context, and geospatial ontology features.
Our work makes the following contributions:

* Our proposed architecture for geocoding
achieves new state-of-the-art performance on
multiple datasets.

* Our architecture is the first application of pre-
trained transformers to encoding location men-
tions and context for toponym resolution.
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Figure 1: The architecture of our model: Search, Sort by Population, And Rerank by Transformer (SSPART).

* Our evaluation includes a wider variety of
geocoding evaluation metrics than prior work,
applying both database entry correctness met-
rics and point distance metrics.

2 Related Work

The geocoding task can be classified into two dis-
tinct categories: document level and mention level.
The objective of document-level geocoding is to
match an entire text to a corresponding location,
such as geolocating Twitter users or microblog
posts (Roller et al., 2012; Rahimi et al., 2015; Lee
et al., 2015; Rahimi et al., 2017; Hoang and Mothe,
2018; Kumar and Singh, 2019; Luo et al., 2020)
and geographic document retrieval and classifica-
tion (Gey et al., 2005; Adams and McKenzie, 2018).
The objective of mention-level geocoding is to
match phrases within a text to their corresponding
locations. While this task is conceptually related to
Wikipedia linking, it differs in that geospatial on-
tologies include only the geospatial concepts, not
in-text examples. (See also appendix B). Mention-
level geocoding is typically preceded by geotag-
ging, a named entity recognition task that finds
location mentions in a text. The current work fo-
cuses specifically on mention-level geocoding.
Many systems for geocoding used hand-crafted
rules and heuristics to predict geospatial labels for
place name. Examples include the Edinburgh geop-
arser (Grover et al., 2010), Tobin et al. (2010),
Lieberman et al. (2010), Lieberman and Samet
(2011), CLAVIN (Berico Technologies, 2012),
GeoTxt (Karimzadeh et al., 2013), and Laparra
and Bethard (2020). The most common features
and heuristics were based on string matching, pop-
ulation count, and type of place (city, country, etc.).

As more shared tasks and annotated datasets
were proposed, geocoding systems began to take
the heuristics of rule-based systems and use them as
features in supervised machine learning models, in-
cluding logistic regression (WISTR, Speriosu and
Baldridge, 2013), support vector machines (Mar-
tins et al., 2010; Zhang and Gelernter, 2014), ran-
dom forests (MG, Freire et al., 2011; Lieberman
and Samet, 2012), stacked LightGBMs (DM_NLP,
Wang et al., 2019) and other statistical learning
methods (Topocluster, DeLozier et al., 2015; CBH,
SHS, Kamalloo and Rafiei, 2018). These sys-
tems typically operated in a two-step generate-then-
rerank framework, where first an information re-
trieval system produced candidate geospatial ontol-
ogy entries, a supervised machine-learning model
produced a score for each candidate, and the candi-
dates were reranked by those scores.

Recently, deep learning methods have been in-
troduced for toponym resolution. Rather than fol-
lowing the generate-then-rank approach of previ-
ous machine learning architectures, they approach
geocoding as a one-step classification problem by
dividing the Earth’s surface into an N x N grid,
where the neural network attempts to map place
names and their features to one of these N x N
categories (CamCoder, Gritta et al., 2018; Cardoso
et al., 2019; MLG, Kulkarni et al., 2020). Each sys-
tem has a unique neural architecture for combining
inputs to make predictions, based on convolutional
neural networks (CNNs) (CamCoder, Gritta et al.,
2018; MLG, Kulkarni et al., 2020), recurrent neural
networks (RNNs) (Cardoso et al., 2019), or vector-
space models (Ardanuy et al., 2020). Though the
grid-based output formulation results in a large
label space for classification, the neural network



models are able to more flexibly encode location
mentions and the nearby context, leading to per-
formance gains in distance-based metrics across
several corpora.

Our proposed approach combines the tight ontol-
ogy integration of the generate-and-rerank feature-
based systems with the robust text encoding of the
deep neural network grid-classification systems.

