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ABSTRACT

Expanding the linguistic diversity of instruct large language models (LLMs) is
crucial for global accessibility but is often hindered by the reliance on costly spe-
cialized target language labeled data and catastrophic forgetting during adaptation.
We tackle this challenge under a realistic, low-resource constraint: adapting instruct
LLMs using only unlabeled target language data. We introduce Source-Shielded
Updates (SSU), a selective parameter update strategy that proactively preserves
source knowledge. Using a small set of source data and a parameter importance
scoring method, SSU identifies parameters critical to maintaining source abilities.
It then applies a column-wise freezing strategy to protect these parameters before
adaptation. Experiments across five typologically diverse languages and 7B and
13B models demonstrate that SSU successfully mitigates catastrophic forgetting. It
reduces performance degradation on monolingual source tasks to just 3.4% (7B)
and 2.8% (13B) on average, a stark contrast to the 20.3% and 22.3% from full
fine-tuning. SSU also achieves target-language performance highly competitive
with full fine-tuning, outperforming it on all benchmarks for 7B models and the
majority for 13B models.1

1 INTRODUCTION

Large language models (LLMs) demonstrate remarkable generalization capabilities across numerous
applications (OpenAI, 2025; DeepSeek-AI et al., 2025; Yang et al., 2025; Gemma Team et al., 2025).
However, they notoriously underperform in languages absent or underrepresented in their training
data, creating a critical barrier to equitable access for speakers worldwide (Huang et al., 2023).
The standard approach to resolve this issue is to continue pre-training (CPT) or fine-tune on target
language data, i.e., target language adaptation (Cui et al., 2024; Ji et al., 2025).

Yet, adapting instruct models to these languages is uniquely challenging. Such models require
specialized instruction-tuning data (Wei et al., 2022; Rafailov et al., 2023), which is often unavailable
or prohibitively costly to create for underrepresented languages (Huang et al., 2024c). Furthermore,
machine-translated data as a low-cost alternative is not consistently effective (Tao et al., 2024).

Consequently, unlabeled target language text is often the only viable data for adaptation. While this
approach can improve target language proficiency, it often triggers catastrophic forgetting (Kirkpatrick
et al., 2017; Tejaswi et al., 2024; Mundra et al., 2024; Yamaguchi et al., 2025), where new training
erases prior knowledge. This issue is particularly acute for instruct models, as it cripples the general-
purpose functionality of the model, which is primarily derived from core abilities like chat and
instruction-following. In response, previous work has attempted post-hoc mitigation. For example,
Yamaguchi et al. (2025) merge the weights of the original instruct model with the corresponding
adapted model, while Huang et al. (2024c) treat adaptation as a task vector, applying parameter
changes from CPT on the base model to the instruct model. Nonetheless, these methods largely fail
to mitigate catastrophic forgetting, substantially degrading these core functionalities.

The shortcomings of post-hoc methods suggest that mitigation should occur during adaptation. We
therefore turn our focus to the CPT stage. Specifically, we leverage selective parameter updates,

1Our anonymous code is available on https://anonymous.4open.science/r/ssu-iclr-2026/.
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a method of restricting which weights are modified during training. This approach is proven more
effective at mitigating catastrophic forgetting than alternatives like parameter-efficient fine-tuning,
regularization, or model merging (Zhang et al., 2024a; Hui et al., 2025). However, existing selective
parameter tuning paradigms for adapting LLMs are ill-suited for the specific challenge of adapting
instruct models with unlabeled target language text. They either rely on random selection, offering
no principled way to preserve knowledge, or on signals from the new data to guide updates (target-
focused). The latter approaches are particularly vulnerable in this scenario because signals from raw,
target unstructured text are misaligned with the core chat and instruction-following capabilities of
the models. Optimizing for this out-of-distribution format risks corrupting the very foundational
capabilities we aim to preserve.

0 2 7 3 4
5 1 9 8 1
1 3 2 0 6

Importance scoresWeight matrix

<latexit sha1_base64="o+OQWbAs4drXc2f+gSzkRhhynec=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseCF4+V2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNM7uZ+54lrI2L1iNOE+xEdKREKRtFKzebAG5QrbtVdgKwTLycVyNEYlL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGepohE3frY4dUYurDIkYaxtKSQL9fdERiNjplFgOyOKY7PqzcX/vF6K4a2fCZWkyBVbLgpTSTAm87/JUGjOUE4toUwLeythY6opQ5tOyYbgrb68TtpXVa9WrT1cV+rXeRxFOINzuAQPbqAO99CAFjAYwTO8wpsjnRfn3flYthacfOYU/sD5/AHSn414</latexit>

