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Abstract

Geocoding is the task of converting location001
mentions in text into structured geospatial data.002
We propose a new architecture for geocoding,003
SSPART, that first uses information retrieval004
techniques to generate a list of candidate entries005
from the geospatial ontology, and then reranks006
the candidates using a transformer-based neural007
network. The reranker compares the location008
mention to each candidate entry, while incorpo-009
rating additional information such as the entry’s010
population, the entry’s type of location, and the011
sentences surrounding the mention in the text.012
Our proposed toponym resolution framework013
achieves state-of-the-art performance on multi-014
ple datasets. Code and models are available at015
https://<anonymized>.016

1 Introduction017

Geospatial information extraction has seen a recent018

surge in interest from the natural language pro-019

cessing community due to its critical role in tasks020

such as geographical document classification and021

retrieval (Bhargava et al., 2017), historical event022

analysis based on location data (Tateosian et al.,023

2017), tracking the evolution and emergence of024

infectious diseases (Hay et al., 2013), and disas-025

ter response mechanisms (Ashktorab et al., 2014;026

de Bruijn et al., 2018). Such information extraction027

can be challenging because different geographical028

locations can be referred to by the same place name029

(e.g., San Jose in Costa Rica vs. San Jose in Cali-030

fornia, USA), and different place names can refer031

to the same geographical location (e.g., Leeuwar-032

den and Ljouwert are two names for the same city033

in the Netherlands). It is thus critical to resolve034

these place names by linking them with their cor-035

responding coordinates from a geospatial ontology036

or knowledge base.037

Geocoding, also called toponym resolution or038

toponym disambiguation, is the subtask of geop-039

arsing that disambiguates place names (known as040

toponyms) in text. The goal of geocoding is, given 041

a textual mention of a location, to choose the corre- 042

sponding geospatial coordinates, geospatial poly- 043

gon, or entry in a geospatial database. Most exist- 044

ing geocoding systems produce geospatial ontology 045

entries by first generating candidate entries with 046

an information retrieval system and then reranking 047

those entries with a supervised feature-based clas- 048

sifier using a variety of hand-engineered heuristics 049

(Speriosu and Baldridge, 2013; Zhang and Gelern- 050

ter, 2014; DeLozier et al., 2015; Kamalloo and 051

Rafiei, 2018; Wang et al., 2019). More recently, 052

deep neural network approaches to geocoding have 053

been introduced that predict small tiles of the map 054

rather than ontology entries (Gritta et al., 2018; Car- 055

doso et al., 2019; Kulkarni et al., 2020). The neural 056

network approaches have been generally more suc- 057

cessful, but because of their output encoding, they 058

do not naturally produce an ontology entry, which 059

may contain a variety of metadata needed by a user. 060

We propose a new architecture SSPART (Search, 061

Sort by Population, And Rerank by Transformer), 062

shown in Figure 1, which has the advantages of 063

both: it uses pre-trained deep neural networks for 064

the improved robustness in matching place names, 065

while leveraging a generate-then-rank architecture 066

to produce ontology entries as output instead of 067

map tiles. SSPART generates candidate ontology 068

entries with an information retrieval system cou- 069

pled with a simple population heuristic, and then 070

uses a pre-trained transformer-based list-wise clas- 071

sifier to rerank the candidate entries based on an- 072

alyzing the place name, candidate ontology entry, 073

lexical context, and geospatial ontology features. 074

Our work makes the following contributions: 075

• Our proposed architecture for geocoding 076

achieves new state-of-the-art performance on 077

multiple datasets. 078

• Our architecture is the first application of pre- 079

trained transformers to encoding location men- 080

tions and context for toponym resolution. 081
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Figure 1: The architecture of our model: Search, Sort by Population, And Rerank by Transformer (SSPART).

