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Abstract

To achieve non-parametric NMT domain adap-001
tation, k-Nearest-Neighbor Machine Transla-002
tion (kNN-MT) constructs an external datastore003
to store domain-specific translation knowledge,004
which derives a kNN distribution to interpolate005
the prediction distribution of the NMT model006
via a linear interpolation coefficient λ. Despite007
its success, kNN retrieval at each timestep leads008
to substantial time overhead. To address this009
issue, dominant studies resort to kNN-MT with010
adaptive retrieval (kNN-MT-AR), which dy-011
namically estimates λ and skips kNN retrieval012
if λ is less than a fixed threshold. Unfortunately,013
kNN-MT-AR does not yield satisfactory results.014
In this paper, we first conduct a preliminary015
study to reveal two key limitations of kNN-MT-016
AR: 1) the optimization gap leads to inaccurate017
estimation of λ for determining kNN retrieval018
skipping, and 2) using a fixed threshold fails to019
accommodate the dynamic demands for kNN020
retrieval at different timesteps. To mitigate021
these limitations, we then propose kNN-MT022
with dynamic retrieval (kNN-MT-DR) that sig-023
nificantly extends vanilla kNN-MT in two as-024
pects. Firstly, we equip kNN-MT with a MLP-025
based classifier for determining whether to skip026
kNN retrieval at each timestep. Particularly,027
we explore several carefully-designed scalar028
features to fully exert the potential of the clas-029
sifier. Secondly, we propose a timestep-aware030
threshold adjustment method to dynamically031
generate the threshold, which further improves032
the efficiency of our model. Experimental re-033
sults on the widely-used datasets demonstrate034
the effectiveness and generality of our model.1035

1 Introduction036

As an effective paradigm for non-parametric037

domain adaptation, k-Nearest-Neighbor Ma-038

chine Translation (kNN-MT) (Khandelwal et al.,039

2020) derives from k-Nearest-Neighbor Language040

Model (kNN-LM) (Khandelwal et al., 2019) and041

1We will release our code upon the acceptance of our paper.

has garnered much attention recently. Typically, 042

kNN-MT introduces translation knowledge stored 043

in an external datastore to enhance the NMT model, 044

which can conveniently achieve non-parametric do- 045

main adaptation by changing external datastores. 046

In kNN-MT, a datastore containing key-value 047

pairs is first constructed with an off-the-shelf NMT 048

model, where the key is the decoder representa- 049

tion and the value corresponds to its target token. 050

During translation, the current decoder representa- 051

tion is used as a query to retrieve k nearest pairs 052

from the datastore, where retrieved values are con- 053

verted into a probability distribution. Finally, via a 054

linear interpolation coefficient λ, this distribution 055

is used to adjust the prediction distribution of the 056

NMT model. In spite of success, retrieving at each 057

timestep incurs substantial time overhead, which 058

becomes considerable as the datastore expands. 059

To address this drawback, researchers 060

have proposed two categories of approaches: 061

1) datastore compression that improves retrieval 062

efficiency by reducing the size of datastores (Mar- 063

tins et al., 2022a; Meng et al., 2022; Wang et al., 064

2022; Dai et al., 2023; Zhu et al., 2022; Deguchi 065

et al., 2023); 2) retrieval reduction that skips 066

some kNN retrieval to speed up decoding. In this 067

regard, the most representative work is kNN-MT 068

with adaptive retrieval (kNN-MT-AR) (Martins 069

et al., 2022a) that skips kNN retrieval when the 070

coefficient λ is less than a fixed threshold α. 071

However, kNN-MT-AR does not achieve desired 072

results as reported in (Martins et al., 2022a). 073

In this work, we mainly focus on the studies 074

of retrieval reduction, which is compatible with 075

the other type of studies. To this end, we first re- 076

implement kNN-MT-AR (Martins et al., 2022a) 077

and conduct a preliminary study to analyze its limi- 078

tations. Through in-depth analyses, we show that 1) 079

the optimization gap leads to inaccurate estimation 080

of λ for determining kNN retrieval skipping; 2) 081

with the increase in timesteps, the demand for kNN 082
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retrieval diminishes, which proves challenging for083

