
OPT2024: 16th Annual Workshop on Optimization for Machine Learning

Scalable Second-Order Optimization Algorithms for Minimizing
Low-rank Functions

Edward Tansley TANSLEY@MATHS.OX.AC.UK

Coralia Cartis CARTIS@MATHS.OX.AC.UK

Mathematical Institute, University of Oxford

Abstract
We present a random-subspace variant of cubic regularization algorithm that chooses the size of the
subspace adaptively, based on the rank of the projected second derivative matrix. Iteratively, our
variant only requires access to (small-dimensional) projections of first- and second-order problem
derivatives and calculates a reduced step inexpensively. The ensuing method maintains the optimal
global rate of convergence of (full-dimensional) cubic regularization, while showing improved scal-
ability both theoretically and numerically, particularly when applied to low-rank functions. When
applied to the latter, our algorithm naturally adapts the subspace size to the true rank of the function,
without knowing it a priori.

1. Introduction

Second-order optimization algorithms for the unconstrained optimization problem

min
x∈Rd

f(x),

where f : Rd → R is a sufficiently smooth, bounded-below function, use gradient and curva-
ture information to determine iterates and so often experience faster convergence than first-order
algorithms that only rely on gradient information. However, for high-dimensional problems, the
computational complexity of these methods can be a barrier to their use in practice. We are con-
cerned with the task of scaling up second-order optimization algorithms so that they are a practical
option for high-dimensional problems.

A second-order algorithm designed to cope with high-dimensional problems is the R-ARC al-
gorithm [14, 15], a random subspace variant of the Adaptive Regularization using Cubics (ARC)
algorithm [3]. Subject to certain conditions on the random subspaces, R-ARC can attain the same
convergence rate to an ϵ-approximate first-order minimizer as ARC. These conditions imply that R-
ARC is particularly effective for functions with Hessians of rank bounded by some r (significantly)
lower than the function dimension d. A class of functions with this property are low-rank functions
[16], which have been frequently studied in the context of machine learning.

ARC and R-ARC ARC [3, 11] is an iterative algorithm that at iteration k, determines the step sk
by (approximately) solving the following local model1:

argmin
s∈Rd

mk(s) = f(xk) + ⟨∇f(xk), s⟩+
1

2
⟨s, ∇2f(xk)s⟩+

σk
3
∥s∥32

1. Here σk/3 replaces L/6 in the well-known bound f(xk+s) ≤ f(xk)+⟨∇f(xk), s⟩+ 1
2
⟨s, ∇2f(xk)s⟩+ σk

3
∥s∥32

(where L is the Lipschitz constant of ∇2f).

© E. Tansley & C. Cartis.

SCALABLE SECOND-ORDER OPTIMIZATION ALGORITHMS FOR MINIMIZING LOW-RANK FUNCTIONS

where ∇f and ∇2f denote the gradient and Hessian of f , xk is the current iterate and σk is the
regularization parameter. Assuming Lipschitz continuity of the Hessian on the iterates’ path, ARC
requires at most O(ϵ−3/2) iterations to attain an ϵ-approximate first-order minimizer; this conver-
gence rate is optimal over a large class of second-order methods [6].

A random subspace variant of ARC, R-ARC was introduced in [14, 15]. At each iteration k, a
random sketching matrix Sk ∈ Rl×d is drawn from a distribution S and the search space for sk ∈ Rd

is restricted so the l-dimensional subspace span(S⊤
k). These papers prove that assuming certain

embedding conditions on S, the optimal O(ϵ−3/2) iteration complexity can be attained by ARC,
despite only accessing projected (first- and second-order) problem information at each iteration.
We now state an informal version of this result, restricted to Gaussian matrices.

Theorem 1 (Informal, [14, 15]) Suppose that S is the distribution of (scaled) l × d Gaussian ma-
trices with l = O(r + 1), where r ≤ d is an upper bound on the maximum rank of ∇2f(xk)
across all iterations, and that f has globally Lipschitz continuous second derivatives. Then R-ARC
achieves the optimal O(ϵ−3/2) rate of convergence, with high probability.

