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Abstract

P-tuning has demonstrated that anchor tokens
are beneficial for improving the performance of
downstream tasks. However, selecting anchor
tokens manually may result in subjective or sub-
optimal results. In this paper, we present aCat
to choose anchor tokens automatically. Fol-
lowing the framework of the soft-hard prompt
paradigm, aCat achieves the automatic con-
struction of prompt templates. Experiments
conducted on natural language understanding
benchmarks demonstrate the effectiveness of
our proposed method. On the seven datasets
of SuperGlue, the proposed method has higher
accuracy than the P-tuning, and the average
accuracy is higher than P-tuning V2.

1 Introduction

Recent research shows that the prompt-based
paradigm can reduce the gap between downstream
tasks and pre-training tasks (Liu et al., 2023a). The
proper prompt template has a significant effect on
the downstream task (Liu et al., 2023a). Design-
ing more appropriate prompts for further utilizing
the ability of the pre-trained language models is
challenging (Zhou et al., 2022; Schick and Schiitze,
2021a,b).

Hard prompts (a.k.a discrete prompts) (Shin et al.,
2020; Liu et al., 2023a) and soft prompts (a.k.a
continuous prompts) (Deng et al., 2022; Liu et al.,
2022b) are two types of prompts. Hard prompts
consist of human-interpretable natural language,
while soft prompts are continuous prompts that per-
form prompting directly in the embedding space of
the model.

Rather than relying solely on hard prompt or soft
prompt, the soft-hard prompt paradigm incorpo-
rates trainable token embeddings into the hard
prompt. Compared to soft or hard prompts, the
soft-hard prompt reduces the number of parameters
(Liu et al., 2023a; Lang et al., 2022) and provides a

certain degree of interpretability (Liu et al., 2023b).
P-tuning(Liu et al., 2023b) is one of the typical
soft-hard prompt paradigm. The hard part, called
anchor tokens, is a few words designed manually.
The soft part, called pseudo tokens, is used to gener-
ate pseudo tokens embedding by a prompt encoder.
P-tuning found that selecting the task-related an-
chor tokens could further improve performance on
the downstream task (Liu et al., 2023b). However,
the anchor token in P-tuning still needs to be se-
lected manually, which may result in subjective or
suboptimal results.

To address the problem of manually selecting
anchor tokens, we propose aCat (Automatically
Choosing Anchor Tokens) for automatically select-
ing anchor tokens. In aCat, we introduce a correc-
tor to determine which prompt tokens can serve as
anchor tokens. To train the corrector, we formulate
the problem of anchor token automatic selection
under a reinforcement learning framework: the de-
cision is made based on the features of training
examples and prompt tokens, while the policy is
learned towards maximizing the performance of
the downstream task.

To verify the effectiveness of our approach in nat-
ural language understanding, we conducted exten-
sive experiments on 7 NLP datasets (BoolQ, CB,
WIC, RTE, MultiRC, WSC, and COPA), including
sentiment analysis, paraphrase similarity matching,
and natural language inference. Taking P-tuning as
baseline, our experimental results show that aCat
enhances the performance on all datasets.

In addition, we also compared the performance of
aCat with P-tuning V2, the next generation ver-
sion of P-tuning. P-tuning V2 applies continuous
prompts for every layer of the pre-trained model
(Liu et al., 2022a). Clearly, P-tuning V2 requires
introducing more trainable parameters to obtain
prompts suitable for downstream tasks. In contrast,
aCat does not increase the number of trainable pa-
rameters with the depth of the pre-trained model
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Figure 1: The difference between P-tuning and aCat

layers. The experimental results on six datasets
demonstrate that the performance of aCat is com-
parable to P-tuning V2, and the average accuracy
surpasses P-tuning V2 when using bert-base as a
pre-training language model.

Our contributions are twofold. First, we system-
atically study how to select anchor tokens from
prompt tokens automatically. Second, we propose a
two-stage method for fine-tuning the prompt-based
pre-trained language model, prompt encoder, and
corrector agent.

