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Abstract

Traffic forecasting plays a key role in Intelligent Transportation Systems, and
significant strides have been made in this field. However, most existing meth-
ods can only predict up to four hours in the future, which doesn’t quite meet
real-world demands. we identify that the prediction horizon is limited to a few
hours mainly due to the separation of temporal and spatial factors, which results
in high complexity. Drawing inspiration from Albert Einstein’s relativity theory,
which suggests space and time are unified and inseparable, we introduce Extra-
longer, which unifies temporal and spatial factors. Extralonger notably extends the
prediction horizon to a week on real-world benchmarks, demonstrating superior
efficiency in the training time, inference time, and memory usage. It sets new
standards in long-term and extra-long-term scenarios. The code is available at
https://github.com/PlanckChang/Extralonger.

1 Introduction

Traffic forecasting stands as a pivotal endeavor within Intelligent Transportation Systems (ITS). This
task aims to capture the spatial-temporal dynamics in traffic road networks by analyzing historical
time steps across monitoring stations and subsequently forecasting future time steps. [1–3] Previous
works denote raw traffic data as X ∈ RT×N×C , where T signifies the time steps length, N represents
the count of monitoring stations, and C denotes the raw feature channel. They conceptualize traffic
road networks as graphs, with nodes representing monitoring stations and edges between two nodes
indicating connectivity. The early works have achieved significant progress in short-term traffic
forecasting, whose prediction horizon is within one hour.

In real-world ITS, there exists a considerable demand for prediction horizons that far exceed the
typically short-term duration (usually ≤ 1 hour) offered by prevailing deep learning methods. While
SSTBAN [4] has initiated exploration into extended forecasting periods of 2 – 4 hours, introducing a
long-term traffic forecasting task, we propose an extra-long-term task with the prediction horizons
ranging from 0.5 days to 1 week. In this real-world context, the traffic data incurs substantial
computational and memory overheads due to the T ×N feature set. Almost all previous approaches
to fusing and processing this data exhibit a critical limitation due to treating temporal and spatial
dimensions distinctly. Separate processing paradigms for temporal and spatial dimensions necessitate
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Figure 1: Overview of the architecture.

repetitive computations across dimensions, leading to inefficiencies. Specifically, temporal feature
processing necessitates spatial iterations, while spatial feature processing requires temporal iterations.
Consequently, the computational complexity is one order higher than the magnitude of pure time series
prediction tasks, e.g., O(NT 2 + TN2) in the self-attention mechanism, while memory consumption
expands to O(TN2 +NT 2), as shown in Table 1. Such computational and memory demands pose
significant challenges to extend the prediction horizon into the extra-long-term scenario.

Fortunately, we draw inspiration from Albert Einstein’s relativity theory [5] (See Appendix B for
more details), on how to make a unified perspective on spatial-temporal factors to decrease the
computational complexity and memory consumption. We claim that spatial and temporal factors
are unified and inseparable, and therefore, they should be treated simultaneously. To address this,
we propose the Unified Spatial-Temporal Representation, which circumvents the need to expand
dimensionality for embeddings, by incorporating the spatial feature directly into the same time
step and the temporal feature into the corresponding node. Using this tailored representation, we
design a three-route Transformer-based architecture for traffic forecasting, named Extralonger. Our
contributions are threefold:

• We propose Extralonger, founded on Unified Spatial-Temporal Representation. Additionally,
we introduce the extra-long-term traffic forecasting task.

• Extralonger achieves a one-order reduction in both computational complexity, O(NT 2 +
TN2) → O(T 2 +N2), and memory usage, O(NT 2 + TN2) → O(T 2 + N2). Extra-
longer tremendously excels the baselines in terms of memory consumption, training effi-
ciency, and inference speed. Especially, in the longest step scenario, Extralonger achieves
a 172× reduction in memory usage, 500× increase in training speed, 385× increase in
inference speed than the prior best performance method (Figure 5).

• Extralonger first successfully extends the traffic forecasting horizon from 2-4 hours to 1
week. It outperforms baselines in both long-term scenarios (2-4 hours, as shown in Table 2)
and extra-long-term scenarios (0.5 days to 1 week, detailed in Table 3).

2 Preliminary

Given traffic road network G = (V, E), where V is the set of N nodes (i.e., monitoring stations) and
E is the set of edges. An edge exists if two nodes are connected, from which we derive the adjacency
matrix A. The historical traffic signal data are represented as X = [x0,x1, . . . ,xT−1] ∈ RT×N×C ,
where T denotes the length of historical time steps, C represents the raw feature, with a value of 1
for a specific feature such as flow, speed or occupation.

The goal of traffic forecasting is to find a model F to predict the future traffic signal data Ŷ =
[x̂T , x̂T+1, . . . , x̂T+T ′−1], where T ′ is the length of future time steps, which can be formulated as:

X = [x0,x1, . . . ,xT−1]
F(·|Θ)−−−−→ Ŷ = [x̂T , x̂T+1, . . . , x̂T+T ′−1] (1)
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where Θ is the parameters, conditional on which, the model F(·) has the minimum loss calculated
with the ground truth Y.

3 Extralonger

We first introduce the Unified Spatial-Temporal Representation in Section 3.1, followed by a step-by-
step description of the architecture of Extralonger in Section 3.2.

3.1 Unified Spatial-Temporal Representation

3.1.1 Classical Representation

The pipeline with the classical representation E ∈ RT×N×D for previous traffic forecasting models
is illustrated at the top of Figure 2 and formulated as follows :

X ∈ RT×N×C Linear(C)−−−−−−→ E ∈ RT×N×D F(·|Θ)−−−−→ Ŷ ∈ RT ′×N×C (2)
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Figure 2: Classical pipeline (TOP) and New
pipeline (BOTTOM).

where D is the feature dimension. All current traffic
forecasting methods, to the best of our knowledge,
utilize the classical representation. They linearly
project the raw data to the E, which serves as the
input to the forecasting model F involving temporal
and spatial modules. The combination of the two
modules is summarized as temporal-first, spatial-first,
and spatial-temporal simultaneous [6], as depicted by
the gray bidirectional arrow in Figure 2.

