
aCat: Automatically Choosing Anchor Tokens in Prompt for Natural
Language Understanding

Anonymous ACL submission

Abstract001

P-tuning has demonstrated that anchor tokens002
are beneficial for improving the performance of003
downstream tasks. However, selecting anchor004
tokens manually may result in subjective or sub-005
optimal results. In this paper, we present aCat006
to choose anchor tokens automatically. Fol-007
lowing the framework of the soft-hard prompt008
paradigm, aCat achieves the automatic con-009
struction of prompt templates. Experiments010
conducted on natural language understanding011
benchmarks demonstrate the effectiveness of012
our proposed method. On the seven datasets013
of SuperGlue, the proposed method has higher014
accuracy than the P-tuning, and the average015
accuracy is higher than P-tuning V2.016

1 Introduction017

Recent research shows that the prompt-based018

paradigm can reduce the gap between downstream019

tasks and pre-training tasks (Liu et al., 2023a). The020

proper prompt template has a significant effect on021

the downstream task (Liu et al., 2023a). Design-022

ing more appropriate prompts for further utilizing023

the ability of the pre-trained language models is024

challenging (Zhou et al., 2022; Schick and Schütze,025

2021a,b).026

Hard prompts (a.k.a discrete prompts) (Shin et al.,027

2020; Liu et al., 2023a) and soft prompts (a.k.a028

continuous prompts) (Deng et al., 2022; Liu et al.,029

2022b) are two types of prompts. Hard prompts030

consist of human-interpretable natural language,031

while soft prompts are continuous prompts that per-032

form prompting directly in the embedding space of033

the model.034

Rather than relying solely on hard prompt or soft035

prompt, the soft-hard prompt paradigm incorpo-036

rates trainable token embeddings into the hard037

prompt. Compared to soft or hard prompts, the038

soft-hard prompt reduces the number of parameters039

(Liu et al., 2023a; Lang et al., 2022) and provides a040

certain degree of interpretability (Liu et al., 2023b). 041

P-tuning(Liu et al., 2023b) is one of the typical 042

soft-hard prompt paradigm. The hard part, called 043

anchor tokens, is a few words designed manually. 044

The soft part, called pseudo tokens, is used to gener- 045

ate pseudo tokens embedding by a prompt encoder. 046

P-tuning found that selecting the task-related an- 047

chor tokens could further improve performance on 048

the downstream task (Liu et al., 2023b). However, 049

the anchor token in P-tuning still needs to be se- 050

lected manually, which may result in subjective or 051

suboptimal results. 052

To address the problem of manually selecting 053

anchor tokens, we propose aCat (Automatically 054

Choosing Anchor Tokens) for automatically select- 055

ing anchor tokens. In aCat, we introduce a correc- 056

tor to determine which prompt tokens can serve as 057

anchor tokens. To train the corrector, we formulate 058

the problem of anchor token automatic selection 059

under a reinforcement learning framework: the de- 060

cision is made based on the features of training 061

examples and prompt tokens, while the policy is 062

learned towards maximizing the performance of 063

the downstream task. 064

To verify the effectiveness of our approach in nat- 065

ural language understanding, we conducted exten- 066

sive experiments on 7 NLP datasets (BoolQ, CB, 067

WIC, RTE, MultiRC, WSC, and COPA), including 068

sentiment analysis, paraphrase similarity matching, 069

and natural language inference. Taking P-tuning as 070

baseline, our experimental results show that aCat 071

enhances the performance on all datasets. 072

In addition, we also compared the performance of 073

aCat with P-tuning V2, the next generation ver- 074

sion of P-tuning. P-tuning V2 applies continuous 075

prompts for every layer of the pre-trained model 076

(Liu et al., 2022a). Clearly, P-tuning V2 requires 077

introducing more trainable parameters to obtain 078

prompts suitable for downstream tasks. In contrast, 079

aCat does not increase the number of trainable pa- 080

rameters with the depth of the pre-trained model 081