• Our evaluation includes a wider variety of082

geocoding evaluation metrics than prior work,083

applying both database entry correctness met-084

rics and point distance metrics.085

2 Related Work086

The geocoding task can be classified into two dis-087

tinct categories: document level and mention level.088

The objective of document-level geocoding is to089

match an entire text to a corresponding location,090

such as geolocating Twitter users or microblog091

posts (Roller et al., 2012; Rahimi et al., 2015; Lee092

et al., 2015; Rahimi et al., 2017; Hoang and Mothe,093

2018; Kumar and Singh, 2019; Luo et al., 2020)094

and geographic document retrieval and classifica-095

tion (Gey et al., 2005; Adams and McKenzie, 2018).096

The objective of mention-level geocoding is to097

match phrases within a text to their corresponding098

locations. While this task is conceptually related to099

Wikipedia linking, it differs in that geospatial on-100

tologies include only the geospatial concepts, not101

in-text examples. (See also appendix B). Mention-102

level geocoding is typically preceded by geotag-103

ging, a named entity recognition task that finds104

location mentions in a text. The current work fo-105

cuses specifically on mention-level geocoding.106

Many systems for geocoding used hand-crafted107

rules and heuristics to predict geospatial labels for108

place name. Examples include the Edinburgh geop-109

arser (Grover et al., 2010), Tobin et al. (2010),110

Lieberman et al. (2010), Lieberman and Samet111

(2011), CLAVIN (Berico Technologies, 2012),112

GeoTxt (Karimzadeh et al., 2013), and Laparra113

and Bethard (2020). The most common features114

and heuristics were based on string matching, pop-115

ulation count, and type of place (city, country, etc.).116

As more shared tasks and annotated datasets 117

were proposed, geocoding systems began to take 118

the heuristics of rule-based systems and use them as 119

features in supervised machine learning models, in- 120

cluding logistic regression (WISTR, Speriosu and 121

Baldridge, 2013), support vector machines (Mar- 122

tins et al., 2010; Zhang and Gelernter, 2014), ran- 123

dom forests (MG, Freire et al., 2011; Lieberman 124

and Samet, 2012), stacked LightGBMs (DM_NLP, 125

Wang et al., 2019) and other statistical learning 126

methods (Topocluster, DeLozier et al., 2015; CBH, 127

SHS, Kamalloo and Rafiei, 2018). These sys- 128

tems typically operated in a two-step generate-then- 129

rerank framework, where first an information re- 130

trieval system produced candidate geospatial ontol- 131

ogy entries, a supervised machine-learning model 132

produced a score for each candidate, and the candi- 133

dates were reranked by those scores. 134

Recently, deep learning methods have been in- 135

troduced for toponym resolution. Rather than fol- 136

lowing the generate-then-rank approach of previ- 137

ous machine learning architectures, they approach 138

geocoding as a one-step classification problem by 139

dividing the Earth’s surface into an N × N grid, 140

where the neural network attempts to map place 141

names and their features to one of these N × N 142

categories (CamCoder, Gritta et al., 2018; Cardoso 143

et al., 2019; MLG, Kulkarni et al., 2020). Each sys- 144

tem has a unique neural architecture for combining 145

inputs to make predictions, based on convolutional 146

neural networks (CNNs) (CamCoder, Gritta et al., 147

2018; MLG, Kulkarni et al., 2020), recurrent neural 148

networks (RNNs) (Cardoso et al., 2019), or vector- 149

space models (Ardanuy et al., 2020). Though the 150

grid-based output formulation results in a large 151

label space for classification, the neural network 152
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models are able to more flexibly encode location153

