
Functional Rényi Differential Privacy for
Generative Modeling

Dihong Jiang 1 2 Sun Sun 1 3 Yaoliang Yu 1 2

Abstract
Recently, Rényi differential privacy (RDP) be-
comes an alternative to the ordinary differential
privacy (DP) notion, for its convenient compo-
sitional rules and flexibility. However, exist-
ing mechanisms with RDP guarantees are based
on randomizing a fixed, finite-dimensional vec-
tor output. In this work, following Hall et al.
(2013) we further extend RDP to functional out-
puts, where the output space can be infinite-
dimensional, and develop all necessary tools,
e.g. (subsampled) Gaussian mechanism, com-
position, and post-processing rules, to facilitate
its practical adoption. As an illustration, we ap-
ply functional RDP (f-RDP) to functions in the
reproducing kernel Hilbert space (RKHS) to de-
velop a differentially private generative model
(DPGM), where training can be interpreted as
releasing loss functions (in an RKHS) with
RDP guarantees. Empirically, the new training
paradigm achieves a significant improvement in
privacy-utility trade-off compared to existing al-
ternatives when ϵ = 0.2.

1. Introduction
Differential privacy (DP, Dwork, 2006) becomes the de-
facto standard technique for releasing statistics of sensitive
databases, which is designed to bound the output change
of a randomized mechanism M given an incremental in-
put deviation. Recently, Mironov (2017) generalizes DP
to Rényi differential privacy (RDP) through α-Rényi diver-
gence (Rényi, 1961), which shares many properties with
the ordinary DP yet with easier composition analysis.

The popular mechanisms (e.g. Gaussian) towards DP or
RDP essentially randomize a finite-dimensional vector out-
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put with noises. However, vector-based DP mechanisms
are not readily amenable to functions, because (1) the di-
mension of a function can be infinite (e.g., kernel func-
tions); (2) a function over a real-valued domain is charac-
terized by infinitely many points (Hall et al., 2013), which
makes it difficult to bound its sensitivity in the same way
as the vector case in Dwork et al. (2014). Examples that re-
quire a functional DP mechanism include privately releas-
ing the reward function in reinforcement learning (Wang &
Hegde, 2019), the kernel function in kernel density estima-
tion (Hall et al., 2013) and DPGM in this work.

Hall et al. (2013) made the most fundamental contribution
to extending DP to functions. Essentially, the functional
Gaussian mechanism is achieved by adding a sample path
of Gaussian process to a function, in contrast to adding
Gaussian noise to a vector. Evaluating the released DP
function at arbitrarily many points (which will form a vec-
tor) will retain the same DP guarantee. However, there are
no composition theorems and subsampled Gaussian mech-
anisms developed for functional DP in Hall et al. (2013),
thus restricting its use in deep learning.

Due to the theoretical convenience and practical flexibility
of RDP, in this work we aim to extend RDP to functions,
with all necessary tools to facilitate its adoption in deep
learning. Furthermore, we demonstrate its value via a par-
ticular application in DPGM where the loss function is in a
RKHS. Our contributions can be summarized as:

• Theoretically, we develop the functional RDP, which is
equipped with many useful tools including (subsampled)
Gaussian mechanism, composition and post-processing
theorems. We will show that functional RDP will share
many important results with the vector-based variant.

• Empirically, with functional RDP, we propose a novel
DPGM training paradigm by privatizing the loss function
in RKHS, rather than truncating the RKHS to a finite-
dimensional space and injecting Gaussian noise therein
as in existing works. Our method is evaluated and com-
pared across a wide variety of image datasets and DP
guarantees, where our method consistently outperforms
other baselines by a large margin. Notably, our method
indicates better scalability at more stringent DP guaran-
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tees (e.g., ϵ = 1 and 0.2), compared to state-of-the-art
(SoTA) baselines.

2. RDP for functions (f-RDP)
For simplicity, we call ordinary DP (Dwork, 2006) v-RDP,
ordinary RDP (Mironov, 2017) v-RDP, and functional DP
(Hall et al., 2013) f-DP. Details are deferred to Appendix A.
In this section, we aim to extend the definition of RDP to
functional outputs, along with its associated calculus rules
to facilitate practical adoption. In particular, we will show
that the main results for v-RDP all extend to f-RDP.

2.1. Definition

Consider a class of functions over T = Rd, i.e. {fD : D ∈
D} ⊆ RT . Analogous to Definition A.6, a weaker version
of f-RDP based on cylinder sets is defined as follows:
Definition 2.1 ((α, ϵ)-RDP for functions, weaker). Define
cylinder sets CS,B = {f ∈ RT : (f(x1), . . . , f(xn)) ∈
B}, for all finite subsets S = (x1, . . . ,xn) of T and Borel
sets B ∈ Rn. Then, define Cs = {CS,B : B ∈ B(Rn)} and
F0 =

⋃
S:|S|<∞ Cs. We say the mechanism f̃D satisfies

(α, ϵ)-RDP over the field of cylinder sets, if for all adjacent
inputs D,D′ ∈ D,

Pr(f̃D ∈ A) ≤
(
exp(ϵ) Pr(f̃D′ ∈ A)

)α−1
α ,∀A ∈ F0.

(1)

Then, we give a stronger definition via α-Rényi divergence:
Definition 2.2 ((α, ϵ)-RDP for functions). Denote the
evaluation of function f̃D on any finite subsets S =

(x1, . . . ,xn) of T by {f̃D(x1), . . . , f̃D(xn)} := f̃D(S).
We say f̃D is (α, ϵ)-RDP, if for all adjacent inputs D,D′ ∈
D, Rényi’s α-divergence (of order α > 1) between the dis-
tributions of f̃D(S) and f̃D′(S) satisfies:

Dα

(
f̃D(S)∥f̃D′(S)

)
:= 1

α−1 logEx∼q

(
p(x)
q(x)

)α

≤ ϵ,

(2)

where p, q are the density of f̃D(S) and f̃D′(S).
Remark 2.3. Definition 2.2 essentially claims that the dis-
tribution of any finite number of evaluations of function f̃D
and f̃D′ satisfies Definition A.2 (v-RDP).
Remark 2.4. Definition 2.2 implies Definition 2.1.