We categorize prior methods into four main
groups: RNN-based methods, attention-based meth-
ods, Transformer-based methods, and CNN-based
methods. The former three groups of methods ne-
cessitate spatial iterations when processing temporal
features, and require temporal iterations when pro-
cessing spatial features. Essentially, while processing
features for one dimension, the other dimension acts
as a role of batch size. Consequently, the computa-
tional complexity of RNN-based methods is O(TN).
Considering the diverse variants of attention-based
and Transformer-based methods, we only give the
complexity of the representative self-attention mech-
anism, i.e., O(NT 2 + TN2).

Memory usage analysis is complex and depends on
many factors beyond the scope of our paper, including
the parallelization framework, optimizer type, and decisions regarding intermediate state mainte-
nance [7]. Ignoring the constant memory footprint of model parameters and optimizer state, we
approximate memory usage as O(TN) for RNN-based methods and O(NT 2 + TN2) for attention-
based and Transformer-based methods.

Especially, CNN-based methods [8, 9] can treat the spatial and temporal dimensions jointly. Similar
to image data RHeight×Width×Channel in computer vision, CNN-based methods correspondingly
process the traffic data RT×N×D. Therefore, the computational complexity of CNN-based methods
follows the complexity of image processing, resulting in O(k2TN), where k denotes the kernel
size. Since CNN-based methods leverage GNNs as the spatial module, the total complexity is
O(k2TN + TN) for time complexity and O(TN) for memory usage.

These limitations of time and space complexity restrict the ability of existing methods to extend the
prediction horizon to a weekly level. More details are given in Appendix C and Table 1.
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Table 1: Comparison of time complexity, space complexity and maximum path lengths of mainstream
methods. T is the time steps length, N is the node number and k is the kernel size of CNN. The
maximum path length of the self-attention mechanism with classical representation scales as O(2)
due to independent computations along the temporal and spatial dimensions.

Method Time Complexity Space Complexity Maximum Path Length

RNN-based (Classical) O(TN) O(TN) O(T +N)
CNN-based (Classical) O(k2TN + TN) O(TN) O(logkT + logkN)
Self-Attention (Classical) O(NT 2 + TN2) O(NT 2 + TN2) O(2)
Self-Attention (Unified) O(T 2 +N2) O(T 2 +N2) O(1)

3.1.2 New Representation

To address high-complexity issues, we rethink the classical representation and propose the Unified
Spatial-Temporal Representation. Since feature number C equals 1, we squeeze it directly. We adopt
two fully connected linear layers and combine them with other prior embeddings (Section 3.2.1) to
obtain the temporal and spatial representations: Et and Es. With these two representations, the new
pipeline is shown at the bottom of Figure 2 and formulated as follows:

X ∈ RT×N×C Squeeze(C)−−−−−−−→ RT×N


Linear(N)−−−−−−→ Et ∈ RT×D

Linear(T )−−−−−−→ Es ∈ RN×D

 F(·|Θ)−−−−→ Ŷ ∈ RT ′×N (3)

The new representation integrates the whole nodes to the same time step directly and integrates all
the time steps to the same node as the linear layers play a channel-mixed role. Hence, for every
i in the range [0, T − 1], each element in the set {Et[i, j] : j ∈ [0, D − 1]} contains information
about all the nodes at time step i. Similarly, for every n in the range [0, N − 1], each element in
the set {Es[n,m] : m ∈ [0, D − 1]} contains information about all the time steps at node n. This
operation reflects the idea of unification: each time step incorporates information from all nodes,
while each node integrates information across all time steps, which contrasts with the classical
representation that relies solely on the feature itself at a particular node and time step. Early methods
that treat spatial and temporal dimensions separately require repetitive operations, leading to increased
complexity. However, the Unified Spatial-Temporal Representation overcomes this issue by reducing
one dimension. Additionally, our novel representation offers the following three advantages.

Complexity Reduction. The Unified Spatial-Temporal Representation inherently reduces computa-
tional complexity and memory usage compared to the classical representation. This stems from that
one dimension less than the classical representation. This eliminates the need for repetitive operations
across the other dimension. Since our model employs a Transformer-based architecture denoted as
F, the time complexity decreases from O(NT 2 + TN2) to O(T 2 +N2). Notably, if incorporat-
ing efficient attention mechanisms [10], the computational complexity could be further reduced to
O(T logT +NlogN). Similarly, memory usage reduces from O(NT 2 + TN2) to O(T 2 +N2).

Simultaneous Aggregation. The traffic signal transmits between the upstream nodes and the
downstream nodes with time going by, so the signal is related to different nodes and different
times, not just fixing one dimension and varying another one. Extralonger allows each node to be
simultaneously linked to all other nodes at the current time step, as well as to the nodes from all
historical and future time steps. This representation enables Extralonger to effectively capture the
complex spatial-temporal dynamics underlying traffic trends. Conversely, RNN-based, attention-
based and Transformer-based methods can only aggregate the nodes at the same time step or the same
node among different time steps. Treating traffic data as a grid, CNN-based methods are unable to
simultaneously consider all nodes at the same time step. Instead, they can only aggregate the nodes
within adjacent time steps due to the inherent receptive field. The aggregation comparison of ours
and other methods is shown in Figure 3(a).

Complete Receptive Field. The importance of a complete receptive field from both spatial and
temporal dimensions for capturing long-range dependencies in traffic forecasting has been well-
established in prior work [6, 9, 11]. Extralonger achieves a complete receptive field compared to
existing approaches. This stems from the inherent characteristic of the Unified Spatial-Temporal
Representation and the self-attention mechanism employed by Extralonger. As illustrated in the three-
route Transformer architecture in Section 3.2, the self-attention mechanism enables comprehensive
connectivity among all elements in the sets {Et[i, :] : i ∈ [0, T − 1]} and {Es[n, :] : n ∈ [0, N − 1]}.
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(a) The aggregation comparison. (b) The receptive field comparison.