S1

<latexit sha1_base64="y2dyBJHiuBIJp5c7yC7ehEVG+N0=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYNokcSLx4xyCOBDZkdGpgwO7uZmTUhGz7BiweN8eoXefNvHGAPClbSSaWqO91dQSy4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS0eJYthkkYhUJ6AaBZfYNNwI7MQKaRgIbAeTu7nffkKleSQfzTRGP6QjyYecUWOlRqN/3S+W3LK7AFknXkZKkKHeL371BhFLQpSGCap113Nj46dUGc4Ezgq9RGNM2YSOsGuppCFqP12cOiMXVhmQYaRsSUMW6u+JlIZaT8PAdobUjPWqNxf/87qJGd76KZdxYlCy5aJhIoiJyPxvMuAKmRFTSyhT3N5K2JgqyoxNp2BD8FZfXietq7JXLVcfKqVaJYsjD2dwDpfgwQ3U4B7q0AQGI3iGV3hzhPPivDsfy9ack82cwh84nz/Yr418</latexit>

S5
<latexit sha1_base64="11/tX64l9/B4Ew+JC2zfT9Tdijg=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx4r2A9oQ9lsNu3aTTbsToRS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IJXCoOt+O4WNza3tneJuaW//4PCofHzSNirTjLeYkkp3A2q4FAlvoUDJu6nmNA4k7wTj27nfeeLaCJU84CTlfkyHiYgEo2ildp+FCs2gXHGr7gJknXg5qUCO5qD81Q8Vy2KeIJPUmJ7npuhPqUbBJJ+V+pnhKWVjOuQ9SxMac+NPF9fOyIVVQhIpbStBslB/T0xpbMwkDmxnTHFkVr25+J/XyzC68aciSTPkCVsuijJJUJH56yQUmjOUE0so08LeStiIasrQBlSyIXirL6+T9lXVq1fr97VKo5bHUYQzOIdL8OAaGnAHTWgBg0d4hld4c5Tz4rw7H8vWgpPPnMIfOJ8/rbOPLA==</latexit>· · ·

Column scores

1 1 0 0 1
1 1 0 0 1
1 1 0 0 1

! ! " " !

1 0 7 3 3
6 4 9 8 1
0 5 2 0 5

Calibration
Data

SFT Mix
English

Unlabeled
Target

Language
Data

<latexit sha1_base64="ooH3rc7ux7RHHsTMPhl0XlsYI9M=">AAAB7XicbVBNS8NAEN3Ur1q/qh69BIvgqSQi1ZMUvHisYD+gDWWznbRrN7thdyKU0P/gxYMiXv0/3vw3btsctPXBwOO9GWbmhYngBj3v2ymsrW9sbhW3Szu7e/sH5cOjllGpZtBkSijdCakBwSU0kaOATqKBxqGAdji+nfntJ9CGK/mAkwSCmA4ljzijaKVWD0eAtF+ueFVvDneV+DmpkByNfvmrN1AsjUEiE9SYru8lGGRUI2cCpqVeaiChbEyH0LVU0hhMkM2vnbpnVhm4kdK2JLpz9fdERmNjJnFoO2OKI7PszcT/vG6K0XWQcZmkCJItFkWpcFG5s9fdAdfAUEwsoUxze6vLRlRThjagkg3BX355lbQuqn6tWru/rNRv8jiK5IScknPikytSJ3ekQZqEkUfyTF7Jm6OcF+fd+Vi0Fpx85pj8gfP5A6ZVjy8=</latexit>

ω
0 8

5 2
8 0
40

10

15

70

90
20

21

56
12

48 30 180 77 22

! Scoring

Masking"

Continual
Pre-training#

<latexit sha1_base64="m15HD0uGSshLiqicezhcIFW4xKI=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi1WWpG5cV7AOaUCbTSTt0MgnzEErob7hxoYhbf8adf+OkzUJbDwwczrmXe+aEKWdKu+63U9rY3NreKe9W9vYPDo+qxyddlRhJaIckPJH9ECvKmaAdzTSn/VRSHIec9sLpXe73nqhULBGPepbSIMZjwSJGsLaSj/wY6wnBPGvNh9WaW3cXQOvEK0gNCrSH1S9/lBATU6EJx0oNPDfVQYalZoTTecU3iqaYTPGYDiwVOKYqyBaZ5+jCKiMUJdI+odFC/b2R4VipWRzayTyiWvVy8T9vYHR0G2RMpEZTQZaHIsORTlBeABoxSYnmM0swkcxmRWSCJSba1lSxJXirX14n3au616g3Hq5rzVZRRxnO4BwuwYMbaMI9tKEDBFJ4hld4c4zz4rw7H8vRklPsnMIfOJ8/zD2RjQ==</latexit>BMask

Updated weight matrix

Figure 1: Overview of Source-Shielded
Update (SSU). The method comprises
three stages: importance scoring,
column-wise mask generation, and con-
tinual pre-training on unlabeled target
language data with the masks.

We therefore introduce Source-Shielded Updates (SSU), a
novel source-focused approach that proactively shields
source knowledge before adaptation begins (Figure 1).
First, SSU identifies parameters critical to source abilities
using a small set of source data and a parameter importance
scoring method, such as those used in model pruning (e.g.,
Wanda (Sun et al., 2024)). Second, it uses these element-
wise scores to construct a column-wise freezing mask. This
structural design is crucial. Unlike naive element-wise
freezing that corrupts feature transformations, our column-
wise approach preserves them entirely. Finally, this mask
is applied during CPT on unlabeled target language data,
keeping the shielded structural units frozen. This process al-
lows SSU to effectively preserve the general-purpose ability
of the model while improving target language performance.