2.2. Post-processing theorem

As any data-independent post-processing preserves DP
guarantee for v-RDP (Definition A.2), it also preserves DP
guarantee for f-RDP with Remark 2.3. Specifically,
Theorem 2.5 (Post-processing theorem of f-RDP). If a
function fD is (α, ϵ)-RDP, so is g ◦ fD, where g is a post-

processing mechanism that only depends on finite number
of outputs of fD.

2.3. Conversion to (ϵ, δ)-DP

With Remark 2.4, we can use Definition 2.1 and reach re-
duction to Proposition 3 and its proof in Mironov (2017),
by replacing the event from f(D) ∈ S to f̃D ∈ A.

Proposition 2.6 (f-RDP conversion to f-DP). A function
f̃D that is (α, ϵ)-RDP is (ϵ+ log 1/δ

α−1 , δ)-DP.

2.4. Composition theorems

We first derive the parallel composition theorem of f-RDP:

Theorem 2.7 (Parallel composition of f-RDP). Given a
partitioning function P , let D1, D2, . . . , Dm be the disjoint
partitions by executing P on D. If function fDi is (α, ϵi)-
RDP for i = 1, 2, . . . ,m, releasing (fD1

, . . . , fDm
) := fD

satisfies (α,maxi∈{1,2,...,m} ϵi)-RDP.

Now we move on to the sequential composition theorem
of f-RDP (extension of Theorem A.3 to functional mecha-
nisms), which is important and required for composing the
total privacy cost when we sample different sample paths
from the Gaussian process over training iterations.

Theorem 2.8 (Sequential composition of f-RDP). Let
{fD : D ∈ D} and {gD : D ∈ D} be two families
of functions indexed by dataset D, where fD ∈ RT

1 is
(α, ϵ1)-RDP and gD : RT

1 → RS
2 is (α, ϵ2)-RDP. Re-

leasing the sequentially composed functional mechanism
hD = (fD, gD ◦ fD) ∈ RT

1 × RS
2 = (R1 × R2)

T×S

satisfies (α, ϵ1 + ϵ2)-RDP.

2.5. Gaussian mechanism

We also need to develop a Gaussian mechanism to retain
f-RDP. For convenience, we first rewrite Proposition A.5 in
a similar form to Proposition 3 in Hall et al. (2013) as:

Definition 2.9 (Gaussian mechanism for v-RDP, with
non-isotropic Gaussian). Let M ∈ Rd×d be a positive def-
inite symmetric matrix, the family of vectors {vD : D ∈
D} ∈ Rd satisfies supD∼D′ ∥M− 1

2 (vD −vD′)∥2 ≤ ∆ for
all adjacent datasets D,D′ ∈ D. The Gaussian mechanism

ṽD = vD + σ∆ · N (0,M) (3)

satisfies (α, α
2σ2 )-RDP.

Now we define the Gaussian mechanism for f-RDP:

Proposition 2.10 (Gaussian mechanism for f-RDP). Let G
be a sample path of a Gaussian process having mean zero
and covariance function k. Let M denote the Gram matrix
(as defined in Eq. (7)). Let {fD : D ∈ D} be a family of
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functions indexed by database D. Releasing f̃D = fD +
σ∆ ·G satisfies (α, α

2σ2 )-RDP whenever Eq. (8) holds.

Particularly, when the function is in a RKHS H, we have:

Corollary 2.11. For {fD : D ∈ D} ⊆ H, releasing f̃D =
fD + σ∆ ·G is (α, α

2σ2 )-RDP (with respect to the cylinder
σ-field) whenever supD,D′ ∥fD − fD′∥H ≤ ∆ and when
G is a sample path of a Gaussian process with mean zero
and covariance function k given by the kernel of H.

2.6. Subsampled Gaussian mechanism (SGM)

Subsampling is a crucial component in existing DP deep
learning algorithms (e.g., DP-SGD (Abadi et al., 2016)),
which requires composing the privacy cost (ϵ) for each sub-
sampled batch over training iterations. This also applied to
functional mechanisms when we subsample a batch S from
the whole dataset D to index the function fS .

The current dominant python packages for DP, e.g., Tensor-
flow privacy and Opacus, apply v-RDP and compute the to-
tal ϵ in three main steps: (1) compute the v-RDP guarantee
for an SGM, based on a numerical procedure in Mironov
et al. (2019); (2) sequentially compose v-RDP over train-
ing iterations; (3) convert v-RDP to v-DP. Since in previous
sections we already showed that f-RDP shares the same re-
sults with v-RDP on steps (2) and (3), now we will show
that an SGM for f-RDP can also be reduced to v-RDP as
in Mironov et al. (2019), so the numerical procedure in
Mironov et al. (2019) (and associated python packages) is
amenable to f-RDP.

We apply the same subsampling strategy as in Mironov
et al. (2019). Each element of the subsampled set S is in-
dependently drawn from D with probability q. SGM for
f-RDP is given by f̃S = fS+σ∆·G, where ∆ and G are de-
fined in Proposition 2.10. The reduction is immediate: for
any finite set of points V = {x1, . . . ,xd} (where d < ∞),
fS(V ) will form a d-dimensional vector. Let gS(V ) =
M−1/2fS(V ), we have g̃S(V ) = gS(V ) + σ∆ · N (0, Id),
where gS(V ) is a d-dimensional vector and g̃S(V ) is the
same SGM as in Mironov et al. (2019). Therefore, f-RDP
shares the same guarantee of an SGM with v-RDP. An-
other intuition is that Mironov et al. (2019) reduce com-
puting the α-Rényi divergence of d-dimensional Gaussians
to 1-dimensional Gaussians, which guides all of their sub-
sequent derivations. When d → ∞, we can reach the
same reduction from infinite-dimensional Gaussian (Gaus-
sian process) to 1-dimensional Gaussian.