the fixed threshold α to handle effectively.084

To overcome the above defects, we then signifi-085

cantly extend the vanilla kNN-MT into kNN-MT086

with dynamic retrieval (kNN-MT-DR), which ac-087

celerates the model decoding in two aspects. Con-088

cretely, instead of relying on the interpolation co-089

efficient λ, we introduce a MLP-based classifier090

to explicitly determine whether to skip kNN re-091

trieval as a binary classification task. Particularly,092

instead of using the decoder representation as the093

input of the classifier, we explore several carefully-094

designed scalar features to fully exert the potential095

of the classifier. Besides, we propose a timestep-096

aware threshold adjustment method to dynamically097

generate the threshold, so as to further improve the098

efficiency of our model.099

To summarize, main contributions of our work100

include the following four aspects:101

• Through in-depth analyses, we conclude two102

defects of kNN-MT-AR: the optimization gap103

leads to inaccurate estimation of λ for kNN104

retrieval skipping, and a fixed threshold is un-105

able to effectively handle the varying demands106

of kNN retrieval at different timesteps.107

• We propose to equip kNN-MT with an explicit108

classifier to determine whether to skip kNN109

retrieval, where carefully-designed features110

enable our model to achieve a better balance111

between model acceleration and performance.112

• We propose a timestep-aware threshold adjust-113

ment method to further improve the efficiency114

of our model.115

• Empirical evaluations on the multi-domain116

datasets validate the effectiveness of our117

model, as well as its compatibility with datas-118

tore compression methods.119

2 Related Work120

Datastore Compression. In this aspect, the size121

of the datastore for kNN retrieval is decreased to122

make retrieval efficient. For example, Martins et al.123

(2022a) compress the datastore by greedily merg-124

ing neighboring pairs that share the same values,125

and applying PCA algorithm (Wold et al., 1987)126

to reduce the dimension of stored keys. Mean-127

while, Zhu et al. (2022) prune the datastore based128

on the concept of local correctness, while Wang129

et al. (2022) presents a cluster-based compact net-130

work to condense the dimension of stored keys,131

coupled with a cluster-based pruning strategy to 132

discard redundant pairs. Additionally, some stud- 133

ies opt for dynamically adopting more compact 134

datastores. For instance, for each token in the input 135

sentence, Meng et al. (2022) identify the relevant 136

parallel sentences that contain this token and then 137

collect corresponding word-aligned target tokens 138

to construct a smaller datastore. Subsequently, Dai 139

et al. (2023) conduct sentence-level retrieval and 140

dynamically construct a compact datastore for each 141

input sentence. With the same motivation, Deguchi 142

et al. (2023) suggest retrieving target tokens from 143

a subset of neighbor sentences related to the in- 144

put sentence, where a look-up table based distance 145

computation method is used to expedite retrieval. 146

Retrieval Reduction. In this regard, some kNN 147

retrieval is reduced to decrease time overhead for 148

retrieval. For instance, Martins et al. (2022b) adopt 149

chunk-wise kNN retrieval rather than timestep- 150

wise one, and Martins et al. (2022a) explore two ap- 151

proaches to reduce the frequency of kNN retrieval 152

operations: 1) one introduces a caching mechanism 153

to speed up decoding, where the cache mainly con- 154

tains retrieved pairs from previous timesteps, and 155

skip kNN retrieval if the distance between the query 156

and any cached key is less than a predefined thresh- 157

old; 2) the other proposes to conduct kNN retrieval 158

when the interpolation coefficient λ is less than a 159

predefined threshold α, which, however, does not 160

achieve satisfactory results. 161

Our work mainly focuses on the second type of 162

studies mentioned above. We first conduct a pre- 163

liminary study to in-depth analyze two limitations 164

of the λ-based kNN retrieval skipping. To address 165

these limitations, we introduce a classifier to ex- 166

plicitly determine whether to skip kNN retrieval as 167

a classification task. Notably, almost concurrently 168

with our work, Shi et al. (2023) also use a classi- 169

fier to speed up model decoding, sharing a similar 170

motivation with ours. However, our work not only 171

achieves better results, but also significantly differs 172

from theirs in the following three aspects: 173

First, we explore several carefully-designed 174

scalar features as the input for the classifier, which 175

are crucial for achieving better performance. Sec- 176

ond, when training the classifier, we adopt more 177

reasonable criteria to construct training samples. 178

To be specific, in addition to skipping retrieval 179

when the target token ranks the 1st position in the 180

NMT prediction distribution, we believe that the 181

model should also skip when the target token can 182
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not be obtained through kNN retrieval. Finally,183

based on the observation that the demand for kNN184

retrieval diminishes as timesteps increase, we pro-185

pose a timestep-aware threshold method to further186

improve the efficiency of our model.187

3 Preliminary Study188

3.1 Background189

Typically, given an off-the-shelf NMT model fθ, a190

vanilla kNN-MT model is constructed through the191

following two stages:192

Datastore Construction. At this stage, all paral-193

lel sentence pairs in the training corpus C={(x,y)}194

are first fed into the NMT model fθ in a teacher-195

forcing manner (Williams and Zipser, 1989). At196

each timestep t, the decoder representation ht and197

its corresponding target token yt are collected to198

form a key-value pair, which is then added to the199

key-value datastore D={(ht, yt) | ∀yt∈y, (x,y)},200

where ht=fθ(x,y<t).201

Translating with Retrieved Pairs. During infer-202

ence, the datastore is used to assist the NMT model.203

Specifically, the decoder representation ĥt is used204

as a query to retrieve k pairs Nt={(hi, yi)}ki=1205

from D, which are then converted into a proba-206

bility distribution over the vocabulary, abbreviated207

as kNN distribution:208

pkNN(ŷt|x,y<t) ∝∑
(hi,yi)∈Nt

1(ŷt=yi)exp(
−d(hi, ĥt)