We verify the effectiveness of our approach through exten-
sive experiments with five typologically diverse languages
and two different model scales (7B and 13B). We evaluate
performance on the source language (English) across mul-
tiple dimensions, including chat and instruction-following,
safety, and general generation and classification abilities,
alongside performance on the target language. We summarize our contributions as follows:

• A novel method for adapting instruct models to a target language without specialized target
instruction-tuning data, addressing a key bottleneck to expand linguistic accessibility.

• At two model scales, SSU consistently outperforms all baselines on all core instruction-
following and safety tasks. It achieves leading target-language proficiency rivaling full
fine-tuning while almost perfectly preserving general source-language performance.

• Extensive analysis validates the efficacy of SSU, confirming the superiority of column-wise
freezing and the importance of source data-driven parameter scoring. Qualitatively, we
observe that SSU avoids the linguistic code-mixing that state-of-the-art methods suffer from,
explaining its superior abilities across source chat and instruction-following tasks.

2 RELATED WORK

Language Adaptation. CPT on target language data is the standard method for adapting LLMs to
target languages (Cui et al., 2024; Fujii et al., 2024; Da Dalt et al., 2024; Cahyawijaya et al., 2024;
Nguyen et al., 2024; Yamaguchi et al., 2024; Nag et al., 2025; Ji et al., 2025, inter alia.). While
effective, CPT often leads to substantial degradation of the original capabilities of a model (Tejaswi
et al., 2024; Mundra et al., 2024; Yamaguchi et al., 2025), a phenomenon known as catastrophic
forgetting. This trade-off presents a major obstacle, especially for instruct models where preserving
core chat and instruction-following abilities is vital for their general-purpose functionality.2

2While some research addresses tokenization overfragmentation, where words are split into inefficiently small
units, via vocabulary adaptation (Tejaswi et al., 2024; Mundra et al., 2024; Yamaguchi et al., 2025, inter alia.),
we focus on catastrophic forgetting during parameter updates with a fixed architecture. We consider vocabulary
adaptation orthogonal to our approach; combining it with SSU offers a promising avenue for future work.

2
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Catastrophic Forgetting. Mitigating catastrophic forgetting is a long-standing challenge in con-
tinual learning. Proposed solutions generally fall into five categories: (1) Regularization-based
methods add a penalty term to the loss function to discourage significant changes to weights deemed
important for previous tasks (Kirkpatrick et al., 2017; Chen et al., 2020; Zhang et al., 2022, inter
alia.). (2) Replay-based methods interleave old and new data (de Masson d'Autume et al., 2019;
Rolnick et al., 2019; Huang et al., 2024b, inter alia.). (3) Model merging methods interpolate
between original and fine-tuned models (Wortsman et al., 2022; Yadav et al., 2023; Yu et al., 2024;
Huang et al., 2024a, inter alia.). (4) Architecture-based methods like LoRA (Hu et al., 2022) add
and train new parameters while freezing the original model (Houlsby et al., 2019; Hu et al., 2022;
Zhang et al., 2023, inter alia.). (5) Selective parameter updates restrict which existing weights are
modified during training (Zhang et al., 2024a; Hui et al., 2025). Our work belongs to this category.3

Studies on multilingual CPT for LLMs similarly employ these strategies. Examples include mixing
source (English) data (Category 2) (Zheng et al., 2024; Elhady et al., 2025), model merging (Category
3) (Alexandrov et al., 2024; Blevins et al., 2024), and concurrent work on architecture-based solutions
(Category 4) (Owodunni & Kumar, 2025). Optimization strategies, such as controlling learning
rates (Winata et al., 2023), are also utilized. These methods are largely orthogonal to our work. SSU,
in contrast, focuses on selective parameter updates (Category 5), distinguished by a proactive,
source-driven approach which we detail next.

Selective Parameter Updates. While often utilized for training efficiency (Liu et al., 2021; Lodha
et al., 2023; Li et al., 2023a; Pan et al., 2024; Yang et al., 2024; Li et al., 2024; Ma et al., 2024; Li
et al., 2025; He et al., 2025), selective parameter updates have also proven effective for mitigating
catastrophic forgetting (Zhang et al., 2024a; Hui et al., 2025). These methods can be broadly
categorized as dynamic or static. Dynamic approaches select a trainable parameter set that can
change during training, based on random selection (Li et al., 2024; Pan et al., 2024) or target data
signals like gradient magnitudes (Liu et al., 2021; Li et al., 2023a; Ma et al., 2024; Li et al., 2025).
In contrast, static methods define a fixed trainable parameter set before training or during warm-up.
This allows for straightforward integration with existing pipelines, enabling the combination of
orthogonal mitigation methods like regularization and replay more easily. For example, a method
closest to our work (Hui et al., 2025) randomly freezes half of the components within each transformer
sub-layer (i.e., self-attention, feed-forward, and layernorm), while others are data-driven based on
target data (Lodha et al., 2023; Zhang et al., 2024a; Panda et al., 2024; He et al., 2025).