3. An application in DPGM
To demonstrate the empirical value of f-RDP, here we con-
sider a particular example of training a DPGM through
Maximum Mean Discrepancy (MMD). We defer the back-

ground to Appendix B.

3.1. Methodology

We use Gaussian kernel as our kernel function k, i.e.,
k(x,w) = exp{−∥x−w∥2

2

2h2 }. Define

fD =
1

N

N∑
i=1

k(xi, ·) =
1

N

N∑
i=1

ϕ(xi),

now we can rewrite Eq. (9) by plugging in fD. Privatizing
the terms relating to real data xi ∈ D (i = 1, 2, . . . , N )
amounts to privatizing the function fD ∈ H by Corol-
lary 2.11, which leads to our private training objective:

L̃MMD2 =
1

N

N∑
p=1

f̃D(xp)−
2

M

M∑
j=1

f̃D(wj) + r, (4)

where w is generated from a generative neural network gθ,
and r = 1

M2

∑M
j=1

∑M
q=1 k(wj ,wq) is irrelevant to real

data. Given the kernel is Gaussian, we can easily bound
the sensitivity of fD in RKHS norm. Wlog, assume D,D′

only differ in the last element, i.e., xN ̸= x′
N . Then,

(fD − fD′) =
1

N

N∑
i=1

ϕ(xi)−
1

N

N∑
i=1

ϕ(x′
i)

=
1

N

(
ϕ(xN )− ϕ(x′

N )
)

Since k(x,y) = ϕ(x)⊤ϕ(y), we have

∥fD − fD′∥2H =
1

N2

(
k(xN ,xN )− 2k(xN ,x′

N )

+ k(x′
N ,x′

N )
)
≤ 2

N2
:= ∆2

We follow the batch method in Hall et al. (2013) to release
function f̃D in practice, as it naturally fits the batch train-
ing manner, which amounts to sampling a path from the
Gaussian process specified by any finite collection (batch)
of points. Assuming the batch size is m, we concatenate
(x,w) = s (of size 2m), for saving an additional privacy
cost incurred by an additional sample path in each training
iteration. Define fD(s) = (fD(s1), . . . , fD(s2m)), and M
is a Gram matrix on s (similarly defined in Eq. (7)). Now
we release f̃D(x) and f̃D(w) via f̃D(s) in Eq.(4) by:

f̃D(s) ∼ N (fD(s), σ∆ ·M). (5)

We follow the approach in DP-MERF (Harder et al., 2021)
to encode labels in the MMD loss (see Appendix C) for
conditional generation.
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3.2. Experiments

We evaluate our method both qualitatively and quantita-
tively on three image benchmarks. Implementation details
are given in Appendix F.

Datasets: We consider widely used image benchmarks in
related works, i.e. MNIST (LeCun et al., 1998), Fashion
MNIST (Xiao et al., 2017), and CelebA (Liu et al., 2015).
For MNIST and Fashion MNIST, we generate images con-
ditioned on 10 respective labels. For CelebA, we condition
on gender. See Appendix E for more details.

Evaluation metrics: We evaluate and compare DPGMs
by two metrics via 60k generated images: (1) Fréchet In-
ception Distance (FID) (Heusel et al., 2017); (2) Classifi-
cation accuracy. We train a convolutional neural network
(CNN) as the classifier on generated images, then test the
classifier on real images, where the performance is mea-
sured by the classification accuracy. We take 5 runs and
report the average.

Baselines: (1) kernel-based methods: DP-MERF
(Harder et al., 2021), DP-HP (Vinaroz et al., 2022),
PEARL (Liew et al., 2022); (2) others: DP-CGAN
(Torkzadehmahani et al., 2019), GS-WGAN (Chen et al.,
2020), DP-Sinkhorn (Cao et al., 2021), G-PATE (Long
et al., 2021), DataLens (Wang et al., 2021), DPDM
(Dockhorn et al., 2022). All baselines are developed from
v-RDP or v-DP.

Privacy regimes: Note that according to Definition A.1,
the DP guarantee is weak when ϵ ≥ 10, because exp(10) ≈
2.2×104, whereas the two probabilities are presumed to be
comparable for practical deployment (e.g. ϵ ≤ 1). How-
ever, a line of recent SoTA DPGMs only generate accept-
able images at ϵ = 10 (Chen et al., 2020; Torkzadehma-
hani et al., 2019; Cao et al., 2021). Instead, we consider
three values of ϵ, i.e., 10, 1, 0.2, indicating three levels of
DP guarantees. We put comparison under (10, 10−5)-DP
in Appendix G.

3.3. Comparison with baselines

On MNIST and Fashion MNIST, while all baselines are
able to generate reasonable images under (10, 10−5)-DP
guarantee (see Appendix G), our method indicates more
visual improvements for smaller ϵ with more diversity and
less artifacts, as shown in Figures 1 and 2. The quantitative
comparison is summarized in Table 1. Although DPDM
is the only related work that is on a par with our method
when ϵ = 1, our method significantly outperforms other
baselines when ϵ = 0.2.

On a more complex colorful image dataset, i.e. CelebA,

Figure 1: Qualitative comparison under (1, 10−5)-DP on
MNIST and Fashion MNIST

Figure 2: Qualitative comparison under (0.2, 10−5)-DP on
MNIST and Fashion MNIST

Figure 3 shows that our method generates more diverse
face images with identifiable gender attributes compared
to baselines, which indicates its versatility and scalability.