The proof of this Theorem relies upon S being an oblivious subspace embedding (Definition
8) for matrices with rank r + 1. Similar results can be established for matrix distributions other
than Gaussian, with l possibly having a different dependency on r [4]. Theorem 1 can be applied to
any suitable objective function f . However, the requirement that l = O(r + 1) means that unless
r ≪ d, R-ARC is not guaranteed to be able to gain a significant dimensionality over ARC (by using
only little problem information and computing an inexpensive reduced step), whilst maintaining the
O(ϵ−3/2) convergence rate.

In R-ARC, the sketch dimension l is fixed throughout the run of the algorithm. Theorem 1
requires l to be proportional to a bound r on the maximal Hessian rank at the iterates, but this
may not be known a priori. This motivates us to develop a variant of R-ARC that can adapt the
sketch/subspace size to local problem information.

Low-rank functions We now define a class of functions that particularly benefit from random
subspace algorithms. These functions are also known as functions with low effective dimensionality,
with active subspaces or multi-ridge functions [2, 5].

Definition 2 (Low-rank Functions [16]) A function f : Rd → R is said to be of rank r, with
r ≤ d if

• there exists a linear subspace T of dimension r such that for all x⊤ ∈ T ⊂ Rd and x⊥ ∈
T ⊥ ⊂ Rd, we have f(x⊤ + x⊥) = f(x⊤), where T ⊥ is the orthogonal complement of T ;

• r is the smallest integer with this property

We call T the effective subspace of f and T ⊥ the constant subspace of f .

We state a lemma whose proof is included in Appendix A and which then helps us apply the re-
sults in [14, 15] to low-rank functions (note the requirement on a bound on the rank(∇2f(xk)) in
Theorem 1).

Lemma 3 If f : Rd → R is a low-rank function of rank r, and f is C2, then for all x ∈ Rd,
∇2f(x) has rank at most r.

2

SCALABLE SECOND-ORDER OPTIMIZATION ALGORITHMS FOR MINIMIZING LOW-RANK FUNCTIONS

Overparameterized models in various applications are candidates for low-rank behaviour as we ex-
pect invariance to some reparameterization; provided such invariance is (approximately) linear. In
deep neural networks, there are two sources of low-rank behaviour: the training loss as a function
of parameters [7], and the trained net as a function of the input data [12]. Further, in hyperparam-
eter optimization, low-rank behaviour is observed as network performance only depends upon a
selection of hyperparameters [1].

Contributions We introduce R-ARC-D, a new variant of the R-ARC algorithm that can vary the
size of the random susbspace between iterations. We detail an update scheme for the sketch size that
adapts to the local Hessian rank of the iterates. This algorithm attains the optimal O(ϵ−3/2) iteration
complexity for an ϵ-approximate first-order minimizer, whilst maintaining a sketch dimension lk
that is O(r) for functions with Hessians with rank bounded by r, in particular low-rank functions,
despite the algorithm not needing to know r a priori. Through numerical experiments on low-rank
problems, we demonstrate the superior efficiency of this algorithm compared to the R-ARC and
ARC algorithms on these problems.

2. Algorithm and Main Results

In this section, we present the R-ARC-D algorithm and conditions under which it can attain the
optimal O(ϵ−3/2) iteration complexity for finding an ϵ-approximate first-order local minimizer.
R-ARC-D differs from the R-ARC algorithm presented by [14, 15] as it allows for the sketch size
to be iteratively adjusted.

Algorithm 1: Random subspace cubic regularisation algorithm with variable sketching
dimension (R-ARC-D)

Choose constants θ ∈ (0, 1), κT , κS ≥ 0. Initialize the algorithm by setting x0 ∈ Rd and k = 0.
Draw a random matrix Sk ∈ Rlk×d from S, and let

m̂k(ŝ) = f(xk) + ⟨∇̂f(xk), ŝ⟩+
1

2
⟨ŝ, ∇̂2f(xk)ŝ⟩︸ ︷︷ ︸

q̂k(ŝ)

+
σk

3
∥S⊤

k ŝ∥32, (1)

where ∇̂f(xk) = Sk∇f(xk) and ∇̂2f(xk) = Sk∇2f(xk)S
⊤
k .

Compute ŝk ∈ Rlk by approximately minimizing m̂ such that

m̂(ŝk) ≤ m̂(0); ∥∇m̂(ŝk)∥2 ≤ κT ∥S⊤
k ŝ∥22; ∇2m̂k (ŝk) ⪰ −κS∥S⊤

k ŝ∥2.

