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Abstract
Training data quality is one of the most important
drivers of final model quality. In this work, we
introduce a method for evaluating data integrity
based on the assumption that low-quality input
prompts result in high variance and low quality
responses. This is achieved by measuring the
rejected response quality and the reward gap be-
tween the chosen and rejected preference pair.
Our method, Rejecting Instruction Preferences
(RIP ) can be used to filter prompts from existing
training sets, or to make high quality synthetic
datasets, yielding large performance gains across
various benchmarks compared to unfiltered data.
Using Llama 3.1-8B-Instruct, RIP improves Al-
pacaEval2 LC Win Rate by 9.4%, Arena-Hard
by 8.7%, and WildBench by 9.9%. Using Llama
3.3-70B-Instruct, RIP improves Arena-Hard from
67.5 to 82.9, which is from 18th place to 6th over-
all in the leaderboard.

1. Introduction
In large language model (LLM) development, a primary
driver for advancing frontier models is curating high-quality
training examples. This curation is crucial during both the
pretraining (Rae et al., 2021; Touvron et al., 2023a) and
post-training (finetuning) phases (Touvron et al., 2023b).
Despite the widespread adoption of the “scaling hypothesis”
(Kaplan et al., 2020), merely increasing the size of training
datasets does not guarantee improved performance if the
data are of low quality (Chen et al., 2024; Li et al., 2024c;
Zhou et al., 2024). Without sufficient data quality, model
training tends not to be fully robust to the associated noise,
and final response quality from the model suffers.

Currently, there are a number of investigated techniques
to curate data – most of which are based on heuristics or
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Figure 1: Our method Rejecting Instruction Preferences
(RIP ) for curating data, and Self-RIP for creating syn-
thetic data. The x-axis represents the effective training set
size (after filtering). At every data size training on unfil-
tered WildChat prompts is significantly outperformed by
RIP. RIP also outperforms various other curation baselines.
Synthetic data built by Self-RIP improves results further.

model judgments given the training inputs. In this work,
we hypothesize that better judgments of data quality can
be made by taking into account the model responses on
those data. Specifically, if the prompt is of low quality,
then responses exhibit high variability and low quality as
well. This insight leads us to develop a method for either
selecting prompts, or for creating high quality synthetic
prompts, both of which yield significant performance gains
during post-training.

Our method, Rejecting Instruction Preferences (RIP ), con-
siders the case of instruction finetuning via preference opti-
mization. It starts with a set of preference pairs consisting
of input prompts and chosen and rejected responses. RIP
considers specific characteristics of the preference pairs, in
particular rejected response quality and the reward gap be-
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Table 1: Rejecting Instruction Preferences (RIP ) and Self-RIP compared to SOTA models on AlpacaEval2, Arena-
Hard and WildBench. By training Llama 3.1-8B-Instruct and Llama 3.3-70B-Instruct on Wildchat instructions curated by
RIP , or synthetic data created by Self-RIP , our method surpasses many existing SOTA models.

AlpacaEval2 Arena-Hard WildBench

Standard models LC Win Win Score Score

GPT-4 Omni (05/13) 57.5 51.3 74.9 59.3
GPT-4 Turbo (04/09) 55.0 46.1 82.6 55.2
Llama 3.1-8B-Instruct 20.9 21.8 21.3 33.1
Llama 3.3-70B-Instruct 38.9 41.5 67.5 52.8

Llama 3.1-8B-Instruct + RIP (ours) 57.8 57.2 43.1 45.6
Llama 3.1-8B-Instruct + Self-RIP (ours) 60.2 61.1 42.1 42.5
Llama 3.3-70B-Instruct + RIP (ours) 67.7 73.2 82.9 58.8

tween the chosen and rejected preference pair. If the rejected
quality is low or the reward gap is high this is an indicator
that the prompt is of low quality. We thus filter the prompts
based on these metrics. The remaining prompts can subse-
quently be used to fine-tune the model using RLHF methods
like Direct Preference Optimization (DPO) (Rafailov et al.,
2023), or for creating new synthetic prompts via few-shot
prompting. Table 1 illustrates that when trained on Wild-
chat prompts (Zhao et al., 2024b) and filtered by RIP , both
Llama 3.1-8B-Instruct and Llama 3.3-70B-Instruct (Dubey
et al., 2024) achieve large performance gains, surpassing
many state-of-the-art models.

Additionally, we conducted comprehensive experiments
comparing the scaling behavior of our data under RIP fil-
tering with that of unfiltered WildChat raw data, and six
alternative filtering methods in Figure 1. Our results demon-
strate that RIP significantly enhances model performance,
while other filtering methods yield only marginal improve-
ments. In addition to improvements observed with filtering
human-written data such as Wildchat prompts or HelpSteer2
using different reward signals such as human, classifier or
LLM-as-a-Judge, we also show RIP improves model perfor-
mance as a method to create synthetic data.

Analysis of our method using t-SNE shows that RIP can
eliminate certain undesirable clusters. Additionally, analysis
with GPT-4 reveals that RIP effectively removes noisy or
low quality prompts, ambiguous prompts, unsafe prompts,
and examples where preference choices are incorrect. We
release our filtered datasets on HuggingFace1.

1For the Llama-3.1-8B-Instruct filtered dataset, visit:
https://huggingface.co/datasets/facebook/Wildchat-RIP-Filtered-
by-8b-Llama.
For the Llama-3.3-70B-Instruct filtered dataset, visit:
https://huggingface.co/datasets/facebook/Wildchat-RIP-Filtered-
by-70b-Llama.

2. Related Work
Data Selection in Pretraining Data Given the high vari-
ance in quality of pretraining data, data filtering is a critical
component for determining pretrained model quality (Hoff-
mann et al., 2022). In addition to heuristic preprocessing
such as deduplication of similar documents, removal of
datasets with heavy test-set overlap, and text extractions
from raw Internet content, GPT-3 (Brown et al., 2020) ap-
plied text filtering to the CommonCrawl dataset based on
similarity to high-quality reference data, significantly re-
ducing final pretraining text data from 45TB down to a
570GB high-quality subset. As language models become
more powerful, data curation can also be facilitated by us-
ing LLMs as a quality judge. Llama2 and Llama3 employ
model-based quality classifiers to filter out non-English and
low-quality content from pretraining data (Touvron et al.,
2023b; Dubey et al., 2024). Rae et al. (2021); Soldaini
et al. (2024) also demonstrate that applying simple filter-
ing on massive texts brings substantial improvements on
downstream performance across the board.

Data Selection in Supervised Fine-Tuning Similarly,
post-training also relies on high-quality data to enhance
models’ instruction-following capabilities. Previously,
instruction-tuning was regarded as largely dependent on the
size of available instruction-tuning examples (Mishra et al.,
2021; Wei et al., 2021; Wang et al., 2022). More recent work
has revealed that training on a smaller yet higher-quality
curated set of prompts tends to be more effective in improv-
ing models’ instruction-following capabilities (Zhou et al.,
2024; Chen et al., 2024). To facilitate data selection, some
employ traditional optimization-based data-pruning meth-
ods by measuring their impact on model’s generalization
capabilities (Toneva et al., 2018; Yang et al., 2022; Xia et al.,
2024). Another stream of work studies employing powerful
language models to measure the complexity, diversity and
quality of instructions (Lu et al., 2023; Chen et al., 2024;
Touvron et al., 2023b; Dubey et al., 2024; Li et al., 2024c).
Alternative filtering approaches proposed automatic metrics
such as IFD score (Li et al., 2023a), or INSTRUCTMINING
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which fits a linearly weighted score over a bag of natural
language indicators (Cao et al., 2023) to select examples.

Data Selection in RLHF and Preference Optimiza-
tion The success of preference-optimization methods
(Stiennon et al., 2020; Rafailov et al., 2024) has attracted
more attention to collecting large scale and high quality
preference data. While extensive work shows scaling up
preference data through bootstrapping (Xu et al., 2023b;
Yuan et al., 2024b), synthesis approaches (Lambert et al.,
2024; Wang et al., 2024b), or crowdsourcing (Touvron et al.,
2023b; Dubey et al., 2024), can boost model performance,
the characterization and selection of high-quality pairwise
examples is surprisingly underexplored. Most work involv-
ing preference optimization employs existing methods de-
rived from pretraining and instruction-tuning (Touvron et al.,
2023b; Dubey et al., 2024), such as deduplication, quality
classifiers or filtering heuristics. However, such methods
overlook the importance of the preference pairs (the chosen
and rejected responses). Recent work Wu et al. (2024a);
Khaki et al. (2024) shows that preference optimization can
be highly sensitive to the choice of response pairs of differ-
ent reward gaps, focusing more on pair construction than
data selection.

3. Rejecting Instruction Preferences (RIP )
We start by defining the prompt selection problem in the
pairwise preference optimization setting. In this context, we
present our proposed prompt-response-pair-based filtering
method, which develops key descriptive metrics and their
use in filtering training prompts. Lastly, we describe how
our method can be applied to self-instruction setups where
synthetic prompts are generated from the model itself.

3.1. Data Curation Problem

The goal of data curation is to remove low-quality prompts
that can negatively affect the general instruction following
capability of the model. Given a set of prompts X = {x},
we aim to find a subset S ⊆ X to be used for fine-tuning a
seed LLM M. We consider the preference optimization set-
ting, with winning (chosen) and losing (rejected) response
pairs {yw, yl} with rewards r(yw|x) > r(yl|x) for each
prompt x. The response pairs and their rewards can come
from human preference data, or can be generated from the
model itself M and then scored using an external reward
model. For the latter we use the ”best-vs-worst” preference
pairing method (Pace et al., 2024), where N responses are
sampled, and the ones with highest and lowest rewards are
the chosen and rejected, respectively:

{yi}Ni=1 ∼ M(x) then

{
yw = argmaxyi

r(yi|x)
yl = argminyi

r(yi|x)
.