Figure 3: Given the yellow circle and star are the analysis target at t time step, (a) only Extralonger ag-
gregates along different nodes and different time steps globally; (b) CNN-based methods aggregate
the information within the restricted receptive field (red box), and the other early methods aggregate
along the temporal and spatial dimensions separately (two orange belts). Capturing temporal and
spatial dependency globally with the Unified Spatial-Temporal Representation (whole area), Extra-
longer does simultaneously and efficiently.

This full connection facilitates the aggregation of information from any node across the entire road
network among all time steps, i.e., the complete receptive field, as depicted by all the squares in
Figure 3(b). Consequently, the maximum operation path length in Extralonger is O(1). In contrast,
RNN-based, attention-based and Transformer-based methods typically aggregate information along
the temporal and spatial dimensions separately, leading to an axial receptive field (orange belts
in Figure 3(b)). CNN-based methods are constrained by their inherent limitations on convolution
size (red box in Figure 3(b)). While CNN-based methods can operate along both dimensions, they
cannot make sure all nodes in the complete road network and all time steps are in the receptive field.
Moreover, unlike the image size that is fixed or can be preprocessed to the same size in computer
vision tasks, CNN-based models are not robust enough due to the T varying with the prediction
horizon.

3.2 Architecture of Extralonger

Founded on the Unified Spatial-Temporal Representation, we propose Extralonger, comprising three
parts: embedding layer, three-route Transformer, and prediction layer, as shown in Figure 1. The
embedding layer transforms the raw traffic data into an embedding space. The resulting embedding
consists of two components, the spatial representation Es and the temporal representation Et. The
three-route Transformer is the heart of Extralonger and is comprised of three parallel routes: a
temporal route, a spatial route, and a mixed route. Notably, all three routes can simultaneously
process information from both spatial and temporal dimensions due to the adoption of the Unified
Spatial-Temporal Representation. Each route emphasizes specific aspects of the data. The temporal
Transformer in the temporal route and the mixed route is implemented as a standard Transformer
encoder, and its detailed description is omitted for brevity. The Global-Local Spatial Transformer is
specifically designed for the spatial route and the mixed route. Finally, projected by the prediction
layer first, the outputs of the three routes are added up with a hand-crafted weight.

3.2.1 Embedding Layer

We first inject noise into X with learnable parameters (More details in Appendix E). Then, we
use two fully connected linear layers to transform X to feature embeddings: Etf ∈ RT×dtf and
Esf ∈ RN×dsf . We also utilize learnable embedding to capture the periodicity. Specifically,
we employ Etod ∈ RT×dtod for the 24-hour cycle (namely, timestamp-of-day embedding) and
Edow ∈ RT×ddow for the 7-day cycle (namely, day-of-week embedding). We adopt a learnable
spatial embedding Espatial ∈ RN×dspatial , introduced by GWNet [8], to capture the spatial dynamics.
The temporal representation Et is formed by concatenating the aforementioned embeddings: Et =
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Etf ||Etod||Edow ∈ RT×D, where || denotes concatenation. The spatial representation Es is informed
by concatenating embeddings: Es = Esf ||Espatial ∈ RN×D.

3.2.2 Global-Local Spatial Transformer

Global-Local Spatial 

Attention

Add & Norm

Add & Norm

Feed Forward

Softmax

Softmax

Scaled dot product

Multiplication

Figure 4: Global-Local Spatial Transformer.

The proposed Global-Local Spatial Transformer
is specifically tailored to exploit the inherent
topological characteristics of the spatial domain.
It integrates the road network’s prior informa-
tion into the self-attention mechanism. By in-
corporating dynamic dependencies derived from
all nodes and focusing on neighboring nodes to
aggregate local correlations, the Global-Local
Spatial Transformer explicitly leverages both
global and local spatial information, as shown
in Figure 4. More details about motivation and
insights are given in Appendix D.

Given Q = EsWQ, K = EsWK , V =
EsWV , where WQ, WK and WV are learnable parameters, the Global-Attention score before
softmax is followed as:

αglobal(Q,K) =
QKT

√
D

(4)

Then, we inject the road network’s prior information by using the adjacency matrix A as a mask to
obtain the Local-Attention score before softmax, formulated as:

αlocal = αglobal ⊙A (5)
where ⊙ denotes the element-wise product. We designate it as local because only information from
adjacent nodes is considered, while non-adjacent nodes are masked out. Both αlocal and αglobal

are subjected to a softmax function to obtain normalized attention weights. Global-Local Spatial
Attention (GLSAtt) is obtained by weighted summation with V.

GLSAtt = (Softmax(αlocal) + Softmax(αglobal))
V

2
(6)

We sequentially apply layer normalization (LN), skip connections, and a feed-forward network (FFN),
the same procedure as the vanilla Transformer, to yield the output Ês.

Z = LN(GLSAtt(Es)) +Es (7)

Ês = LN(FFN(Z)) + Z (8)

3.2.3 Prediction Layer

We employ linear layers to project the output of the three-route Transformer to predict the corre-
sponding T ′ time steps, which is necessary for the asymmetrical T − T ′ setup. Subsequently, the
projected outputs are aggregated using hand-crafted weights, resulting in Ŷ ∈ RT ′×N . The Huber
loss [12] is then calculated between Ŷ and the ground truth Y, formulated as:

HuberLoss =


1
2 (Y − Ŷ)2, if

∣∣∣Y − Ŷ
∣∣∣ ≤ δ

δ ·
(∣∣∣Y − Ŷ

∣∣∣− 1
2δ

)
, otherwise

(9)

where δ is a positive value.

4 Experiments

4.1 Datasets and Experiment Setup

We evaluate the performance of our proposed Extralonger in long-term and extra-long-term traffic
forecasting scenarios using three real-world datasets: PEMS04, PEMS08 and Seattle Loop, which
serve as widely adopted benchmarks for traffic prediction tasks. Following early works, we split each
dataset into training, validation, and testing sets using a ratio of 6:2:2. 2 Following SSTBAN [4], in

2Because of the page limitation, the experiment results of Seattle Loop are in Appendix G.
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Table 2: Performance comparison in long-term scenarios. The smaller the value, the better.