2 Proposed method

Given the k-th training sample (xg, y;) in dataset
D, prompt-based paradigm firstly constructs the
prompt template T" = {[Wo.i, i, [Wit1:m], Gk}
where [Wo.;| and [W;y1.,] represent a series
of predefined prompt tokens, ¢ denotes the
tokens used for outputting the predicted results,
and m represents the total number of prompt
tokens in template 7. In the soft-hard prompt
paradigm, some prompt tokens will be chosen
as anchor tokens, and others will be converted
into pseudo tokens. Then, T' can be converted to
T = {[Poyl[Ajt1:l ks [Pigrn[[Arsiim], i}
where [Py.;] and [P;1..] represent pseudo tokens,
[Aji1:] and [A,41.,] represent anchor tokens.
Commonly, a pre-trained embedding layer e is
employed to map xg, ¢r and anchor tokens to
embeddings, and a prompt encoder is used to
encode pseudo tokens to trainable continuous em-
beddings. Then, the converted 7" will be fed into
the pre-trained model to perform downstream tasks.

2.1 Overall architecture of aCat

aCat consists of three parts: (1) the corrector, to ef-
fectively determine which prompt tokens should be
kept as anchor tokens; (2) the prompt encoder, to

encode some prompt tokens to the pseudo tokens;
and (3) the pre-trained language model, to perform
the downstream tasks together with the soft-hard
prompt. Figure 1 shows the architecture of aCat
and denotes the difference between P-tuning and
aCat. Note that P-tuning chooses anchor tokens
manually based on the relationship between pre-
defined prompt tokens W; and x;. But for aCat,
anchor tokens are chosen by a corrector.

2.2 Constructing prompt template using
corrector

A corrector of aCat consists of a frozen pre-trained
language model My and an agent. Given the orig-
inal prompt template 7. M/ is used to encode
prompt tokens in 7" as

WT) = {h(Wo.i]), h(xk), h((Wit1:ml), h(G1) }
ey
where h(-) represents the output of M, and h(gy)
is obtained by using one or multiple [mask] tokens.
Agent is used to determine which prompt tokens in
T should be retained as anchor tokens.
Then, we obtain the final template 7", using 7", we
use the loss £ to finetune the pre-trained language
model to perform the downstream task:

L=— Y logP(r=ylT';M,0) (2
Xp, Yy €D
where M represents the trainable pre-trained lan-
guage model, 6 represents the parameters of the
prompt encoder.

2.3 RL based corrector training

We exploit the policy gradient method (Sutton et al.,
1999) to learn the corrector. Now, we describe the
state, the action, the reward, and the optimization
in our reinforcement learning approach.

State State refers to the agent’s state s; on the
i-th position. The agent decides the replacement



result of the i-th token in the prompt tokens of T’
based on a series of states s, s3, ...S;.
For each prompt token h([W¥;]) at position i in
T, we concatenate h([WW;]) with h(gy) to get the
agent’s state s; for the i-th position as

si = F([h([Wi]); h(9x)]) 3)

where s; € R?*¢, with d being the dimension
of the hidden vector and F'(-) representing the
concatenation function.

Action All prompt tokens of 7" are associated
with one agent. An agent chooses between two
possible actions, selecting the prompt tokens as
anchor tokens or not. We use a policy function
7o, (si,7vi) to decide actions.

o (si,7i) = 70 (8, 0c) + (1 = %) (1 — o (si, be))
4
where o(-) is the RELU activation function, and
6. € R?*? is the trainable parameters of agents.
In practice, a multi-layer perceptron (MLP) and
RELU activation function is adopted as the agent.
We use the agent’s state s; to decide the action ; to
decide whether the prompt token will be retained
as an anchor token at each position 7 as

v; = arg maX(Wec (i | 5i)) o)
V€Y

Here, mp_(-) represents policy function, and
v € {0, 1} refers to the set of actions. If ~; is 0,
we replace the prompt token at position ¢ with a
pseudo token. If ~; is 1, keep it as an anchor token.