1

Prompt Encoder
Pre-trained Language Model

embedding layer

Replace to

pseudo

Remain

manually

Pre-trained Language Model

Nothing to

do

Prompt Encoder
Pre-trained Language Model

embedding layer

Pre-trained Language Model

Pseudo

tokens

Anchor

tokens

Input

tokens

Corrector

Predict

tokens

Prompt

tokens

a) p-tuning

Decide

autocratically

b) aCat

Figure 1: The difference between P-tuning and aCat

layers. The experimental results on six datasets082

demonstrate that the performance of aCat is com-083

parable to P-tuning V2, and the average accuracy084

surpasses P-tuning V2 when using bert-base as a085

pre-training language model.086

Our contributions are twofold. First, we system-087

atically study how to select anchor tokens from088

prompt tokens automatically. Second, we propose a089

two-stage method for fine-tuning the prompt-based090

pre-trained language model, prompt encoder, and091

corrector agent.092

2 Proposed method093

Given the k-th training sample (xk, yk) in dataset094

D, prompt-based paradigm firstly constructs the095

prompt template T = {[W0:i], xk, [Wi+1:m], ŷk},096

where [W0:i] and [Wi+1:m] represent a series097

of predefined prompt tokens, ŷk denotes the098

tokens used for outputting the predicted results,099

and m represents the total number of prompt100

tokens in template T . In the soft-hard prompt101

paradigm, some prompt tokens will be chosen102

as anchor tokens, and others will be converted103

into pseudo tokens. Then, T can be converted to104

T ′ = {[P0:j][Aj+1:i], xk, [Pi+1:r][Ar+1:m], ŷk},105

where [P0:j] and [Pi+1:r] represent pseudo tokens,106

[Aj+1:i] and [Ar+1:m] represent anchor tokens.107

Commonly, a pre-trained embedding layer e is108

employed to map xk, ŷk and anchor tokens to109

embeddings, and a prompt encoder is used to110

encode pseudo tokens to trainable continuous em-111

beddings. Then, the converted T ′ will be fed into112

the pre-trained model to perform downstream tasks.113

114

2.1 Overall architecture of aCat115

aCat consists of three parts: (1) the corrector, to ef-116

fectively determine which prompt tokens should be117

kept as anchor tokens; (2) the prompt encoder, to118

encode some prompt tokens to the pseudo tokens; 119

and (3) the pre-trained language model, to perform 120

the downstream tasks together with the soft-hard 121

prompt. Figure 1 shows the architecture of aCat 122

and denotes the difference between P-tuning and 123

aCat. Note that P-tuning chooses anchor tokens 124

manually based on the relationship between pre- 125

defined prompt tokens Wi and xk. But for aCat, 126

anchor tokens are chosen by a corrector. 127

2.2 Constructing prompt template using 128

corrector 129

A corrector of aCat consists of a frozen pre-trained 130

language model Mf and an agent. Given the orig- 131

inal prompt template T . Mf is used to encode 132

prompt tokens in T as 133

h(T) = {h([W0:i]), h(xk), h([Wi+1:m]), h(ŷk)}
(1) 134

where h(·) represents the output of Mf , and h(ŷk) 135

is obtained by using one or multiple [mask] tokens. 136

Agent is used to determine which prompt tokens in 137

T should be retained as anchor tokens. 138

Then, we obtain the final template T ′, using T ′, we 139

use the loss L to finetune the pre-trained language 140

model to perform the downstream task: 141

142

L = −
∑

xk,yk∈D
logP (ŷk = yk|T

′
;M, θ) (2) 143

where M represents the trainable pre-trained lan- 144

guage model, θ represents the parameters of the 145

prompt encoder. 146

2.3 RL based corrector training 147

We exploit the policy gradient method (Sutton et al., 148

1999) to learn the corrector. Now, we describe the 149

state, the action, the reward, and the optimization 150

in our reinforcement learning approach. 151

State State refers to the agent’s state si on the 152

i-th position. The agent decides the replacement 153

2

result of the i-th token in the prompt tokens of T154

based on a series of states s1, s2, ...si.155

For each prompt token h([Wi]) at position i in156

T , we concatenate h([Wi]) with h(ŷk) to get the157

agent’s state si for the i-th position as158