Compute a trial step sk = ST
k ŝk.

Compute and check whether the decrease ratio satisfies:

ρk :=
f(xk)− f(xk + sk)

f(xk)− q̂k(ŝ)
≥ θ.

If the decrease condition holds, set xk+1 = xk + sk and σk+1 < σk [successful iteration].
Otherwise set xk+1 = xk and σk+1 > σk [unsuccessful iteration].
Increase the iteration count by setting k = k + 1 in both cases. Set lk+1 ≥ lk

R-ARC as presented in [14, 15] can be recovered from Algorithm 1 by fixing lk = l from some
l ≥ 1. Further setting Sk = Id for each iteration recovers the original ARC algorithm.

3

SCALABLE SECOND-ORDER OPTIMIZATION ALGORITHMS FOR MINIMIZING LOW-RANK FUNCTIONS

Evaluating sketched problem information Algorithm 1 only requires projected objective’s gra-
dients and Hessians (see ∇̂f(xk) and ∇̂2f(xk) in (1)). These can be calculated efficiently, without
evaluation of full gradients and Hessians, using techniques such as using directional derivatives,
block finite differences or automatic differentiation. For example, ∇̂f(xk) requires only lk direc-
tional derivatives of f with respect to the rows of Sk.

2.1. An adaptive sketch size rule

We introduce a sketch size update rule that can be included in Algorithm 1. The motivation behind
this update rule is that we seek to use local problem information to, in a sense, learn the rank of the
function f (assuming that it has low-rank structure). To do this, we keep track of the observed ranks
of the sketched Hessian. In Algorithm 1, we define the following for k ≥ 0 :

rk := rank(∇2f(xk)); r̂k := rank(Sk∇2f(xk)S
T
k); R̂k := max

1≤j≤k
r̂k.

Using these, we can give the following update rule:

lk+1 =

{
max(CR̂k + 1, lk) if R̂k > R̂k−1

lk otherwise.
(⋆)

where C ≥ 1 is a user-defined constant. We make two remarks:

1. in the case that C = 1, we simply need to assess whether the sketched Hessian is singular,
rather than know its rank. This is because R̂k ≤ lk so lk+1 > lk only if r̂k = lk.

2. for all k, we have lk ≤ max(Cr+1, l0) where r is the rank of f , and hence lk remains O(r).

We now seek to show that if this update rule is followed, the sketch dimension lk will increase in
a manner that enables the same O(ϵ−3/2) iteration complexity to drive the norm of the objective’s
gradient norm below ϵ as Theorem 1.

Lemma 4 Letting Sk ∈ Rlk×d be a Gaussian matrix with lk ≤ d, we have

P(r̂k = min(lk, rk)) = 1. (2)

We apply this Lemma to prove the following Corollary.

Lemma 5 Set l0 ≥ 1 and suppose that the update rule (⋆) is applied to lk. For all k ≥ 1, If
lk < Crk + 1, then with probability 1, R̂k > R̂k−1.

Proof By the update rule (⋆), we have that lk < Crk + 1 =⇒ R̂k−1 < rk. We also have that
lk ≥ R̂k−1 + 1. Therefore, we have that lk < Crk + 1 =⇒ R̂k−1 < min(lk, rk). Hence, by
Lemma 4, we have that r̂k = min(lk, rk) > R̂k−1 with probability 1.

Applying this Lemma allows us to prove the following convergence result.

Theorem 6 (R-ARC-D convergence result) Suppose that S is the distribution of scaled Gaussian
matrices and f is a low-rank function of rank r with Lipschitz-continuous second derivatives. Apply
Algorithm 1 with the sketch update rule (⋆) with l0 ≥ 1, C = ⌈4Cl(2+log(16))⌉ where Cl is defined
in Lemma 9, then R-ARC achieves the optimal O(ϵ−3/2) rate of convergence, with high probability.

4

SCALABLE SECOND-ORDER OPTIMIZATION ALGORITHMS FOR MINIMIZING LOW-RANK FUNCTIONS

In terms of dimension-dependence, the O bound on the number of iterations in Theorem 6 is propor-
tional to

√
d/r as long as rkleqr. Thus R-ARC-D benefits from the same optimal convergence rate

result as R-ARC and ARC, up to a constant. Furthermore, when applied to low-rank functions, the
algorithm is able to learn the function rank whilst solving local subproblems in smaller-dimensional
subspaces.