We also consider alternate pairing methods in Section A.4.
We then use the preference data {x, yw, yl}x∈S for training
the model M. Note that our focus is on filtering prompts
entirely, not responses to those prompts.

3.2. Hypothesis on Data Selection

Although preferences are extensively used to train state-
of-the-art LLMs, there is limited research on identifying
unhelpful training examples in this setting. We posit that
analyzing the paired model responses to given input prompts
can provide valuable insights into the quality of the prompts.
Specifically, we test the following two hypotheses.

Hypothesis 1: Low-quality prompts are likely to produce
low-quality responses. Low-quality prompts - for example
those that are unclear, ambiguous, or containing conflict-
ing information - are likely to lead to noisy or inaccurate
model responses. While those inaccurate responses can still
be used as training targets in pairwise preference optimiza-
tion, studies indicate that training on pairs with low-quality
rejected responses might be sub-optimal. Yasunaga et al.
(2024) for example shows that pairing the best with random
responses works well comparing to pairing the best with
the worst one with lowest reward. This suggests a potential
correlation of the quality of the rejected example with the
alignment outcome. Additionally, several studies (Wu et al.,
2024b; Zhao et al., 2024a; Yuan et al., 2024a) have found a
strong correlation between the length of responses, includ-
ing rejected ones, and final performance. Therefore, we
consider the reward r(yl|x) and length len(yl) of rejected
responses as indicators of quality of the training prompts x,
i.e. large values of either of these metrics relative to other
examples indicate higher quality.

Hypothesis 2. Low-quality prompts are likely to produce
responses with larger variance Low quality prompts
introduce uncertainty and ambiguity, leading to a broader
range of interpretations. As the model or human generat-
ing the response might guess or fill in gaps in the prompt,
this results in higher variance in responses. While some
responses might align well with the intent, others may devi-
ate significantly. A preliminary study in Wu et al. (2024a)
finds low-gap pairs, where chosen and rejected responses
are similar, are high-quality informative pairs, leading to
better performing DPO models. We therefore consider the
reward gap r(yw|x)−r(yl|x) as another indicator of quality
of a training prompt, i.e. small reward gaps suggest that the
prompt has higher quality.

3.3. RIP filtering

3.3.1. RIP FOR EXISTING TRAINING PROMPTS

Given the above hypotheses, we thus consider the following
three metrics mk(x, yw, yl) that are based on the responses:
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• Rejected response reward: m1 = r(yl|x)
• Rejected response length: m2 = len(yl)
• Reward gap: m3 = r(yw|x)− r(yl|x)

For each metric, we define threshold values that can be used
for filtering. For the first two metrics, higher values are
desired so we choose a lower-bound threshold

S = {x | τk ≤ mk(x, yw, yl)}.

The last reward gap metric requires an upper threshold as we
want small gaps. Therefore we reduce the prompt selection
problem to a threshold choice problem. To resolve this, we
start with coordinate-wise experiments, analyzing model
performance under various thresholds τk for individual met-
rics mk (details in Section A.2). Ultimately, we perform
hyperparameter selection using all 3 parameters.

3.3.2. SELF-RIP FOR SYNTHETIC PROMPTS

Prompt curation by RIP can also naturally be used to gener-
ate synthetic data. First, RIP is used to create a seed pool
of high-quality prompts. Few-shot examples from this seed
pool guide the model to generate training prompts, which
can be further filtered by RIP . We thus propose Self-RIP , a
new approach to creating high-quality synthetic prompts:

Step 1. Few-shot prompting with RIP curated instruc-
tions We start with the set of prompts S curated by our
proposed method RIP as described in Section 3.3.1. To gen-
erate new prompts S′ we sample from our seed model M
following Self-Instruct (Wang et al., 2023; Honovich et al.,
2023). For each new example we randomly select 8 prompts
from S and feed them as few-shot examples to the model
M to generate a prompt with similar characteristics. We
apply the exact processing steps in Wang et al. (2023) to new
prompts S′, such as removing similar prompts (ROUGE-L
similarity with any existing instructions < 0.7), and exclud-
ing those that contain certain keywords (e.g., image, picture,
graph) that usually can not be processed by text-only LLMs.

Step 2. Filtering with RIP We further apply RIP on top
of the synthetically generated prompts S′ from the previous
step, filtering out the self-instructions using the same thresh-
old values as used before. Then the remaining subset S′′ is
used for training the seed model M.

Note we use RIP filtering twice here, once in each step.
This is to ensure the quality of synthetic prompts. We also
explore Self-RIP using a smaller subset of S as seed instruc-
tions in Section A.4 as part of our ablation studies.

4. Experimental Setup
We perform preference optimization using DPO, beginning
with the Llama 3.1-8B-Instruct model as our seed model
M. We evaluate both the selection and creation of prompts,

focusing on two categories: human-written instructions and
synthetically generated instructions. Finally, we extend our
evaluation of RIP with the Llama 3.3-70B-Instruct model.

4.1. Human-Written Prompts

For human-written instructions, we specifically investi-
gate two setups: human-written input prompts 1) paired
with model-generated responses and annotated by a reward
model; 2) with existing responses that have been annotated
with human-assigned rewards. We use the WildChat and
Helpsteer2 datasets, see statistics in Appendix Table 13.

4.1.1. WILDCHAT DATASET

Prompt Set We start with a large pool of over 250k
human-written prompts from the WildChat (Zhao et al.,
2024b) dataset. We exclude any non-English prompts
based on WildChat annotations, and remove around 70k
Midjourney-related instructions2, yielding 190k unique first-
turn prompts. These prompts are collected from real user in-
teractions without human annotations, making them highly
diverse. While there are many high-quality prompts, there
are also a significant number of low-quality ones, such as
nonsensical text or those lacking a clear question.

Response Generation Following Yuan et al. (2024b);
Meng et al. (2024); Wu et al. (2024b) we generate our cho-
sen and rejected response pairs on the WildChat prompts
using our seed model M to make our setup closer to the
on-policy setting. We use best-vs-worst as described in Sec-
tion 3.1, generating N responses for each prompt x using
M with sampling parameters of T = 0.8, top p = 0.95.

Reward Annotation We then evaluate candidate responses
using two different judges:

• Reward Classifier: We used the ArmoRM reward
model (Wang et al., 2024a) to score each response.

• LLM-as-a-Judge (Zheng et al., 2023): We prompt
LLama 3.1-405B-Instruct using the prompt template
outlined in Yasunaga et al. (2024) to assign a score
ranging from 0 to 10 for each response. For each re-
sponse, we conduct 10 independent evaluations and
use the average score as the final reward.

The training example (x, yw, yl) is selected by appointing
the highest-reward one as yw and the lowest-reward one
as yl. For our primary experiments, we use the default
value of N = 64. However, results for N = 8, 16, 32 are
provided as part of our ablation studies in Table 22, and we
use N = 32 for the Llama 3.3-70B-Instruct experiments.
We perform early stopping using a validation set of 470
examples: 253 valid set examples from Li et al. (2024c) and

2They start with “As a prompt generator for a generative AI
called ”Midjourney”, you will create image prompts ...”.
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218 examples from the evol-test set of Xu et al. (2023a),
with prompts that overlap with AlpacaEval2 removed.

4.1.2. HELPSTEER2 DATASET

HelpSteer2 (Wang et al., 2024c) consists of around 10k
human-written prompts each with a response pair sam-
pled from 10 different LLMs. Each response has human-
annotated rewards of helpfulness, correctness, coherence,
complexity and verbosity on a Likert-5 scale. We use the
aggregated reward with the recommended weighting [0.65,
0.8, 0.45, 0.55, 0.4].3 The main distinction from WildChat
is that the rewards come from human annotations instead
of an external model. We perform early stopping on the
HelpSteer2 validation split, selecting checkpoints with the
highest average response rewards determined by ArmoRM.

4.2. Synthetic Prompts

In this setup, we generate prompts from the seed model M
itself for training instead of using human-written prompts.
By varying the set of seed pool prompts used as few-shot
examples, we collect two sets of training prompts:

• Self-Instruct: randomly select 8-shot examples from
the unfiltered WildChat.

• Self-RIP : randomly select 8-shot examples from high
quality WildChat prompts filtered by RIP .

In each case, we create 20k training prompts sampled with
decoding parameters T = 0.8, top p = 0.95. The rest of
the setup including response generations and DPO training
is exactly the same as the WildChat setup where we use
ArmoRM to construct response pairs (yw, yl), and do early
stopping on the same validation set of 470 examples.

4.3. Baselines

We compare our method with the existing methods below.
For instruction-tuning data selection methods which handle
a single (non-pairwise) response per prompt, we apply them
to the chosen responses within the response pairs. Addi-
tional details on the implementation of each baseline are
provided in Appendix Section A.5.

4.3.1. PROMPT-BASED FILTERING

InsTag Complexity Lu et al. (2023) leveraged ChatGPT
to create semantic and intent-based tags, subsequently fine-
tuning an LLM as a data tagger using these tags. They then
used the tag counts as a measure of complexity. This is used
to filter out prompts with fewer tags to enhance complexity.

InsTag Diversity The InsTag Diversity filtering method
(Lu et al., 2023) characterizes a dataset as more diverse

3https://huggingface.co/nvidia/Llama3-70B-SteerLM-RM

when it includes a greater variety of unique tags, as an-
notated by the specified tagger. Using this approach, we
greedily filter out data samples whose associated tags are
already present in the selected dataset.