τ
),

(1)209

where 1(∗) is an indicator function, d(hi, ĥt) mea-210

sures the Euclidean distance between the query ĥt211

and the key hi, and τ is a predefined temperature.212

Finally, kNN-MT interpolates pkNN with the pre-213

diction distribution pNMT of the NMT model as a214

final translation distribution:215

p(ŷt|x,y<t) = λpkNN + (1−λ)pNMT, (2)216

where λ denotes a predefined interpolation coeffi-217

cient tuned on the validation set.218

kNN-MT with Adaptive Retrieval Obviously,219

the retrieval of kNN-MT at each timestep incurs220

significant time overhead. To address this limita-221

tion, Martins et al. (2022a) follow (He et al., 2021)222

to explore kNN-MT with adaptive retrieval (kNN-223

MT-AR). Unlike the vanilla kNN-MT, they dynam-224

ically estimate the interpolation coefficient λ using225

α IT Koran Law Medical Subtitles
0.25 0.27 0.14 0.04 0.12 0.50

0.50 0.50 0.54 0.26 0.43 0.60

0.75 0.51 0.59 0.40 0.42 0.60

Table 1: F1 scores of the λ-based kNN retrieval skipping
of kNN-MT-AR (Martins et al., 2022a) on the test sets.

a light MLP network, which takes several neural 226

and count-based features as the input. Then, they 227

not only interpolate the kNN and NMT prediction 228

distributions with λ, but also skip kNN retrieval 229

when λ is less than a fixed threshold α. During 230

training, they minimize the cross-entropy (CE) loss 231

over the interpolated translation distribution. Un- 232

fortunately, extensive results on several commonly- 233

used datasets indicate that kNN-MT-AR does not 234

achieve satisfactory results. 235

3.2 Limitations of kNN-MT-AR. 236

In this subsection, we conduct a preliminary study 237

to explore the limitations of kNN-MT-AR. We 238

strictly follow the settings of (Martins et al., 2022a) 239

to re-implement their kNN-MT-AR, and then con- 240

duct two groups of experiments on the commonly- 241

used multi-domain datasets released by Aharoni 242

and Goldberg (2020). 243

As reported by Martins et al. (2022a), dynam- 244

ically determining whether to skip kNN retrieval 245

based on λ leads to significant performance degra- 246

dation. In the first group of experiments, to further 247

provide evidence of this conclusion, we perform 248

decoding on the test sets in a teacher-forcing man- 249

ner and analyze the F1 scores of λ-based kNN 250

retrieval skipping. As shown in Table 1, F1 scores 251

remain relatively low no matter which thresholds 252

and datasets are used. 253

For the above results, we believe that there are 254

two reasons leading to the inaccurate estimation 255

of λ, which in turn makes λ unsuitable for decid- 256

ing whether to skip kNN retrieval. In addition to 257

lacking the information of kNN distribution for λ 258

estimation2, we believe that the optimization ob- 259

jective of minimizing the CE loss over the trans- 260

lation distribution may be unsuitable to train an 261

accurate λ estimator for determining kNN re- 262

trieval skipping. To verify this claim, we consider 263

whether to skip kNN retrieval as a standard binary 264

classification task and use a binary CE loss to train 265

2Due to the consideration of model efficiency, kNN-MT-
AR do not exploit the kNN retrieval information to estimate
λ, which has been shown to be effective in previous stud-
ies (Zheng et al., 2021; Jiang et al., 2022).
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Figure 1: The changes of BLEU improvements between
adjacent intervals. [0,5] means that kNN-MT only con-
ducts retrieval when timestep ranges from 0 to 5.