Table 1: Quantitative comparison on MNIST and Fashion
MNIST (FMNIST).

Method ϵ
MNIST FMNIST

FID ↓ Acc ↑ FID ↓ Acc ↑
DP-MERF 1 118.3 80.5 104.2 73.1
GS-WGAN 1 489.8 14.3 587.3 16.6
DP-HP 1 - 74.0 - 67.0
PEARL 1 121.0 78.2 109.0 68.3
G-PATE 1 153.4 58.8 214.8 58.1
DataLens 1 186.1 71.2 195.0 64.8
DPDM 1 23.4 93.4 37.8 73.6
Ours 1 29.5 93.4 49.5 78.8

DP-MERF 0.2 119.3 75.2 151.3 67.4
PEARL 0.2 133.0 77.6 160.0 68.0
G-PATE 0.2 - 22.0 - 18.0
DataLens 0.2 - 23.4 - 22.3
DPDM 0.2 61.9 71.9 78.4 57.0
Ours 0.2 26.5 91.3 46.2 78.4
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(a) ϵ = 1 (b) ϵ = 0.2

Figure 3: The qualitative comparison on CelebA. δ = 10−5. Top row: female; bottom row: male. DPDM is unconditional.

4. Conclusion
We generalize RDP for vectors to functional mechanisms
and develop all building blocks, e.g. (subsampled) Gaus-
sian mechanisms, composition and post-processing theo-
rems, to facilitate its adoption in deep learning. We show
that those main results of v-RDP also hold for f-RDP.
Equipped with f-RDP, we propose a novel approach for
training a DPGM, by making the loss function in the RKHS
private without truncating the RKHS feature map. Experi-
mental results across different datasets and privacy costs in-
dicate that our method (equipped with f-RDP and retaining
the full discriminative capability of the kernel) consistently
outperforms other kernel-based methods (with v-RDP) as
well as non-kernel-based methods by a large margin. We
expect our work to bridge the gap between RDP and func-
tional mechanisms and enrich the family of DPGM.

References
Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B.,

Mironov, I., Talwar, K., and Zhang, L. Deep learning
with differential privacy. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communi-
cations Security, pp. 308––318, 2016.

Balog, M., Tolstikhin, I., and Schölkopf, B. Differentially
private database release via kernel mean embeddings.
In Proceedings of the 36th International Conference on
Machine Learning, 2018.

Cao, T., Bie, A., Vahdat, A., Fidler, S., and Kreis, K. Don’t
generate me: Training differentially private generative
models with Sinkhorn divergence. In Proceedings of the
34th Advances in Neural Information Processing Sys-
tems, 2021.

Chen, D., Orekondy, T., and Fritz, M. GS-WGAN: A
gradient-sanitized approach for learning differentially
private generators. In Proceedings of the 33rd Advances
in Neural Information Processing Systems, pp. 12673–
12684, 2020.

Dockhorn, T., Cao, T., Vahdat, A., and Kreis, K. Differen-
tially private diffusion models. arXiv:2210.09929, 2022.

Dwork, C. Differential privacy. In Automata, Lan-
guages and Programming: 33rd International Collo-
quium, ICALP 2006, Venice, Italy, July 10-14, 2006,
Proceedings, Part II 33, pp. 1–12, 2006.

Dwork, C., Roth, A., et al. The algorithmic foundations of
differential privacy. Found. Trends Theor. Comput. Sci.,
9(3-4):211–407, 2014.

Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B.,
and Smola, A. A kernel two-sample test. The Journal of
Machine Learning Research, 13(1):723–773, 2012.

Hall, R., Rinaldo, A., and Wasserman, L. Differential pri-
vacy for functions and functional data. The Journal of
Machine Learning Research, 14(1):703–727, 2013.

Harder, F., Adamczewski, K., and Park, M. DP-MERF:
Differentially private mean embeddings with random
features for practical privacy-preserving data generation.
In International Conference on Artificial Intelligence
and Statistics, pp. 1819–1827, 2021.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. GANs trained by a two time-scale update
rule converge to a local Nash equilibrium. In Proceed-
ings of 30th Advances in Neural Information Processing
Systems, volume 30, 2017.

5



Functional RDP for Generative Modeling

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Pro-
ceedings of the IEEE, 86(11):2278–2324, 1998.

Li, C.-L., Chang, W.-C., Cheng, Y., Yang, Y., and Póczos,
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A. Preliminary
In this section, we recall a few important related works in differential privacy.

A.1. Differential privacy for vectors (v-DP)

Definition A.1 ((ϵ, δ)-DP for vectors, (Dwork, 2006; Dwork et al., 2014)). A randomized mechanism M : D → R
with domain D and range R satisfies (ϵ, δ)-differential privacy if for any two adjacent inputs D,D′ ∈ D and for any
(measurable) subset of outputs S ⊆ R it holds that

Pr[M(D) ∈ S] ≤ exp(ϵ) · Pr[M(D′) ∈ S] + δ,

where adjacent inputs (a.k.a. neighbouring datasets) D,D′ only differ in one entry. Particularly, when δ = 0, we say that
M is ϵ-DP.

A.2. Rényi differential privacy for vectors (v-RDP)

Mironov (2017) first formalizes Rényi differential privacy (RDP) which extends ordinary DP by using α-Rényi divergence
(Rényi, 1961). RDP is shown to provide easier composition properties than the ordinary DP notion, and it can be easily
converted to (ϵ, δ)-DP.