si = F ([h([Wi]);h(ŷk)]) (3)159

where si ∈ R2∗d, with d being the dimension160

of the hidden vector and F (·) representing the161

concatenation function.162

Action All prompt tokens of T are associated163

with one agent. An agent chooses between two164

possible actions, selecting the prompt tokens as165

anchor tokens or not. We use a policy function166

πθc(si, γi) to decide actions.167

168

πθc(si, γi) = γiσ(si, θc)+ (1− γi)(1− σ(si, θc))
(4)169

where σ(·) is the RELU activation function, and170

θc ∈ R2∗d is the trainable parameters of agents.171

In practice, a multi-layer perceptron (MLP) and172

RELU activation function is adopted as the agent.173

We use the agent’s state si to decide the action γi to174

decide whether the prompt token will be retained175

as an anchor token at each position i as176

γi = argmax
γi∈γ

(πθc(γi | si)) (5)177

Here, πθc(·) represents policy function, and178

γ ∈ {0, 1} refers to the set of actions. If γi is 0,179

we replace the prompt token at position i with a180

pseudo token. If γi is 1, keep it as an anchor token.181

182

Reward The reward function is associated183

with the performance of downstream tasks. It in-184

dicates the quality of the decisions made by the185

current agents. We use the negative of the loss L186

as the reward for the k-th instance.187

rewardk = −L (6)188

Optimization Following (Sutton et al., 1999),189

we store episode = {action, observation, reward} in190

an experience pool H to train the corrector. Then,191

we update the parameters θc of agent using H ac-192

cording to the standard policy gradient, that is,193

θc ← θc + β
∑
i

rewardk∇θcπθc(si, γi) (7)194

where195

Lrl = −
∑
i

rewardk log πθc(si, γi) (8)196

and β is the learning rate.197

2.4 Two-stage method to train aCat 198

We propose a two-stage method to train the pre- 199

trained language model for downstream tasks and 200

the corrector, as shown in Algorithm 1 in Ap- 201

pendix. 202

In stage one, we fix the parameters of the corrector 203

and train the parameters of the prompt encoder and 204

the pre-trained language model by minimizing the 205

loss in Eq.(2). 206

During stage two, we fix the prompt encoder and 207

pre-trained language model and train the parame- 208

ters of the corrector according to the loss function 209

in Eq.(7)(8). We iteratively conduct stage one and 210

stage two in turn. 211

3 Experiments 212

3.1 Main Results 213

We compare the proposed aCat with the following 214

baselines in Table 1. 215

fine-tuning refers to using vanilla fine-tuning of 216

bert-base-cased to complete downstream tasks. 217

No-anchor: refers to no prompt that will be re- 218

tained as an anchor token. 219

P-tuning described in (Liu et al., 2023b), and 220

we show the performance reported in (Liu et al., 221

2023b). 222

Random selection randomly decides which 223

prompt tokens need to be retained as anchor to- 224

kens. 225

To explore the impact of the number of correctors 226

on performance, we tried two strategies to construct 227

correctors, as shown below. 228

aCat-multi-agents each prompt token uses an in- 229

dependent corrector. It means that for multiple 230

correctors, we set them as independent parameters 231

and train them independently. 232

aCat-single-agent all prompt tokens use the same 233

corrector. It means that we share parameters with 234

all correctors. 235

Following P-tuning, we adopt Accuracy as the main 236

evaluation measure and compare F1 on dataset CB 237

and EM on dataset MultiRC. 238

Based on the experimental results shown in table 239

1, the bold values represent the best results per 240

dataset, and we can see that aCat exhibits an im- 241

provement in accuracy in all datasets compared 242

with the baselines. It indicates that automatic tem- 243

plate construction achieves better performance in 244

soft-hard prompt paradigms. We also find that aCat- 245

single-agent outperformed aCat-multi-agents on 246

more data sets. One explanation is that using a 247

3

Table 1: Main results

dataset
BoolQ CB WiC RTE MultiRC WSC COPA
(Acc.) (Acc.) (F1) (Acc.) (Acc.) (EM) (F1a) (Acc.) (Acc.)