a classifier for λ estimation. Note that this classi-266

fier is also based on MLP and contains the same267

input as kNN-MT-AR. To avoid description con-268

fusion, we denote the λ trained by kNN-MT-AR269

and the above binary CE loss as Tran-λ and Bina-270

λ, respectively. Then, we calculate the average271

absolute value of the difference between Bina-λ272

and Tran-λ at all timesteps. The statistical results273

show that the average difference is 0.1495, and274

29.12% of timesteps exhibit a difference exceeding275

0.2. These findings indicate significant differences276

between Bina-λ and Tran-λ.277

In the second group of experiments, we conduct278

experiments with vanilla kNN-MT to explore the279

impact of kNN retrieval during different timestep280

intervals. Specifically, we limit the model to only281

perform kNN retrieval in specific timestep inter-282

vals, where each interval starts from 0 and increases283

by 5 timesteps in length. From Figure 1, we ob-284

serve that with the increase in timesteps, the per-285

formance gain caused by kNN retrieval gradually286

decreases across all datasets. This observation re-287

veals that the demand for kNN retrieval varies288

at different timesteps, which can not be handled289

well by the fixed threshold α in kNN-MT-AR.290

In summary, the above two defects seriously291

limit the practicality of kNN-MT-AR. Therefore,292

it is of great significance to explore more effective293

skipping kNN retrieval methods for kNN-MT.294

4 Our Model295

In this section, we significantly extend kNN-MT296

into kNN-MT-DR in the following two aspects.297

4.1 Classifier for Determining kNN Retrieval298

Skipping299

Unlike kNN-MT-AR leveraging the interpolation300

coefficient λ for determining whether to skip kNN301

retrieval, we directly equip kNN-MT with a bi- 302

nary classifier to determine whether to skip at each 303

timestep. This classifier comprises a two-layer 304

MLP network with ReLU activation. At timestep 305

t, we conduct kNN retrieval only if the prediction 306

probability of the classifier on conducting kNN 307

retrieval exceeds a timestep-aware threshold αt, 308

otherwise we will directly skip kNN retrieval. In 309

the following, we will discuss the classifier, which 310

involves the construction of training samples, input 311

features, and the training objective. 312

Construction of Training Samples To train the 313

classifier, one crucial step is to construct training 314

samples. In this regard, within the exploration 315

of kNN-LM, He et al. (2021) propose to con- 316

struct training examples with two distinct labels, 317

namely, “conducting retrieval” and “skipping re- 318

trieval”, by comparing the prediction probabilities 319

of kNN and NMT distributions on the target token 320

yt: when pkNN(yt) is greater than pNMT(yt), then 321

kNN retrieval should be conducted, otherwise it 322

can be skipped. However, such a criterion still 323

leads to a lot of redundant kNN retrieval. For 324

example, when the target token yt has the high- 325

est probability in the NMT prediction distribu- 326

tion, there is no need to perform kNN retrieval, 327

even if pkNN(yt)≥pNMT(yt). Taking the IT valida- 328

tion set as an example, 69.8% of timesteps satisfy 329

pkNN(yt)≥pNMT(yt), among which 77.9% of the 330

timesteps have yt ranking the 1st position in the 331

NMT prediction distribution. Based on the above 332

analysis, we traverse the parallel sentence pairs 333

in the validation set, and collect various informa- 334

tion at each timestep to construct training samples 335

according to the following criteria: 336

• kNN retrieval should be skipped if one of the 337

two conditions is satisfied: 1) yt ranks the 1st 338

position in the NMT prediction distribution, 339

and 2) yt does not appear in the pairs obtained 340

via kNN retrieval. Obviously, kNN retrieval 341

yields no benefit in both conditions. 342

• kNN retrieval should be conducted if yt is not 343

the top-1 token in the NMT prediction distri- 344

bution and it occurs in the kNN retrieval pairs. 345

In this situation, conducting kNN distribution 346

has the potential to improve translation. 347

Input Features. Unlike kNN-MT-AR, which 348

uses the decoder representation and vectors 349

mapped by other scalar features as the input, we 350

consider several carefully-designed scalar features 351
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as the input for the classifier directly. By doing so,352

we reduce the input dimension, achieving effective353

training and enabling efficient inference. Here, we354

give detailed descriptions to these features:355

• pNMT(ŷt): the probability of the top-1 pre-356

dicted token ŷt in the NMT prediction distri-357

bution. The higher the prediction confidence358

of the NMT model, the more likely the ŷt359

to be the correct one. In this situation, kNN360

retrieval is more likely to be skipped.361

• ∥ĥt∥2: the L2 norm of current decoder repre-362

sentation. Inspired by (Liu et al., 2020), we363

use the vector norm of the decoder representa-364

tion ĥt to measure the translation difficulty at365

current timestep: the larger ∥ĥt∥2, the more366

difficult the translation is.367

• max(attn): the maximal weight of the cross-368

attention in the last layer of the decoder dur-369

ing current decoding timestep. A large weight370

means that the NMT model is relatively cer-371

tain about which source token to be translated.372

In this case, the translation difficulty is often373

relatively low.374

Finally, these features are concatenated and normal-375

ized with batch normalization (Ioffe and Szegedy,376

2015) before being the input for the classifier.377

Classifier Training. To achieve efficient domain378

adaptation for NMT, we fix the parameters of NMT379

model and only update those of classifier during380

training. Following He et al. (2021), we select 90%381

of the validation set to train the classifier, and use382

the remaining 10% for validation. Then, accord-383

ing to the above criterion, we construct training384

samples with different labels at each timestep to385

train our classifier. Considering the significant im-386

balance between two classes of training samples3,387

we adopt Focal Loss (Lin et al., 2017) to train our388

classifier as follows:389

L(pc) = −αc(1− pc)
γlog(pc), (3)390

where c=0/1 denotes the label of skip-391

ping/conducting kNN retrieval, pc is the392

prediction probability of the classifier on the label393

c, αc is a weighting factor controlling the balance394

between different kinds of samples, and γ is a395

hyper-parameter adjusting the impacts of loss396

functions of easy and hard samples (Lin et al.,397

2017).398

3Through data analysis, we find that only 16.8% of training
samples require kNN retrieval in the IT validation set.