3 Proposed Methods

We define the task of toponym resolution as fol-
lows. We are given an ontology or knowledge
base with a set of entries E' = {e1, e2,...,e|g)}-
Each input is a text made up of sentences T =
{t1,t2,...,tj7} and a list of location mentions
M = {m1,ma,...,my} in the text. The goal is
to find a mapping function e; = f(m;) that maps
each location mention in the text to its correspond-
ing entry in the ontology.

We approach toponym resolution using a can-
didate generator followed by a candidate reranker.
The candidate generator, G(m, E) — E,,, takes
a mention m and ontology E as input, and gener-
ates a list of candidate entries F,,, where £, C F
and |Ey,| < |E|. As the candidate generator must
search a large ontology and produce only a short
list of candidates, the goal for G will be high re-
call and high runtime efficiency. The candidate
reranker, R(m, E,,) — E,,, takes a mention m
and the list of candidate ontology entries FE,,,, and
sorts them by their relevance or importance to pro-
duce a new list, F,,,. As the candidate ranker needs
to work only with a short list of candidates, the
goal for R will be high precision, especially at rank
1, with less of a focus on runtime efficiency.

3.1 Candidate Generator

Our candidate generator is inspired by prior work
on geocoding in using information retrieval tech-
niques to search for candidates in the ontology
(Grover et al., 2010; Berico Technologies, 2012).
Accurate candidate generation is essential, since
the generator’s recall is the ceiling performance
for the reranker. As we will see in section 5, our
proposed candidate generator alone is competitive
with complex end-to-end systems from prior work.

Our sieve-based approach, detailed in alg. 1, tries
searches ordered from least precise to most precise
until we find ontology entries that match the loca-
tion mention. We create one document in the index
for each name n. of an entry e in the GeoNames

Algorithm 1: Candidate generator.

Input: a location mention, m
a maximum number of candidates, k&
the GeoNames ontology, X
Output: a list of candidate entries Ey,
// Index ontology
I+0
for e € £ do
name < CANONICALNAME(E, ¢)
synonyms < SYNONYMS(E, €)
for n € {name} U synonyms do
| I+« IU{CREATEDOCUMENT(e,n)}
end
end
// Search for candidates
En <0
for ¢t € { EXACT, Fuzzy, CHARACTERNGRAM,
TOKEN, ABBREVIATION, COUNTRYCODE } do
E.,, < SEARCH(index, m,t)
if E,, # () then
| break
end
end
// Sort by population
key < (e — POPULATION(E, ¢))
E,, < SORT(Em, key)
// Select top entries
return top k elements of F,,

ontology. A location mention m is matched to a
name n. by attempting a search with each of the
following matching strategies, in order:

EXACT m exactly matches (ignoring whitespace)
the string ne

Fuzzy m is within a 2 character Levenshtein edit
distance (ignoring whitespace) of n,

CHARACTERNGRAM m has at least one charac-
ter 3-gram overlap with n,

TOKEN m has at least one token (according to the
Lucene StandardAnalyzer) overlap with n,

ABBREVIATION m exactly matches the capital
letters of n,

COUNTRYCODE e is a country and m exactly
matches a e’s country code

Once one of the searches has retrieved a list of
matching names, we recover the ontology entry
for each name, sort those ontology entries by their
population in the GeoNames ontology, and return
the & most populous ontology entries. This list,
E, is then the input to the candidate reranker.

3.2 Candidate Reranker

Our candidate reranker is inspired by prior work
on medical concept normalization (Xu et al., 2020;
Ji et al., 2020), extended to incorporate aspects
uniquely important for geocoding. Similar to prior



work, and as shown in fig. 1, the candidate reranker
takes a mention to be classified, m, and the list
of candidate entities from the candidate genera-
tor, F,,, encodes them with a transformer neu-
ral network, and uses these encoded representa-
tions to perform list-wise classification to select the
most probable entry. For each candidate e = E,,,,,
the input to the transformer is of the form [cLs]
m [sEp] C° [SEP] S| [SEP] [SEP] S|€56|
[sEP], where C¢ = CANONICALNAME(E, e) is
the canonical name of e in the ontology, and
S¢ = SYNONYMS(E,e) is the list of alternate
names of e in the ontology. We then represent
each candidate with the contextualized representa-
tion of its [cLs] token from the last layer of the
transformer, a vector we will refer to as [CLS] g, .
Note that [cLS] g, € R, where H is the size of
the transformer’s contextualized representations.