Dataset Mehtod 24 Time Steps 36 Time Steps 48 Time Steps
RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

PEMS04

HA 81.57 56.47 45.49 106.58 76.01 68.84 127.28 93.37 94.62
VAR 41.09 27.19 21.42 45.44 30.48 24.51 49.46 33.5 27.28

DCRNN 42.86 28.70 21.23 51.40 33.78 27.10 57.85 38.26 33.73
GWNet 35.52 22.79 16.04 38.17 24.71 17.67 40.60 26.42 18.99
GMAN 38.10 21.67 17.78 52.86 22.12 16.43 47.85 23.35 17.98
AGCRN 34.44 21.63 14.65 38.19 24.15 16.33 38.26 24.18 16.31

DMSTGCN 32.09 20.32 14.13 34.86 22.47 15.86 35.05 22.50 16.56
SSTBAN 32.82 20.17 14.43 34.15 20.82 14.83 35.51 21.66 15.90

Extralonger 31.89 19.60 13.60 32.96 20.31 14.12 34.01 20.97 14.42

PEMS08

HA 69.72 48.3 32.09 92.72 65.99 46.64 111.85 81.51 61.29
VAR 44.47 28.31 19.53 48.96 31.7 22.56 52.14 34.51 25.28

DCRNN 33.34 22.60 15.46 39.37 25.82 18.53 45.64 30.47 25.10
GWNet 29.47 19.07 12.25 33.54 21.76 13.68 34.20 22.60 14.16
GMAN 34.29 17.38 15.66 35.89 17.21 16.33 48.54 18.70 16.81
AGCRN 28.05 17.45 11.25 30.96 19.39 12.73 31.11 19.46 12.88

DMSTGCN 26.55 16.75 11.44 28.50 18.15 12.64 28.94 18.34 12.93
SSTBAN 26.32 15.97 12.29 28.30 16.84 12.20 28.82 16.94 12.47

Extralonger 26.29 15.86 10.40 27.64 16.57 11.34 28.77 17.14 11.54

long-term scenarios, both T and T ′ are set to 24/36/48. In the extra-long-term scenarios, T and T ′

are set to 144/288/576/864/1152/1440/1728/2016. Full details are given in Appendix F. We selected
three widely used metrics: root mean square error (RMSE), mean absolute error (MAE), and mean
absolute percentage error (MAPE).

4.2 Baselines

We carefully choose the following baselines in long-term scenarios. (1) HA: Historical Average,
which predicts the future traffic flow by averaging the historical data. (2) VAR [13]: Vector Auto-
Regression, which is a classical multivariate time series forecasting method. (3) DCRNN [14]:
Diffusion Convolutional Recurrent Neural Network, predicting with diffusion convolutions and GRU.
(4) GWNet [8]: Graph WaveNet, combining the dilated casual convolutions and graph convolutions
to capture dynamics correlation. (5) GMAN [15]: Graph Multi-Attention Network, especially
using spatial attention with randomly partitioned vertices group. (6) AGCRN [16]: Adaptive Graph
Convolutional Recurrent Network, which learns node-specific patterns and avoids the pre-defined
graphs. (7) DMSTGCN [9]: Dynamic and Multi-faceted Spatial-Temporal Graph Convolution
Network, which captures the dependency with a spatial learning method and multi-faceted fusion
module enhancement. (8) SSTBAN [4]: Self-Supervised Spatial-Temporal Bottleneck Attentive
Network, utilizing a bottleneck attention scheme to reduce the computational cost.

In extra-long-term scenarios, because the device could not afford the resource cost of the deep
learning baselines, we focus on comparing the performance of Extralonger with established statistical
methods: HA and VAR.

4.3 Model Implementation and Training Details

Extralonger utilizes the Adam optimizer [17] with the default learning rate of 0.0001, which would
decay with predefined milestones. The batch size is set to 16. The hyperparameters remain consistent
for different scenarios on the same benchmark, and the layer number L for per route is set to 1. We
adopt Huber loss [12] as the loss function, which leverages the strengths of MAE and MSE with δ = 1
while addressing their limitations. The outputs from the three routes (temporal, spatial, and mixed)
are combined using a weighted sum, with weights of 0.25, 0.25, and 0.50, respectively. Extralonger is
implemented in PyTorch and all experiments were conducted on one single NVIDIA 2080Ti GPU.

4.4 Performance Comparison

The performance results are presented in Table 2 and Table 3 for long-term and extra-long-term
scenarios, respectively. The best results are shown in bold.
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Table 3: Performance comparison in extra-long-term scenarios. TS: Length of Time Steps.

Dataset TS HA VAR Extralonger
RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

PEMS04

144 177.11 144.67 220.60 77.22 53.63 64.87 39.33 23.66 16.04
288 128.50 103.95 166.55 50.43 34.98 34.22 40.46 24.18 16.70
576 129.35 104.44 166.73 52.90 36.99 35.55 42.15 26.08 19.32
864 129.65 104.56 167.80 54.55 38.32 37.43 42.98 26.60 19.36
1152 129.78 104.56 169.59 55.99 39.50 39.12 42.98 26.88 19.33
1440 129.91 104.66 169.81 56.64 40.05 39.40 42.30 26.62 19.24
1728 130.00 104.77 169.29 57.01 40.40 39.69 43.33 27.09 19.63
2016 130.37 105.09 167.48 56.21 39.64 39.23 43.26 27.52 20.21

PEMS08

144 153.98 123.81 114.18 89.00 61.09 46.52 32.17 18.84 12.85
288 112.80 89.66 87.33 56.07 38.51 26.06 32.76 19.38 13.05
576 113.80 90.29 87.28 63.16 43.37 28.59 37.73 22.06 14.23
864 114.36 90.47 87.09 65.07 45.25 30.91 38.57 22.57 15.04
1152 114.66 90.52 87.67 66.06 45.91 32.42 40.45 23.50 16.03
1440 114.97 90.80 88.71 67.96 47.03 32.69 41.44 23.78 17.90
1728 115.39 91.33 89.66 67.36 46.53 32.34 40.85 23.68 18.42
2016 115.43 91.54 90.01 65.45 44.95 31.37 41.38 23.69 19.18

Our proposed Extralonger outperforms baselines across almost all long-term scenarios. Extra-
longer consistently surpasses SSTBAN, the second best model, on the PEMS04 dataset, exhibiting
an average reduction of 2.36% in RMSE, 2.82% in MAE, and 5.95% in MAPE. Similarly, on
PEMS08, Extralonger outperforms SSTBAN by an average margin of 0.87% in RMSE, 0.37% in
MAE, and 7.35% in MAPE. The only exception is the MAE in the PEMS08-48 scenario, where
Extralonger achieves the second-best result, marginally behind SSTBAN.