Definition A.2 ((α, ϵ)-RDP for vectors, (Mironov, 2017)). A randomised mechanism M is (α, ϵ)-RDP if for all adjacent
inputs D,D′, Rényi’s α-divergence (of order α > 1) between the distributions of M(D) and M(D′) satisfies:

Dα(M(D)∥M(D′)) := 1
α−1 logEx∼q

(
p(x)
q(x)

)α

≤ ϵ,

where p and q are the density of M(D) and M(D′), respectively.

Conveniently, RDP is linearly composable:

Theorem A.3 (Sequential composition of v-RDP, (Mironov, 2017)). Let f : D → R1 be (α, ϵ1)-RDP, g : R1 ×D → R2

be (α, ϵ2)-RDP, then running f, g sequentially to obtain h : D → R1 × R2, h(D) :=
(
f(D), g(f(D), D)

)
satisfies

(α, ϵ1 + ϵ2)-RDP.

Similar to the parallel composition theorem for ordinary ϵ-DP as in McSherry (2009), we complement the parallel compo-
sition for v-RDP:

Theorem A.4 (Parallel composition of v-RDP). If mechanism Mi satisfies (α, ϵi)-RDP for i = 1, 2, . . . ,m, and
let D1, D2, . . . , Dm be the disjoint partitions by executing a deterministic partitioning function P on D. Releasing
M1(D1), . . . ,Mm(Dm) satisfies (α,maxi∈{1,2,...,m} ϵi)-RDP.

A.3. Gaussian mechanism for v-DP and v-RDP

Among multiple choices, the Gaussian mechanism is more suitable for the (ϵ, δ)-DP notion (where δ > 0) and provides
additional flexibility (e.g., sum of Gaussians is still a Gaussian). It is achieved by adding calibrated spherical Gaussian
noise to a vector output.

Proposition A.5 (Gaussian mechanism for v-DP and v-RDP, (Dwork et al., 2014; Mironov, 2017)). Given a d-dimensional
function f : D → Rd. The Gaussian mechanism is given by:

M(D) = f(D) + σ∆2f · N (0, Id),

where ∆2f = maxD∼D′,D,D′∈D ∥f(D) − f(D′)∥2. M(D) is said to be: (1) (ϵ, δ)-DP if σ ≥
√
2 ln(1.25/δ)∆2f/ϵ for

ϵ ∈ (0, 1), or (2) (α, α
2σ2 )-RDP.

A.4. Differential privacy for functions (f-DP)

To our knowledge, Hall et al. (2013) first extended the DP notion to functional outputs:

Definition A.6 ((ϵ, δ)-DP for functions, (Hall et al., 2013)). Consider a class of functions indexed by database D over
T = Rd, i.e. {fD : D ∈ D} ⊆ RT . Define cylinder sets CS,B = {f ∈ RT : (f(x1), . . . , f(xn)) ∈ B}, for all finite

7
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subsets S = (x1, . . . ,xn) of T and Borel sets B ∈ Rn. Then, define Cs = {CS,B : B ∈ B(Rn)} and F0 =
⋃

S:|S|<∞ Cs.

We say the mechanism f̃D satisfies (ϵ, δ)-DP over the field of cylinder sets, if for all D,D′ ∈ D:

Pr[f̃D ∈ A] ≤ exp(ϵ)× Pr[f̃D′ ∈ A] + δ, ∀A ∈ F0. (6)

Proposition 5 in Hall et al. (2013) points out that whenever Eq. (6) holds, for any finite set of points x1, . . . ,xn in T chosen
a-priori, releasing the vector [f̃D(x1), . . . , f̃D(xn)] satisfies (ϵ, δ)-DP.

Gaussian mechanism for f-DP is reached by injecting calibrated Gaussian process into the function:

Proposition A.7 (Gaussian mechanism for f-DP, (Hall et al., 2013)). Let G be a sample path of a Gaussian process having
mean zero and covariance function k. Let M denote the Gram matrix

M(x1, . . . ,xn) =

k(x1,x1) . . . k(x1,xn)
...

. . .
...

k(xn,x1) . . . k(xn,xn)

 . (7)

Let {fD : D ∈ D} be a family of functions indexed by database D. Releasing f̃D = fD +
√

2 ln(1.25/δ)∆/ϵ ·G satisfies
(ϵ, δ)-DP whenever

sup
D∼D′

sup
n<∞

sup
(x1,...,xn)∈Tn

∥∥∥∥∥M− 1
2 (x1, . . . ,xn)

fD(x1)− fD′(x1)
...

fD(xn)− fD′(xn)

∥∥∥∥∥
2

≤ ∆. (8)

Particularly, Hall et al. (2013) studied how to achieve (ϵ, δ)-DP for functions in a RKHS H:

Corollary A.8 (Corollary 9 in (Hall et al., 2013)). For {fD : D ∈ D} ⊆ H, releasing f̃D = fD +
√

2 ln(1.25/δ)∆/ϵ ·G
is (ϵ, δ)-DP (with respect to the cylinder σ-field) whenever supD,D′ ∥fD − fD′∥H ≤ ∆ and when G is a sample path of a
Gaussian process with mean zero and covariance function k that is given by the reproducing kernel of H.

B. Background and related works of DPGM
B.1. Background

Assuming a feature map ϕ : X → H, where H is a RKHS of some kernel, MMD (Gretton et al., 2012) is a non-parametric
distance measure that compares two distributions p, q by:

LMMD2(p, q) = ∥Ex∼p[ϕ(x)]− Ew∼q[ϕ(w)]∥2H,

where Ex∼p[ϕ(x)] ∈ H is also known as the (kernel) mean embedding (KME) of p.

Given a kernel k : X ×X → R, such that k(x,w) = ⟨ϕ(x), ϕ(w)⟩H, we can play the kernel trick to compute the (squared)
MMD in an alternative way:

LMMD2(p, q) = Ex,x′∼pk(x,x
′)− 2Ex∼p,w∼qk(x,w) + Ew,w′∼qk(w,w′),

which also implicitly lifts the KME into an infinite-dimensional space.