LLM-as-Prompt-Judge Employing LLMs as prompt qual-
ity judges has proven its efficacy in curating high-quality
data (Chen et al., 2024; Dubey et al., 2024; Liu et al., 2023).
We employ Llama 3.1-405B-Instruct to measure the quality
of prompts on both a binary (useful/not useful) and point-
wise scale (0-5). By sampling five Llama 3.1-405B-Instruct
predictions per prompt and taking the average of LLM-as-
Prompt-Judge predictions, we filter out less useful prompts
by varying the cutoff thresholds.

4.3.2. PROMPT-AND-CHOSEN-RESPONSE-BASED
FILTERING

Perplexity We compute perplexity (ppl) of the chosen
response yw with the Llama 3.1-8B Instruct in a zero-shot
manner as a filtering metric to curate training prompts. In
particular, we retain examples with large ppl(yw|x) values,
which may indicate the difficulty of the prompt.

Instruction-Following Difficulty (IFD) Li et al. (2023a)
introduced the IFD to measure the model-specific difficulty
of a data sample. A lower IFD score indicates that this par-
ticular instruction-response pair is considered relatively easy
for the language model to understand and follow without
further training. We filter out examples with low IFD metric
of a given pair of prompt x and chosen response yw.

4.3.3. CHOSEN-AND-REJECTED-RESPONSE BASED
FILTERING

Jaccard Similarity In addition to the reward gap between
chosen and rejected responses, we explore Jaccard similar-
ity, defined as the number of overlapping words divided by
the overall word counts, as an alternative similarity mea-
surement. We thus filter out examples with low Jaccard
similarity scores (i.e. fewer overlapping words) between
chosen and rejected response pairs.

4.4. Training And Evaluation Setting

Following the Instruct setup in Meng et al. (2024), we utilize
the DPO training approach with the off-the-shelf LLama 3.1-
8B-Instruct and LLama 3.3-70B-Instruct models, leveraging
the fairseq2 library (Balioglu, 2023). We use a batch size
of 64 and sweep over learning rates of 5e−7, 1e−6 for the
LLama 3.1-8B-Instruct model, and a learning rate of 1e−6
with a batch size of 256 for the LLama 3.3-70B-Instruct
model. Both models are trained with a dropout rate of
0.0 and a β value of 0.1 throughout the experiments. We
conduct RIP with various cutoff thresholds, e.g. at the 25%,
50% and 75% percentile of each metric.
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We primarily assess models’ general instruction-following
capabilities on three evaluation benchmarks: AlpacaEval2
(Li et al., 2023b), Arena-Hard (Li et al., 2024b) and Wild-
Bench (Lin et al., 2024). These benchmarks cover a wide
range of natural yet challenging real-world user queries, and
have been widely adopted by the research community.

5. Experiment Results
Due to the large amount of unfiltered WildChat prompts, we
first assess whether standard DPO training saturates as the
size of the training prompts grows. As shown in Appendix
Figure 2, the Armo Score on the valid set dramatically im-
proves as we increase the size of training prompts, and
begins to plateau afterwards. This shows growing the size
of the training prompts arbitrarily does not bring additional
gains, and hence quality control of the preference dataset
could be important. We thus focus on 20k unique Wild-
Chat prompts, denoted as WildChat-20k for Llama3.1-8B-
Instruct experiments, and 40k for Llama 3.3-70B-Instruct.

We report Alpaca-Eval2 Length-Controlled (LC) win rate,
Arena-Hard score and WildBench WB-Score along with the
number of training examples (after filtering if any) using
WildChat-20k in Table 2, on HelpSteer2 in Table 5, and on
Self-Instruction data in Table 6. Existing filtering methods
are provided in Table 2 as baseline comparisons. Further
details, such as hyperparameters, are in Appendix Table 9
and Table 14. Our findings lead to several key observations.

When filtering human-written instructions, RIP
achieves the best performance on both human-scored
and model-scored preference datasets. On the WildChat
dataset where pairs are annotated by the ArmoRM model,
we conduct RIP with various cutoff thresholds, at the 25%,
50% and 75% percentile of each metric. Our best model is
trained on examples with rejected length larger than the 50%
percentile of all rejected lengths, and rejected rewards larger
than the 50% percentile of all rejected rewards, and reward
gap smaller than the 50% percentile. Table 2 shows that RIP
significantly improves LC win rate from the LLama3.1-8B-
Instruct DPO baseline without filtering from 48.4% to 57.8%
by filtering out 77% training examples, surpassing GPT-4
Omni (05/13) on AlpacaEval2. Similarly, RIP scores the
highest on Arena-Hard (43.1) compared to LLM-as-Prompt-
Judge filtering (42.0), Jaccard Similarity (42.6), and the
no filtering baseline (37.9). RIP also achieves the highest
WB-score on WildBench (45.6) compared to other filtering
and no filtering baselines (41.5). As shown in Appendix
Table 9 using LLM-as-a-Judge annotated rewards, RIP also
performs well. Finally, Table 5 demonstrates RIP is equally
effective on HelpSteer2 where preference pairs are deter-
mined by human annotators, achieving the highest scores
across all 3 evaluation benchmarks as compared to the base-
lines (no filtering and LLM-as-Prompt-Judge filtering).

RIP scales to different and larger models We also tried
RIP on a different base LLM – from the Llama 3.3 family
rather than 3.1, and of a larger scale, 70B rather than 8B.
As shown in Table 3, RIP also works on this larger model.
Filtering dramatically boosts Llama 3.3-70B-Instruct DPO
trained models, with AlpacaEval2 LC win rate improved
from 54.3% to 67.7%, Arena Hard from 70.5 to 82.9 and
WildBench from 55.3 to 58.8, surpassing SOTA models as
shown in Table 1. The prompt filtering threshold we applied
to the 70B model was the same as in Llama 3.1-8B-Instruct
+ RIP (see Appendix Table 14).

Weak-to-strong generalizability of RIP To explore po-
tential weak-to-strong generalizability (Li et al., 2024a) of
our method, we employ a smaller and weaker model, Llama
3.1-8B-Instruct, to filter data for a larger and more powerful
LLM, Llama 3.3-70B-Instruct. As illustrated in Table 4,
while the filtering capability of Llama 3.1-8B-Instruct is not
as powerful as that of Llama 3.3-70B-Instruct, it still offers
significant improvements over baseline with no filtering.
This showcases the weak-to-strong generation capabilities
of our RIP , demonstrating that leveraging a smaller model
to assist a larger one in data filtering is a computationally
efficient strategy.

Existing filtering methods derived from supervised-
finetuning do not work as well on preference datasets As
demonstrated in Table 2, compared to the baseline WildChat-
20k DPO (no filtering) trained on WildChat 20k prompts
without any filtering, existing prompt-based filtering meth-
ods such as InsTag-Difficulty, InsTag-Diversity or LLM-as-
Prompt-Judge filtering methods all lead to lower win rates
on Alpaca-Eval2. LLM-as-Prompt-Judge, while outper-
forming certain filtering methods such as InsTag, achieves
marginal gains compared to no filtering even though they
are facilitated by querying a poweful LLM, Llama 3.1-
405B-Instruct. Out of all the alternative methods tried,
Jaccard Similarity based filtering that takes into account
response pairs for filtering achieves relatively the highest
scores across the 3 benchmarks, indicating that filtering that
only takes into account prompts or chosen responses does
not generalize well to the pairwise preference case.

The Self-RIP method to generate synthetic data outper-
forms Self-Instruct data. As shown in Table 6, Self-RIP
yields better alignment results across all 3 evaluation bench-
marks as compared to those trained on Self-Instruct data.
In particular, win rate improves from 49.1% to 60.2% on
AlpacaEval2, and from 38.5% to 42.1% on Arena-Hard.
This result implies that our method generates better quality
instructions than generating via few-shot examples from
unfiltered prompts as in Self-Instruct.

Self-RIP synthetic data outperforms human-written in-
structions In Table 6, models trained on synthetic prompts
outperform those trained on 20k human-written WildChat
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Table 2: RIP compared to existing filtering methods on WildChat with Llama 3.1-8B-Instruct. RIP , which selects
only 4538 WildChat prompts for DPO training, outperforms existing filtering methods on AlpacaEval2, Arena-Hard &
WildBench. DPO response pairs are constructed using ArmoRM to score responses.

# Train
examples

AlpacaEval2 Arena-Hard WildBench

LC Win Win Score Score

Baseline
Llama 3.1-8B-Instruct (seed model) - 20.9 21.8 21.3 33.1
WildChat-20k DPO (no filtering) 20000 48.4 45.9 37.9 41.5
WildChat-20k DPO (best-vs-bottom-25%) 20000 48.2 45.9 40.7 44.5

Prompt-Based Filtering
LLM-as-Prompt-Judge Binary 4299 45.5 41.0 42.0 43.3
LLM-as-Prompt-Judge Pointwise 15963 47.4 47.4 40.7 45.2
InsTag-Difficulty 10000 46.3 39.0 39.0 42.4
InsTag-Diversity 9952 40.1 41.1 40.4 43.4

Prompt-and-Chosen-Response Based Filtering
IFD on Prompt + Chosen Response 9902 47.6 37.6 32.2 42.2
ppl(Chosen Response) 14851 45.6 45.5 40.8 43.4

Chosen-Reject-Response Based Filtering
Jaccard Similarity(Chosen, Rejected) 9904 49.0 46.6 42.6 43.7
RIP 4538 57.8 57.2 43.1 45.6

Table 3: RIP on WildChat with Llama 3.3-70B-Instruct. RIP outperforms no filtering on AlpacaEval2, Arena-Hard &
WildBench. DPO response pairs are constructed using ArmoRM to score responses.