4.2 Timestep-aware Threshold Adjustment 399

As analyzed in Section 3.2, the benefit of kNN 400

retrieval diminishes with the increase in timesteps, 401

indicating that using the fixed threshold α is not 402

the most reasonable choice. To deal with this issue, 403

we propose a timestep-aware threshold adjustment 404

method to accommodate the varied demands of 405

kNN retrieval. Formally, we heuristically define a 406

dynamic threshold function specific to the timestep: 407

αt = αmin + clip(
t

T
; 0, 1)2 × (0.5− αmin) (4) 408

where clip(x; a, b) clamp x within the range of 409

[a, b], t is the decoding timestep, αmin is the lower 410

limit of threshold, and T is the average length of 411

sentences in the validation set. Apparently, with 412

the increase of t, αt will gradually increase until it 413

reaches 0.5. 414

5 Experiments 415

5.1 Setup 416

Datasets. We conduct experiments on the multi- 417

domains dataset released by Aharoni and Goldberg 418

(2020). The dataset comprises German-English 419

parallel corpora across five domains: Koran, IT, 420

Medical, Law, and Subtitles, the detailed statistics 421

can be found in Appendix A. We employ Byte Pair 422

Encoding (Sennrich et al., 2016) to split words into 423

subwords. Finally, we use two metrics to evaluate 424

the translation quality: SacreBLEU4 (Post, 2018) 425

and COMET5 (Rei et al., 2020). 426

Model Configuration. We develop our model 427

with kNN-BOX6 (Zhu et al., 2023) and use 428

Faiss (Johnson et al., 2019) to build the datastore 429

and search nearest neighbors. To ensure fair com- 430

parisons, we adopt the same settings as the previous 431

study (Khandelwal et al., 2020). Concretely, we set 432

the number of retrieved pairs to 8, the temperature 433

τ to 100 for Koran and 10 for the other datasets, 434

and λ to 0.7 for IT, Subtitles, 0.8 for the other 435

datasets. We use a two-layer MLP network with 436

ReLU activation (Agarap, 2018) to construct our 437

classifier, of which hidden size is set to 32 because 438

it is not sensitive in our model. Besides, we set the 439

hyper-parameter αmin to 0.45 for Koran, Subtitles, 440

0.4 for the other datasets.7 441

4https://github.com/mjpost/sacrebleu
5https://github.com/unbabel/COMET
6https://github.com/NJUNLP/knn-box
7The details of tuning αmin are reported in Appendix C.
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Model IT Koran Law Medical Subtitles Average
Base NMT 38.35 / 82.74 16.26 / 72.04 45.48 / 85.66 39.99 / 83.13 29.27 / 79.76 33.87 / 80.67
Vanilla kNN-MT 45.83 / 85.19 20.37 / 72.30 61.16 / 87.46 54.22 / 84.73 31.28 / 80.13 42.57 / 81.96

kNN-MT-AR(α=0.25) 43.20 / 84.57 19.57 / 72.27 59.89 / 87.57 53.12 / 84.97 30.46 / 80.04 41.25 / 81.88
kNN-MT-AR(α=0.50) 41.19 / 84.05 17.23 / 72.25 58.83 / 87.50 51.22 / 84.69 29.45 / 79.87 39.58 / 81.67
kNN-MT-AR(α=0.75) 39.05 / 83.30 16.40 / 72.09 51.11 / 86.65 45.14 / 84.08 29.30 / 79.82 36.20 / 81.19
Faster kNN-MT 44.25 / 84.59 18.82 / 72.07 58.97 / 87.36 51.02 / 84.45 30.76 / 80.04 40.76 / 81.70
Ours 45.48 / 84.60 20.34 / 72.40 60.10 / 87.39 51.97 / 84.36 31.24 / 80.14 41.83 / 81.78

Table 2: BLEU / COMET scores of various models on the multi-domain test sets.