We extend this architecture with three features
that are important for geocoding: population, type
of geographical feature, and mention context.

Population: Locations in text are more likely to
refer to high population places than low population
places (e.g., Paris, France vs. Paris, Texas, USA).
We look up the population of £, in the ontology,
and take the logarithm of that population. We refer
to this scalar as log(POPg,, ).

Feature Code: Locations in text are more likely
to refer to some types of geographical features than
others (e.g., San José, the capital of Costa Rica, vs.
San José, the province). We look up the feature
code! of E,,, in the ontology, and transform the
feature code into a one-hot vector FCg,, € RN
where N is the total number of feature codes in the
GeoNames ontology

Mention context: The text around a mention
may provide clues (e.g., the context Minnesota
State Patrol urges motorists to drive with cau-
tion. .. in Becker, Clay, and Douglas suggests that
Clay refers to Clay County, Minnesota, even though
Clay County, Missouri is more populous). We find
the sentence in the text 7" containing m, Tsgnr(m)»
and encode the c-sentence window including it
with the same transformer as was used to encode
m. The input is of the form [c1S] Tspnr(m)—c - - -
Tsent(m)+c [SEP]. We take the contextualized rep-

'In GeoNames, for example, the feature code PPLC means
capital of a political entity. GeoNames feature codes are
listed in detail at http://download.geonames.org/
export/dump/featureCodes_en.txt

Dataset Train Dev. Test
g . E _ E
2 s 2 & 2 3
g 2 2 € & 2
& < £ < £ <
LGL 3112 411 419 58 931 119
GeoWebNews 1641 140 281 20 477 40
TR-News 925 82 68 11 282 25

Table 1: Numbers of articles and manually annotated
toponyms in the train, development, and test splits of
the toponym resolution corpora.

resentation of the [c1s] token from the last layer
of the transformer, [CLS]gent(m)+c € R,

To combine all of these new features with the tra-
ditional representation of the candidate from prior
work, [CLs]g,, , we concatenate all the vectors
before the classification layers. So the concate-
nated vector for each candidate entry E,,,, would
be VEmi = [CLS] Em, GBIOg(POPEmi )@FCE'mi &)
[CLS] sent(m) e With Vi, € RPN Agore-
gating across the k, candidates, we form a ma-
trix Mp, € RFXCH+N+1) e then feed this
matrix into two linear layers with the weights
W, € R150><(2H+1+N) and Wy € R1X150, and
compute a standard classification loss:

L =y - log(softmax((Mg, WL YWJI)) (1)
where y is a one-hot vector, and |y| = | Ey,|.

4 Experiments

4.1 Datasets

We conduct experiments on three toponym resolu-
tion datasets. Local Global Lexicon (LGL; Lieber-
man et al., 2010) was constructed from 588 news
articles from local and small U.S. news sources.
GeoWebNews (Gritta et al., 2019) was constructed
from 200 articles from 200 globally distributed
news sites. TR-News (Kamalloo and Rafiei, 2018)
was constructed from 118 articles from various
global and local news sources. As there are no
standard publicly available splits for these datasets,
we split each dataset into a train, development, and
test set according to a 70%, 10% , and 20% ratio.
To enable replicability, we will release these splits
upon publication. The statistics of all datasets are
shown in table 1.

2We also considered Weissenbacher et al. (2019), but the

test set was never released (we requested it from the authors),
making comparison to prior work on that dataset difficult.
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Figure 2: An entry for Tucson in GeoNames

4.2 Database

GeoNames is a crowdsourced database of geospa-
tial locations, with almost 7 million entries and a
variety of information such as geographic coordi-
nates (latitude and longitude), alternative names,
feature type (country, city, river, mountain, etc.),
population, elevation, and positions within a politi-
cal geographic hierarchy. An example entry from
GeoNames is shown in fig. 2. The data in Geo-
Names comes from multiple sources’, such as pub-
lic and open gazetteers, which can vary in quality,
scope, resolution, or age (Ahlers, 2013). Users can
edit data in a wiki-like interface.