# Train
examples

AlpacaEval2 Arena-Hard WildBench

LC Win Win Score Score

Llama 3.3-70B-Instruct (seed model) - 38.9 41.5 67.5 52.8
WildChat-40k DPO (no filtering) 40000 54.3 51.6 70.5 55.3

RIP 17725 67.7 73.2 82.9 58.8

Table 4: Weak to strong generation ability with RIP . RIP on Llama 3.3-70B-Instruct by employing a smaller model
Llama 3.1-8B-Instruct for filtering outperforms no filtering baseline, while underperforms using its own generations.

.

Filter
Model

# Train
examples

AlpacaEval2 Arena-Hard WildBench

Seed Model LC Win Win Score Score

Llama 3.3-70B-Instruct - (no filtering) 40000 54.3 51.6 70.5 55.3

Llama 3.3-70B-Instruct Llama 3.1-8B-Instruct 18184 64.5 69.2 76.7 58.6
Llama 3.3-70B-Instruct Llama 3.3-70B-Instruct 17725 67.7 73.2 82.9 58.8

prompts. Applying Self-RIP few-shot generation without
post-filtering gives an equal amount of 20k prompts, but
still increases the AlpacaEval2 LC win rate from 48.4% to
53.6%, Arena-Hard win rate from 37.9% to 43.7% and WB-
Score on WildBench from 41.5 to 44.8. This further illus-
trates the importance of training on high-quality instructions.
When applying the full Self-RIP method with post-filtering
results are further improved, for example achieving the best
AlpacaEval2 LC win rate of 60.2%.

RIP seed data selection and RIP post-filtering are both
important for generating Self-RIP synthetic data In
Table 6, we perform ablations on Self-RIP . We try: (i) us-

ing RIP to select high quality few-shot examples but not for
curating the resulting generations (post-filtering); (ii) apply-
ing standard (Self-Instruct) few-shot generation, but then
applying RIP post-filtering; or (iii) applying RIP to both
few-shot generation and post-filtering (our default method).
We find that both components of our full method are impor-
tant yielding the best results, with method (i) outperforming
Self-Instruct, and method (ii) performing better than (i), but
worse than our full method (iii).
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Table 5: RIP on HelpSteer2 with Llama 3.1-8B-Instruct. Applying RIP to DPO models trained on HelpSteer2 outperforms
the baseline of no filtering as well as using the Llama 3.1-405B-Instruct model as a pointwise prompt quality judge.

# Train
examples

AlpacaEval2 Arena-Hard WildBench

HelpSteer2 LC Win Win Score Score

Llama 3.1-8B-Instruct (seed model) - 20.9 21.8 21.3 33.1
HelpSteer2 DPO (no filtering) 10161 25.2 23.1 26.8 37.1

LLM-as-Prompt-Judge filtering 5376 27.8 25.7 29.5 37.2
RIP 5081 34.6 32.8 35.0 39.5

Table 6: Self-RIP for generating high-quality synthetic instructions. Self-RIP creates prompts using few-shot samples
from high-quality prompts curated by RIP , whereas Self-Instruct uses few-shots from unfiltered WildChat prompts. Applying
RIP filtering after generation is also important, and achieves the best results, significantly outperforming Self-Instruct data.

Post-
Filtering

# Train
examples

AlpacaEval2 Arena-Hard WildBench

Train Prompts LC Win Win Score Score

WildChat-20k None 20000 48.4 45.9 37.9 41.5
WildChat-20k RIP 4538 57.8 57.2 43.1 45.6

Self-Instruct None 20000 49.1 46.9 38.5 40.0
Self-RIP (without post-filtering) None 20000 53.6 56.1 43.7 44.8
Self-Instruct with RIP post-filtering RIP 16261 58.3 53.2 40.9 44.1
Self-RIP RIP 18812 60.2 61.1 42.1 42.5

6. Understanding why RIP works
6.1. Filtering prompts with low quality responses

To understand what instructions are filtered out, we first
visualize instructions with low quality rejected responses
(as measured by low reward and short lengths) by compar-
ing the t-SNE plots of unfiltered and filtered instructions
(shown in Appendix Figure 5). We investigated a few clus-
ters present in that t-SNE plot of unfiltered prompts that are
missing from the t-SNE plot of filtered ones on the right-
hand-side. We find that instructions from those clusters
being filtered out from the training set are either obscure,
non-sensical, or they fail to elicit meaningful responses from
the model, leading to lower-quality rejected responses. Such
instructions can be caught by measuring the rewards and
lengths of the rejected responses, with supporting evidence
given in Appendix Table 32.

Next, we employ GPT-4 and LLama3.1-405B-Instruct to
evaluate first 10,000 prompts from WildChat. Focusing
solely on the instructions (excluding responses) provided in
WildChat, the model is tasked with scoring each prompt on
a scale from 1 to 5. A score of 1 represents the most help-
ful prompt, while a score of 5 indicates the lowest quality.
The evaluation prompt is provided in Appendix Figure 3.
Manual review revealed that prompts assigned scores of 4
and 5 were of very low quality, while those scored 3 were
moderately acceptable, albeit with some quality issues still
present. Notably, GPT-4 and LLama3.1-405B-Instruct oc-
casionally assigned scores of 2 or 3 to a prompt of low

quality. Table 7 illustrates the prevalence of low-quality
examples (with score 4 or 5 by both GPT-4 and LLama3.1-
405B-Instruct) after applying various filtering methods. We
observe that filtering based on the reward and length of the
rejected response is the most effective way to ensure prompt
quality, compared to other methods tried. By combining
those rejected response quality metrics with the reward gap,
RIP reduced percentage of noisy prompts from 22.9% to
8.9%. This supports our hypothesis that very low-quality
prompts, such as those in WildChat that consist of incom-
plete snippets from movies, stories, or code (see sample
rejected instructions in Appendix Table 32 and Table 33),
often result in poor rejected responses when sampled sev-
eral times. By leveraging the quality of rejected responses
as a filtering criterion, we can efficiently eliminate these
extremely noisy prompts.

Furthermore, we employ GPT-4 and LLama3.1-405B-
Instruct to respond to each WildChat prompt three times. If
any response declines to answer due to safety concerns, we
categorize those prompts as unsafe. It’s important to note
that with this method, the model sometimes assigns high
quality scores to prompts that are borderline unsafe. By
examining the reward and the length of rejected responses,
we observe RIP is also an effective approach to filter out
these unsafe prompts. This approach is grounded in the ob-
servation that rejected responses when dealing with unsafe
instructions are typically short and have low reward scores.
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6.2. Filtering prompts with larger response variance

Similarly, we visualize instructions that are filtered out by
measuring the reward gap between chosen and rejected re-
sponses in Appendix Figure 6, and further expand some
representative groups of filtered instructions in Appendix
Table 33. In particular, instructions that cover specialized
domains such as coding, software, and other technical ques-
tions often require precise details, well-defined objectives
or targeted solutions. In those cases, a lack of specificity in
the instructions might lead to more variable responses. As
shown in Table 33, instructions with larger reward gap are
not necessarily low-quality, however we hypothesize that
the combination of lack of specificity in the instruction and
larger difference in the response pair make them less helpful
in improving the model during preference optimization.

Table 7: Effectiveness of Filters on Prompt Quality and
Safety: we compare the number of noisy and potentially
unsafe (as judged by GPT4) WildChat instructions (out of
20k) filtered by various filtering methods.

Filtering Methods % of low-quality
prompts ↓

% of unsafe
prompts ↓

Unfiltered Data 22.9% 12.27%
Reject Reward 10.4% 0.04%
Reject Length 13.9% 0.02%
Reward Gap 17.7% 8.07%
RIP 8.9% 0.00%

7. Conclusion
This work introduces Rejecting Instruction Preferences
(RIP ), a method for improving preference data quality by
measuring the rejected response quality and the reward gap
between the chosen and rejected response pair. Filtering
instructions using RIP remarkably improves model align-
ment results on both human-written and synthetic instruc-
tions, and for different reward signals. In addition, we show
that Self-RIP , synthetic instructions generated by few-shot
prompts curated by RIP, outperforms organic user instruc-
tions and the standard Self-Instruct method, achieving the
highest AlpacaEval2 win rate in our experiments.

Impact Statement
This work demonstrates the possibility of dramatically im-
proving LLMs by identifying and producing high-quality
training data. Studying how filtering criteria affect outputs
will continue to be important for LLM training. While we
have primarily focused on preference optimization, the RIP
approach is general and can potentially work for any training
scheme, e.g. other RL training techniques – which future
work should explore.

For such models, safety will also be crucial, and future work
should additionally address this aspect. In our experiments,
the reward is not explicitly constrained by safety-related
criteria. Therefore, a clear further avenue of study is to
conduct safety evaluations – and to explore safety filtering
using our methods, with reward models built exclusively for
safety in existing systems (Touvron et al., 2023b).

Given that we have shown that RIP can filter potentially
unsafe prompts, this could mean in the best case that the
safety of the model could potentially improve after filtering
as well, with RIP being able to catch and mitigate more chal-
lenging safety situations that earlier iterations cannot. From
a broader perspective, this work could pave the way for
methods that produce higher-quality training instructions,
that are also potentially safer than organic user instructions
in the wild.
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A. Appendix
A.1. More Details on Experiment Setup

Our experiment setups are summarized in Table 13. Specifically, we apply RIP to multiple popular instruction-following
datasets as well as our own synthetic data, with reward annotated from various sources (human/reward classifier/LLM-as-a-
Judge), indicating the generalizability of our RIP method.