fine-tuning 72.9 85.1 73.9 71.1 68.4 16.2 66.3 63.5 67
no-anchor 73.8 89.2 92.1 67.3 71.2 14.7 64.7 61.2 64.3
p-tuning 73.9 89.2 92.1 68.8 71.1 14.8 63.3 63.5 72
random selection 73.5 91.2 93.4 67.9 70.5 15.6 67.6 62.8 69.3
aCat-multi-agents 73.9 89.9 92.6 68.9 71.2 15.6 67.6 64.7 72
aCat-single-agents 74 91.7 93.1 67.2 71.7 16.9 67.4 63.8 72.3

Table 2: Compare with P-tuning V2

dataset
BoolQ RTE CB WiC WSC COPA avg.
(Acc.) (Acc.) (Acc.) (Acc.) (Acc.) (Acc.) (Acc.)

P-tuning V2 71.19 70.03 82.14 69.5 65.4 67.4 70.94
aCatmulti-agents 73.9 71.2 89.9 68.9 64.7 72 73.43
aCatsingle-agent 74 71.7 91.7 67.2 63.8 72.3 73.45

single agent can make the content more coherent.248

In an aCat-multi-agents setting, each agent is in-249

dependent of the others, which will destroy the250

coherence of the context. The use of aCat-single-251

agent can take into account the coherence of the252

context. On WIC and WSC, the performance of253

aCat-multi-agents exceeds aCat-single-agent. We254

deem that the semantic information of anchor to-255

kens itself in WIC is not strong. Therefore, we do256

not require strong semantic correlation.257

Further experiments, such as si using different to-258

ken information, can be found in table b3 in Ap-259

pendix.260

3.2 Comparasion with P-tuning V2261

We also compare our method with P-tuning V2262

on six datasets, and we show the experimental263

results in Table 2. As for the MultiRC dataset,264

there are no reported performance records using265

Bert-base in p-tuning V2, so we do not list the266

results on MultiRC. The performances of P-tuning267

V2 are reported according to the results in (Yang268

et al., 2022; Zhang et al., 2023). Our method269

outperforms P-tuning V2 on four datasets and270

achieves higher average accuracy with fewer271

parameters. We deem that it is crucial to retain the272

task-specific prompt tokens, and simply initializing273

the embedding parameters of prompt tokens and274

training them with the pre-trained language model275

are difficult to yield the optimal performance.276

277

4 Conclusion 278

Soft-hard prompt paradigm has been proven ef- 279

fective for natural language understanding. Se- 280

lecting some tokens in prompt as anchor tokens 281

can further improve the performance of the down- 282

stream tasks in prompt-based learning. To achieve 283

automatic anchor token acquisition, we propose 284

aCat, an automatically choosing anchor tokens 285

method. By introducing a corrector agent, our 286

method achieves automatic selection of anchor to- 287

kens from pre-defined prompts. Experiments con- 288

ducted on seven benchmark natural language under- 289

standing datasets demonstrate that aCat achieves 290

better performances compared to previous base- 291

lines under the soft-hard paradigm. 292

Limitations 293

The approach proposed in this paper has some lim- 294

itations, specifically that we only use policy gradi- 295

ent method to train our corrector. Additionally, it 296

would be beneficial to extend the idea to other effi- 297

cient learning methods, such as avoiding the two- 298

stage process for training the corrector. Exploring 299

a unified solution for existing methods might be 300

valuable in future research. 301

References 302

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yi- 303
han Wang, Han Guo, Tianmin Shu, Meng Song, Eric 304
Xing, and Zhiting Hu. 2022. RLPrompt: Optimizing 305
discrete text prompts with reinforcement learning. 306