SSU: A Source-Focused Selective Parameter Update Approach. SSU is a static selective pa-
rameter update approach (Category 5) that introduces a new, source-focused paradigm for language
adaptation. Unlike existing selective parameter update methods that rely on random choice or target
data signals, SSU uses a small sample of source data (e.g., 500 samples) to identify and freeze param-
eters critical to the source knowledge within the model before adaptation. This also distinguishes it
from previous importance-based methods in other categories. For instance, regularization methods
(Category 1) are reactive, applying a penalty to weight changes (Jung et al., 2020). In contrast, SSU is
proactive, using a static structural mask to prevent updates before adaptation. Similarly, SSU is not an
architecture-based PEFT method (Category 4), which uses importance to insert new parameters (Yao
et al., 2024). SSU instead operates on full, existing parameters to select and freeze structural columns.

3 SSU: SELECTIVE PARAMETER UPDATES VIA IMPORTANCE FREEZING

We address the challenge of adapting an instruct model using only raw, unlabeled target language
data. Unlike prior work that focuses on post-hoc mitigation (Huang et al., 2024c; Yamaguchi et al.,
2025), we introduce Source-Shielded Updates (SSU), a method that targets the CPT process itself.
The goal is to mitigate catastrophic forgetting during CPT, thereby maintaining the general-purpose
functionality of an instruct model. Concurrently, SSU aims to achieve performance gains in the target
language tasks comparable to those from full fine-tuning. Formally, given an instruct modelM,
calibration data Dcalib, unlabeled target language data Dtarget, and a parameter freezing ratio k, SSU
adaptsM on Dtarget in three stages (Figure 1).

3SSU also relates to foundational continual learning methods that protect critical parameters, such as
HAT (Serra et al., 2018), CAT (Ke et al., 2020), and SPG (Konishi et al., 2023). See Appendix E for discussions.

3
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3.1 SOURCE-DRIVEN PARAMETER IMPORTANCE SCORING

The first stage of SSU scores parameter importance to identify weights critical to source model
capabilities. We posit that a source-data-driven score is suitable, as it directly aligns with the goal
of preserving source knowledge. For this purpose, we adopt the importance score from Wanda (Sun
et al., 2024), a popular pruning method.4 Using a small sample of source dataDcalib, Wanda computes
an importance score sij for each weight θij as the product of its magnitude and the L2-norm of its
corresponding input activations Xj : sij = |θij | · ||Xj ||2. This identifies weights that are both large
and consistently active. Scores are computed for all parameters inM except for the embeddings and
language modeling head, as all these are updated during training following Hui et al. (2025).

3.2 COLUMN-WISE MASKING

In the second stage, SSU converts element-wise importance scores into a structured freezing mask. A
structured approach is crucial because naive, element-wise freezing disrupts feature transformations
and causes catastrophic forgetting (Table 3). To avoid this, SSU operates at the column level. For
instance, in a forward pass Y = WX , freezing an entire column of the weight matrix W leaves
the corresponding output dimension of Y unchanged, ensuring a complete feature pathway. The
approach is analogous to protecting the core structural columns of a building during renovation; the
foundational support remains untouched while peripheral elements are modified.

Mask generation begins by aggregating scores for each column. For a weight matrix θ ∈ Rdout×din ,
a column corresponds to all parameters associated with a single input feature. The total importance
score Sj for each column j is the sum of its individual importance scores: Sj =

∑
i sij . Sj

robustly measures the contribution of each input feature, identifying the core structural columns to be
preserved. For 1D parameters, such as biases, each element is treated as its own column; thus, its
per-weight score si serves as its aggregated score Si.

The binary mask B for each weight matrix is generated by ranking columns by their Sj and then
selecting the top k% to freeze (50% by default following Hui et al. (2025)). The corresponding
columns in the mask B are set to 0 (freeze), while all others are set to 1 (update).

3.3 CONTINUAL PRE-TRAINING

In the third stage, the modelM is continually pre-trained on unlabeled data Dtarget using a standard
causal language modeling objective, denoted as the loss L. During the backward pass, the static mask
B is applied to the gradients, zeroing out updates for frozen columns. The gradient update rule for
a weight θij is thus θij ← θij − η · bij · ∇θijL. Here, η is the learning rate, and bij ∈ {0, 1} is the
value from the mask B corresponding to the weight θij . This method preserves knowledge stored in
the most critical input-feature pathways, thus mitigating catastrophic forgetting.

4 EXPERIMENTAL SETUP

4.1 SOURCE MODELS
Table 1: Source (English) and target lan-
guages. Code is based on ISO 639-1, and
the language-specific ratio in Common Crawl
(CC Ratio) as of CC-MAIN-2025-21.