mentions and the nearby context, leading to per-154

formance gains in distance-based metrics across155

several corpora.156

Our proposed approach combines the tight ontol-157

ogy integration of the generate-and-rerank feature-158

based systems with the robust text encoding of the159

deep neural network grid-classification systems.160

3 Proposed Methods161

We define the task of toponym resolution as fol-162

lows. We are given an ontology or knowledge163

base with a set of entries E = {e1, e2, ..., e|E|}.164

Each input is a text made up of sentences T =165

{t1, t2, . . . , t|T |} and a list of location mentions166

M = {m1,m2, ...,m|M |} in the text. The goal is167

to find a mapping function ej = f(mi) that maps168

each location mention in the text to its correspond-169

ing entry in the ontology.170

We approach toponym resolution using a can-171

didate generator followed by a candidate reranker.172

The candidate generator, G(m,E) → Em, takes173

a mention m and ontology E as input, and gener-174

ates a list of candidate entries Em, where Em ⊆ E175

and |Em| ≪ |E|. As the candidate generator must176

search a large ontology and produce only a short177

list of candidates, the goal for G will be high re-178

call and high runtime efficiency. The candidate179

reranker, R(m,Em) → Êm, takes a mention m180

and the list of candidate ontology entries Em, and181

sorts them by their relevance or importance to pro-182

duce a new list, Êm. As the candidate ranker needs183

to work only with a short list of candidates, the184

goal for R will be high precision, especially at rank185

1, with less of a focus on runtime efficiency.186

3.1 Candidate Generator187

Our candidate generator is inspired by prior work188

on geocoding in using information retrieval tech-189

niques to search for candidates in the ontology190

(Grover et al., 2010; Berico Technologies, 2012).191

Accurate candidate generation is essential, since192

the generator’s recall is the ceiling performance193

for the reranker. As we will see in section 5, our194

proposed candidate generator alone is competitive195

with complex end-to-end systems from prior work.196

Our sieve-based approach, detailed in alg. 1, tries197

searches ordered from least precise to most precise198

until we find ontology entries that match the loca-199

tion mention. We create one document in the index200

for each name ne of an entry e in the GeoNames201

Algorithm 1: Candidate generator.
Input: a location mention, m

a maximum number of candidates, k
the GeoNames ontology, E

Output: a list of candidate entries Em

// Index ontology
I ← ∅
for e ∈ E do

name← CANONICALNAME(E, e)
synonyms← SYNONYMS(E, e)
for n ∈ {name} ∪ synonyms do

I ← I ∪ {CREATEDOCUMENT(e, n)}
end

end
// Search for candidates
Em ← ∅
for t ∈ { EXACT, FUZZY, CHARACTERNGRAM,

TOKEN, ABBREVIATION, COUNTRYCODE } do
Em ← SEARCH(index,m, t)
if Em ̸= ∅ then

break
end

end
// Sort by population
key ← (e→ POPULATION(E, e))
Em ← SORT(Em, key)
// Select top entries
return top k elements of Em

ontology. A location mention m is matched to a 202

name ne by attempting a search with each of the 203

following matching strategies, in order: 204

EXACT m exactly matches (ignoring whitespace) 205

the string ne 206

FUZZY m is within a 2 character Levenshtein edit 207

distance (ignoring whitespace) of ne 208

CHARACTERNGRAM m has at least one charac- 209

ter 3-gram overlap with ne 210

TOKEN m has at least one token (according to the 211

Lucene StandardAnalyzer) overlap with ne 212

ABBREVIATION m exactly matches the capital 213

letters of ne 214

COUNTRYCODE e is a country and m exactly 215

matches a e’s country code 216

Once one of the searches has retrieved a list of 217

matching names, we recover the ontology entry 218

for each name, sort those ontology entries by their 219

population in the GeoNames ontology, and return 220

the k most populous ontology entries. This list, 221

Em is then the input to the candidate reranker. 222

3.2 Candidate Reranker 223

Our candidate reranker is inspired by prior work 224

on medical concept normalization (Xu et al., 2020; 225

Ji et al., 2020), extended to incorporate aspects 226

uniquely important for geocoding. Similar to prior 227
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work, and as shown in fig. 1, the candidate reranker228