Table 8: Preference Dataset Statistics used for training in our experiments.

Human Reward
#Prompts Written #Responses Annotator Valid Set ( # Examples)

WildChat-turn1 20k 20,000 Yes 8,16,32,64 ArmoRM Humpback + Evol-Instruct (470)
WildChat-turn1 20k 20,000 Yes 64 LLM-as-a-Judge Humpback + Evol-Instruct (470)
HelpSteer2 10,161 Yes 2 Human HelpSteer2 valid (519)
Self-Instruct 20,000 No 64 ArmoRM Humpback + Evol-Instruct (470)
Self-RIP 20,000 No 64 ArmoRM Humpback + Evol-Instruct (470)

We report the model performance on valid set when varying the number of training WildChat prompts in Figure 2. Model
training improves significantly as training data size grows to 20k and then begin to saturates afterwards, therefore our main
experiments are based on those 20k WildChat prompts.

Figure 2: Results on DPO Training with Varying WildChat Data Sizes. Using different sizes of WildChat data for DPO
training on LLaMA 3.1-8B-Instruct, the performance, measured by Armo rewards on the validation set, gradually saturates
as the data size increases.
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Armo Rewards on Valid Set

We primarily assess our models’ general instruction-following capabilities using three popular evaluation benchmarks:
AlpacaEval-2 (Li et al., 2023b), Arena-Hard (Li et al., 2024b) and WildBench (Lin et al., 2024). AplacaEval-2 consists
of 805 prompts sampled from 5 datasets. Arena-Hard contains 500 challenging user queries sourced from Chatbot Arena
and has the highest correlation and separability of models commpared to Chatbot Arena among popular open-ended LLM
benchmarks (Li et al., 2024b). WildBench is built from a set of 1024 significantly harder, challenging queries carefully
curated from the WildChat project (Zhao et al., 2024b) to ensure diversity and complexity. The automatic evaluation of
WildBench involves task-specific checklists that guide LLM judges in generating reliable and consistent judgments which
demonstrate significantly high correlation with human judgments. We report the WB-Score for individual scoring.

A.2. Additional Results

LLM-as-a-Judge As Reward Annotators We explore LLM-as-a-Judge as alternative reward annotator apart from the
reward model ArmoRM and human reward annotations, and use a LLama3.1-405B-Instruct zero-shot to judge the quality of
each individual response and uses its prediction to construct response pairs. For each response, we conduct 10 independent
evaluations and calculate the average score to determine the final reward score. We report AlpacaEval2, Arena-Hard and
WildBench results on WildChat DPO models in Table 9. Similar to the observation from Table 2, RIP by filtering based on
LLM-as-a-Judge predictions outperforms no filtering.
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# Train
examples

AlpacaEval2 Arena-Hard WildBench

WildChat with LLM-as-a-Judge as reward annotator LC Win Win Score Score

Llama 3.1-8B-Instruct (seed model) - 20.9 21.8 21.3 33.1
Standard DPO (no filtering) 16837 40.1 44.9 41.1 42.5

RIP 5999 44.3 48.8 42.5 43.9

Table 9: RIP compared to baselines on WildChat using LLM-as-a-Judge as the reward annotator.. We report results on
AlpacaEval2, Arena-Hard and WildBench of various models trained using DPO on the WildChat Dataset. RIP outperforms
the baseline of LLM-as-judge as the reward annotator.

Data Scaling with RIP We further scale up RIP by growing the training data size after filtering to 20k, and achieves
AlpacaEval2 LC win rate of 58.49% as shown in Figure 1. While the effective training size scales from 4538 to 20k, the
actual performance gain only increase slightly, suggesting that training with Llama 3.1-8B-Instruct on existing WildChat
prompts saturates, even under RIP .

RIP filtering thresholds We report the filtering thresholds of the best checkpoints in our experiments in Table 14.

Full Evaluation Results We include full WildChat evaluation results on AlpacaEval2 and Arena-Hard in Table 15 and
on WildBench in Table 16, with average response lengths, confidence intervals as well as finegrained results on subtasks.
Full evaluation results on models trained on HelpSteer2 are presented in Table 17 and Table 18. In addition, full evaluation
results on Self-RIP are included in Table 19 and Table 20.

Coordinate-wise Filtering results. We conduct extensive experiments by applying filtering to each individual metric:
reward on chosen or rejected response, lengths of chosen or rejected response, reward gap, average reward of all responses,
etc. Results on valid set performances by applying various filtering metrics to WildChat task are included in Table 24,
Table 27 and HelpSteer2 in Table 25. Both highlight strong performance boost by filtering based on rejected reward, rejected
length and reward gap.

RIP on Gemma2 models To show the effectiveness of our RIP filtering beyond Llama models, we finetune Gemma2-9B-it
model with SimPO using the dataset (princeton-nlp/llama3-ultrafeedback-armorm) which are Gemma2 generations on
ultrafeedback annotated by ArmoRM.

Table 10: RIP on Gemma2-9B SimPO Applying RIP on Gemma2-9B finetuning further improves Gemma2 performance
on AlpacaEval from 69.48 to 73.81 by filtering out 50% train data.

Filtering #Prompts Alpaca LC Winrate Alpaca Winrate

Gemma2-9B SimPO (no filtering) 59569 69.48 63.07
Gemma2-9B SimPO (RIP filtering) 29963 73.81 62.01

RIP with Smaller-sized Reward Model To show the effectiveness of RIP if reward models are of smaller size, and from a
different model family, we select a lightweight non-Llama-based reward model “Ray2333/GRM-gemma2-2B-rewardmodel-
ft”, which is a Gemma2-2B based reward model, to annotate and then DPO finetune a Llama3.1-8B-Instruct model. Below
are the results on RIP filtering using reward scores by this Gemma2-based RM. Ray2333/GRM-gemma2-2B-rewardmodel-ft
(ranked 36th on Reward Bench) is ranked below ArmoRM on RewardBench, and the performance gap in the two reward
model quality also affects the performances of finetuning Llama3.1-8B-Instruct with reward model annotations(i.e. better-
quality reward model leads to better winrate of finetuned models). However, in both cases RIP filtering demonstrates its
effectiveness.

Comparison with β−DPO β-DPO(Wu et al., 2024a) filtering is online, meaning they filter out data in every batch,
whereas our approach filters data offline. This offline filtering enables more flexible and efficient generation pipelines,
particularly for weak-to-strong generation scenarios. For instance, finetuning Llama3.3-70B-Instruct on prompts RIP filtered
by a smaller Llama3.1-8B-Instruct model outperformed (Alpaca LC-winrate improved from 54.3 to 64.5, Arena-Hard from
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Table 11: RIP with Gemma2 based Reward Model. By curating less than 5k out of 20k prompts, we can improve
Llama3.1-8B-Instruct DPO models from 41.1 to 49.9 on AlpacaEval LC-winrate, showing similar improvement using
ArmoRM filtering (LC winrate improved from 48.4% to 57.8%).

Filtering #Prompts Alpaca LC Winrate Alpaca Winrate

WildChat20k baseline 20000 41.1 47.3
WildChat RIP 4401 49.9 53.5

Table 12: RIP on Gemma2-9B SimPO Applying RIP on Gemma2-9B finetuning further improves Gemma2 performance
on AlpacaEval from 69.48 to 73.81 by filtering out 50% train data.

Filtering #Prompts Alpaca LC Winrate Alpaca Winrate

Gemma2-9B SimPO (no filtering) 59569 69.48 63.07
Gemma2-9B SimPO (RIP filtering) 29963 73.81 62.01

70.5 to 76.7). There are some noticeable distinctions between our methods and β-DPO. β-DPO removes both small and
large gaps, our method removes bigger gaps only. In addition, β-DPO’s filtering is probabilistic, resulting in incomplete
data removal, whereas our approach uses deterministic filtering to ensure thorough removal of unwanted data. Given
these differences, and as previously mentioned, our method prioritizes Rejected Reward and Rejected Length criteria over
gap-based filtering, which have demonstrated superior effectiveness in our experiments.

Table 13: Preference Dataset Statistics used for training in our experiments.

Filtering β-DPO mode weight #Prompts Valid Score Alpaca LC Winrate Alpaca Winrate

No filtering - 19803 0.1830 48.37 45.87
RIP filtering - 4538 0.1898 57.83 57.16
β-DPO Filter 0.2 15842 0.1842 49.15 49.00
β-DPO Filter 0.5 9901 0.1840 46.68 42.41
β-DPO Filter 0.75 4950 0.1827 45.97 40.58

A.3. t-SNE Analysis of Filtered Instructions

We conduct t-SNE analysis on WildChat prompts filtered by rejected response length and reward in Figure 5 and those
further filtered by reward gap in Figure 6. To better understand which prompts are being filtered out, we summarize prompts
being filtered out due to rejected responses being of shorter length or lower reward in Table 32 and Figure 7, and those
filtered out due to large reward gaps in Table 33. In addition to visualizing the examples, we also conduct GPT4 analysis
into quality of the filtered out prompts in Section 6.2 by each criterion, to justify our hypothesis. We include one such
sample analysis below. A prompt ”Write a story” is filter out (rejected ARMO, gap), and is considered not useful as this
prompt is overly broad and lacks specific details, posing challenges in generating a focused response.

A.4. Further Ablations

We report results of further ablation studies: comparing filtering and various pairing instead of filtering methods in Table 21,
and robustness of RIP to choice of responses in rejection sampling in Table 22.