Language Code Script Family CC Ratio

English en Latin Indo-European 43.7876

Nepali ne Devanagari Indo-European .0521
Kyrgyz ky Cyrillic Turkic .0103

Amharic am Ge’ez Afro-Asiatic .0032
Hausa ha Latin Afro-Asiatic .0032
Igbo ig Latin Niger-Congo .0007

Following Hui et al. (2025) who used 7B and 13B
models from the same family (i.e., Llama 2), we use
the 7B and 13B OLMo 2 Instruct models (Walsh et al.,
2025) for our experiments. The OLMo 2 models of-
fer strong instruction-following capabilities and fully
documented training data, allowing full control and
transparency in our language adaptation experiments.

4.2 TARGET LANGUAGES

We experiment with five typologically diverse languages (Table 1) that are significantly underrepre-
sented in the training data of the source models but with wide availability of datasets with consistent

4While we use Wanda for its simplicity and popularity, the SSU framework is agnostic to the importance
metric. To demonstrate this, we also evaluate two alternative source-driven scoring methods (§6).

4
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task formulations (though data variations preclude direct performance comparisons between lan-
guages). These languages appear at least 840x less frequently than English in Common Crawl (CC),5
which accounts for over 95% of the OLMo 2 pre-training corpus (Walsh et al., 2025).

4.3 CALIBRATION AND TRAINING DATA

We use tulu-3-sft-olmo-2-mixture (Lambert et al., 2025), the original instruction-tuning data for
OLMo 2, for calibration (i.e., choosing which parameters to freeze). We randomly select 500 samples
with a sequence length of 2,048. For CPT, we use a clean subset of MADLAD-400 (Kudugunta et al.,
2023), sampling 200M tokens per language as recommended by Tejaswi et al. (2024).6

4.4 BASELINES

We compare our approach against baselines from three categories: performance benchmarks, a
reference approach from a related paradigm, and state-of-the-art methods.

Source: Off-the-shelf OLMo 2, reporting performance without any adaptation.

FFT: Full fine-tuning that updates all the parameters of the model via CPT on target language data,
quantifying the extent to which a model suffers from catastrophic forgetting without any intervention.

AdaLoRA (Zhang et al., 2023): An architecture-based method to mitigate catastrophic forgetting.
This achieves the best overall performance among LoRA-like methods in Hui et al. (2025).

HFT: A state-of-the-art static selective parameter update method (Hui et al., 2025). It updates
50% of parameters using a fine-grained, per-layer strategy by randomly freezing two out of the
four self-attention matrices (WQ,WK ,WV ,WO); and two out of three feed-forward matrices
(Wup,Wdown,Wgate) in a random half of the layers and one matrix in the remaining half. Since SSU
is also a static method, HFT serves as a key baseline.

GMT: A state-of-the-art dynamic selective parameter update approach (Li et al., 2025) that drops
gradients of a pre-defined ratio (50% in this study for fair comparison with HFT and SSU) with
smaller absolute values on the target data.

To validate our use of source calibration data for scoring, we also introduce two calibration data-free
ablation variants: (1) SSU-Rand that freezes an equal number of randomly-selected columns. This
provides no principled way to preserve functionally important knowledge. (2) SSU-Mag that freezes
columns based only on the magnitude score (i.e., |θij |; unlike |θij | · ||Xj ||2 for SSU-Wanda), isolating
the effect of the activation term.

4.5 EVALUATION BENCHMARKS AND METRICS

We report performance in the source and target languages across standard benchmarks.

Chat and Instruction-following: (1) IFEval (Zhou et al., 2023), reporting zero-shot accuracy (strict
prompt); (2) AlpacaEval 2.0 (Li et al., 2023b; Dubois et al., 2024, AE2), reporting the zero-shot,
length-controlled win-rate against GPT-4 (1106-preview) (OpenAI et al., 2024), with judgments from
GPT-4.1 nano (2025-04-14); (3) MT-Bench (Zheng et al., 2023, MTB), using the mean Likert-5 score
over two turns, judged by Flow-Judge-v0.1 per the Hugging Face LightEval protocol (Fourrier
et al., 2023); and (4) GSM8K for multi-turn, few-shot mathematical reasoning (Cobbe et al., 2021),
reporting the five-shot exact match score.

Safety: We use the Tülu 3 safety evaluation suite (Lambert et al., 2025, T3) and report the macro
average score in a zero-shot setting, following Lambert et al. (2025) and Walsh et al. (2025).7

Source Language (English): We evaluate target-to-English machine translation (MT) on FLORES-
200 (NLLB Team et al., 2022), reporting three-shot chrF++ (Popović, 2017) on 500 samples, fol-
lowing previous work (Ahia et al., 2023; Yamaguchi et al., 2025). For summarization (SUM) on

5CC Ratio is based on https://commoncrawl.github.io/cc-crawl-statistics/plots/languages.
6During CPT, we remove the chat template to support unlabeled data lacking role annotations (e.g., user).
7As instruct models typically undergo extensive safety alignment (Gemma Team et al., 2025; Lambert et al.,

2025, inter alia.), verifying that this is not compromised during adaptation is a crucial aspect of our analysis.
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Table 2: Aggregated average performance across all languages per task. Green denotes scores
better than Source with subscripts showing relative changes. Bold and underlined indicate best and
second-best methods for each model scale. Tables 10, 11, 12, and 13 include a full suite of results.