takes a mention to be classified, m, and the list229

of candidate entities from the candidate genera-230

tor, Em, encodes them with a transformer neu-231

ral network, and uses these encoded representa-232

tions to perform list-wise classification to select the233

most probable entry. For each candidate e = Emi ,234

the input to the transformer is of the form [CLS]235

m [SEP] Ce [SEP] Se
1 [SEP] . . . [SEP] Se

|Se|236

[SEP], where Ce = CANONICALNAME(E, e) is237

the canonical name of e in the ontology, and238

Se = SYNONYMS(E, e) is the list of alternate239

names of e in the ontology. We then represent240

each candidate with the contextualized representa-241

tion of its [CLS] token from the last layer of the242

transformer, a vector we will refer to as [CLS]Emi
.243

Note that [CLS]Emi
∈ RH , where H is the size of244

the transformer’s contextualized representations.245

We extend this architecture with three features246

that are important for geocoding: population, type247

of geographical feature, and mention context.248

Population: Locations in text are more likely to249

refer to high population places than low population250

places (e.g., Paris, France vs. Paris, Texas, USA).251

We look up the population of Emi in the ontology,252

and take the logarithm of that population. We refer253

to this scalar as log(POPEmi
).254

Feature Code: Locations in text are more likely255

to refer to some types of geographical features than256

others (e.g., San José, the capital of Costa Rica, vs.257

San José, the province). We look up the feature258

code1 of Emi in the ontology, and transform the259

feature code into a one-hot vector FCEmi
∈ RN260

where N is the total number of feature codes in the261

GeoNames ontology262

Mention context: The text around a mention263

may provide clues (e.g., the context Minnesota264

State Patrol urges motorists to drive with cau-265

tion. . . in Becker, Clay, and Douglas suggests that266

Clay refers to Clay County, Minnesota, even though267

Clay County, Missouri is more populous). We find268

the sentence in the text T containing m, TSENT(m),269

and encode the c-sentence window including it270

with the same transformer as was used to encode271

m. The input is of the form [CLS] TSENT(m)−c . . .272

TSENT(m)+c [SEP]. We take the contextualized rep-273

1In GeoNames, for example, the feature code PPLC means
capital of a political entity. GeoNames feature codes are
listed in detail at http://download.geonames.org/
export/dump/featureCodes_en.txt
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LGL 3112 411 419 58 931 119
GeoWebNews 1641 140 281 20 477 40
TR-News 925 82 68 11 282 25

Table 1: Numbers of articles and manually annotated
toponyms in the train, development, and test splits of
the toponym resolution corpora.

resentation of the [CLS] token from the last layer 274

of the transformer, [CLS]SENT(m)±c ∈ RH . 275

To combine all of these new features with the tra- 276

ditional representation of the candidate from prior 277

work, [CLS]Emi
, we concatenate all the vectors 278

before the classification layers. So the concate- 279

nated vector for each candidate entry Emi would 280

be VEmi
= [CLS]Emi

⊕log(POPEmi
)⊕FCEmi

⊕ 281

[CLS]SENT(m)±c with VEmi
∈ R2H+N+1. Aggre- 282

gating across the k, candidates, we form a ma- 283

trix MEm ∈ Rk×(2H+N+1). We then feed this 284

matrix into two linear layers with the weights 285

W1 ∈ R150×(2H+1+N) and W2 ∈ R1×150, and 286

compute a standard classification loss: 287

LR = y · log(softmax((MEmW
T
1 )W T

2 )) (1) 288

where y is a one-hot vector, and |y| = |Em|. 289

4 Experiments 290

4.1 Datasets 291

We conduct experiments on three toponym resolu- 292

tion datasets2. Local Global Lexicon (LGL; Lieber- 293

man et al., 2010) was constructed from 588 news 294

articles from local and small U.S. news sources. 295

GeoWebNews (Gritta et al., 2019) was constructed 296

from 200 articles from 200 globally distributed 297

news sites. TR-News (Kamalloo and Rafiei, 2018) 298

was constructed from 118 articles from various 299

global and local news sources. As there are no 300

standard publicly available splits for these datasets, 301

we split each dataset into a train, development, and 302

test set according to a 70%, 10% , and 20% ratio. 303

To enable replicability, we will release these splits 304

upon publication. The statistics of all datasets are 305

shown in table 1. 306

2We also considered Weissenbacher et al. (2019), but the
test set was never released (we requested it from the authors),
making comparison to prior work on that dataset difficult.
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Figure 2: An entry for Tucson in GeoNames