Sriperumbudur et al. (2011) suggest that if k is a characteristic kernel (e.g., Gaussian kernel), then MMD = 0 iff p = q,
which makes MMD a practical tool in many applications, such as two-sample test (Gretton et al., 2012) and generative
modeling (e.g., Li et al., 2015; 2017).

B.2. Related works

Balog et al. (2018) first proposed a DP database release mechanism via KME, by truncating the infinite-dimensional
RKHS to a finite-dimensional feature space through random Fourier features and adding Gaussian noise to the mean of
truncated feature embeddings of all data. This idea is further extended to generative modeling by DP-MERF (Harder et al.,
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2021). Specifically, given the samples drawn from two distributions: D = {xi}Ni=1 ∼ p (true) and W = {wj}Mj=1 ∼ q
(generated), empirical MMD with a kernel function k can be estimated by:

L̂MMD2(p, q) =
1

N2

N∑
i=1

N∑
p=1

k(xi,xp)−
2

NM

N∑
i=1

M∑
j=1

k(xi,wj) +
1

M2

M∑
j=1

M∑
q=1

k(wj ,wq). (9)

DP-MERF approximates the kernel by: k(x,w) = ϕ̂(x)⊤ϕ̂(w), where ϕ̂(x) ∈ Rd and d is the feature dimension.
The authors employ random Fourier features (Rahimi & Recht, 2007) as ϕ̂. Now the loss becomes: ∥ 1

N

∑N
i=1 ϕ̂(xi) −

1
M

∑M
j=1 ϕ̂(wj)∥22.

Let µ̂p = 1
N

∑N
i=1 ϕ̂(xi). Gaussian noise is added to µ̂p to obtain µ̃p with DP guarantees, which can be viewed as a

privatized statistics of the whole real dataset. Thereafter, the training objective is to match the KME of generated data and
µ̃p, without querying the real data any longer. A line of recent followup works, e.g., PEARL (Liew et al., 2022) and DP-HP
(Vinaroz et al., 2022), boils down to improving the finite-dimensional truncation, and shows some further improvement in
utility.

Compared to other DPGM approaches via DP-SGD (Abadi et al., 2016), DP-MERF is appealing in two aspects: (1) training
efficiency, since noise is added to the KME of the whole database once and for all, whereas DP-SGD has to clip and perturb
the gradient in each training iteration, which leads to significant training time overhead; (2) more scalable to smaller ϵ, e.g.,
ϵ = 1 or below.

However, we observe that the generation by DP-MERF (and related followup methods) resembles “mean-like” images,
which can be explained by their training objective, because matching the KME of all data is likely to lead to mode collapse.
Moreover, truncating the RKHS into a finite dimensional space makes it easy to add Gaussian noise, but at the cost of
potentially losing the fine ability to distinguish the data distribution from generation (any finite dimensional RKHS is not
characteristic). Therefore, we turn to study the possibility of adding noise in the infinite-dimensional RKHS directly.

C. Extension to the conditional setting of our method
We follow the approach in DP-MERF to encode labels in the MMD loss. Consider a new kernel k∗ as a product of two
existing kernels: k∗

(
(x,y), (x̃, ỹ)

)
= kx(x, x̃)ky(y, ỹ), where we set kx the same as the unconditional setting (i.e.,

Gaussian kernel) and ky to be polynomial kernel of order-1, i.e., ky(y, ỹ) = y⊤ỹ. Now the function that we want to
privately release becomes f∗

D = 1
N

∑N
i=1 k

∗((xi,yi), (·, ·)). The sensitivity of f∗
D is the same as fD. Thus, releasing f∗

D

by the batch method is achieved by replacing fD, k with f∗
D, k∗ in Eq. (5).

D. Proofs
Theorem A.4 (Parallel composition of v-RDP). If mechanism Mi satisfies (α, ϵi)-RDP for i = 1, 2, . . . ,m, and
let D1, D2, . . . , Dm be the disjoint partitions by executing a deterministic partitioning function P on D. Releasing
M1(D1), . . . ,Mm(Dm) satisfies (α,maxi∈{1,2,...,m} ϵi)-RDP.

Proof. Without loss of generality, given two neighboring datasets D and D′, assume that D contains one more element
than D′. Executing f on D and D′, we have partitions D1, D2, . . . , DK and D′

1, D
′
2, . . . , D

′
K , respectively. There exists

j such that (1) Dj contains one more element than D′
j , and (2) Ds = D′

s for s = 1, 2, . . . ,K and s ̸= j. Denote
M1(D1), . . . ,MK(DK) by M(D). Using additivity of Rényi divergence in (Van Erven & Harremos, 2014) (Thm 28):

Dα(M(D)||M(D′)) =

K∑
i=1

Dα(Mi(Di)||Mi(D
′
i))

=
∑

i=1,...,K,i ̸=j

Dα(Mi(Di)||Mi(D
′
i)) +Dα(Mj(Dj)||Mj(D

′
j))

≤ ϵj ≤ max
i=1,2,...,K

ϵi
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Proof. [of Remark 2.4] By taking logarithm and rearrangement from Eq. (1), we have

1

α− 1
log

(( P(f̃D ∈ A)

P(f̃D′ ∈ A)

)α
P(f̃D′ ∈ A)

)
≤ ϵ (10)

By the definition of cylinder sets, f̃D ∈ A implies that f̃D(S) is in some sets B for any finite subsets S = (x1, . . . ,xn) of
T . Thus,