Chat and Instruction-following (en) Safety Source language (en) Target language

Approach IFEval AE2 MTB GSM8K T3 (en) MT SUM MRC MMLU MT SUM MRC MMLU

7B

Source .675
+0.0

32.6
+0.0

3.98
+0.0

.796
+0.0

.851
+0.0

30.0
+0.0

22.8
+0.0

.880
+0.0

.618
+0.0

20.1
+0.0

20.2
+0.0

.334
+0.0

.304
+0.0

FFT .456
-32.4

10.4
-68.1

3.48
-12.5

.608
-23.6

.797
-6.4

42.8
+42.6

20.8
-8.7

.842
-4.3

.580
-6.2

30.7
+52.8

22.7
+12.4

.393
+17.7

.325
+6.8

AdaLoRA .669
-0.8

24.6
-24.5

3.92
-1.5

.721
-9.4

.824
-3.2

34.1
+13.6

22.4
-1.6

.866
-1.6

.602
-2.6

19.9
-1.0

21.9
+8.4

.318
-4.8

.299
-1.8

HFT .621
-8.0

17.6
-45.9

3.83
-3.7

.677
-15.0

.826
-3.0

45.2
+50.6

22.3
-2.1

.854
-3.0

.595
-3.7

29.8
+48.3

22.6
+11.9

.377
+12.9

.322
+5.8

GMT .528
-21.7

12.5
-61.6

3.67
-7.7

.635
-20.2

.795
-6.6

45.5
+51.6

21.6
-5.1

.841
-4.4

.582
-5.8

30.9
+53.8

22.9
+13.4

.385
+15.3

.319
+4.8

SSU-Rand .608
-9.9

18.0
-44.7

3.81
-4.2

.683
-14.2

.835
-1.9

45.5
+51.6

22.4
-1.6

.861
-2.2

.597
-3.4

30.2
+50.3

22.7
+12.4

.394
+18.0

.324
+6.4

SSU-Mag .570
-15.5

14.9
-54.2

3.78
-5.0

.655
-17.7

.822
-3.4

44.7
+48.9

22.0
-3.4

.859
-2.4

.593
-4.1

29.7
+47.8

22.7
+12.4

.383
+14.7

.319
+4.8

SSU-Wanda .669
-0.8

27.0
-17.1

3.96
-0.5

.752
-5.5

.850
-0.1

45.7
+52.3

22.8
+0.1

.869
-1.3

.606
-2.0

31.0
+54.3

22.8
+12.9

.403
+20.7

.333
+9.4

13
B

Source .763
+0.0

37.2
+0.0

4.06
+0.0

.853
+0.0

.821
+0.0

33.3
+0.0

24.5
+0.0

.897
+0.0

.665
+0.0

22.4
+0.0

20.7
+0.0

.374
+0.0

.329
+0.0

FFT .448
-41.3

14.5
-61.1

3.52
-13.3

.740
-13.3

.737
-10.2

40.1
+20.3

15.7
-35.8

.892
-0.5

.647
-2.7

33.6
+50.1

22.9
+10.4

.492
+31.6

.361
+9.8

AdaLoRA .719
-5.8

32.1
-13.8

4.05
-0.2

.815
-4.5

.799
-2.7

36.6
+9.8

24.4
-0.2

.898
+0.1

.660
-0.8

23.0
+2.7

22.3
+7.5

.365
-2.4

.311
-5.4

HFT .631
-17.3

25.8
-30.7

3.92
-3.4

.776
-9.0

.785
-4.4

44.1
+32.2

20.7
-15.3

.894
-0.3

.658
-1.1

33.7
+50.5

22.8
+9.9

.476
+27.3

.355
+8.0

GMT .497
-34.9

19.3
-48.2

3.64
-10.3

.754
-11.6

.755
-8.0

37.5
+12.5

16.5
-32.5

.896
-0.1

.654
-1.7

33.5
+49.6

22.8
+9.9

.473
+26.5

.353
+7.4

SSU-Rand .630
-17.5

24.7
-33.7

3.89
-4.1

.781
-8.5

.783
-4.6

43.9
+31.6

21.7
-11.3

.898
+0.1

.656
-1.4

33.6
+50.1

23.0
+10.9

.478
+27.8

.356
+8.3

SSU-Mag .572
-25.1

20.6
-44.7

3.80
-6.4

.763
-10.6

.776
-5.5

40.2
+20.6

20.2
-17.4

.892
-0.5

.657
-1.2

32.8
+46.5

22.6
+8.9

.467
+24.9

.350
+6.5

SSU-Wanda .730
-4.4

33.4
-10.3

4.05
-0.2

.822
-3.7

.805
-2.0

48.2
+44.5

24.2
-1.0

.897
+0.0

.661
-0.6

34.1
+52.3

23.2
+11.8

.486
+29.9

.359
+9.2

XL-SUM (Hasan et al., 2021), we use zero-shot chrF++ on 500 samples. For machine reading compre-
hension (MRC) on Belebele (Bandarkar et al., 2024) and general reasoning on MMLU (Hendrycks
et al., 2021), we report three-shot and five-shot accuracy, respectively, on their full test sets.