In the extra-long-term scenarios, Extralonger demonstrates significant superiority over HA and
VAR across all three evaluation metrics. This wide margin in performance shows the effectiveness
of Extralonger in capturing extra-long-term temporal dependencies and spatial relationships. In
PEMS04, our model delivers steady results when the input time step T is fixed at 288 (a whole day),
whereas in PEMS08, the errors rise gradually. This can be attributed to the smaller node count in
PEMS08, which enables the model to achieve better performance in smaller-step scenarios.

An interesting observation in extra-long-term scenarios is that, unlike Extralonger obtaining the best
performance at T ′ = 144 (length of half a day), the performance of HA and VAR exhibits a decline
at T ′ = 144 compared to longer steps. We posit that this decline arises from a potential misalignment
between the input and output data. They struggle to predict future trends when the input data contains
significantly inverse trends from the predicted future steps. Take a special sample as an example,
whose input is 144 steps from the first half of the day and the output is the traffic flow in the second
half of the day. It is difficult for HA and VAR to predict the second half solely on the first half.

4.5 Resource Consumption Comparison

Our proposed Extralonger demonstrates superior resource efficiency compared to existing methods,
as illustrated in Figure 5. The resource consumption comparison is conducted on the PEMS04
dataset. Due to computational limitations and the high cost of the baseline models, we report actual
values (solid lines) for 12, 24, 36, and 48-step predictions. Leveraging the complexity analysis from
Section 3.1.1, we extrapolate the resource consumption trends for extra-longer-term scenarios and
show the trends using dashed lines in Figure 5.

In long-term scenarios, Extralonger consumes on average 75.87% less memory, 97.13% less training
time, and 93.53% less inference time than SSTBAN across 12, 24, 36, and 48-step predictions. The
sole exception is memory usage in the 12-step scenario, where the CNN-based method DMSTGCN
achieves a marginally lower cost. We speculate that this is because parameter memory usage
dominates at the shortest horizon, and DMSTGCN utilizes fewer parameters than our model. However,
this advantage diminishes for longer prediction steps (>24 steps), where Extralonger’s memory
efficiency becomes increasingly pronounced.
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Figure 5: Resource cost comparison w.r.t. memory usage (LEFT), training time (MIDDLE) and
inference time (RIGHT). The y-axis represents the logarithm of the value. The dashed line reveals
the fitted trendline based on actual results.

Table 4: Ablation study.
Method RMSE MAE MAPE

w/o local & global 37.12 22.69 15.97
w/o global 34.24 21.04 14.45
w/o local 34.82 21.31 14.93
w/o spatial route 37.31 22.72 15.89
w/o temporal route 34.85 21.31 14.30
w/o mixed route 35.59 21.53 14.44
w/o noise injection 34.12 21.03 14.49
Extralonger 34.01 20.97 14.42

In extra-long-term scenarios, Extralonger demonstrates its dominance in resource efficiency. In the
2016-step scenario, our model achieves remarkably low resource consumption, requiring only 2.1 GB
of memory, 30.5 minutes for training, and 7.21 seconds for inference. With conservative estimates
using fitted polynomial functions, our model’s memory usage, training time, and inference time
remain only 0.58%, 0.20%, and 0.26% of SSTBAN’s cost, respectively. These results strongly support
the efficiency gains from the Unified Spatial-Temporal Representation employed by Extralonger.

4.6 Ablation Study

We conducted an ablation study on PEMS04 in the 48-step scenarios. We remove the local part,
global part, and global&local part from Global-Local Spatial Transformer, in Table 4. Our findings
indicate that both the local and global modules play an important role. Moreover, we explore the
necessity of each route in the three-route Transformer. The results show the importance of each route.
The ablation of noise injection presents its effectiveness as well.

5 Conclusion

We propose Extralonger, a novel traffic forecasting model that leverages a unified perspective of
spatial and temporal factors to address the limitations of current methods in resource efficiency.
Extralonger achieves state-of-the-art performance in both long-term and extra-long-term scenarios.
Moreover, it demonstrates significant reductions in resource consumption compared to previous
models. Specifically, in the longest prediction horizon, memory usage, training time, and inference
time are only 0.58%, 0.20%, and 0.26% of the cost of the prior best method, respectively. Furthermore,
Extralonger successfully extends the prediction horizon by a remarkable factor of 42 times (from 48
to 2016 steps). We believe that Extralonger establishes a new paradigm for traffic forecasting tasks
and paves the way for the development of more efficient models for other spatial-temporal tasks.
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A Related Work

In early works, traffic forecasting is treated as a multivariate time series prediction task, so HA,
ARIMA [18], and VAR [13] are the intuitive methods to model it, which neglect the inherent spatial
dependencies within traffic data.