4

https://doi.org/10.18653/v1/2022.emnlp-main.222
https://doi.org/10.18653/v1/2022.emnlp-main.222
https://doi.org/10.18653/v1/2022.emnlp-main.222

In Proceedings of the 2022 Conference on Empiri-307
cal Methods in Natural Language Processing, pages308
3369–3391, Abu Dhabi, United Arab Emirates. As-309
sociation for Computational Linguistics.310

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and311
Kristina Toutanova. 2019. BERT: Pre-training of312
deep bidirectional transformers for language under-313
standing. In Proceedings of the 2019 Conference of314
the North American Chapter of the Association for315
Computational Linguistics: Human Language Tech-316
nologies, Volume 1 (Long and Short Papers), pages317
4171–4186, Minneapolis, Minnesota. Association for318
Computational Linguistics.319

Hunter Lang, Monica N Agrawal, Yoon Kim, and320
David Sontag. 2022. Co-training improves prompt-321
based learning for large language models. In Inter-322
national Conference on Machine Learning, pages323
11985–12003. PMLR.324

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,325
Hiroaki Hayashi, and Graham Neubig. 2023a. Pre-326
train, prompt, and predict: A systematic survey of327
prompting methods in natural language processing.328
ACM Computing Surveys, 55(9):1–35.329

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengx-330
iao Du, Zhilin Yang, and Jie Tang. 2022a. P-tuning:331
Prompt tuning can be comparable to fine-tuning332
across scales and tasks. In Proceedings of the 60th333
Annual Meeting of the Association for Computational334
Linguistics (Volume 2: Short Papers), pages 61–68,335
Dublin, Ireland. Association for Computational Lin-336
guistics.337

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,338
Yujie Qian, Zhilin Yang, and Jie Tang. 2023b. Gpt339
understands, too. AI Open.340

Xiaochen Liu, Yang Gao, Yu Bai, Jiawei Li, Yinan341
Hu, He-Yan Huang, and Boxing Chen. 2022b. Psp:342
Pre-trained soft prompts for few-shot abstractive343
summarization. In Proceedings of the 29th Inter-344
national Conference on Computational Linguistics,345
pages 6355–6368.346

Ilya Loshchilov and Frank Hutter. 2019. Decoupled347
weight decay regularization. In International Confer-348
ence on Learning Representations.349

Timo Schick and Hinrich Schütze. 2021a. Exploiting350
cloze-questions for few-shot text classification and351
natural language inference. In Proceedings of the352
16th Conference of the European Chapter of the Asso-353
ciation for Computational Linguistics: Main Volume,354
pages 255–269.355

Timo Schick and Hinrich Schütze. 2021b. It’s not just356
size that matters: Small language models are also few-357
shot learners. In Proceedings of the 2021 Conference358
of the North American Chapter of the Association359
for Computational Linguistics: Human Language360
Technologies, pages 2339–2352.361

Taylor Shin, Yasaman Razeghi, Robert L Logan IV, 362
Eric Wallace, and Sameer Singh. 2020. Autoprompt: 363
Eliciting knowledge from language models with au- 364
tomatically generated prompts. In Proceedings of the 365
2020 Conference on Empirical Methods in Natural 366
Language Processing (EMNLP), pages 4222–4235. 367

Richard S Sutton, David McAllester, Satinder Singh, 368
and Yishay Mansour. 1999. Policy gradient methods 369
for reinforcement learning with function approxima- 370
tion. Advances in neural information processing 371
systems, 12. 372

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman- 373
preet Singh, Julian Michael, Felix Hill, Omer Levy, 374
and Samuel Bowman. 2019. Superglue: A stick- 375
ier benchmark for general-purpose language under- 376
standing systems. Advances in neural information 377
processing systems, 32. 378