RIP outperforms alternative preference pairing methods We compare RIP to methods without filtering that use
different response pairing methods for building pairwise preferences. Recall that in our main experiments for RIP we used
the best-vs-worst pairing method as described in Section 3.1. Here we explore two alternative methods: (i) best-vs-random
which is shown by existing work (Yasunaga et al., 2024; Khaki et al., 2024) to outperform best-vs-worst, and (ii) best-vs-
bottom-K% percentile where the rejected response has the bottom K = 25, 50, 75 percentile score (K = 0 being the lowest
score). Both pairing methods can effectively lower reward gap and increase quality of rejected response without removing
training prompts. We report model performance on the valid set in Table 21. Out of all pairing methods, best-vs-bottom-25%
works the best, but still under-performs compared with our RIP method (pairing with best-vs-worst). When evaluated on
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Table 15: Full AlpacaEval2 & Arena-Hard Results on WildChat: we compare performances of SOTA models on
AlpacaEval2 win rates and Arena-Hard scores as well as DPO models trained on the WildChat-20k dataset using various
filtering methods.

# Train
examples

AlpacaEval2 Arena-Hard

Standard models LC Win Win Len Score 95% CI Len

GPT-4 Omni (05/13) - 57.5 51.3 1873 74.9 (-2.5, 1.9) 668
GPT-4 Turbo (04/09) - 55.0 46.1 1802 82.6 (-1.6, 1.8) 662
Gpt-4-0613 - 55.0 46.1 1802 37.9 (-2.8, 2.4) 354
Llama 3.1-405B-Instruct - 39.3 39.1 1988 67.1 (-2.2, 2.8) 658
Llama 3.1-70B-Instruct - 38.1 39.1 2044 69.3 (-2.5, 2.5) 658

Baseline
Llama 3.1-8B-Instruct - 20.9 21.8 2184 21.3 (-1.9, 2.2) 861
WildChat-20k DPO (no filtering) 20000 48.4 45.9 2134 37.9 (-2.0, 2.2) 622
WildChat-20k DPO (best-vs-bottom-25%) 20000 48.2 45.9 1971 40.7 (-2.1, 1.9) 741

Prompt-Based Filtering
Jaccard Similarity 9904 49.0 46.6 1978 42.6 (-2.4, 2.3) 632
LLM-as-Prompt-Judge Binary 4299 45.5 41.0 1859 42.0 (-1.4, 1.7) 597
LLM-as-Prompt-Judge Pointwise 15963 47.4 47.4 2056 40.7 (-2.0, 2.2) 701
InsTag-Difficulty 10000 46.3 39.0 1752 39.0 (-2.2, 2.3) 602
InsTag-Diversity 9952 40.1 41.1 1903 40.4 (-2.4, 2.8) 579

Prompt-and-Chosen-Response-Based Filtering
IFD on Prompt + Chosen Response 9902 47.6 37.6 1655 32.2 (-1.7, 2.5) 533
ppl(Chosen Response) 14851 45.6 45.5 1930 40.8 (-2.3, 1.7) 582

Chosen-Rejected-Response Based Filtering
LLM-as-Prompt-Judge Pointwise 15963 47.4 47.4 2056 40.7 (-2.0, 2.2) 701
RIP 4538 57.8 57.2 2048 43.1 (-1.5, 1.8) 638

AlpacaEval2, Arena-Hard, and WildBench, the model WildChat-20k DPO (best-vs-bottom-25%) only achieves a slight
improvement gain comparing to baseline WildChat-20k DPO (best-vs-worst), while still underperforming RIP as shown in
Table 2. This result indicates that reward gap being small or the rejected reward being high better works as an indication of a
low-quality prompt rather than bad response pairing.

Combining alternative pairing with RIP performs on par with best-vs-bottom pairing with RIP . We further apply
RIP filtering to examples paired by best-vs-bottom-25% pairing. Combing best-vs-bottom-25% with filtering out examples
of low quality rejected responses yields ArmoRM Score of 0.18675, slightly lower than best-vs-worst + filtering by Rejected
Reward (0.18795). Filtering out best-vs-bottom-25% examples of bigger reward gaps yields to Armo Score of 0.1860 on
valid set as compared to 0.18542 from best-vs-worst pairing + filtering by Reward Gaps. Given the marginal performance
gain between best-vs-worst and best-vs-bottom-25% pairing with and without RIP , we thus focus on the more widely
adopted best-vs-worst pairing to experiment various filtering methods including our RIP method.

RIP is robust to the choice of the number of responses N . While we showed RIP provides strong performance on
HelpSteer2 where only N = 2 responses are availabe for each prompt, and on WildChat with N = 64 responses sampled per
prompt, we also compare the performance of RIP by varying the choice of N the number of candidate responses generated
for preference annotations in the WildChat setup. As shown in Table 22, for a wide range of values N = 64, 32, 16, 8, RIP
consistently outperforms the no filtering baseline, with larger N achieving increasingly better performance, likely due to the
increased quality and variability of chosen and rejected responses, allowing our RIP metrics to be more accurate in curating
high quality data.

Self-RIP works with much smaller set of high-quality seed instructions Instead of using all 4538 RIP curated high-
quality instructions as seed instructions S during Step 1. few-shot generations, we sample a much shorter subset of 256
prompts from 4538 RIP -curated prompts as seed instructions, and only conduct few-shot generations by sampling 8 prompts
from the 256 seed prompts each time. We report Self-RIP with and without post-filtering in Table 23. Self-RIP based
on 256 high-quality seed instructions (58.9) slightly underperforms than that based on 4538 seed prompts (60.2), but
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Table 16: Full WildBench Results on WildChat: we compare performances of SOTA models on WildBench as well as
DPO models trained on the WildChat-20k dataset using various filtering methods.

WB-Score WB-Score: Task-specific

Standard models Weighted
average Creative Planning &

Reasoning
Math &

Data Analysis Information Coding &
Debugging

GPT-4 Omni (05/13) 59.3 59.1 60.2 57.3 58.6 60.5
GPT-4 Turbo (04/09) 55.2 58.7 56.2 51.0 57.2 55.1
Gemini-1.5-pro 53.0 55.1 53.7 48.6 52.2 55.2
Llama3-70B-Instruct 47.8 54.3 50.1 42.1 52.3 44.7

Baseline
Llama 3.1-8B-Instruct 33.1 45.0 37.0 23.9 37.4 29.3
WildChat-20k DPO (no filtering) 41.5 51.8 44.2 32.2 50.0 37.1
WildChat-20k DPO (best-vs-bottom-25%) 44.5 53.9 47.4 35.8 50.4 41.4

Prompt-Based-Filtering
Jaccard Similarity 43.7 54.2 46.9 34.3 49.5 40.5
LLM-as-Prompt-Judge Binary 43.3 53.9 46.6 35.8 48.5 38.6
LLM-as-Prompt-Judge Pointwise 45.2 55.6 48.0 37.1 51.6 40.9
InsTag-Difficulty 42.4 52.7 45.4 33.4 47.8 39.3
InsTag-Diversity 43.4 53.4 46.1 35.0 49.1 40.1

Prompt-and-Chosen-Response-Based Filtering
IFD 42.2 51.3 45.9 35.0 48.0 37.1
ppl(Chosen Response) 43.4 52.5 47.0 37.2 49.4 37.6

Chosen-Rejected-Response Based Filtering
LLM-as-Prompt-Judge Pointwise 45.2 55.6 48.0 37.1 51.6 40.9
RIP 45.6 56.7 48.8 36.6 51.6 41.4

Table 17: Results of our DPO models trained with HelpSteer2. Full AlpacaEval2 & Arena-Hard Results of our DPO
models trained with HelpSteer2 Dataset.

AlpacaEval2 Arena-Hard

Prompts LC Win Win Len Score 95% CI Len

Baseline
Llama 3.1-8B-Instruct - 20.9 21.8 2184 21.3 (-1.9, 2.2) 861
HelpSteer2 DPO (no filtering) 10161 25.2 23.1 1733 26.8 (-2.0, 2.4) 606

Prompt-Based-Filtering
LLM-as-Prompt-Judge Pointwise 5376 27.8 25.7 1947 29.5 (-2.8, 2.3) 627

Prompt-Response-Based-Filtering
RIP 5081 34.6 32.8 1941 35.0 (-1.8, 2.2) 621

still outperforms Self-Instruct with RIP post-filtering (58.3) as well as Self-RIP based on all 4538 seed prompts without
post-filtering (53.6), indicating that our method Self-RIP can work well with a much smaller set of high-quality seed
prompts.

A.5. Details about Baselines

InsTag Complexity Lu et al. (2023) utilized ChatGPT to generate semantic and intent-based tags, which were then used
to fine-tune a large language model (LLM) data tagger. The number of tags per prompt served as a complexity metric.
Building on their methodology, we employed a publicly available tagger (https://github.com/OFA-Sys/InsTag.
Note that Meta was not involved in the training of the Instag model we used.) to annotate each prompt, generating between 1
and 100 tags per prompt. We then categorized our training prompts into four groups based on the number of tags: more
than 2, more than 3, more than 4, and more than 5. From each group, we randomly sampled 10,000 training data samples
and trained a distinct model for each group. It is important to note that a threshold of ≥ 1 implies no filtering, with only
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Table 18: Results on our DPO models trained with HelpSteer2. Full WildBench results of our DPO models trained with
HelpSteer2 Dataset.