P(f̃D ∈ A) = P(f̃D(S) ∈ B) =

∫
S

p(x) dµ(x)

where p is the density of f̃D(S). Now we can translate Eq. (10) into

1

α− 1
log

((∫
S
p(x) dµ(x)∫

S
q(x) dµ(x)

)α ∫
S

q(x) dµ(x)
)
≤ ϵ

Note that p, q are non-negative, so
∫
(p(x)q(x) )

αq(x) dµ(x) ≥
∫
S
(p(x)q(x) )

αq(x) dµ(x). Compared to Eq. (2), it now suffices to
show ∫

S

(
p(x)

q(x)
)αq(x) dµ(x) ≥

(∫
S
p(x) dµ(x)∫

S
q(x) dµ(x)

)α ∫
S

q(x) dµ(x)

Define p∗(x) = p(x)1(x∈S)∫
S
p(x) dµ(x)

, and q∗ is similarly defined. All we want to show reduces to

∫ (p∗(x)
q∗(x)

)α
q∗(x) dµ(x) ≥ 1

⇔ Ex∼q∗ [(
p∗

q∗
)α] ≥

(
Ex∼q∗ [

p∗

q∗
]
)α

= 1

where the final step follows from Jensen’s inequality.

Theorem 2.5 (Post-processing theorem of f-RDP). If a function fD is (α, ϵ)-RDP, so is g◦fD, where g is a post-processing
mechanism that only depends on finite number of outputs of fD.

Proof. Given any finite subsets S, we reach the reduction of proof of the post-processing theorem in (Mironov, 2017):

Dα(fD(S)||fD′(S)) ≥ D(g(fD(S))||g(fD′(S)))

Proposition D.1 (f-RDP conversion to f-DP). A function f̃D that is (α, ϵ)-RDP is (ϵ+ log 1/δ
α−1 , δ)-DP.

Proof. Here we use Definition 2.1 (and associated notations) in this proof. To show that an (α, ϵ)-RDP function satisfies
(ϵ′, δ)-DP for functions, where ϵ′ = ϵ+ log 1/δ

α−1 , the objective becomes to show P[f̃D ∈ A] ≤ exp(ϵ′)× P[f̃D′ ∈ A] + δ.
By Definition 2.1, we have

P(f̃D ∈ A) ≤
(
exp(ϵ)P(f̃D′ ∈ A)

)α−1
α , ∀A ∈ F0

Denote P[f̃D′ ∈ A] by Q,

• If exp(ϵ)Q ≤ δα/(α−1), then

P(f̃D ∈ A) ≤
(
exp(ϵ)Q

)α−1
α ≤ δ ≤ exp(ϵ′)Q+ δ

10
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• If exp(ϵ)Q > δα/(α−1), then

P(f̃D ∈ A) ≤
(
exp(ϵ)Q

)α−1
α

= exp(ϵ)Q
(
exp(ϵ)Q

)− 1
α

≤ exp(ϵ)Q · δ−
1

α−1

= exp(ϵ+
log 1/δ

α− 1
)Q

≤ exp(ϵ′)Q+ δ

Theorem 2.7 (Parallel composition of f-RDP). Given a partitioning function P , let D1, D2, . . . , Dm be the disjoint parti-
tions by executing P on D. If function fDi

is (α, ϵi)-RDP for i = 1, 2, . . . ,m, releasing (fD1
, . . . , fDm

) := fD satisfies
(α,maxi∈{1,2,...,m} ϵi)-RDP.

Proof. Given any finite subsets S = (x1, . . . ,xn) ⊂ T , we have

Dα(fD(S)||fD′(S)) =

K∑
i=1

Dα(fDi
(S)||fD′

i
(S))

≤ max
j∈{1,2,...,K}

ϵj

Theorem 2.8 (Sequential composition of f-RDP). Let {fD : D ∈ D} and {gD : D ∈ D} be two families of functions
indexed by dataset D, where fD ∈ RT

1 is (α, ϵ1)-RDP and gD : RT
1 → RS

2 is (α, ϵ2)-RDP. Releasing the sequentially
composed functional mechanism hD = (fD, gD ◦ fD) ∈ RT

1 ×RS
2 = (R1 ×R2)

T×S satisfies (α, ϵ1 + ϵ2)-RDP.

Proof. According to Definition 2.2, our objective is to show for any finite subsets X = (x1, . . . ,xn) of T and Y =
(y1, . . . ,ym) of S,

Dα(hD(X,Y )||hD′(X,Y )) ≤ ϵ1 + ϵ2

⇔ Dα

((
(fD(X), gD(fD, Y )

)
||
(
fD′(X), gD′(fD′ , Y )

))
≤ ϵ1 + ϵ2

Here we adapt the proof of Proposition 1 in (Mironov, 2017). Let F be the distribution of fD(X), G be the distribution of
gD(fD, Y ), H = (F,G), and F ′, G′, H ′ are similarly defined on adjacent dataset D′.

exp[(α− 1)Dα(hD(X,Y )||hD′(X,Y ))] =

∫
R1×R2

H(x, y)αH ′(x, y)1−α dxdy

=

∫
R1

∫
R2

[F (x)G(x, y)]α[F ′(x)G′(x, y)]1−α dx dy

=

∫
R1

F (x)αF ′(x)1−α
[ ∫

R2

G(x, y)αG′(x, y)1−α dy
]
dx

≤
∫
R1

F (x)αF ′(x)1−α · exp[(α− 1)ϵ2]

≤ exp[(α− 1)(ϵ1 + ϵ2)]

Proposition D.2 (Gaussian mechanism for f-RDP). Let G be a sample path of a Gaussian process having mean zero and
covariance function k. Let M denote the Gram matrix (as defined in Eq. (7)). Let {fD : D ∈ D} be a family of functions
indexed by database D. Releasing f̃D = fD + σ∆ ·G satisfies (α, α