Reward The reward function is associated
with the performance of downstream tasks. It in-
dicates the quality of the decisions made by the
current agents. We use the negative of the loss £
as the reward for the k-th instance.

rewardy, = —L 6)

Optimization Following (Sutton et al., 1999),
we store episode = {action, observation, reward} in
an experience pool H to train the corrector. Then,
we update the parameters 6. of agent using H ac-
cording to the standard policy gradient, that is,

0. 0.+ 3 Z rewardp Vo, mg, (i, vi) (1)

where
L =— Z rewardy log mp. (i, Vi) ®

and S is the learning rate.

2.4 Two-stage method to train aCat

We propose a two-stage method to train the pre-
trained language model for downstream tasks and
the corrector, as shown in Algorithm 1 in Ap-
pendix.

In stage one, we fix the parameters of the corrector
and train the parameters of the prompt encoder and
the pre-trained language model by minimizing the
loss in Eq.(2).

During stage two, we fix the prompt encoder and
pre-trained language model and train the parame-
ters of the corrector according to the loss function
in Eq.(7)(8). We iteratively conduct stage one and
stage two in turn.

3 Experiments

3.1 Main Results

We compare the proposed aCat with the following
baselines in Table 1.

fine-tuning refers to using vanilla fine-tuning of
bert-base-cased to complete downstream tasks.
No-anchor: refers to no prompt that will be re-
tained as an anchor token.

P-tuning described in (Liu et al., 2023b), and
we show the performance reported in (Liu et al.,
2023b).

Random selection randomly decides which
prompt tokens need to be retained as anchor to-
kens.

To explore the impact of the number of correctors
on performance, we tried two strategies to construct
correctors, as shown below.

aCat-multi-agents each prompt token uses an in-
dependent corrector. It means that for multiple
correctors, we set them as independent parameters
and train them independently.

aCat-single-agent all prompt tokens use the same
corrector. It means that we share parameters with
all correctors.

Following P-tuning, we adopt Accuracy as the main
evaluation measure and compare F1 on dataset CB
and EM on dataset MultiRC.

Based on the experimental results shown in table
1, the bold values represent the best results per
dataset, and we can see that aCat exhibits an im-
provement in accuracy in all datasets compared
with the baselines. It indicates that automatic tem-
plate construction achieves better performance in
soft-hard prompt paradigms. We also find that aCat-
single-agent outperformed aCat-multi-agents on
more data sets. One explanation is that using a



Table 1: Main results

BoolQ CB WiC | RTE MultiRC WSC | COPA
dataset (Acc.) | (Acc.)| (F1) | (Acc.) | (Acc.) | (EM) | (Fla)| (Acc.) | (Acc.)
fine-tuning 72.9 85.1 | 739 | 71.1 684 | 16.2 | 66.3 | 63.5 67
no-anchor 73.8 89.2 | 92.1 | 673 712 | 147 | 647 | 612 | 643
p-tuning 73.9 89.2 | 92.1 | 68.8 71.1 14.8 | 63.3 | 63.5 72
random selection 73.5 91.2 | 934 | 67.9 70.5 15.6 | 67.6 | 62.8 69.3
aCat-multi-agents 73.9 899 | 926 | 689 | 712 | 15.6 | 67.6 | 64.7 72
aCat-single-agents 74 91.7 | 93.1 | 67.2 | 71.7 | 169 | 674 | 63.8 | 723

Table 2: Compare with P-tuning V2
BoolQ | RTE CB WiC | WSC | COPA | avg.
dataset (Acc.) | (Acc) | (Acc.) | (Acc.) | (Acc) | (Acc.) | (Acc.)
P-tuning V2 71.19 | 70.03 | 82.14 | 69.5 65.4 67.4 | 70.94
aCatmulti-agents | 73.9 71.2 89.9 68.9 64.7 72 73.43
aCatsingle-agent 74 71.7 91.7 67.2 63.8 723 | 7345

single agent can make the content more coherent.
In an aCat-multi-agents setting, each agent is in-
dependent of the others, which will destroy the
coherence of the context. The use of aCat-single-
agent can take into account the coherence of the
context. On WIC and WSC, the performance of
aCat-multi-agents exceeds aCat-single-agent. We
deem that the semantic information of anchor to-
kens itself in WIC is not strong. Therefore, we do
not require strong semantic correlation.