With the growing recognition of the equal importance of both spatial and temporal dimensions, traffic
forecasting has evolved to consider road networks as graphs where node values (namely, flow, speed
or occupancy) change over time. This paradigm shift led to the development of Spatial-Temporal
Graph Neural Networks (STGNNs) [3] that leverage GNNs to capture spatial dependencies. STGNNs
can be further categorized based on their approach to handling temporal information. RNN-based
methods utilize Recurrent Neural Network or its variations to capture temporal dependencies [14,
16, 19]. Attention-based methods [6, 11, 15, 20–23] incorporate attention mechanisms to process
temporal information. CNN-based methods [8, 9, 24, 25] can handle spatial and temporal information
simultaneously. However, one limitation of CNNs is their restricted receptive window, which can
potentially hinder the processing of all nodes across extended temporal horizons. Beyond the
aforementioned categories, some studies [26, 27] have focused on spatial information modeling.
Additionally, efforts have been made to integrate differential equations with GNNs for enhanced
spatial-temporal representation [28–30]. These efforts highlight the ongoing exploration of novel
techniques for capturing the intricate interplay between spatial and temporal dynamics in traffic
forecasting.

More recently, Transformer-based methods adopted the Transformer architecture to replace GNNs.
Vanilla Transformer [31] is introduced for machine translation tasks. Recent years’ works have
focused on the promising prospect of Transformer-based models [32, 33] to replace the GNNs [34–
37] for overcoming the over-smooth issue, which facilitates the evolution of the manner for spatial
dimension processing in traffic forecasting field. Variants of Transformer begin to shine in the traffic
forecasting field [4, 11, 38, 39].

Most related to ours is the work of AutoST [6], STSGCN [25] and SSTBAN [4]. AutoST and
STSGCN notice the line of study that handles time and space separately. The former proposes a
universal modeling framework to summarize the aggregation order issue. The latter constructs a new
adjacency matrix with pre-defined steps, which limits the model’s capability. SSTBAN is the first
deep-learning-based work to research long-term traffic forecasting and uses a bottleneck attention
scheme to reduce the computational cost to O(TN), but it has quadratic complexity on memory
usage as well.

Our work points out the deficiency in the classical representation of spatial-temporal systems, which
results in high resource costs. We propose the Unified Spatial-Temporal Representation to unify the
spatial and temporal dimensions to reduce the time and space complexity without any architectural
modification, and successfully extend the prediction horizon to one week, following in the footsteps
of SSTBAN.

B Inspiration from Relativity

The Unified Spatial-Temporal Representation is inspired by the theory of relativity, a theory in physics
that explains the universal, general relationship between space and time. Similarly, traffic forecasting
inherently deals with uncovering the intertwined nature of spatial and temporal dimensions in traffic
data. This realization motivated us to explore seemingly disparate fields to find solutions, mirroring
the pursuit of knowledge across disciplines that foster scientific progress.

Space and time are unified and inseparable in the relative view. In other words, when referring
to one particular time step, we should also consider the spatial information, and vice versa. This
translates directly to the context of traffic forecasting: understanding a specific time step necessitates
simultaneous consideration of the corresponding spatial information, and vice versa. As the famous
verb of Hermann Minkowski [40], “space for itself, and time for itself shall completely reduce to a
mere shadow, and only some sort of union of the two shall preserve independence”. This implies
that we should address both time and space concurrently (Unified Spatial-Temporal Representation),
rather than isolating them (classical representation).
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Thus, we propose the Unified Spatial-Temporal Representation to unify the spatial and temporal
dimensions. As an additional explanation of the main body analysis, the D in temporal representation
Et has spatial information, and the D in spatial representation Es has temporal information, which
is the essence of the Unified Spatial-Temporal Representation. In this sense, we use the spatial
information to define the time step and the temporal information to define the spatial node. From
a data representation perspective, the data representation is 2D with Unified Spatial-Temporal
Representation and 3D with classical representation.

C Complexity Analysis

The high-complexity issue in classical representation (as depicted in Equation 2 and Figure 2) hinders
the prediction horizon extension. In the main body of this paper, we have concisely discussed the
time and space complexity. We will give the full analysis in this section. We omit the batch size B.
Focusing on the difference between the classical representation and the Unified Spatial-Temporal
Representation, we focus on the core architecture with one single layer rather than delving into the
details of each compared model. This setting allows for a more controlled comparison, highlighting
the specific contribution of the proposed representation to the overall efficiency of the model.

Time Complexity We first analyze methods using the classical representation. For RNN-based
methods, due to the repetitive operation for the spatial and temporal dimensions, the time complexity
increases to O(TN).

For attention-based methods, for example, Transformer architecture, the time complexity grows by
one order to O(NT 2 + TN2). In attention-based and Transformer-based methods, to simplify the
analysis of various derivative models, we primarily concentrate on the basic self-attention mechanism
for temporal and spatial dimensions, whose time complexity grows by one order to O(NT 2 + TN2).
The time complexity of CNN-based methods is influenced by the feature map size, kernel size and
the number of channels. In our setting, the channel size corresponds to D. For fairness, we omit
this part and only consider the feature map size and kernel size. We use the biggest feature map
size, i.e., T ×N . Therefore, the time complexity is O(k2TN), where k is the kernel size. While the
complexity of GNN is linear, the total complexity is O(k2TN + TN).

When using the Unified Spatial-Temporal Representation, because we adopt the Transformer archi-
tecture in Extralonger, the time complexity is O(T 2 +N2) for the self-attention mechanism.

Space Complexity As mentioned in the main body, we need to consider many factors in space
complexity, such as the parallel framework, optimizer type, and whether to maintain the intermediate
states, which is out of our scope. Therefore, we simplify it. Besides, we omit the parameter memory
usage Mmodel, because we focus on the impact of data instead of the parameter memory usage for
extra-long-term scenarios.

The space complexity of RNN-based methods and self-attention mechanisms scales linearly with the
sequence length T and the number of nodes N due to the repetitive computations involved. These
repetitive operations effectively act like a batch size and exhibit an approximately linear correlation
with memory consumption. Consequently, the space complexity for RNN-based with classic repre-
sentation is O(TN), while for attention-based and Transformer-based methods is O(NT 2 + TN2).

For CNN-based methods, the original space complexity (ignoring the parameter memory usage) is
typically O(Height×Width), which can be high depending on the input data size. In the context
of traffic forecasting, the space complexity is O(TN) as well.

With the Unified Spatial-Temporal Representation, the space complexity is O(T 2 +N2) in Extra-
longer, which is a one-order reduction compared with the classical representation.