In our experiments, the GeoNames ontology
plays an important role in both the candidate gen-
erator and the candidate reranker. The candidate
generator produces a list of candidate entries from
GeoNames and the candidate reranker selects the
best entry by utilizing multiple meta-data obtained
from GeoNames, including canonical names, alter-
nate names, populations, and feature codes.

4.3 Evaluation Metrics

There is not yet agreement in the field of toponym
resolution on a single evaluation metric. There-
fore, we consider metrics measuring matching of
ontology entry IDs between system predictions and
human annotations, as well as metrics measuring
geographical distance between system predictions
and human annotations.

Accuracy is the number of location mentions
where the system predicted the correct database en-
try ID, divided by the number of location mentions.
Higher is better, and a perfect model would have
accuracy of 1.0.

Shttp://www.geonames.org/data-sources.
html

Accuracy@161km measures the fraction of
system-predicted (latitude, longitude) points that
were less than 161 km away from the human-
annotated (latitude, longitude) points. Higher is
better, and a perfect model would have Accu-
racy@161km of 1.0.

Mean error distance calculates the mean over
all predictions of the distance between each system-
predicted and human-annotated (latitude, longi-
tude) point. Lower is better, and a perfect model
would have a mean error distance of 0.0.

Area Under the Curve (AUC) calculates the
area under the curve of the distribution of geocod-
ing error distances. Lower is better, and a perfect
model would have a mean error distance of 0.0.

4.4 Implementation details

We implement the candidate reranker with Lucene*

v8.4.1 under Java 1.8. When indexing Geo-
Names, we also index countries under their ad-
jectival forms in Wikipedia’. We implement
the candidate reranker with the PyTorch® v1.7.0
APIs in Huggingface Transformers v2.11.0 (Wolf
et al., 2020), using either bert-base-uncased or
bert-multilingual-uncased. We train with the
Adam optimizer, a learning rate of le-5, a maxi-
mum sequence length of 128 tokens, and a number
of epochs of 30. We explored a small number of
learning rates (1e-5, le-6, 5e-6) and epoch numbers
(10, 20, 30, 40). When training without context, we
use one Tesla V100 GPU with 32GB memory and
a batch size of 8. When training with context, we
use four Tesla V100 GPU with 32GB memory and
a batch size of 32. The total number of parameters
in our model is 168M and the training time is about
3 hours.

4.5 Systems

We compare a variety of geocoding systems:

SSPART is our proposed Search, Sort by Pop-
ulation, And Rerank by Transformer architecture.
We consider several variants of SSPART, compar-
ing English vs. multilingual versions of BERT,
and comparing no context sentences vs. with
c € {0, 1,2} (i.e., just the sentence containing m
up to the 5 sentences around m).

*https://lucene.apache.org/

‘https://en.wikipedia.org/wiki/List_
of_adjectival_and_demonymic_forms_for_
countries_and_nations

®https://pytorch.org/
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Edinburgh .666 .676 147 .260 .687 721 174 .250 .662 .676 183 .273

CamCoder .604 .695 144 285 509 712 174 293 824 882 128 .119

SSP 594 671 201 .289 .644 858 73 .165 677 735 187 242
SSPART - 797 821 57 .140 4.8 .886 .940 29.83 .060 1.8 .882 .897 63.5 .090 2.8 3.0
SSPART 0 .807 .823 55 .132 3.0 .865 915 393 .075 55 .882 .882 110 .109 5.5 4.7
SSPART 1 807 816 65 .142 6.0 .868 918 40.3 .073 4.8 .882 .897 64.9 .092 4.0 49
SSPART 2 802 .814 68 .145 7.0 .865 911 428 .078 6.5 .897 912 64.0 .081 2.3 53
SSPART v - .814 828 60 .132 2.8 .879 .922 432 .072 4.0 .882 .897 65.0 .092 4.3 3.7
SSPART v 0 .816 .831 62 .133 3.3 872 .940 23.5 .057 1.8 .882 .897 64.6 .090 3.5 2.8
SSPART v 1 .809 .833 59 .129 2.0 .875 .922 354 .073 3.8 .912 .927 40.6 .063 1.0 2.3
SSPART v 2 .807 .823 61 .137 45 872 940 294 .060 2.5 .868 .882 72.6 .103 5.3 4.1