Further experiments, such as s; using different to-
ken information, can be found in table b3 in Ap-
pendix.

3.2 Comparasion with P-tuning V2

We also compare our method with P-tuning V2
on six datasets, and we show the experimental
results in Table 2. As for the MultiRC dataset,
there are no reported performance records using
Bert-base in p-tuning V2, so we do not list the
results on MultiRC. The performances of P-tuning
V2 are reported according to the results in (Yang
et al., 2022; Zhang et al., 2023). Our method
outperforms P-tuning V2 on four datasets and
achieves higher average accuracy with fewer
parameters. We deem that it is crucial to retain the
task-specific prompt tokens, and simply initializing
the embedding parameters of prompt tokens and
training them with the pre-trained language model
are difficult to yield the optimal performance.

4 Conclusion

Soft-hard prompt paradigm has been proven ef-
fective for natural language understanding. Se-
lecting some tokens in prompt as anchor tokens
can further improve the performance of the down-
stream tasks in prompt-based learning. To achieve
automatic anchor token acquisition, we propose
aCat, an automatically choosing anchor tokens
method. By introducing a corrector agent, our
method achieves automatic selection of anchor to-
kens from pre-defined prompts. Experiments con-
ducted on seven benchmark natural language under-
standing datasets demonstrate that aCat achieves
better performances compared to previous base-
lines under the soft-hard paradigm.

Limitations

The approach proposed in this paper has some lim-
itations, specifically that we only use policy gradi-
ent method to train our corrector. Additionally, it
would be beneficial to extend the idea to other effi-
cient learning methods, such as avoiding the two-
stage process for training the corrector. Exploring
a unified solution for existing methods might be
valuable in future research.
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A Appendix

A.1 Experiment setting

To compare with P-tuning, we perform experiments
on the SuperGlue benchmark (Wang et al., 2019).
A detailed description of SuperGlue can be found
in P-tuning. Following P-tuning, we conducted
experiments on BoolQ, MultiRC, CB, RTE, WiC
and COPA. We use the training sets and the devel-
opment sets of each different task as Dy,q;, and
D dev-

We reformulate NLU tasks into MLM tasks. We
designed the prompt pattern followed by P-tuning.
The examples of prompt patterns can be found in
Table bl. For pre-trained language model M and
M, we use bert-base-cased (Devlin et al., 2019).
We divide the dataset D into 7 batches for D¢ygin,,,
and train the corrector at each « step § times. The
hyperparameters of M and M, such as learning
rate «, batch size, and epoch on different dataset
are shown in Table b2.
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We set different hyperparameters by balancing the
performance of different datasets and the size of the
dataset, which though «,7,0 to adjust, in which 7
means we divide the data of 7 batches as Diyqin,,s»
o means that we train stagel o times and then
switch to stage 2. § means that we repeat training §
times when training the corrector in stage2. epoch
means that stagel and stage? together are executed
for a total of epoch times.

We use the AdamW optimizer (Loshchilov and Hut-
ter, 2019) with a linearly decayed learning rate and
use early stopping to avoid overfitting the training
data. All experiments are conducted on NVIDIA
A800 with 80GB memory.

Finally, since selecting different positions in a sen-
tence will yield different information, resulting in
different s;. We additionally explored the impact
of using information from different positions in the
sentence on performance. Results are shown in
Table b3.

In all our experiments, according to some of the
prompts given in Table bl, we will repeat each
pattern three times to obtain the average perfor-
mance of each pattern and record the pattern with
the highest performance in each data set.

B Further results

B.1 Comparison of experimental performance
of different splicing strategies

We replace h(9x) in Eq.(3) to explore the per-
formance when s; uses different token informa-
tion. The experimental results are shown in Ta-
ble b3, where (mask+anchor) is the original set-
ting described in Eq.(3), (only anchor) means
si = F([h([W;])]), and (cls+anchor) is s; =
F([h([W3]); h([cls])]). We found that the combi-
nation of (mask+anchor) will achieve more ideal
performance. This indicates that combining anchor
prompts and mask tokens can provide more infor-
mation and construct better prompts. Taking the
dataset COPA as an example, COPA needs to pre-
dict downstream tasks through autoregression (get
results from multiple mask tokens), so it tends to
provide more information to the corrector, enabling
better automatic selection of anchor tokens. Thus,
it achieves better performance.