Haoran Yang, Piji Li, and Wai Lam. 2022. Parameter- 379
efficient tuning by manipulating hidden states of 380
pretrained language models for classification tasks. 381
arXiv e-prints, pages arXiv–2204. 382

Zhen-Ru Zhang, Chuanqi Tan, Haiyang Xu, Chengyu 383
Wang, Jun Huang, and Songfang Huang. 2023. To- 384
wards adaptive prefix tuning for parameter-efficient 385
language model fine-tuning. In Proceedings of the 386
61st Annual Meeting of the Association for Compu- 387
tational Linguistics (Volume 2: Short Papers), pages 388
1239–1248. 389

Jie Zhou, Le Tian, Houjin Yu, Zhou Xiao, and Hui Su. 390
2022. Dual context-guided continuous prompt tuning 391
for few-shot learning. In Findings of the Association 392
for Computational Linguistics: ACL 2022, pages 79– 393
84. 394

A Appendix 395

A.1 Experiment setting 396

To compare with P-tuning, we perform experiments 397

on the SuperGlue benchmark (Wang et al., 2019). 398

A detailed description of SuperGlue can be found 399

in P-tuning. Following P-tuning, we conducted 400

experiments on BoolQ, MultiRC, CB, RTE, WiC 401

and COPA. We use the training sets and the devel- 402

opment sets of each different task as Dtrain and 403

Ddev. 404

We reformulate NLU tasks into MLM tasks. We 405

designed the prompt pattern followed by P-tuning. 406

The examples of prompt patterns can be found in 407

Table b1. For pre-trained language model M and 408

Mf , we use bert-base-cased (Devlin et al., 2019). 409

We divide the dataset D into τ batches for Dtrainst2 410

and train the corrector at each α step δ times. The 411

hyperparameters of M and Mf , such as learning 412

rate α, batch size, and epoch on different dataset 413

are shown in Table b2. 414

5

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.18653/v1/2022.acl-short.8
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7

We set different hyperparameters by balancing the415

performance of different datasets and the size of the416

dataset, which though α,τ ,δ to adjust, in which τ417

means we divide the data of τ batches as Dtrainst2 ,418

α means that we train stage1 α times and then419

switch to stage 2. δ means that we repeat training δ420

times when training the corrector in stage2. epoch421

means that stage1 and stage2 together are executed422

for a total of epoch times.423

We use the AdamW optimizer (Loshchilov and Hut-424

ter, 2019) with a linearly decayed learning rate and425

use early stopping to avoid overfitting the training426

data. All experiments are conducted on NVIDIA427

A800 with 80GB memory.428

Finally, since selecting different positions in a sen-429

tence will yield different information, resulting in430

different si. We additionally explored the impact431

of using information from different positions in the432

sentence on performance. Results are shown in433

Table b3.434

In all our experiments, according to some of the435

prompts given in Table b1, we will repeat each436

pattern three times to obtain the average perfor-437

mance of each pattern and record the pattern with438

the highest performance in each data set.439

B Further results440

B.1 Comparison of experimental performance441

of different splicing strategies442

We replace h(ŷk) in Eq.(3) to explore the per-443

formance when si uses different token informa-444

tion. The experimental results are shown in Ta-445

ble b3, where (mask+anchor) is the original set-446

ting described in Eq.(3), (only anchor) means447

si = F([h([Wi])]), and (cls+anchor) is si =448

F([h([Wi]);h([cls])]). We found that the combi-449

nation of (mask+anchor) will achieve more ideal450

performance. This indicates that combining anchor451

prompts and mask tokens can provide more infor-452

mation and construct better prompts. Taking the453

dataset COPA as an example, COPA needs to pre-454

dict downstream tasks through autoregression (get455

results from multiple mask tokens), so it tends to456

provide more information to the corrector, enabling457

better automatic selection of anchor tokens. Thus,458

it achieves better performance.459

6

Algorithm 1 overall algorithm
Pre-process: We split the dataset D into Dtrain and Ddev , and split Dtrain into Dtrainst1 for the first stage and Dtrainst2

for the second stage to make the training data belongs to the same field.
1: Dtrainst2 = {B0, . . . ,Bτ}, Dtrainst1 = {Bτ+1, . . . , }, where Bτ refer to batch and train corrector in each step α, epoch,

and δ times.
2:

Initiate: Initialize model parameters M , corrector parameters θc and prompt encoder θ. Set up an experience pool H//Only the
parameters of the agent in the corrector are trainable.