Table 2: Performance on the development sets. Higher is better for Accuracy and Accuracy @ 161km. Lower is
better for Mean Error and AUC. Edinburgh made no predictions for 24, 16, and 0 toponyms in LGL, GeoWebNews,
and TR-News, respectively. Since it is impossible to calculate distance-based metrics without coordinates, we skip
those toponyms, and as a result overestimate the distance-based metrics for Edinburgh.

SSP is the Search-and-Sort-by-Population candi-
date generator of SPART, without the transformer-
based candidate reranker.

CamCoder Gritta et al. (2018) introduced a con-
volutional neural network (CNN) system that ap-
proaches geocoding as a classification task where
the model predicts one of 7823 classes, each being
a 2x2 degree tile representing part of the world’s
surface. CamCoder takes two kinds of input: lex-
ical and geographic. The lexical input combines
context words, location mentions, and the target
mention, encoding them with CNN layers. The ge-
ographic input is a map vector that encodes a pop-
ulation distribution over the 7823 map tiles based
on the location mentions in the target mention’s
context’. The two kinds of inputs are concatenated
and fed into dense layers and final softmax layer
to make the prediction. CamCoder is currently the
state-of-the-art on several geocoding datasets (in-
cluding LGL), and its code is publically available®.

"The original CamCoder code, when querying GeoNames
to construct its input population vector from location mentions
in the context, assumes it has been given canonical names
for those locations. Since canonical names are not known
before locations have been resolved to entries in the ontology,
we have CamCoder use mention strings instead of canonical
names for querying GeoNames.

8We also considered MLG (Kulkarni et al., 2020), which
slightly outperforms CamCoder on two datasets (while being
slightly worse on LGL), but its neither its code nor its data
splits are available.

Edinburgh Grover et al. (2010) introduced a
rule-based system that uses heuristics such as popu-
lation count, clustering (spatial minimization), type
and country and some contextual information (con-
tainment, proximity, locality, clustering) to score,
rank, and choose a candidate. The Edinburgh geop-
arser was the state-of-the-art on LGL and several
other datasets before CamCoder.

5 Results

We first perform model selection on the develop-
ment sets, comparing the SSPART model variants
described in section 4.5. Results are shown in ta-
ble 2. Because we have many different evaluation
metrics that do not always tell exactly the same
story, we include an average rank metric that calcu-
lates a ranking of all SSPART models according to
that metric, and scores each SSPART model as the
average over its ranks across all metrics. So, for
example, the best model, SSPART with a multilin-
gual transformer and context of the three sentences
around the mention (c = 1), achieves average rank
of 2.0 on LGL because it was rank 3 for Accuracy,
rank 1 for Accuracy@161km, rank 3 for Mean
Error, and rank 1 for AUC.

All of our SSPART models outperform both
CamCoder and Edinburgh on all development
sets and across all metrics. The average rank of
SSPART is consistently above CamCoder and Ed-
inburgh (p values between 0.0000 and 0.0066), ac-
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Edinburgh 611 632 119 290 .738 773 146 203 .750 756 149 218
CamCoder 580 .651 82 288 572 .665 155 290 .660 .778 89 196
SSPART VAt 759 783 67 .166 - - - - - - - -
SSPART v 0 - - - - 782 832 60 .131 - - - -
SSPART v o1 - - - - - - - - 777 798 92 .166
SSPART v 1 v 740 771 73 182 .818 .855 50 .113 805 .812 97 158