3. Numerical Experiments

In these numerical experiments, we apply the R-ARC-D algorithm as described in Algorithm 1,
using the lk update rule (⋆) with C = 1 for simplicity. The code we used is a modification of the
ARC code used in [3]. We make a minor modification in that we only redraw Sk after successful
iterations; this update step performs better empirically than redrawing after each iteration. The
performance of R-ARC-D is compared with that of R-ARC and ARC. As a measure of budget, we
use relative Hessians seen; if at iteration k, we draw a sketching matrix of size lk×d, we see (lk/d)2

relative Hessians. When calculating ∇̂f(xk) and ∇̂2f(xk), we calculate ∇f(xk) and ∇2f(xk), and
then multiply by Sk; the computational efficiency could be much improved by applying techniques
discussed in Section 2.

Augmented CUTEst problems To create low-rank functions to test on, we take CUTEst [9] prob-
lems of dimension (or rank) r ≈ 100 and add dimensions and rotate to create low-rank problems of
dimension d = 1000. Given a function f : Rr → R, this can be achieved by sampling a random
orthogonal matrix Q ∈ Rd×r so that Q⊤Q = Ir and define g : Rd → R by g(x) = f(Q⊤x) to be a
low-rank variant of f . To distinguish these problems from the standard CUTEst versions, we prefix
the problem names with “l-”. Problem details can be found in Table 1.

R-ARC-D update step In Figure 1, we plot a test to demonstrate how the adaptive sketch update
rule (⋆) works on an example problem, starting from l0 = 2.

Figure 1: Example of R-ARC-D applied to the low-rank problem l-ARTIF

We see that the sketch dimension lk increases to eventually reach the function rank. For l-ARTIF,
we see that R-ARC-D significantly outperforms ARC, which fails to make a step in the budget and
time taken for R-ARC-D to converge. We can also apply R-ARC-D to full-rank problems such as

5

SCALABLE SECOND-ORDER OPTIMIZATION ALGORITHMS FOR MINIMIZING LOW-RANK FUNCTIONS

ARTIF (with parameter N = 1000), which we plot in Figure 4, where R-ARC-D converges, but not
faster than ARC.

Data Profiles Here we compare the performance between R-ARC-D and R-ARC through data
profiles [10]. A description of the methodology can be found in Appendix B. The set of problems
considers can be found in Table 1. For R-ARC-D, we again set l0 = 2, whilst for R-ARC, we
sketch at 1%, 5% and 7.5% of the original problem dimension. As the functions are of dimension
d = 1000 with rank r ≈ 100, this corresponds to ≈ 10− 75% of the function rank. The results are
plotted in Figure 3, where we show results for tolerances τ = 1e−2 (low-precision) and τ = 1e−5
(high precision). We repeat each problem 5 times, with different Q matrices, treating each run as a
separate problem in the plots.

Figure 2: Data profiles of R-ARC-D compared to R-ARC and ARC

We see that R-ARC-D started at l0 = 2 outperforms R-ARC regardless of the fixed sketch size
used by R-ARC. This is more significant for the high-precision solutions (τ = 1e − 5) where R-
ARC-D typically increases lk until it reaches the function rank r. In Figure D, we plot individual
problem performance for several of the problems considered here. In these plots, we see that whilst
R-ARC with l = 1% of d occasionally performs best in terms of relative Hessians, it performs worst
in terms of time due to it taking significantly more iterations. Thus overall, we found that R-ARC-D
performs particularly well on low-rank problems, which we have demonstrated both numerically
and theoretically.

6

SCALABLE SECOND-ORDER OPTIMIZATION ALGORITHMS FOR MINIMIZING LOW-RANK FUNCTIONS

Acknowledgments The first author’s (ET) research was supported by the Oxford Centre for Doc-
toral Training in Mathematics of Random Systems (EPSRC EP/S023925/1), while the second au-
thor’s (CC), by the Hong Kong Innovation and Technology Commission’s Center for Intelligent
Multi-dimensional Analysis (InnoHK Project CIMDA).