4.2 Database307

GeoNames is a crowdsourced database of geospa-308

tial locations, with almost 7 million entries and a309

variety of information such as geographic coordi-310

nates (latitude and longitude), alternative names,311

feature type (country, city, river, mountain, etc.),312

population, elevation, and positions within a politi-313

cal geographic hierarchy. An example entry from314

GeoNames is shown in fig. 2. The data in Geo-315

Names comes from multiple sources3, such as pub-316

lic and open gazetteers, which can vary in quality,317

scope, resolution, or age (Ahlers, 2013). Users can318

edit data in a wiki-like interface.319

In our experiments, the GeoNames ontology320

plays an important role in both the candidate gen-321

erator and the candidate reranker. The candidate322

generator produces a list of candidate entries from323

GeoNames and the candidate reranker selects the324

best entry by utilizing multiple meta-data obtained325

from GeoNames, including canonical names, alter-326

nate names, populations, and feature codes.327

4.3 Evaluation Metrics328

There is not yet agreement in the field of toponym329

resolution on a single evaluation metric. There-330

fore, we consider metrics measuring matching of331

ontology entry IDs between system predictions and332

human annotations, as well as metrics measuring333

geographical distance between system predictions334

and human annotations.335

Accuracy is the number of location mentions336

where the system predicted the correct database en-337

try ID, divided by the number of location mentions.338

Higher is better, and a perfect model would have339

accuracy of 1.0.340

3http://www.geonames.org/data-sources.
html

Accuracy@161km measures the fraction of 341

system-predicted (latitude, longitude) points that 342

were less than 161 km away from the human- 343

annotated (latitude, longitude) points. Higher is 344

better, and a perfect model would have Accu- 345

racy@161km of 1.0. 346

Mean error distance calculates the mean over 347

all predictions of the distance between each system- 348

predicted and human-annotated (latitude, longi- 349

tude) point. Lower is better, and a perfect model 350

would have a mean error distance of 0.0. 351

Area Under the Curve (AUC) calculates the 352

area under the curve of the distribution of geocod- 353

ing error distances. Lower is better, and a perfect 354

model would have a mean error distance of 0.0. 355

4.4 Implementation details 356

We implement the candidate reranker with Lucene4 357

v8.4.1 under Java 1.8. When indexing Geo- 358

Names, we also index countries under their ad- 359

jectival forms in Wikipedia5. We implement 360

the candidate reranker with the PyTorch6 v1.7.0 361

APIs in Huggingface Transformers v2.11.0 (Wolf 362

et al., 2020), using either bert-base-uncased or 363

bert-multilingual-uncased. We train with the 364

Adam optimizer, a learning rate of 1e-5, a maxi- 365

mum sequence length of 128 tokens, and a number 366

of epochs of 30. We explored a small number of 367

learning rates (1e-5, 1e-6, 5e-6) and epoch numbers 368

(10, 20, 30, 40). When training without context, we 369

use one Tesla V100 GPU with 32GB memory and 370

a batch size of 8. When training with context, we 371

use four Tesla V100 GPU with 32GB memory and 372

a batch size of 32. The total number of parameters 373

in our model is 168M and the training time is about 374

3 hours. 375

4.5 Systems 376

We compare a variety of geocoding systems: 377

SSPART is our proposed Search, Sort by Pop- 378

ulation, And Rerank by Transformer architecture. 379

We consider several variants of SSPART, compar- 380

ing English vs. multilingual versions of BERT, 381

and comparing no context sentences vs. with 382

c ∈ {0, 1, 2} (i.e., just the sentence containing m 383

up to the 5 sentences around m). 384

4https://lucene.apache.org/
5https://en.wikipedia.org/wiki/List_

of_adjectival_and_demonymic_forms_for_
countries_and_nations

6https://pytorch.org/
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Edinburgh .666 .676 147 .260 .687 .721 174 .250 .662 .676 183 .273
CamCoder .604 .695 144 .285 .509 .712 174 .293 .824 .882 128 .119

SSP .594 .671 201 .289 .644 .858 73 .165 .677 .735 187 .242
SSPART - .797 .821 57 .140 4.8 .886 .940 29.8 .060 1.8 .882 .897 63.5 .090 2.8 3.0
SSPART 0 .807 .823 55 .132 3.0 .865 .915 39.3 .075 5.5 .882 .882 110 .109 5.5 4.7
SSPART 1 .807 .816 65 .142 6.0 .868 .918 40.3 .073 4.8 .882 .897 64.9 .092 4.0 4.9
SSPART 2 .802 .814 68 .145 7.0 .865 .911 42.8 .078 6.5 .897 .912 64.0 .081 2.3 5.3
SSPART ✓ - .814 .828 60 .132 2.8 .879 .922 43.2 .072 4.0 .882 .897 65.0 .092 4.3 3.7
SSPART ✓ 0 .816 .831 62 .133 3.3 .872 .940 23.5 .057 1.8 .882 .897 64.6 .090 3.5 2.8
SSPART ✓ 1 .809 .833 59 .129 2.0 .875 .922 35.4 .073 3.8 .912 .927 40.6 .063 1.0 2.3
SSPART ✓ 2 .807 .823 61 .137 4.5 .872 .940 29.4 .060 2.5 .868 .882 72.6 .103 5.3 4.1