Table 3: Performance on the test sets. Higher is better for Accuracy and Accuracy@ 161km. Lower is better for
Mean Error and AUC. Edinburgh made no predictions for 28, 49, and 106 toponyms in LGL, GeoWebNews, and
TR-News, respectively. Since it is impossible to calculate distance-based metrics without coordinates, we skip those
toponyms, and as a result overestimate the distance-based metrics for Edinburgh.

cording to the Friedman test with the Conover post
hoc test for pairwise comparisons. All SSPART
models also outperform the candidate generator
alone (SSP), with the candidate reranker substan-
tially improving performance (p values between
0.0000 and 0.0024). For monolingual SSPART
models, adding context slightly worsened their av-
erage rank, while for multilingual models, adding
context slightly improved their average rank. The
impact of population and feature code were small;
see appendix C for details. Overall, we conclude
that the main driver of increased performance is
the transformer-based reranker.

For evaluation on the test set, we first select the
best model by average rank for each of the three
development datasets. We also train a model where
we combine the LGL, GeoWebNews, and TR-
News training sets, and use the setting that achieved
the best average rank across all metrics and de-
velopment datasets: multilingual transformer and
context of the three sentences around the mention
(c = 1). The first three models represent systems
tuned to specific datasets, while the last model rep-
resents a system trained for more general use.

Table 3 shows that our proposed model, SSPART,
outperforms CamCoder and Edinburgh across all
three public toponym resolution test sets on all
metrics except for mean error on TR-News’. The
more general SSPART model trained on the com-
bined LGL, GeoWebNews, and TR-News outper-
forms the dataset-specific models on GeoWebNews

The Friedman test for comparing system average ranks is
only reliable when comparing more than 6 systems, so we do
not report p-values here.

and TR-News, though not on LGL. We release
the general model for English geocoding under
the Apache License v2.0, for off-the-shelf use at
https://<anonymized>.

6 Qualitative Analysis

We qualitatively analyzed some of the errors that
CamCoder and different variants of SSPART made.
Example 1 from table 4 shows an example where
CamCoder fails but SSPART succeeds, by more
effectively using geospatial metadata, such as the
population and an alternate name for District of
Columbia in GeoNames, Washington, D.C.. Exam-
ple 2 from table 4 shows an example where Lucene
search fails but SSPART without context succeeds,
by not relying too heavily on population alone and
instead jointly considering the name, population,
and feature code information (ADM2 represents a
county, PPLA2 represents a city). Example 3 from
table 4 shows an example where SSPART without
context fails but SSPART with context succeeds, by
taking advantage of the Minnesota in the context to
select the Clay County that would otherwise seem
implausible due to its lower population.

Finally, example 4 from table 4 shows an ex-
ample where our best SSPART model still fails.
Though the candidate generator finds the correct on-
tology entry in its top-k list, the candidate reranker
is unable to sort that entry to the top. Neither the
name, population, nor feature code would suggest
the correct candidate, and the nearby context is also
insufficient to disambiguate. Looking at the entire
document, many of the other toponym mentions
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Ahlstrom said that the results found at the District of Columbia 552433 1
Washington Latin Public Charter School in  Washington County 147430 1
Washington, D.C.
Los Angeles County 9818605 ADM?2 1 2
It was Los Angeles police officers she at- Los Angeles 3971883 PPLA2 2 1
tempted to blow up. Los Angeles 125430  PPLA2 3 3
Los Angeles 4217 PPL 4 4
the Minnesota State Patrol urges motorists to Clay County 221939 Missouri 1 4
drive with caution as flooding continues to  Clay County 190865 Florida 2 3
affect area highways. Water over the road- Clay County 58999 Minnesota 3 1
way is currently affecting the following areas  Clay County 26890 Indiana 4 2
in Becker, Clay, and Douglas
4 New London County 274055 ADM2 1 3
he writes, as do my efforts to insure New London 27179 PPL 2 1
New London is a safe community. New London 7172 PPL 3 2
New London 1882 PPL 4 4

Table 4: Examples of predictions from CamCoder, our candidate generator with no reranking (SSP), our generate-
and-rerank system without context (SSPART ¢ = -), and our full system including context (SSPART). Target
location mentions are underlined. Human annotated ontology entries are in bold.

are located in the same state, but even if we ex-
panded SSPART’s context window, it would not be
able to tell they were in the same state without first
resolving them to ontology entries.