D Why is Global-Local Spatial Transformer

Global Part The GNN-based methods capture spatial dependency using static prior topology
information, hypothesizing that the traffic flow trends among adjacent nodes are similar. However,
we observe that non-adjacent nodes, such as Node 95 and 111, exhibit similar flow patterns. This
suggests that dependencies can exist between nodes that are not spatial neighbors. To capture these
long-range dependencies, Extralonger leverages a Transformer architecture with full connectivity
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between all nodes. With the Transformer, we treat the traffic road network as a fully connected graph,
thus the αglobal is gained. This global design enables Extralonger to go beyond the limitations of
local neighborhoods and directly model relationships between any two nodes in the road network,
regardless of their spatial proximity. The belief in learning global correlations is also supported by
studies such as Guo et al. [4], Wu et al. [8], Zheng et al. [15].

Local Part While the proposed model captures long-range dependencies through the fully con-
nected Transformer, the road network topology, represented by the adjacency matrix, remains a
valuable source of prior knowledge. This matrix encodes the inherent spatial relationships between
nodes, providing information about the correlations in traffic flow between adjacent nodes. In essence,
the model leverages the adjacency matrix to complement the spatial dependency modeling capabilities
of the Transformer. Specifically, the adjacency matrix is injected as a mask to obtain the αlocal

due to they inherently have the same dimensionality. The local design draws inspiration from the
works of Dwivedi and Bresson [32] and Rampášek et al. [33]. Refer to the Section 3.2.2 for other
procedures.

E Learnable Noise Injection

Caltrans Performance Measurement System [41] and SSTBAN [4] both claim the importance of
mitigating the impact of noise on the traffic forecasting model’s performance. They acknowledge the
inherent challenge of data validity in traffic forecasting. Data augmentation technique is a possible
way to improve robustness. However, traditional data augmentation techniques commonly used in
computer vision (CV) [42], such as cropping, scaling, and rotation, are not well-suited for traffic
data due to their inherent sequential nature and strong self-correlations. Additionally, complex deep
learning methods like VAEs [43] and GANs [44] might be overly elaborate for this specific task.

To mitigate the impact of noise, we propose a simple yet effective data augmentation strategy –
involving the injection of learnable noise into the input data, which is implemented by the learnable
parameter initialized with Xavier uniform distribution. We use this learnable noise embedding to
imitate the impulse noise and enhance the model’s robustness against real-world noise patterns. The
result of the ablation experiment validates the effectiveness of this technique (Section 4.6).

F Details of Datasets and Setup

Both PEMS04 and PEMS08 datasets are collected from the Caltrans Performance Measurement
System [41] at a 5-minute sampling frequency. Seattle Loop dataset is collected by the inductive loop
detectors deployed on freeways in the Seattle area [45]. PEMS04 contains 307 nodes and 16992 time
steps, covering the time range from 2018/01 to 2018/02. PEMS08 contains 170 nodes and 17856 time
steps, covering the time range from 2016/07 to 2016/08. The Seattle Loop dataset consists of 323
nodes and 8,760 time steps, ranging from 2015/01 to 2015/12. To ensure a fair comparison, the setup
of Seattle Loop follows SSTBAN [4] that aggregates the original 5-minute granularity to a 1-hour
interval. The detailed information is summarized in Table 5. Moreover, we illustrate the node position
of PEMS04 and PEMS08 with the latitude and longitude in Figure 6. Following SSTBAN [4], we
normalize the data with the Z-score method and the mean and standard deviation are calculated from
the training set.

In the long-term scenarios, the T − T ′ is symmetric, and we set them as 24, 36, and 48 steps. In the
extra-long-term scenarios, we set one scenario as 144-144 for half of the day prediction. For cases
where the future prediction step T ′ exceeds one day, T is fixed to 288, and the future prediction step
increases from 1 day to 7 days with a daily increment. This configuration considers a whole day as
input, as it encompasses a complete daily cycle.

We slide the window to gain the input data X and ground truth Y. We stride one step for each sample,
and the length corresponds to the T and T ′.
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(a) PEMS04 (b) PEMS08

Figure 6: Node position of PEMS04 and PEMS08.

Table 5: Summary of Datasets.
Dataset # Time Steps # Nodes Time Range

PEMS04 16992 307 2018/01 - 2018/02
PEMS08 17856 170 2016/07 - 2016/08

Seattle Loop 8760 323 2015/01 - 2015/12

Table 6: Performance comparison on long-term traffic speed forecasting in Seattle Loop.
Time step 24 36 48
Method RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

HA 11.86 8.07 26.57 12.37 8.47 27.76 12.31 8.49 27.82
VAR 9.56 6.21 19.94 9.96 6.44 21.28 10.28 6.69 22.24

DCRNN 7.97 4.37 14.04 8.38 4.60 14.41 8.63 4.73 14.91
GWNet 7.84 4.28 14.06 8.18 4.60 15.12 8.35 4.67 15.04
GMAN 7.84 4.13 12.88 8.10 4.23 12.95 8.09 4.26 13.26
AGCRN 7.83 4.27 13.53 8.31 4.66 14.76 8.60 4.82 15.62

DMSTGCN 7.59 4.08 13.51 7.98 4.31 14.31 8.20 4.49 14.86
SSTBAN 7.72 4.05 12.69 7.83 4.11 12.44 7.88 4.12 12.25

Extralonger 7.43 4.04 12.48 7.51 4.05 11.96 7.68 4.11 12.04

Table 7: Performance comparison on extra-long-term traffic speed forecasting in Seattle Loop.
Method HA VAR Extralonger

Time step RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

144 11.95 8.30 27.48 11.17 7.33 24.75 8.07 4.33 12.64
288 12.05 8.33 28.04 11.09 7.31 24.14 8.20 4.44 14.03
576 11.95 8.14 27.88 11.30 7.43 24.83 8.15 4.59 14.46
864 11.90 8.16 27.57 11.42 7.49 25.33 8.07 4.50 13.63