Baselines. Our baselines include:442

• Base NMT (Ng et al., 2019). Following Khan-443

delwal et al. (2020), we use the WMT’19444

German-English news translation task winner445

as the base NMT model.446

• Vanilla kNN-MT (Khandelwal et al., 2020).447

It serves as a baseline, upon which we develop448

our model.449

• kNN-MT-AR (Martins et al., 2022a). It per-450

forms retrieval only when the interpolation451

coefficient λ is less than a predefined thresh-452

old α. Note that it is our most important base-453

line. Particularly, we report the performance454

of kNN-MT-AR with α set to 0.25, 0.50, and455

0.75, respectively.456

• Faster kNN-MT (Shi et al., 2023). It is a457

concurrent work with ours, where a two-layer458

MLP network takes decoder representation as459

the input to determine whether to skip kNN460

retrieval at each timestep.461

5.2 Main Results462

To comprehensively evaluate various models, we463

report their translation quality and decoding speed.464

Translation Quality. Table 2 presents BLEU and465

COMET scores of various models on the multi-466

domain test sets. We observe that both kNN-MT-467

AR and Faster kNN-MT suffer from significant468

performance declines compared to Vanilla kNN-469

MT, echoing with the results reported in previous470

studies (Martins et al., 2022a; Shi et al., 2023). In471

contrast, our model exhibits the least performance472

degradation. Specifically, our model achieves aver-473

age BLEU and COMET scores of 41.83 and 81.78474

points, with only 0.74 and 0.18 points lower than475

those of Vanilla kNN-MT, respectively.476

Decoding Speed. Model efficiency is a crucial477

performance indicator for kNN-MT. As imple-478

Model IT Koran Law Medical Subtitles
Batch Size = 128

Base NMT 3270.84 3912.95 3690.85 3152.59 4004.40

Vanilla kNN-MT 2584.31 3287.24 2300.23 2363.00 478.99

kNN-MT-AR 2724.76 3069.38 2241.93 2382.52 886.16

Faster kNN-MT 2912.67 3609.53 2923.79 2676.11 999.57

Ours 2944.38 3522.49 2933.76 2605.12 1002.13

Batch Size = 64
Base NMT 3150.95 3730.90 3607.41 3111.54 3377.17

Vanilla kNN-MT 2506.85 2945.54 2252.18 2329.36 445.88

kNN-MT-AR 2789.59 2678.89 2125.88 2323.60 794.04

Faster kNN-MT 2783.62 3124.68 2726.92 2592.75 898.26

Ours 2798.39 3132.26 2755.02 2575.40 901.33

Batch Size = 32
Base NMT 2559.84 2933.82 2995.43 2688.93 2635.05

Vanilla kNN-MT 2001.80 2360.50 1908.76 1955.65 408.54

kNN-MT-AR 2067.55 1792.74 1925.76 1694.34 676.28

Faster kNN-MT 2131.48 2432.76 2225.68 2047.19 735.26

Ours 2117.94 2392.60 2226.63 2031.51 737.85

Batch Size = 16
Base NMT 1577.03 1878.36 1959.55 1737.23 1686.02

Vanilla kNN-MT 1378.65 1429.78 1318.55 1366.35 340.96

kNN-MT-AR 1369.49 1437.82 1244.21 1323.07 506.17

Faster kNN-MT 1396.32 1451.95 1455.46 1406.26 538.65

Ours 1441.66 1487.54 1472.04 1395.21 546.22

Batch Size = 1
Base NMT 159.24 168.84 173.22 171.12 159.04

Vanilla kNN-MT 136.19 139.02 142.91 138.31 42.75

kNN-MT-AR 127.23 130.35 127.93 128.09 57.98

Faster kNN-MT 139.54 140.85 147.18 140.68 58.46

Ours 139.84 140.18 147.44 139.84 58.62

Table 3: Decoding speed (#Tok/Sec↑) of various models
using different batch sizes on the multi-domain test sets.
Here, we only display the decoding speed of kNN-MT-
AR(α=0.25), since kNN-MT-AR(α=0.5) and kNN-MT-
AR(α=0.75) exhibit significant performance degrada-
tion, as reported in Table 2. All results are evaluated on
an NVIDIA RTX A6000 GPU.

mented in previous studies (Zheng et al., 2021; 479

Deguchi et al., 2023), we try different batch sizes: 480

1, 16, 32, 64 and 128, and then report the model 481

efficiency using “#Tok/Sec”: the number of transla- 482

tion tokens generated by the model per second. 483

Experimental results are listed in Table 3. We 484

have the following interesting findings: First, re- 485

gardless of the batch size used, our model is more 486

efficient than both Vanilla kNN-MT and kNN-MT- 487

AR(α=0.25). Second, as the batch size increases, 488
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Model BLEU
Faster kNN-MT 44.25

Ours 45.48

Our Criteria⇒Conventional Criteria 43.90

Dynamic Threshold⇒Fixed Threshold 44.28

Focal Loss⇒Weighted CE Loss 44.79

w/o pNMT(ŷt) 44.62

w/o ∥ĥt∥2 45.01

w/o max(Attn) 45.12

Table 4: Ablation studies on the IT test set.