Target Language: We evaluate English-to-target MT, SUM, and MRC on the same target-language
subsets of respective datasets and settings. For reasoning, we use Global MMLU (Singh et al., 2025)
and report five-shot accuracy on its full test set.

We report average scores over three runs for generative tasks (IFEval, AE2, MTB, GSM8K, MT,
SUM) and use a single deterministic run with temperature zero for classification tasks. We use
language-specific prompt templates for MT, SUM, MRC, and MMLU, listed in Table 7 in the
Appendix. The rest use the default prompt templates.

5 RESULTS

Table 2 shows performance across the four task groups: chat and instruction-following, safety, source
language, and target language for all methods.

Chat and Instruction-following. Our SSU-Wanda achieves the best performance on all chat and
instruction-following benchmarks, exhibiting the smallest average relative performance drops from
Source of just 5.9% and 4.7% for the 7B and 13B models, respectively. This result is particularly
important as these tasks directly measure core instruct model capabilities, such as multi-step reasoning
and following complex constraints. The performance of SSU-Wanda demonstrates its efficacy in
retaining source knowledge and abilities. The architecture-based method, AdaLoRA, performs second
best with average degradations of 9.0% (7B) and 6.1% (13B). This aligns with previous findings that
LoRA-style adaptations tend to forget less. However, as we discuss later, they also learn less from
target data (Biderman et al., 2024; Hui et al., 2025).

In contrast, other methods exhibit more substantial performance drops. The state-of-the-art selective
parameter update baselines lag considerably behind SSU-Wanda. For instance, the performance of
HFT drops by 18.0% (7B) and 15.1% (13B), while the target-data-driven GMT degrades by 27.7%
(7B) and 26.3% (13B). Notably, the static HFT method preserves source capabilities more effectively
than the dynamic GMT method, supporting our main hypothesis that optimizing on signals from
unstructured target data risks corrupting the foundational abilities of an instruct model (§1). The risk
of standard adaptation is starkly illustrated by the overall performance of full fine-tuning (FFT). FFT
suffers a drastic average performance loss of 34.1% (7B) and 32.3% (13B).
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Finally, the low performance of baseline SSU variants (SSU-Rand and SSU-Mag) highlights the
importance of the source-data-driven scoring. While both freezing random columns (SSU-Rand) and
columns selected by magnitude alone (SSU-Mag) outperform FFT, they substantially underperform
SSU-Wanda. SSU-Rand performance is 18.2% (7B) and 16.0% (13B) lower than Source, while SSU-
Mag causes even greater drops of 23.0% (7B) and 21.7% (13B). The substantial underperformance
of these calibration data-free approaches underscores the critical need for a source-data-informed
importance scoring method for preserving the core capabilities of an instruct model in the source
language. As we demonstrate in §6, this principle is not limited to Wanda; other source-data-driven
scoring methods are also highly effective, confirming the versatility of the SSU framework.

Safety. SSU-Wanda also best preserves the safety alignment of the source, with small performance
drops of only 0.1% (7B) and 2.0% (13B) compared to Source. In contrast, FFT and the target-data-
driven GMT cause large drops, with safety scores dropping by up to 10.2%. While other selective
methods partially preserve source performance, they still lag behind SSU-Wanda.

Source Language. SSU-Wanda not only preserves source language capabilities but also enhances
them in the cross-lingual translation task. For the 7B model, SSU-Wanda is the top performer across
all source benchmarks. For the 13B model, it ranks top in MT and MMLU and is a close second in
SUM and MRC. Notably, its performance on MT (target-to-English) improves substantially by up to
52.3% relative to Source. For monolingual tasks (SUM, MRC, and MMLU), performance is almost
perfectly maintained, with relative drops never exceeding 2.0% (7B) and 1.0% (13B). AdaLoRA
is the second-best performer overall, also showing strong preservation across monolingual tasks.
However, its gains in the MT task are substantially smaller, the worst among all approaches. This
suggests that while LoRA-based methods effectively prevent forgetting, the structural isolation of
their updates may be less adept at integrating new linguistic knowledge for complex cross-lingual
tasks. The remaining adaptation methods generally exhibit greater performance degradation than
SSU-Wanda, consistent with instruction-following and safety results.

Target Language. Finally, SSU-Wanda demonstrates exceptional performance on target language
tasks, securing the best results across all benchmarks for both model scales in the majority of cases.
Crucially, its performance is highly competitive with FFT, even surpassing it on all benchmarks
for 7B models and on half for 13B models. The performance difference between SSU and FFT is
consistently minimal, confirming that SSU-Wanda achieves the target-language gains of a full update
with drastically smaller catastrophic forgetting. This aligns with observations from optimization
theory, arguing that freezing parameters acts as a regularization term that stabilizes training and
enables a sparse fine-tuned model to match or exceed the performance of its dense counterpart (Fu
et al., 2023; Zhang et al., 2024b; Hui et al., 2025). All the other selective parameter update methods
also yield solid improvements, though typically smaller than those of SSU-Wanda. In contrast,
AdaLoRA shows the smallest improvement and often fails to surpass the source model. This confirms
that LoRA-based methods have a smaller inductive bias from the target data (Biderman et al., 2024;
Hui et al., 2025). This highlights the unique effectiveness of SSU-Wanda, which successfully masters
tasks in the target language while preserving its original knowledge and abilities in the source.