1152 11.87 8.02 27.43 11.53 7.54 25.77 8.00 4.39 12.94
1440 11.85 7.94 27.23 11.59 7.58 26.01 7.69 4.15 12.36
1728 11.83 7.88 26.96 11.70 7.65 26.49 7.66 4.11 12.00
2016 11.79 7.85 26.71 11.76 7.71 26.78 7.57 4.02 11.63

G Experiments of Seattle Loop

The results in the Seattle Loop dataset are presented in Table 6 and Table 7 for long-term and extra-
long-term scenarios, respectively. The best results are shown in bold. Our model Extralonger out-
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performs the baseline models for all metrics in all scenarios. Interestingly, in the extra-long-term
scenarios, the prediction from Extralongerbecomes even better when the step length increases. We
speculate that this improvement can be attributed to the increase in data volume, which allows the
model to capture and learn long-range dependencies that may not be apparent in the shorter step
length scenarios. The larger amount of data provides a richer context for the model to extract patterns
and make more accurate predictions.

H Experiments of Error Bar

We conducted error bar comparison experiments using box plots on PEMS04 and PEMS08 to compare
our model with the prior best model, SSTBAN [4]. We analyzed six sets of results. As shown in
Figure 7 and Figure 8, our Extralonger consistently outperforms SSTBAN, as evidenced by smaller
medians and shorter interquartile ranges. These findings indicate that our model demonstrates steady
improvement over the prior best model and exhibits lower variability.
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Figure 7: Error bar on PEMS04 w.r.t RMSE (LEFT), MAE (MIDDLE) and MAPE (RIGHT).
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Figure 8: Error bar on PEMS08 w.r.t RMSE (LEFT), MAE (MIDDLE) and MAPE (RIGHT).

I Broader Impact

Our work could have a broader impact beyond traffic forecasting. It has the potential to significantly
advance the field of transportation and potentially influence other general spatial-temporal tasks. Here
are some key areas where our work could have a significant impact.

Transportation Field

• Improved Traffic Management: By enabling accurate extra-long-term traffic forecasting,
Extralonger can empower traffic management authorities to proactively optimize traffic flow,
reduce congestion, and improve overall transportation efficiency.

• Resource-Constrained Applications: The remarkable reduction in resource consumption
achieved by Extralonger unlocks the possibility of deploying traffic forecasting models on
devices with limited computational power. This opens doors for real-time traffic predic-
tion in resource-constrained environments, such as embedded systems in vehicles or edge
computing devices.
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General Spatial-Temporal Tasks
The success of Extralonger’s unified spatial-temporal representation suggests a potential paradigm
shift in approaching other tasks involving spatial and temporal dependencies. This Unified Spatial-
Temporal Representation could be explored and adapted to various domains requiring accurate
long-horizon prediction based on interconnected spatial and temporal data, for example:

• Weather Forecasting: Weather forecasting could benefit from a unified representation
of spatial (e.g., atmospheric pressure, temperature) and temporal (e.g., historical weather
patterns) data for improved long-term prediction.

• Urban Planning: Urban planning could utilize models enhanced by Unified Spatial-
Temporal Representation to forecast future resource demands (energy, water) based on
spatial distribution and historical trends, enabling more sustainable infrastructure develop-
ment.

Overall, Extralonger represents a significant advancement in traffic forecasting and paves the way for
a more efficient approach to tackling various spatial-temporal modeling challenges.

J Limitations

While Extralonger has successfully tackled the high-complexity issues inherent in classical represen-
tation, achieving a one-week prediction horizon, it still exhibits two certain limitations.

Extralonger effectively captures the dominant trend patterns in traffic flow data. However, Extra-
longer’s performance exhibits some degradation when encountering significant fluctuations, particu-
larly during peak traffic hours (9:00-15:00). Real-world traffic data inherently exhibits these rapid
variations, also known as pulse variations, which remain a challenge for current traffic forecasting
models. This limitation presents an exciting avenue for future research, aiming to develop more
robust methods for capturing and predicting such short-term fluctuations.

Being fundamentally data-driven, our model relies solely on historical data for predictions and thus
lacks the capability to respond to emergent traffic activities. This limitation may lead to potential
misinterpretations within the ITS. Therefore, it is imperative to integrate additional information when
planning and managing the traffic system.

K Future Work

It turns out that prediction errors tend to increase during periods of significant traffic flow fluctua-
tions, particularly during peak hours (9:00-15:00). Real-world traffic data inherently exhibits pulse
variations, which remain a challenging forecasting issue. We acknowledge this limitation and identify
it as a promising avenue for future research.

Moreover, building upon the success of the Unified Spatial-Temporal Representation in Extralonger,
we aim to explore its applicability to a broader range of spatial-temporal tasks. This would demon-
strate the generalization and efficiency of our proposed method, potentially establishing it as a
versatile tool for various spatial-temporal tasks.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See the abstract and introduction part.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The forecasting error rises during 9:00-15:00, the peak traffic hours.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The complexity reduction theoretical analysis is based on some assumptions.
We give the details in Section 3.1.1 and Appendix C.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We introduce our method, Extralonger, step by step (Section 3 and the detailed
implementation is given in Section 4.3. The setup of experiments and the datasets are
detailed in Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

20



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All the code and data are available in the supplementary material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Training and test datasets partitioning details are given in Appendix F. The
hyperparameters and optimizer are detailed in Section 4.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the RMSE, MAE and RMSE in long-term and extra-long-term
scenarios (Section 4.4), and we also gain a great reduction in training time, inference time
and memory usage (Section 4.5).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We conducted our experiment on one single NVIDIA 2080Ti GPU. The
implementation details are given in Section 4.3 and the experiment package dependency is
in the supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have checked the code of ethics, and our research is in line with the
guidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Appendix I

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our research is for traffic forecasting, which does not have the misuse risk
mentioned in the question.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All the code we use is from open-source libraries. The datasets are the public
dataset. And we cited them properly.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should citep the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code is available in the supplementary material and we give a simple
README.md file to introduce the launch commands.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our research does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our research does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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