Table 2: Performance on the development sets. Higher is better for Accuracy and Accuracy@161km. Lower is
better for Mean Error and AUC. Edinburgh made no predictions for 24, 16, and 0 toponyms in LGL, GeoWebNews,
and TR-News, respectively. Since it is impossible to calculate distance-based metrics without coordinates, we skip
those toponyms, and as a result overestimate the distance-based metrics for Edinburgh.

SSP is the Search-and-Sort-by-Population candi-385

date generator of SPART, without the transformer-386

based candidate reranker.387

CamCoder Gritta et al. (2018) introduced a con-388

volutional neural network (CNN) system that ap-389

proaches geocoding as a classification task where390

the model predicts one of 7823 classes, each being391

a 2x2 degree tile representing part of the world’s392

surface. CamCoder takes two kinds of input: lex-393

ical and geographic. The lexical input combines394

context words, location mentions, and the target395

mention, encoding them with CNN layers. The ge-396

ographic input is a map vector that encodes a pop-397

ulation distribution over the 7823 map tiles based398

on the location mentions in the target mention’s399

context7. The two kinds of inputs are concatenated400

and fed into dense layers and final softmax layer401

to make the prediction. CamCoder is currently the402

state-of-the-art on several geocoding datasets (in-403

cluding LGL), and its code is publically available8.404

7The original CamCoder code, when querying GeoNames
to construct its input population vector from location mentions
in the context, assumes it has been given canonical names
for those locations. Since canonical names are not known
before locations have been resolved to entries in the ontology,
we have CamCoder use mention strings instead of canonical
names for querying GeoNames.

8We also considered MLG (Kulkarni et al., 2020), which
slightly outperforms CamCoder on two datasets (while being
slightly worse on LGL), but its neither its code nor its data
splits are available.

Edinburgh Grover et al. (2010) introduced a 405

rule-based system that uses heuristics such as popu- 406

lation count, clustering (spatial minimization), type 407

and country and some contextual information (con- 408

tainment, proximity, locality, clustering) to score, 409

rank, and choose a candidate. The Edinburgh geop- 410

arser was the state-of-the-art on LGL and several 411

other datasets before CamCoder. 412

5 Results 413

We first perform model selection on the develop- 414

ment sets, comparing the SSPART model variants 415

described in section 4.5. Results are shown in ta- 416

ble 2. Because we have many different evaluation 417

metrics that do not always tell exactly the same 418

story, we include an average rank metric that calcu- 419

lates a ranking of all SSPART models according to 420

that metric, and scores each SSPART model as the 421

average over its ranks across all metrics. So, for 422

example, the best model, SSPART with a multilin- 423

gual transformer and context of the three sentences 424

around the mention (c = 1), achieves average rank 425

of 2.0 on LGL because it was rank 3 for Accuracy, 426

rank 1 for Accuracy@161km, rank 3 for Mean 427

Error, and rank 1 for AUC. 428

All of our SSPART models outperform both 429

CamCoder and Edinburgh on all development 430

sets and across all metrics. The average rank of 431

SSPART is consistently above CamCoder and Ed- 432

inburgh (p values between 0.0000 and 0.0066), ac- 433
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Edinburgh .611 .632 119 .290 .738 .773 146 .203 .750 .756 149 .218
CamCoder .580 .651 82 .288 .572 .665 155 .290 .660 .778 89 .196
SSPART ✓ 1 .759 .783 67 .166 – – – – – – – –
SSPART ✓ 0 – – – – .782 .832 60 .131 – – – –
SSPART ✓ 1 – – – – – – – – .777 .798 92 .166
SSPART ✓ 1 ✓ .740 .771 73 .182 .818 .855 50 .113 .805 .812 97 .158