References

[1] James Bergstra and Yoshua Bengio. Random Search for Hyper-Parameter Optimization. Jour-
nal of Machine Learning Research, 13(10):281–305, 2012. ISSN 1533-7928.

[2] Coralia Cartis and Adilet Otemissov. A dimensionality reduction technique for unconstrained
global optimization of functions with low effective dimensionality. Information and Inference:
A Journal of the IMA, 11(1):167–201, March 2022. ISSN 2049-8772. doi: 10.1093/imaiai/
iaab011. URL https://doi.org/10.1093/imaiai/iaab011.

[3] Coralia Cartis, Nicholas IM Gould, and Philippe L Toint. Adaptive cubic regularisation meth-
ods for unconstrained optimization. part i: motivation, convergence and numerical results.
Mathematical Programming, 127(2):245–295, 2011.

[4] Coralia Cartis, Jaroslav Fowkes, and Zhen Shao. Randomised subspace methods for non-
convex optimization, with applications to nonlinear least-squares, November 2022. URL
http://arxiv.org/abs/2211.09873. arXiv:2211.09873 [math].

[5] Coralia Cartis, Xinzhu Liang, Estelle Massart, and Adilet Otemissov. Learning the subspace
of variation for global optimization of functions with low effective dimension, January 2024.
URL http://arxiv.org/abs/2401.17825. arXiv:2401.17825 [math].

[6] Nicholas I.M. Gould Coralia Cartis and Philippe L. Toint. Evaluation complexity of algorithms
for nonconvex optimization: theory, computation, and perspectives. Society for Industrial and
Applied Mathematics, Philadelphia, 2022. ISBN 978-1-61197-699-1.

[7] Romain Cosson, Ali Jadbabaie, Anuran Makur, Amirhossein Reisizadeh, and Devavrat Shah.
Gradient Descent for Low-Rank Functions, June 2022. URL http://arxiv.org/abs/
2206.08257. arXiv:2206.08257 [cs, math].

[8] Elizabeth D Dolan and Jorge J Moré. Benchmarking optimization software with performance
profiles. Mathematical programming, 91(2):201–213, 2002.

[9] Nicholas IM Gould, Dominique Orban, and Philippe L Toint. CUTEst: a constrained and
unconstrained testing environment with safe threads for mathematical optimization. Compu-
tational Optimization and Applications, 60(3):545–557, 2015.

[10] Jorge J. Moré and Stefan M. Wild. Benchmarking Derivative-Free Optimization Algo-
rithms. SIAM Journal on Optimization, 20(1):172–191, January 2009. ISSN 1052-6234. doi:
10.1137/080724083. URL https://epubs.siam.org/doi/10.1137/080724083.
Publisher: Society for Industrial and Applied Mathematics.

[11] Yurii Nesterov and B.T. Polyak. Cubic regularization of Newton method and its
global performance. Mathematical Programming, 108(1):177–205, August 2006. ISSN

7

https://doi.org/10.1093/imaiai/iaab011
http://arxiv.org/abs/2211.09873
http://arxiv.org/abs/2401.17825
http://arxiv.org/abs/2206.08257
http://arxiv.org/abs/2206.08257
https://epubs.siam.org/doi/10.1137/080724083

SCALABLE SECOND-ORDER OPTIMIZATION ALGORITHMS FOR MINIMIZING LOW-RANK FUNCTIONS

1436-4646. doi: 10.1007/s10107-006-0706-8. URL https://doi.org/10.1007/
s10107-006-0706-8.

[12] Suzanna Parkinson, Greg Ongie, and Rebecca Willett. ReLU Neural Networks with Linear
Layers are Biased Towards Single- and Multi-Index Models, June 2024. URL http://
arxiv.org/abs/2305.15598. arXiv:2305.15598 [cs, stat].

[13] Tamás Sarlós. Improved approximation algorithms for large matrices via random projections.
In 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06), pages
143–152, 2006. doi: 10.1109/FOCS.2006.37.

[14] Zhen Shao. On Random Embeddings and Their Application to Optimisation. PhD thesis,
Mathematical Institute, University of Oxford, 2022.

[15] Zhen Shao and Coralia Cartis. Random-subspace adaptive cubic regularisation method for
nonconvex optimisation. In HOO-2022: Order up! The Benefits of Higher-Order Optimization
in Machine Learning, 2022.