7 Limitations and future research

SSPART’s context window is currently limited to
five sentences, and thus cannot take advantage of
document-level signals. In the future, we will
explore integrating document-level features into
SSPART, such as spatial minimality (Grover et al.,
2010) which assumes that place names in a text
tend to refer to geospatial regions that are in close
spatial proximity to each other. This might be
achieved by jointly reasoning over the candidate
entries of all location mentions in a document, or
by a strategy of resolving easy location mentions
before hard ones.

SSPART’s candidate generator is currently based
on information retrieval. This is efficient but not
very flexible in string matching, and when the can-
didate generator fails to produce the correct candi-
date entry, the candidate reranker also necessarily
fails. In the future, we will explore whether it is
possible to replace this generator with a neural net-
work candidate generator to provide more robust
string matching while still retraining reasonable ef-

ficiency. We are also interested in architectures for
combining the candidate generator and candidate
reranker into a single model, which would avoid
the problems of a candidate generator that fails.

SSPART is limited by its training and evaluation
data, which covers only thousands of English to-
ponyms from news articles, while there are many
millions of toponyms across the world. It is likely
that there are regional differences in SSPART’s
accuracy that will need to be addressed by future
research.

8 Conclusion

We propose a new toponym resolution architec-
ture — Search, Sort by Population, And Rerank by
Transformer (SSPART) — that combines the tight
ontology integration of generate-and-rerank sys-
tems with the robust text encoding of deep neu-
ral networks. SSPART consists of an information
retrieval-based candidate generator and a BERT-
based reranker that incorporates features important
to toponym resolution such as population, type of
location, and textual context around the toponym.
We evaluate our proposed architecture against prior
state-of-the-art, using multiple evaluation metrics
and multiple datasets. SSPART achieves new state-
of-the-art performance on all datasets.
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A Artifact intended use and coverage

The intended use of bert-base-uncased and
bert-multilingual-uncased is to be “fine-tuned
on tasks that use the whole sentence”!?. We have
used them for that purpose when encoding the con-
text, but also for the related task of encoding place
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SSPART -fc -pop 802 .819 64 .141 .865 .925 39.5 .072 .897 912 64.0 .081
SSPART -fc 792 819 68 .141 .861 918 34.7 .072 .868 .882 65.7 .100
SSPART -pop 807 .828 61 .134 865 915 31.9 .073 .897 912 427 .074
SSPART 809 .831 56 .133 .886 .932 29.9 .062 .882 .897 86.0 .096

Table 5: Performance on the development sets when ablating the feature code (-fc) and population (-pop) features.
Higher is better for Accuracy and Accuracy @ 161km. Lower is better for Mean Error and AUC.

names, which are usually short phrases. These ar-
tifacts are trained on English books and English
Wikipedia and released under an Apache 2.0 li-
cense which is compatible with our use.

The intended use of our geocoding model is
matching English place names in text to the Geo-
Names ontology. Though GeoNames covers mil-
lions of place names, our evaluation corpora cover
only English news articles, and thus the perfor-
mance we report is only predictive of performance
in that domain.

B Difference between Toponym
resolution and Wikipedia linking

Wikipedia includes in-text examples for all its con-
cepts, while GeoNames is an ontology only; it has
no in-text examples for its concepts. The only in-
text examples come from small-scale training cor-
pora like LGL, GeoWebNews, or TR-News, which,
as shown in table 1, include only a tiny fraction
of GeoNames’s 7 million geographical concepts.
As a result, many approaches to Wikipedia linking
are difficult to apply to geocoding. For example,
Yamada et al. (2022)’s approach of jointly training
token and concept embeddings assumes there are
text examples of all concepts.

C Feature ablation

Table 5 shows performance when the feature code
and population features are removed from the
SSPART model. The features help slightly on LGL
and GeoWebNews and hurt slightly on TR-News.
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