Table 3: Performance on the test sets. Higher is better for Accuracy and Accuracy@161km. Lower is better for
Mean Error and AUC. Edinburgh made no predictions for 28, 49, and 106 toponyms in LGL, GeoWebNews, and
TR-News, respectively. Since it is impossible to calculate distance-based metrics without coordinates, we skip those
toponyms, and as a result overestimate the distance-based metrics for Edinburgh.

cording to the Friedman test with the Conover post434

hoc test for pairwise comparisons. All SSPART435

models also outperform the candidate generator436

alone (SSP), with the candidate reranker substan-437

tially improving performance (p values between438

0.0000 and 0.0024). For monolingual SSPART439

models, adding context slightly worsened their av-440

erage rank, while for multilingual models, adding441

context slightly improved their average rank. The442

impact of population and feature code were small;443

see appendix C for details. Overall, we conclude444

that the main driver of increased performance is445

the transformer-based reranker.446

For evaluation on the test set, we first select the447

best model by average rank for each of the three448

development datasets. We also train a model where449

we combine the LGL, GeoWebNews, and TR-450

News training sets, and use the setting that achieved451

the best average rank across all metrics and de-452

velopment datasets: multilingual transformer and453

context of the three sentences around the mention454

(c = 1). The first three models represent systems455

tuned to specific datasets, while the last model rep-456

resents a system trained for more general use.457

Table 3 shows that our proposed model, SSPART,458

outperforms CamCoder and Edinburgh across all459

three public toponym resolution test sets on all460

metrics except for mean error on TR-News9. The461

more general SSPART model trained on the com-462

bined LGL, GeoWebNews, and TR-News outper-463

forms the dataset-specific models on GeoWebNews464

9The Friedman test for comparing system average ranks is
only reliable when comparing more than 6 systems, so we do
not report p-values here.

and TR-News, though not on LGL. We release 465

the general model for English geocoding under 466

the Apache License v2.0, for off-the-shelf use at 467

https://<anonymized>. 468

6 Qualitative Analysis 469

We qualitatively analyzed some of the errors that 470

CamCoder and different variants of SSPART made. 471

Example 1 from table 4 shows an example where 472

CamCoder fails but SSPART succeeds, by more 473

effectively using geospatial metadata, such as the 474

population and an alternate name for District of 475

Columbia in GeoNames, Washington, D.C.. Exam- 476

ple 2 from table 4 shows an example where Lucene 477

search fails but SSPART without context succeeds, 478

by not relying too heavily on population alone and 479

instead jointly considering the name, population, 480

and feature code information (ADM2 represents a 481

county, PPLA2 represents a city). Example 3 from 482

table 4 shows an example where SSPART without 483

context fails but SSPART with context succeeds, by 484

taking advantage of the Minnesota in the context to 485

select the Clay County that would otherwise seem 486

implausible due to its lower population. 487

Finally, example 4 from table 4 shows an ex- 488

ample where our best SSPART model still fails. 489

Though the candidate generator finds the correct on- 490

tology entry in its top-k list, the candidate reranker 491

is unable to sort that entry to the top. Neither the 492

name, population, nor feature code would suggest 493

the correct candidate, and the nearby context is also 494

insufficient to disambiguate. Looking at the entire 495

document, many of the other toponym mentions 496
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1 Ahlstrom said that the results found at the
Washington Latin Public Charter School in
Washington, D.C.

District of Columbia 552433 1
Washington County 147430 1

2
It was Los Angeles police officers she at-
tempted to blow up.

Los Angeles County 9818605 ADM2 1 2
Los Angeles 3971883 PPLA2 2 1
Los Angeles 125430 PPLA2 3 3
Los Angeles 4217 PPL 4 4

3 the Minnesota State Patrol urges motorists to
drive with caution as flooding continues to
affect area highways. Water over the road-
way is currently affecting the following areas
in Becker, Clay, and Douglas

Clay County 221939 Missouri 1 4
Clay County 190865 Florida 2 3
Clay County 58999 Minnesota 3 1
Clay County 26890 Indiana 4 2

4
he writes, as do my efforts to insure
New London is a safe community.