WB-Score WB-Score: Task-specific

Weighted
average Creative Planning &

Reasoning
Math &

Data Analysis Information Coding &
Debugging

Baseline
Llama 3.1-8B-Instruct 33.1 45.0 37.0 23.9 37.4 29.3
HelpSteer2 DPO (no filtering) 37.1 48.6 40.4 26.5 44.3 33.4

Prompt-Based-Filtering
LLM-as-Prompt-Judge Pointwise 37.2 50.6 40.0 27.9 43.0 33.1

Prompt-Response-Based-Filtering
RIP 39.5 52.1 42.9 29.3 46.4 35.0

Table 19: Results of our DPO models trained with Self-Instructed Dataset: Full AlpacaEval2 & Arena-Hard Results
comparing our method with training on standard Self-Instruct dataset.

# Train
examples

AlpacaEval2 Arena-Hard

Training Prompts Filtering LC Win Win Len Score 95% CI Len

Self-Instruct None 20000 49.1 46.9 1956 38.5 (-1.4, 1.6) 738
Self-RIP (without post-filtering) None 20000 53.6 56.1 2252 43.7 (-2.3, 2.3) 777
Self-Instruct with RIP post-filtering RIP 16261 58.3 53.2 1823 40.9 (-1.9, 1.6) 560
Self-RIP RIP 18812 60.2 61.1 2121 42.1 (-2.0, 2.4) 606

Table 20: Results of our DPO models trained with Self-Instructed Dataset: Full WildBench Results comparing our
method with training on standard Self-Instruct dataset.

WB-Score WB-Score: Task-specific

Training Prompts Filtering Weighted
average Creative Planning &

Reasoning
Math &

Data Analysis Information Coding &
Debugging

Self-Instruct None 41.0 51.6 43.3 31.4 47.7 38.0
Self-RIP (without post-filtering) None 44.8 55.3 46.9 33.5 49.7 44.6
Self-Instruct with RIP post-filtering RIP 44.1 54.8 47.3 36.4 48.2 40.3
Self-RIP RIP 42.5 54.1 46.2 32.8 48.6 38.2

Table 21: Results of pair selections: We report Armo scores on valid sets by varying different pairing methods instead
of filtering prompts. Best pairing result 0.1842 is achieved with appointing response with bottom 25% score as rejected,
although still underperforming compared to our filtering method (0.1898).

Pair Armo Score on Valid

Chosen=HighestScore, Rejected=LowestScore 0.1830
Chosen=HighestScore, Rejected=BottomScore25% 0.1842
Chosen=HighestScore, Rejected=BottomScore50% 0.1839
Chosen=HighestScore, Rejected=BottomScore75% 0.1821
Chosen=HighestScore, Rejected=Random 0.1835

Chosen=HighestScore, Rejected=LowestScore + RIP 0.1898

a random sample of 10,000 data points from WildChat. A threshold of ≥ 2 means filtering out prompts with only 1 tag.
As shown in Table 28, a threshold of ≥ 2 yields the best performance using the InsTag Complexity filtering method. We
reported the results for a threshold of ≥ 2 in Table 2.
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Table 22: Results on Varying N = 8, 16, 32, 64 number of responses sampled per prompts in Response Generation:
Armo Score on Valid set of our DPO models trained with WildChat Dataset all increases after filtering based on RIP
regardless of the choice of N in response generation step.

Before Filtering After Filtering Gain
N Armo Score Armo Score

8 0.1821 0.1860 0.0039
16 0.1827 0.1878 0.0051
32 0.1829 0.1882 0.0053
64 0.1831 0.1898 0.0067

Table 23: Self-RIP for generating high-quality synthetic instructions by varying number of fewshots. Self-RIP creates
prompts using few-shot samples from high-quality prompts curated by RIP , whereas Self-Instruct uses few-shots from
unfiltered WildChat prompts. Applying RIP filtering after generation is also important, and achieves the best results,
significantly outperforming Self-Instruct data.

# Seed
Prompts

# Train
examples

AlpacaEval2

Train Prompts LC Win Win

Llama 3.1-8B-Instruct (seed model) - - 20.9 21.8
WildChat-20k + RIP - 4538 57.8 57.2

Self-Instruct + RIP 20000 16261 58.3 3.2

Self-RIP (without post-filtering) 256 20000 50.0 51,2
Self-RIP (without post-filtering) 4538 20000 53.6 56.1

Self-RIP 256 15619 58.9 63.1
Self-RIP 4538 18812 60.2 61.1

InsTag Diversity The InsTag Diversity filtering method (Lu et al., 2023) considers a dataset to be more diverse if it
contains a larger number of unique tags, as annotated by the aforementioned tagger. We employed two metrics to manage
InsTag Diversity:

1. Tag Frequency: We deem a tag valid if it meets a predefined frequency threshold. This approach addresses the issue of
infrequent tags, such as “serve size” and “market failure,” which appeared only once or twice in the entire Wildchat dataset,
suggesting they may not represent valid categories. In contrast, more common tags like “creative writing” and “information
retrieval” are more appropriate for categorizing prompt data.

2. Max prompt per Tag: This metric controls the coverage ratio of unique tags. If a prompt contains only tags that have
already been covered by the selected set, we discard the prompt to ensure diversity.

Table 29 presents the performance results when diversity is controlled using the two metrics described above. To ensure
fairness, we downsampled the training data for each experiment to 10,000 samples. The results indicate that the model
achieves optimal performance when the Tag Frequency is set to 6 and the Max Prompt per Tag is set to 3. This means we
only consider tags that appear more than six times in the entire Wildchat dataset, and we allow a maximum of three prompts
per tag. The best performance results are reported in Table 2.

Perplexity To curate training prompts, we compute the perplexity (ppl) of the selected response yw using the Llama-3.1-
8B-Instruct model in a zero-shot setting. We use this perplexity as a filtering metric, specifically retaining examples with
high ppl(yw|x) values, which may indicate more challenging prompts. We adjust the quantile range to control perplexity,
calculating ppl(yw|x) for 20,000 Wildchat data points and filtering them based on this range. Table 30 displays model
performance across different ppl quantile ranges. As shown, the quantile range of 25-100 yields the best performance, and
we report this model’s performance in Table 2.

Instruction-Following Difficulty (IFD) Li et al. (2023a) introduced the IFD to measure the model-specific difficulty of a
data sample. In the instruction-tuning process, the loss of a sample pair (Q, A) is calculated by continuously predicting the
next tokens given the instruction Q and their proceeding words:

19



Rejecting Instruction Preferences (RIP )

Table 24: Performance of Different Filter Methods Across Quantile Ranges on WildChat with ArmoRM as reward anotator.

Method 0-100 10-100 25-100 50-100 60-100 75-100
Chosen Reward 0.18305 0.18325 0.18409 0.18393 0.18380 0.18333
Rejected Reward 0.18305 0.18411 0.18405 0.18566 0.18797 0.18795
Average Reward 0.18305 0.18368 0.18392 0.18494 0.18468 0.18442
Chosen Length 0.18305 0.18350 0.18366 0.18278 0.18226 0.18105
Rejected Length 0.18305 0.18377 0.18340 0.18571 0.18593 0.18473

Method 0-100 0-25 0-50 50-100
Reward Gap 0.18305 0.18405 0.18542 0.17993

Table 25: Performance of Different Filter Methods Across Quantile Ranges on HelpSteer2 valid set.

Method 0-25 0-50 0-75 0-100 25-100 50-100 75-100
Chosen Human Reward 0.1469 0.1451 0.1456 0.1458 0.1461 0.1454 0.1465
Rejected Human Reward 0.1442 0.1455 0.1459 0.1458 0.1480 0.1470 0.1461
Chosen Length 0.1484 0.1467 0.1455 0.1458 0.1454 0.1446 0.1449
Rejected Length 0.1421 0.1430 0.1445 0.1458 0.1495 0.1513 0.1478
Human Reward Gap 0.1482 0.1480 0.1466 0.1458 0.1448 0.1448 0.1441

Table 26: Results on Applying RIP individual metric. As shown below, applying each individual RIP metric all yields
better performance compared to no filtering. In addition, apply all 3 metrics outperforms filtering with individual metric.

Valid Alpaca
Filtering Metric Armo Score LC Winrate

No Filtering 0.1830 48.37
Rejected Armo 0.18979 56.91
Rejected Length 0.18593 53.31
Reward Gap 0.18542 51.01
Apply all 0.18983 57.83

Table 27: Results on Applying RIP metrics accumulatively These findings from our SimPO experiments are consistent
with our previous DPO experiments, which demonstrated that Rejected Armo is the most effective metric. The addition of
rejected length also proved to be highly effective, while gap filtering provided some benefits, albeit to a lesser extent than
the other two metrics.

Alpaca Alpaca
Filtering Metric # Prompts LC Winrate LC Winrate

Llama3.1-8b SimPO (no filtering) 19803 51.28 40.55
Llama3.1-8b SimPO (RIP filtering, Rejected Armo) 8068 54.02 43.51
Llama3.1-8b SimPO (RIP filtering, Rejected Armo, Gap) 6629 53.04 43.02
Llama3.1-8b SimPO (RIP filtering, Rejected Armo, Rejected Length, Gap) 4538 53.32 43.81

Lθ(A | Q) = − 1

N

N∑
i=1

logP
(
wA

i | Q,wA
1 , w

A
2 , . . . , w

A
i−1; θ

)
(1)

where N is the number of words of the groundtruth answer A. They denote this averaged crossentropy loss as the Conditioned
Answer Score Sθ(A | Q) = Lθ(A | Q).

Then they introduce the Direct Answer Score Sθ(A)
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Figure 3: GPT4 eval prompt.