3:
4: for _ in range(epoch) do
5: for step in range(total step) do
6: —————————–stage 1—————————-
7: if step (mod α) ! = 0 then
8: fix corrector θc parameters
9: set M and θ to trainable

10: Optimize L in Eq.(2) in Dtrainst1

11: —————————-stage 2—————————-
12: else
13: set θc to trainable
14: fix M and θ parameters
15: for _ in range(δ) do
16: for Batchτ ∈ Dtrainst2 do
17: collect episode = {action, state, reward} though Eq.(3)(5)(6)
18: Add episode to the experience pool H
19: end for
20: update θc though Eq .(7)(8) and experience pool H //update corrector parameters
21: clear experience pool H
22: end for
23: end if
24: end for
25: end for

Table b1: Prompt pattens of different datasets.

dataset Prompt pattern 1 Prompt pattern 2
BoolQ p. the Question q ? the Answer: __. p the q ? the __.

CB p the q ? Answer: __.
p question: q true, false or neither?
answer: the__.

WiC p [SEP] q the w ? p [SEP] q the w ? the __.
RTE p [SEP] q ? the __. p [SEP] q ? the answer: __.
MultiRC p Question: q ? Is it a ? the__. p Question: q ? the a ? the__.
WSC s the *p* the__. s the pronoun *p* refer to __.
COPA c1 or c2? p so/because __. c1 or c2? p so/because the __.

Note: p is the passage, q is the question, c1 or c2 are the choices, s refers to sentence, p in WSC refers to pronoun
which appears in the sentences, and ’_’ refers to the mask token.

Table b2: The setting of hyperparameters

BoolQ CB WiC RTE MultiRC WSC COPA
α 100 1 34 15 170 1 5
τ 7 2 3 2 11 3 2
batch size 16 16 16 16 16 16 16
δ 1 1 1 50 1 10 50
epoch 10 20 10 20 10 20 20
Learning rate 2e-5 2e-5 2e-5 2e-5 2e-5 1e-5 2e-5

7

Table b3: Comparison of experimental performance of different splicing strategies

dataset
BoolQ CB WiC RTE MultiRC WSC COPA
(Acc.) (Acc.) (F1) (Acc.) (Acc.) (EM) (F1a) (Acc.) (Acc.)

SINGLE AGENT
aCat-single-agents
(mask+anchor)

74 91.7 93.1 67.2 71.7 16.9 67.4 63.8 72.3

aCat-single-agents
(only anchor)

74 91.1 93.4 67.6 71.7 15.8 67.7 63.1 68.3

aCat-single-agents
(cls+anchor)

73.8 91.1 93.4 67.2 70.5 16.2 67.5 64.1 70.7

MULTI AGENTS
aCat-multi-agents
(mask+anchor)

74.3 89.9 92.6 68.9 71.2 15.6 67.6 63.8 72

aCat-multi-agents
(only anchor)

73.4 91.1 93.3 67.5 71.2 16.2 67.6 62.8 68.3

aCat-multi-agents
(cls+anchor)

74.3 89.9 91.7 67.5 71.5 15.5 67.6 63.8 70.7

8

	Introduction
	Proposed method
	Overall architecture of aCat
	Constructing prompt template using corrector
	RL based corrector training
	Two-stage method to train aCat

	Experiments
	Main Results
	Comparasion with P-tuning V2

	Conclusion
	Appendix
	Experiment setting

	Further results
	Comparison of experimental performance of different splicing strategies