[16] Ziyu Wang, Frank Hutter, Masrour Zoghi, David Matheson, and Nando De Feitas. Bayesian
Optimization in a Billion Dimensions via Random Embeddings. Journal of Artificial Intelli-
gence Research, 55:361–387, February 2016. ISSN 1076-9757. doi: 10.1613/jair.4806. URL
https://jair.org/index.php/jair/article/view/10983.

[17] David P. Woodruff. Sketching as a tool for numerical linear algebra. Found. Trends Theor.
Comput. Sci., 10(1-2):1–157, 2014. ISSN 1551-305X. doi: 10.1561/0400000060. URL
https://doi.org/10.1561/0400000060.

8

https://doi.org/10.1007/s10107-006-0706-8
https://doi.org/10.1007/s10107-006-0706-8
http://arxiv.org/abs/2305.15598
http://arxiv.org/abs/2305.15598
https://jair.org/index.php/jair/article/view/10983
https://doi.org/10.1561/0400000060

SCALABLE SECOND-ORDER OPTIMIZATION ALGORITHMS FOR MINIMIZING LOW-RANK FUNCTIONS

Appendix A. Additional results

Definition 7 (ϵ-subspace embedding [17]) An ϵ-subspace embedding for a matrix B ∈ Rd×k is a
matrix S ∈ Rl×d such that

(1− ϵ) ∥y∥22 ≤ ∥Sy∥22 ≤ (1 + ϵ) ∥y∥22 for all y ∈ Y = {y : y = Bz, z ∈ Rk}. (3)

Definition 8 (Oblivious subspace embedding [13, 17]) A distribution S on S ∈ Rl×d is an (ϵ, δ)-
oblivious subspace embedding for a given fixed/arbitrary matrix B ∈ Rd×k , we have that, with a
high probability of at least 1 − δ, a matrix S from the distribution is an ε-subspace embedding for
B.

Lemma 9 (Theorem 2.3 in [17]) Let ϵS ∈ (0, 1) and S ∈ Rl×d be a scaled Gaussian matrix.
Then for any fixed d× (d+ 1) matrix M with rank at most r + 1, with probability 1− δS we have
that simultaneously for all z ∈ Rd+1, ∥SMz∥22 ≥ (1− ϵS) ∥Mz∥22, where

δS = exp− l(ϵS)
2

Cl
+ r + 1 (4)

and Cl > 0 is an absolute constant.

A.1. Proof of Lemma 3

In order to prove Lemma 3, we need the following result.

Lemma 10 ([5, 7]) A function f : Rd → R has rank r, with r ≤ d if and only if there exists a
matrix A ∈ Rr×d and a map σ : Rr → R such that f(x) = σ(Ax) for all x ∈ Rd.

Proof [Proof of Lemma 3] Using Lemma 10, we can write

f(x) = σ(Ax) (5)

where A ∈ Rr×d and clearly, A has rank at most r. We have

∇f(x) =
∂σ(Ax)

∂x
= A⊤ · ∂σ(Ax)

∂(Ax)
= A⊤∇σ(Ax). (6)

Furthermore, as f is C2 by assumption, we have

∇2f(x) =
∂∇f(x)

∂xT
= A⊤ · ∂∇σ(Ax)

∂xT
= A⊤ · ∂∇σ(Ax)

∂(Ax)T
·A = A⊤[∇2σ(Ax)]A. (7)

As rank(A) ≤ r, we can conclude that ∇2f(x) has rank bounded above by r.

9

SCALABLE SECOND-ORDER OPTIMIZATION ALGORITHMS FOR MINIMIZING LOW-RANK FUNCTIONS

Appendix B. Data profile methodology

We measure algorithm performance using data profiles [10], which themselves are a variant of
performance profiles [8]. We use relative Hessians seen as well as runtime for our data profiles.
The relative Hessians seen at an iteration k is (lk/d)2 where lk is the sketch dimension and d is the
problem dimension. Using the same notation as in [4], for a given solver s, test problem p ∈ P
and tolerance τ ∈ (0, 1), we determine the number of relative Hessians seen Np(s, τ) required for
a problem to be solved:

Np(s, τ) := # of relative Hessians seen until f(xk) ≤ f(x∗) + τ(f(x0)− f(x∗)).