New London County 274055 ADM2 1 3
New London 27179 PPL 2 1
New London 7172 PPL 3 2
New London 1882 PPL 4 4

Table 4: Examples of predictions from CamCoder, our candidate generator with no reranking (SSP), our generate-
and-rerank system without context (SSPART c = -), and our full system including context (SSPART). Target
location mentions are underlined. Human annotated ontology entries are in bold.

are located in the same state, but even if we ex-497

panded SSPART’s context window, it would not be498

able to tell they were in the same state without first499

resolving them to ontology entries.500

7 Limitations and future research501

SSPART’s context window is currently limited to502

five sentences, and thus cannot take advantage of503

document-level signals. In the future, we will504

explore integrating document-level features into505

SSPART, such as spatial minimality (Grover et al.,506

2010) which assumes that place names in a text507

tend to refer to geospatial regions that are in close508

spatial proximity to each other. This might be509

achieved by jointly reasoning over the candidate510

entries of all location mentions in a document, or511

by a strategy of resolving easy location mentions512

before hard ones.513

SSPART’s candidate generator is currently based514

on information retrieval. This is efficient but not515

very flexible in string matching, and when the can-516

didate generator fails to produce the correct candi-517

date entry, the candidate reranker also necessarily518

fails. In the future, we will explore whether it is519

possible to replace this generator with a neural net-520

work candidate generator to provide more robust521

string matching while still retraining reasonable ef-522

ficiency. We are also interested in architectures for 523

combining the candidate generator and candidate 524

reranker into a single model, which would avoid 525

the problems of a candidate generator that fails. 526

SSPART is limited by its training and evaluation 527

data, which covers only thousands of English to- 528

ponyms from news articles, while there are many 529

millions of toponyms across the world. It is likely 530

that there are regional differences in SSPART’s 531

accuracy that will need to be addressed by future 532

research. 533

8 Conclusion 534

We propose a new toponym resolution architec- 535

ture – Search, Sort by Population, And Rerank by 536

Transformer (SSPART) – that combines the tight 537

ontology integration of generate-and-rerank sys- 538

tems with the robust text encoding of deep neu- 539

ral networks. SSPART consists of an information 540

retrieval-based candidate generator and a BERT- 541

based reranker that incorporates features important 542

to toponym resolution such as population, type of 543

location, and textual context around the toponym. 544

We evaluate our proposed architecture against prior 545

state-of-the-art, using multiple evaluation metrics 546

and multiple datasets. SSPART achieves new state- 547

of-the-art performance on all datasets. 548
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SSPART -fc -pop .802 .819 64 .141 .865 .925 39.5 .072 .897 .912 64.0 .081
SSPART -fc .792 .819 68 .141 .861 .918 34.7 .072 .868 .882 65.7 .100
SSPART -pop .807 .828 61 .134 .865 .915 31.9 .073 .897 .912 42.7 .074
SSPART .809 .831 56 .133 .886 .932 29.9 .062 .882 .897 86.0 .096

Table 5: Performance on the development sets when ablating the feature code (-fc) and population (-pop) features.
Higher is better for Accuracy and Accuracy@161km. Lower is better for Mean Error and AUC.

names, which are usually short phrases. These ar-771

tifacts are trained on English books and English772

Wikipedia and released under an Apache 2.0 li-773

cense which is compatible with our use.774

The intended use of our geocoding model is775

matching English place names in text to the Geo-776

Names ontology. Though GeoNames covers mil-777

lions of place names, our evaluation corpora cover778

only English news articles, and thus the perfor-779

mance we report is only predictive of performance780

in that domain.781

B Difference between Toponym782

resolution and Wikipedia linking783

Wikipedia includes in-text examples for all its con-784

cepts, while GeoNames is an ontology only; it has785

no in-text examples for its concepts. The only in-786

text examples come from small-scale training cor-787

pora like LGL, GeoWebNews, or TR-News, which,788

as shown in table 1, include only a tiny fraction789

of GeoNames’s 7 million geographical concepts.790

As a result, many approaches to Wikipedia linking791

are difficult to apply to geocoding. For example,792

Yamada et al. (2022)’s approach of jointly training793

token and concept embeddings assumes there are794

text examples of all concepts.795

C Feature ablation796

Table 5 shows performance when the feature code797

and population features are removed from the798

SSPART model. The features help slightly on LGL799

and GeoWebNews and hurt slightly on TR-News.800
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