I have a collection of prompts that I need to evaluate for their effectiveness in fine-tuning a language model.
A useful prompt should:
- Clearly ask a question
- Be concise and specific
- Directly relate to the topic of interest or follow given instructions

Please assess each prompt and assign a score from 1 to 5 based on its usefulness:
- 1: Pretty useful
- 2: Somewhat useful
- 3: Neutral (neither useful nor harmful)
- 4: Somewhat harmful
- 5: Harmful
Make sure to clearly indicate the score at the end of your evaluation using the format: Score: x
Prompt: {prompt}

Figure 4: Self-Instruct few-shot prompt template.

Below are sample tasks from user.
1. <begin>{INSTRUCTION 1}</end>
2. <begin>{INSTRUCTION 2}</end>
3. <begin>{INSTRUCTION 3}</end>
4. <begin>{INSTRUCTION 4}</end>
5. <begin>{INSTRUCTION 5}</end>
6. <begin>{INSTRUCTION 6}</end>
7. <begin>{INSTRUCTION 7}</end>
8. <begin>{INSTRUCTION 8}</end>

Come up with a series of new tasks, wrapped with <begin>and </end>
9.

sθ(A) = − 1

N

N∑
i=1

logP
(
wA

i | wA
1 , . . . , w

A
i−1; θ

)
(2)

Finally, they estimate the Instruction-Following Difficulty (IFD) scores IFDθ(Q,A) on following instruction of a given (Q,
A) pairs by calculating the ratio between Sθ(A) and Sθ(A | Q):

IFDθ(Q,A) =
sθ(A | Q)

sθ(A)
(3)

We calculated the IFD scores for 20,000 Wildchat data points and filtered them based on specific ranges. As shown in
Table 31, filtering with a range of 25-100 yielded the best performance. The performance of this model is reported in Table 2.
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Table 28: Model performance with InsTag Complexity
Filtering

Tag threshold Armo Reward
on Valid Set

>= 1 0.1820
>= 2 0.1826
>= 3 0.1812
>= 4 0.1815
>= 5 0.1818

Table 29: Model performance with InsTag Diversity
Filtering

Tag Fre-
quency

Max
prompt
per Tag

Armo Reward
on Valid Set

1 1 0.1809
1 2 0.1799
2 1 0.1798
2 2 0.1800
3 1 0.1799
3 2 0.1797
3 3 0.1814
4 3 0.1821
5 3 0.1818
6 3 0.1831

Table 30: Model performance with Perplexity Filtering

Quantile Range Armo Reward on Valid Set
25-100 0.1833
50-100 0.1827
75-100 0.1797

Table 31: Model performance with IFD Filtering

Quantile Range Armo Reward on Valid Set
0-25 0.1815
0-50 0.1823
0-75 0.1832

25-100 0.1835

Figure 5: t-SNE plots on instructions before and after filtering by rewards and lengths of rejected responses. Red dots
represent unfiltered instructions, while blue dots are instructions curated by filtering out those with low-reward and shorter
rejected responses.

Figure 6: t-SNE plots on instructions before and after filtering by reward gaps. Blue dots represent instructions filtered
only by rejected response, while yellow dots are instructions curated with smaller gap.
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Table 32: Noisy instruction filtered based on rejected responses of lower scores and shorter lengths. We expand 4
clusters of instructions highlighted in Figure 5 for a better understanding of what instructions are being filtered out by
measuring quality of rejected responses.

Cluster Description Rejecting Reason Rejected Instruction

Cluster
1

646 instructions in the format
of “give me a response to

“‘<text>“‘ to send in a dis-
cussion, VERY SHORT, CON-
CISE & CLEAR. ONLY RE-
TURN THE RAW MESSAGE,
DO NOT SAY ”Hey here is the
message you asked””, where
<text> refers to a single-turn
conversational message.

Around 90% of rejected responses are
of shorter lengths and lower scores be-
low 25% percentile, even though their
scores are higher than average rejected
scores. These short and concise conver-
sational responses are shorter thus poten-
tially more generic and less informative
for the models to further improve upon.

give me a response to “‘I’m feel-
ing great! Swimming around in
the ocean and hunting for prey
never gets old. I’m always look-
ing for new and exciting ways
to keep busy.“‘ to send in a dis-
cussion, VERY SHORT, CON-
CISE & CLEAR. ONLY RE-
TURN THE RAW MESSAGE,
DO NOT SAY “Hey here is the
message you asked”

Cluster
2

804 instructions in the format
of movie script: (In a <scene>)
<name1>:<line1>\n...
<nameK>:<lineK>, without
any instructions on what the
model response should be.

Short rejected responses and low re-
jected scores: Around 90% of rejected
responses are of shorter lengths, lower
scores below 50% percentile. In addi-
tion, over 75% response pairs are of
larger score gap above 50% percentile.
All of these are likely due to the obscu-
rity of the user instructions.

(In the school literature club-
room...)\n\nMonika: Natsuki,
where is everyone? I haven’t
seen Sayori, Yuri, or MC in a
while.\nNatsuki:...

Cluster
3

279 instructions, majority of
them are purely excerpts from
a fictional story, with no speci-
fications on what the response
should be. Users could be ask-
ing models to continue the story,
or summarize, or edit it.

Short rejected responses and low re-
jected scores: Over 90% of rejected
responses are of shorter lengths, lower
scores below 50% percentile. All of
these are likely due to the obscurity of
the user instructions.

David insists he is too strong-
willed and intelligent to ever
be hypnotized. He scoffs at
the very idea. In this kinky
script, his colleague Clare eas-
ily proves him wrong, in front
of some amused co-workers.

Cluster
4

466 instructions, majority
of them are about writing a
comedic story about a fictional
character.

Short rejected responses and low re-
jected scores: Around 95% of rejected
responses are of shorter lengths, lower
scores below 25% percentile. All of
these are likely due to the Llama 3.1-8B-
Instruct model being reluctant to provide
detailed answers. These instructions are
therefore less informative for improving
Llama 3.1-8B-Instruct with its own re-
sponses.

Make a story about Shrek in the
buff and farting in bog water,
then collecting all the fish the
smell kills and eating them for
dinner.
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Table 33: Noisy instruction clusters filtered based on rejected responses of lower scores and shorter lengths. We
expand 4 clusters of instructions sampled from Figure 6, that consists of both rejected and accepted instructions by RIP .

Cluster Description Rejecting Reason Rejected Instructions Accepted Instructions

Cluster
1

140 instructions,
among those some
are purely code
snippets without ad-
ditional guidelines
on what to respond.
Others are requests
asking to optimize a
given piece of code.

Instructions with
pure code snippets
lead to variable re-
sponses (from code
refactoring, editing,
code completion,
to code review and
code explanation
using natural lan-
guage). Instructions
on “improve this
code” can also incur
variable responses
given the lack of
more specified
instructions.

improve this emer-
gency shutdown code:
import os\nimport
platform\nimport
sys\nimport se-
crets\nfrom thread-
ing import Thread,
Event\nfrom pyn-
put.mouse import
Listener\nfrom pyn-
put.keyboard...

I will provide you disas-
sembly from a computer
game that runs in MS-DOS.
The game was written in
C with a Watcom compiler.
Some library function calls
are already identified. Ex-
plain the functions I give to
you and suggest names and
C-language function signa-
tures for them, including
which parameters map to
which registers or stack val-
ues ¡code snippet¿....

Cluster
2

237 instructions
including: writing
a program, inquiry
about online tool,
software installa-
tion, etc. Many
instructions are
short (in 120 charac-
ters) and relatively
high-level.

Rejected responses
are on average
much longer and
complex compared
to chosen responses,
despite the high
scores of both
chosen and rejected
responses.

alignment in excel
vb.net

write script for del-
egating fb group

i am getting access denined
when i try to put local files
into remote server using ftp
how can i resolve this issue

Cluster
3 & 4

Cluster 3 are 52 in-
structions related to
hypothetical or sur-
real scenarios; Clus-
ter 4 are 52 instruc-
tions in the form of
“Freedom planet ...”,
possibly for a cre-
ative project in the
video game.

Model responses
vary a lot due to
the obscurity or
hypothetical nature
of the instructions.

Can You Imagine 4
Fictional Versions Of
Silicon Valley During
1940 In Detail?

Freedom planet
and Madness combat
all characters: Hank
4th wall breaks and
repetition

What if Cartoon Network
Made The Amazing World
of Gumball: Next Genera-
tion

freedom planet what if
Lord Brevon Wins (not kils
Lilac, Carol and Milla)
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Figure 7: t-SNE plots on instructions before and after filtering by rewards and lengths of rejected responses. Red dots
represent unfiltered instructions, while blue dots are instructions curated by filtering out those with low-reward and shorter
rejected responses. Both Cluster 5 and 6 consist of instructions curated or filtered by the RIP metrics.
Cluster 5 consists of 307 prompts filtered out and 87 prompts selected; 282 prompts are being filtered out due to shorter
rejected response length. Short responses are either because the requests are underspecified or because they elicit potentially
sensitive responses. Sample Rejected Instruction from Cluster 5 : ”I want you to help me with my research”; ”Write one
more short song, about Izzy’s hatred for Joe Biden”. Sample Accepted Instruction from Cluster 5: ”How to comfort someone
who studied for a test and got different questions than the ones he studied for”; ”Lyrics for a happy song about challenges
and growth in the style of The Weeknd”.
Cluster 6 consists of 385 prompts filtered out due to shorter rejected responses and 218 prompts selected. Prompts leading
to short rejected responses in this cluster are generic chitchat messages, greetings, or easy factual questions. Sample
Rejected Instruction from Cluster 6: ”What is the weather today in Seattle” ; ”Do you speak Vietnamese”. Sample Accepted
Instruction from Cluster 6: ”Hi, can you give me a simple party game for 4 10 people”; ”Benefits of studying in Singapore”.
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