the efficiency advantage of our model becomes489

more apparent. On most datasets, we find that the490

acceleration ratios of our model with large batch491

sizes (64 or 128) are significantly higher than those492

with small batch sizes (1 or 16). Finally, with the493

increase of the datastore size, the efficiency ad-494

vantage of our model also becomes more signifi-495

cant. As analysed in Appendix A, the datastore in496

Subtitles contains the maximum number of pairs497

while the datastore in Koran is the smallest. Cor-498

respondingly, our model has the most significant499

acceleration effect on the Subtitles dataset, while500

the acceleration effect on the Koran dataset is the501

least significant.502

Based on the above experimental results, we503

believe that compared with baselines, ours can504

achieve better balance between model performance505

degradation and acceleration.506

5.3 Ablation Studies507

Following previous studies (Zheng et al., 2021;508

Jiang et al., 2022), we compare our model with its509

variants on the IT test set. As shown in Table 4, we510

consider the following variants:511

• Our Criteria⇒Conventional Criteria. As512

mentioned in Section 4.1, we adopt new cri-513

teria to determine whether kNN retrieval in514

training samples can be skipped. To verify the515

effectiveness of our criteria, we compare our516

criteria with the conventional criteria as men-517

tioned in He et al. (2021): the kNN retrieval518

should be conducted if pkNN(yt)≥pNMT(yt),519

otherwise it can be skipped. We first report520

the proportion changes between two labels of521

training samples on the IT dataset. Using the522

conventional criteria, the proportion of train-523

ing samples labeled as skipping retrieval is524

about 30.2%, which is significantly smaller525

than the proportion 83.2% in our criteria. Ob-526

viously, more kNN retrieval can be skipped527

with our criteria. Second, we focus on the 528

change of model performance. From Line 529

2, we observe that the conventional criteria 530

leads to a significant performance degenera- 531

tion, which strongly reveals the effectiveness 532

of our critera. 533

• Dynamic Threshold⇒Fixed Threshold. We 534

replace the proposed dynamic threshold αt 535

mentioned in Section 4.2 with the originally- 536

used fixed threshold α=0.5 in this variant. As 537

shown in Line 3, we observe that removing 538

the dynamic threshold leads to a performance 539

decline, demonstrating the effectiveness of 540

our threshold adjustment method. 541

• Focal Loss⇒Weighted CE Loss. To make a 542

fair comparison, we follow Shi et al. (2023) 543

to adopt a weighted CE loss, which sets γ as 544

0 in Equation 3. Back to Table 4, we find 545

that this variant is inferior to our model in 546

terms of translation quality. However, it still 547

surpasses Faster kNN-MT with a large margin, 548

confirming the significant advantage of our 549

model in translation quality. 550

• w/o Input Features. To verify the benefit 551

of our carefully-designed features, we thor- 552

oughly construct several variants, each of 553

which discards one kind of feature to train 554

the classifier. As shown in Lines 6-8, all vari- 555

ants exhibit performance drops with varying 556

degrees. Thus, we confirm all features are 557

useful for our classifier. 558

5.4 Experiments on Adaptive kNN-MT 559

Adaptive kNN-MT (Zheng et al., 2021) is a widely- 560

used variant of kNN-MT and significantly outper- 561

forms Vanilla kNN-MT in terms of performance. 562

It introduces a meta-k network, a two-layer MLP 563

incorporating distances and counts of all kNN re- 564

trieval pairs, to dynamically estimate λ. Our model 565

can also utilize Adaptive kNN-MT as the base 566

models. When using Adaptive kNN-MT as the 567

base model, we dynamically estimate λ solely for 568

timesteps considered to conduct kNN retrieval. Ad- 569

ditionally, we explore the performance of Adaptive 570

kNN-MT as the base model for kNN-MT-AR. To 571

ensure fairness, we employ the λ of kNN-MT-AR 572

to determine whether to skip kNN retrieval, and 573

interpolate using the λ of Adaptive kNN-MT. 574

We also report the translation quality and decod- 575

ing speed, as shown in the Table 5 and Table 6, 576

respectively. Our model also demonstrate the least 577
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Model IT Koran Law Medical Subtitles Average
Adaptive kNN-MT 47.26 / 85.99 20.15 / 73.22 62.68 / 88.07 56.49 / 85.25 31.49 / 80.25 43.61 / 82.56

+ kNN-MT-AR(α=0.25) 44.34 / 84.92 20.19 / 72.40 61.86 / 87.66 55.46 / 84.76 30.64 / 79.92 42.50 / 81.93
+ kNN-MT-AR(α=0.50) 41.34 / 84.51 17.04 / 72.05 59.71 / 87.37 52.33 / 84.59 29.37 / 79.83 39.96 / 81.67
+ kNN-MT-AR(α=0.75) 39.22 / 83.69 16.48 / 72.06 51.28 / 86.60 45.23 / 84.08 29.30 / 79.81 36.30 / 81.25
+ Faster kNN-MT 45.38 / 85.43 19.04 / 72.98 59.95 / 87.73 53.09 / 84.91 30.63 / 80.06 41.62 / 82.22
+ Ours 46.94 / 85.46 20.05 / 73.26 61.17 / 87.75 54.58 / 84.98 31.35 / 80.38 42.82 / 82.37

Table 5: BLEU / COMET scores of various models based on Adaptive kNN-MT.

Model IT Koran Law Medical Subtitles
Adaptive kNN-MT 2583.92 3320.01 2292.75 2368.51 484.62

+ kNN-MT-AR(α=0.25) 2646.95 3098.34 2191.50 2235.01 873.98

+ Faster kNN-MT 2923.62 3665.24 2901.53 2733.55 952.27

+ Ours 2971.77 3569.44 2883.89 2712.45 1075.36

Table 6: Decoding speed (#Tok/Sec↑) of various models based on Adaptive kNN-MT. Note that we also omit the
results of kNN-MT-AR(α=0.5) and kNN-MT-AR(α=0.75). Here, we set the batch size as 128.

Model IT Koran Law Medical Subtitles Average
PLAC 46.81 / 85.65 20.51 / 73.21 62.89 / 88.01 56.05 / 85.16 31.59 / 80.36 43.57 / 82.48

+ Ours 46.83 / 85.40 20.36 / 73.25 61.66 / 87.82 54.82 / 85.01 31.28 / 80.29 42.99 / 82.35
PCK 47.27 / 86.43 19.93 / 72.96 62.91 / 88.03 56.46 / 85.15 31.69 / 80.53 43.65 / 82.62

+ Ours 46.85 / 85.97 19.99 / 73.24 61.98 / 88.05 55.34 / 85.11 31.20 / 80.44 43.07 / 82.56

Table 7: BLEU / COMET scores of PLAC (Zhu et al., 2022) and PCK (Wang et al., 2022), alongside these integrated
with ours.