2σ2 )-RDP whenever Eq. (8) holds.
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Table 2: Training parameters for retaining DP on MNIST and Fashion MNIST. Both variants on CelebA use parameters in
the row of Conditional. q is the subsampling rate, and σ is the noise multiplier.

target ϵ q σ epochs (iterations)

Conditional
10 0.001 0.60 200 (200k)
1 0.001 1.95 200 (200k)

0.2 0.001 8.0 200 (200k)

Parallel
10 0.01 1.0 200 (20k)
1 0.01 5.75 200 (20k)

0.2 0.01 25.0 200 (20k)

Proof. Consider any finite set (x1, . . . ,xn) ∈ Tn, the vector (G(x1), . . . , G(xn)) follows a multivariate Gaussian with
mean zero and covariance given by Eq. (7). Thus, evaluating f̃D at any finite sets would form a vector that satisfies Eq. (3)
in Definition 2.9, which completes the proof.

E. Datasets
MNIST (LeCun et al., 1998) & Fashion MNIST (Xiao et al., 2017): MNIST contains hand-written digits images,
whereas Fashion MNIST contains cloth and shoe images. Images in both datasets are single-channel, in the size of 1 ×
28× 28, which are resized to 1× 32× 32 and normalized to have 0.5 mean and 0.5 standard deviation. Both datasets have
10 classes. We adopt the official training and test split. MNIST and Fashion MNIST are made available under Creative
Commons Attribution-Share Alike 3.0 license and MIT License, respectively.

CelebA (Liu et al., 2015): CelebA is a dataset including face images of celebrities. Each image is in the size of 3 ×
178× 218 and has 40 binary attributes. All images are center-cropped to 3× 178× 178, then resized to 3× 32× 32, and
normalized to have 0.5 mean and 0.5 standard deviation. We also adopt the official training, validation and test split, but
randomly select 60k images from the training split as our training set. The CelebA dataset is available for non-commercial
research purposes only, as described on their website.

F. Implementation
Generative network: Our unconditional generative network is based on the official code of MMD-GAN (Li et al., 2017).
Encoding labels to the latent code leads to the conditional variant. We use the same network for all three datasets (only
with different input channels). All networks are optimized by RMSprop with a learning rate 5× 10−5.

CNN classifier: We follow Cao et al. (2021) for the classifier implementation.

The CNN consists of following layers: Conv2d(input channels, 32, kernel size=3, stride = 2, padding=1) →
Dropout(p=0.5) → ReLU → Conv2d(32, 64, kernel size=3, stride = 2, padding=1) → Dropout(p=0.5) → ReLU → flatten
→ linear(flatten dim, output dim) → Softmax.

The CNN classifier is optimized by Adam with default parameters. All classifiers are trained on synthetic data, and we
report test accuracy on real test data as the evaluation metric.

Privacy: We use Tensorflow privacy for computing the total privacy cost, which only requires inputting a few important
parameters, e.g. subsampling rate (or batch size), noise multiplier, training epochs (iterations), target δ (δ = 10−5 in all
our experiments). We summarize the parameters in Table 2.

Baselines: We use the official code of DP-MERF to replicate their results under different ϵ and use the same evaluation
metrics to add quantitative comparison. The numerical evaluations of rest baselines are cited from related works, as
specified in the caption of the tables.
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Figure 4: Qualitative comparison under (10, 10−5)-DP on MNIST and Fashion MNIST

Computation resources: All computation is conducted by one NVIDIA T4 GPU. It costs 1.5 hours to train a conditional
generator on MNIST (and Fashion MNIST) and around 5 hours on CelebA. Each sub-model in the parallel variant takes
only 10 minutes to train on MNIST (and Fashion MNIST) and 30 minutes on CelebA. A better GPU should compute
faster. As a reference, DP-Sinkhorn and GS-WGAN can take up to 24 hours to train, and GS-WGAN even requires at least
2 GPUs (as they have 1000 discriminators).

G. Additional results
For completeness, we include the qualitative comparison between our method and related works under (10, 10−5)-DP on
all three datasets in Figures 4 and 5. Numerical comparison is in Table 3. We note that ϵ = 10 is usually considered a weak
privacy regime. Generally, all baselines can generate decent images when ϵ = 10, whereas our method still generates more
diverse and more informative images, especially on CelebA.
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Figure 5: Qualitative comparison under (10, 10−5)-DP on CelebA

Table 3: Quantitative comparison under (10, 10−5). Acc denotes classification accuracy, which is shown in %. ↑ and ↓
refer to higher is better or lower is better, respectively. Results of DP-CGAN, GS-WGAN, DP-Sinkhorn are cited from
Cao et al. (2021); Long et al. (2021). Results of PEARL and DPDM are cited from Dockhorn et al. (2022). Results of
G-PATE and DataLens are cited from their papers, respectively. (*): DPDM did unconditional generation on CelebA.

Method ϵ
MNIST FMNIST CelebA

FID ↓ Acc ↑ FID ↓ Acc ↑ FID ↓ Acc ↑
DPDM 10 5.01 97.3 18.6 84.9 21.1* -
DP-CGAN 10 179.2 63 243.8 46 - -
DP-MERF 10 121.4 82.0 110.4 73.2 211.1 64.0
PEARL 10 116.0 78.8 102.0 64.9 - -
G-PATE 10 150.6 80.9 171.9 69.3 305.9 70.7
DataLens 10 173.5 80.7 167.7 70.6 320.8 72.9
GS-WGAN 10 61.3 80 131.3 65 432.5 63.3
DP-Sinkhorn 10 55.6 79.1 129.4 68.9 - -
Ours (conditional) 10 29.9 93.1 56.3 79.2 77.2 85.8
Ours (parallel) 10 17.7 96.4 38.1 82.0 78.5 87.4
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