We set Np(s, τ) = ∞ in the cases where the tolerance is not reached within the maximum number
of iterations, which we take to be 2000.

To produce the data profiles, we plot

πN
s,τ (α) :=

|{p ∈ P : Np(s, τ) ≤ α}|
|P|

for α ∈ [0, 100],

namely, the fraction of problems solved after α relative Hessians seen. For runtime data profiles,
we replace relative Hessians seen with the runtime in the above definitions.

10

SCALABLE SECOND-ORDER OPTIMIZATION ALGORITHMS FOR MINIMIZING LOW-RANK FUNCTIONS

Appendix C. Low-rank problems

Problem d r f(x0) f(x∗) Parameters

1 l-ARTIF 1000 100 1.8296× 101 0 N = 100
2 l-ARWHEAD 1000 100 2.9700× 102 0 N = 100
3 l-BDEXP 1000 100 2.6526× 101 0 N = 100
4 l-BOX 1000 100 0 −1.1240× 101 N = 100
5 l-BOXPOWER 1000 100 8.6625× 102 0 N = 100
6 l-BROYDN7D 1000 100 3.5098× 102 4.0123× 101 N/2 = 50
7 l-CHARDIS1 1000 98 1.2817× 101 0 NP1 = 50
8 l-COSINE 1000 100 8.6881× 101 −9.9000× 101 N = 100
9 l-CURLY10 1000 100 −6.2372× 10−3 −1.0032× 104 N = 100
10 l-CURLY20 1000 100 −1.2965× 10−2 −1.0032× 104 N = 100
11 l-DIXMAANA1 1000 90 8.5600× 102 1 M = 30
12 l-DIXMAANF 1000 90 1.2253× 103 1 M = 30
13 l-DIXMAANP 1000 90 2.1286× 103 1 M = 30
14 l-ENGVAL1 1000 100 5.8410× 103 0 N = 100
15 l-FMINSRF2 1000 121 2.5075× 101 1 P = 11
16 l-FMINSURF 1000 121 3.0430× 101 1 P = 11
17 l-NCB20 1000 110 2.0200× 102 1.7974× 102 N = 100
18 l-NCB20B 1000 100 2× 102 1.9668× 102 N = 100
19 l-NONCVXU2 1000 100 2.6397× 106 2.3168× 102 N = 100
20 l-NONCVXUN 1000 100 2.7270× 106 2.3168× 102 N = 100
21 l-NONDQUAR 1000 100 1.0600× 102 0 N = 100
22 l-ODC 1000 100 0 −1.9802× 10−2 (NX, NY) = (10, 10)
23 l-OSCIGRNE 1000 100 3.0604× 108 0 N = 100
24 l-PENALTY3 1000 100 9.8018× 107 1× 10−3 N/2 = 50
25 l-POWER 1000 100 2.5503× 107 0 N = 100
26 l-RAYBENDL 1000 126 9.8028× 101 9.6242× 101 NKNOTS = 64
27 l-SCHMVETT 1000 100 −2.8029× 102 −2.9940× 103 N = 100
28 l-SINEALI 1000 100 −8.4147× 10−1 −9.9010× 103 N = 100
29 l-SINQUAD 1000 100 6.5610× 10−1 −3 N = 100
30 l-TOINTGSS 1000 100 8.9200× 102 1.0102× 101 N = 100
31 l-YATP2SQ 1000 120 9.1584× 104 0 N = 10

Table 1: The 31 low-rank CUTEst test problems used in the data profiles.

11

SCALABLE SECOND-ORDER OPTIMIZATION ALGORITHMS FOR MINIMIZING LOW-RANK FUNCTIONS

Appendix D. Individual problem performance

Figure 3: Comparison between R-ARC-D and R-ARC on low-rank problems from Table 1

12

SCALABLE SECOND-ORDER OPTIMIZATION ALGORITHMS FOR MINIMIZING LOW-RANK FUNCTIONS

Figure 4: Example of R-ARC-D applied to the full-rank problem ARTIF (with parameter N =
1000), which has r = d = 1000.

13

	Introduction
	Algorithm and Main Results
	An adaptive sketch size rule

	Numerical Experiments
	Additional results
	Proof of Lemma 3

	Data profile methodology
	Low-rank problems
	Individual problem performance