Algorithm 1 overall algorithm

Pre-process: We split the dataset D into Dyyqin and Dgeq, and split Dyyqin into Dyipgin,,, for the first stage and Dirain ;o
for the second stage to make the training data belongs to the same field.
I: Diraings = {Bos .-, Br}, Diraing, = {Br+1,- .., }, where B refer to batch and train corrector in each step «, epoch,
and ¢ times.
2:
Initiate: Initialize model parameters M, corrector parameters . and prompt encoder 6. Set up an experience pool H//Only the
parameters of the agent in the corrector are trainable.

3:
4: for _in range(epoch) do
5: for step in range(total step) do
6: stage 1
7: if step (mod «) ! = 0 then
8: fix corrector 0. parameters
9: set M and 6 to trainable
10: Optimize £ in Eq.(2) in Dirain.,,
11: stage 2
12: else
13: set 0, to trainable
14: fix M and 0 parameters
15: for _in range(d) do
16: for Batch: € Diraing,, do
17: collect episode = {action, state, reward} though Eq.(3)(5)(6)
18: Add episode to the experience pool H
19: end for
20: update 6. though Eq .(7)(8) and experience pool H //update corrector parameters
21: clear experience pool H
22: end for
23: end if
24: end for
25: end for
Table bl: Prompt pattens of different datasets.
dataset Prompt pattern 1 Prompt pattern 2
BoolQ p. the Question g ? the Answer: __. ptheq ? the __.
uestion: ¢g true, false or neither?
CB p the g 7 Answer: __. pa 1
answer: the .
WiC p [SEP] g thew ? p [SEP] g the w ? the __.
RTE p [SEP] q ? the __. p [SEP] g ? the answer: __.
MultiRC  p Question: g ? Isita ? the__. p Question: g ? thea ? the__.
WSC s the *p* the__. s the pronoun *p* refer to __.
COPA cl or c2? p so/because __. cl or c2? p so/because the __.

Note: p is the passage, q is the question, ¢I or ¢2 are the choices, s refers to sentence, p in WSC refers to pronoun
which appears in the sentences, and ’_’ refers to the mask token.

Table b2: The setting of hyperparameters

BoolQ | CB WiC RTE MultiRC | WSC | COPA
«@ 100 1 34 15 170 1 5
T 7 2 3 2 11 3 2
batch size 16 16 16 16 16 16 16
é 1 1 1 50 1 10 50
epoch 10 20 10 20 10 20 20
Learning rate 2e-5 2e-5 2e-5 2e-5 2e-5 le-5 2e-5




Table b3: Comparison of experimental performance of different splicing strategies

BoolQ CB WiC | RTE MultiRC WSC | COPA

dataset (Acc.) | (Acc) | (F1) | (Ace)| (Acc) | (EM) | (Fla) | (Acc.) | (Acc)

SINGLE AGENT
aCat-single-agents 74 91.7 | 93.1 | 67.2 71.7 169 | 674 | 63.8 72.3
(mask+anchor)
aCat-single-agents 74 91.1 | 934 | 67.6 71.7 158 | 67.7 | 63.1 68.3
(only anchor)
aCat-single-agents 73.8 91.1 934 | 67.2 70.5 16.2 | 67.5 64.1 70.7
(cls+anchor)

MULTI AGENTS
aCat-multi-agents 74.3 899 | 92.6 | 68.9 71.2 156 | 67.6 | 63.8 72
(mask+anchor)
aCat-multi-agents 73.4 91.1 | 933 | 675 71.2 162 | 67.6 | 62.8 68.3
(only anchor)
aCat-multi-agents 74.3 899 | 91.7 | 675 71.5 155 | 67.6 | 63.8 70.7
(cls+anchor)
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