Model IT Koran Law Medical Subtitles
PLAC 2684.36 3398.53 2433.44 2383.00 749.49

+Ours 3027.95 3596.20 3025.14 2713.74 1461.30

PCK 2873.40 3535.19 2673.76 2617.73 979.52

+Ours 3072.21 3588.76 3009.64 2720.04 1801.97

Table 8: Decoding speed (#Tok/Sec↑) of PLAC (Zhu
et al., 2022) and PCK (Wang et al., 2022), alongside
these integrated with ours. Here, we set the batch size
as 128.

performance decline and achieve the most efficient578

decoding speed. Although Faster kNN-MT demon-579

strates comparable decoding speeds to ours, our580

model achieves superior performance.581

5.5 Compatibility with Datastore582

Compression Methods583

In this group of experiments, we choose584

PLAC (Zhu et al., 2022) and PCK (Wang et al.,585

2022) as the basic models for our compatibility ex-586

periment, both of which are derived from Adaptive587

kNN-MT. Typically, PLAC prunes the datastore588

by eliminating pairs with high knowledge margin589

values, while PCK introduces a cluster-based com-590

pact network to condense the dimension of stored591

keys and utilizes a cluster-based pruning strategy592

to discard redundant pairs. 593

Tables 7 and 8 report the translation quality and 594

decoding speed, respectively. We can observe that 595

our model can further improve the efficiency of 596

these two models, with slight drops in translation 597

quality. Thus, we confirm that ours is also compati- 598

ble with both PLAC and PCK. 599

6 Conclusion and Future Work 600

In this work, we first in-depth analyze the limita- 601

tions of kNN-MT-AR, and then significantly ex- 602

tend the vanilla kNN-MT to kNN-MT-DR in two 603

aspects. First, we equip the model with a classi- 604

fier to determine whether to skip kNN retrieval, 605

where several carefully-designed scalar features 606

are exploited to exert the potential of the classifier. 607

Second, we propose a timestep-aware threshold 608

adjustment method to further refine kNN retrieval 609

skipping. Extensive experiments and analyses ver- 610

ify the effectiveness of our model. 611

Inspired by (Li et al., 2023), we will further im- 612

prove our model by incorporating more source-side 613

information into our classifier. Besides, we aim to 614

generalize our model to kNN-LM (Khandelwal 615

et al., 2019) and multilingual scenario (Stap and 616

Monz, 2023), so as to validate its generalizability. 617
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Limitations618

As our model integrates an additional classifier,619

there is an associated increase in time consumption.620

Notably, as the size of the datastore decreases, the621

time overhead for kNN retrieval diminishes and622

classifier-related time cost becomes more apparent,623

which results in a less pronounced acceleration in624

decoding. Besides, the experiments of decoding625

speed are evaluated solely on a single computer,626

while the time overhead of kNN retrieval may dif-627

fer across different hardware, yielding varied accel-628

eration results.629
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A Dataset Statistics726

The number of parallel sentence pairs in different727

datasets and the sizes of the constructed datastores728

are shown in Table 9.729

Dataset IT Koran Law Medical Subtitles
Train 223K 18K 467K 248K 14.46M
Valid 2K 2K 2K 2K 2K
Test 2K 2K 2K 2K 2K
Size 3.6M 0.5M 19.1M 6.9M 180.7M

Table 9: The statistics of datasets in different domains.
We also list the size of the datastore, which is the number
of stored pairs.

B Effect of Datastore Size730

As analyzed in Section 5.2, our speed advantage731

becomes more significant with the increase of data-732

store size. To further verify this, we construct data-733

stores of varying sizes by randomly deleting pairs734

from the original datastore, and employ the pruned735

datastores for kNN retrieval. The results of decod-736

ing speed on the Subtitles dataset are reported in737

Table 2. As expected, we observe that our model738

consistently surpasses kNN-MT, regardless of the739

datastore size. Furthermore, the efficiency advan-740

tage of our model over kNN-MT becomes more741

evident with the increase of datastore size. These742

results further confirm that the pronounced speed743

advantage of our model as the datastore expands.744

C Hyper-Parameter Tuning745

The performance and efficiency of our model746

is significantly impacted by the hyper-parameter747

αmin, and we tune αmin among the subset of748

{0.45, 0.40, 0.35} on the validation set.749

We report the BLEU score and #Tok/Sec, as750

shown in Table 10. As αmin decreases, the incre-751

ment in BLEU score gradually diminishes, while752

the drop in decoding speed becomes more pro-753

nounced. So we set the hyper-parameter αmin754

to 0.45 for Koran, Subtitles, and 0.40 for other755

20M 50M 100M 180.7M
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Figure 2: Decoding speed(#Tok/Sec↑) of Vanilla
kNNMT and ours. Here, we set the batch size as 128.

datasets to achieve a balance between performance 756

and efficiency. 757

Note that as the validation set is utilized in train- 758

ing the classifier network, there exists a potential 759

risk of overfitting when tuning αmin, which may 760

result in a suboptimal selection of αmin. 761

Datasets 0.45 0.40 0.35
IT 42.03 / 2978.73 42.30 / 2940.88 42.23 / 2878.88
Koran 19.53 / 3452.23 19.50 / 3415.35 19.58 / 3408.09
Law 58.66 / 3137.26 59.20 / 3097.68 59.31 / 3001.18
Medical 51.45 / 3155.22 51.75 / 3069.02 51.86 / 2989.31
Subtitles 32.05 / 1027.21 32.13 / 898.61 32.09 / 771.34

Table 10: BLEU↑ and #Tok/Sec↑ of our model on the
multi-domain validation sets with different αmin. Here,
we set the batch size as 128.
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