Overall, SSU-Wanda demonstrates the benefits of full fine-tuning without the associated catastrophic
forgetting, consistently outperforming all other evaluated methods.

6 ANALYSIS

This section evaluates the robustness of the SSU framework by isolating the impact of core design
choices and hyperparameters. Due to resource constraints, we use the 7B model with our primary
method, SSU-Wanda. We select Igbo as the target language, as it is the most underrepresented
language among our target languages (Table 1).

Parameter Freezing Ratio. While we use a default 50% freezing ratio for fair comparison with
baselines following Hui et al. (2025), this hyperparameter can impact performance. We therefore
evaluate freezing ratios from 0% (defaulting to FFT) to 87.5% in 12.5% increments. As shown in
Figure 2, performance on source language capabilities, such as chat and safety, generally improves
as the freezing ratio increases. In contrast, performance on target language tasks often shows an

7
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Chat and Instruction-following Safety Source language Target language

MMLU

SSU-Wanda HFT GMT

Figure 2: Model performance (SSU-Wanda, HFT, GMT) on Igbo as target language across freezing
ratios. The dashed red line indicates Source performance (omitted for MT and SUM due to very low
scores). Some data points for HFT and GMT are also omitted due to extremely low performance.

Table 3: Performance of different freezing strategies in SSU-Wanda and Igbo as the target language.
Bold and underlined indicate the best and second-best methods, respectively.

Chat and Instruction-following Safety Source language Target language (Igbo)

Approach IFEval AE2 MTB GSM8K T3 MT SUM MRC MMLU MT SUM MRC MMLU

Source .675 32.6 3.98 .796 .851 28.5 22.8 .880 .618 23.0 23.3 .301 .323

Column-wise (Default) .670 25.0 3.92 .756 .851 46.3 23.3 .870 .603 37.1 26.3 .401 .371
Row-wise .548 11.3 3.74 .675 .846 46.0 21.8 .862 .598 36.9 26.5 .407 .358
Element-wise .457 7.7 3.35 .657 .829 46.4 21.1 .851 .587 38.3 26.5 .399 .370

opposite trend, degrading as more parameters are frozen, with a particularly sharp drop in MMLU
after reaching a 37.5% ratio. Target-to-English MT is a notable exception. Although the models
generate English text, performance declines as the freezing ratio increases, particularly after 37.5%.
This trend contradicts other source tasks. This occurs because MT requires knowledge of both source
and target languages.

Our results show a trade-off between source knowledge retention and target language acquisition.
Therefore, we recommend practitioners tailor the freezing ratio based on their specific goals: General
purpose: A default 50% ratio offers a robust and balanced performance. Source-capability priority:
A higher ratio (e.g., ∼ 60% or higher) is optimal, as performance on tasks like IFEval, MRC, and
MMLU plateaus around this point. Target-language priority: A lower ratio (e.g., ∼ 40% or lower)
is preferable, given the performance drops observed in MT and MMLU beyond this threshold.

Impact of Freezing Ratio on Baselines. We extend this analysis to state-of-the-art selective
parameter update baselines (Figure 2). The closest baseline, the static method HFT, follows a
trend similar to SSU but fails to surpass the performance of SSU across tasks and freezing ratios.
In contrast, the dynamic method GMT exhibits a different trend. While it often achieves strong
target language and MT performance at ratios above 60%, it consistently yields low performance on
monolingual source tasks regardless of the freezing ratio. We attribute this to the dynamic nature
of GMT, which allows updates to any parameter over time, leading to cumulative corruption from
unstructured target data optimization (§1 and §5). Ultimately, this confirms SSU as the optimal
method for simultaneously achieving strong source preservation and high target language gains.

Alternative Freezing Methods. SSU employs column-wise freezing to preserve the entire pro-
cessing pathway of critical source features (§3.2). To validate this design choice, we compare its
effectiveness against row-wise and element-wise freezing. As shown in Table 3, the results demon-
strate a clear advantage for our column-wise approach. Column-wise freezing consistently achieves
the best performance on chat, safety, and source language tasks.8 On target language tasks, it remains
highly competitive, with only a 1.2 point drop on MT compared to element-wise freezing. These
results validate the guiding hypothesis for the design of SSU: preserving entire feature pathways is a
critical strategy to safeguard source knowledge while enabling effective target-language adaptation.

8While row-wise freezing preserves all connections from a single input neuron, it fails to protect any single,
complete output feature. This explains its weaker performance across chat, safety, and source language tasks.
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Table 4: Performance of different SSU importance scoring methods using Igbo as the target. Bold and
underlined denote best and second-best adaptation approaches with relative changes in subscripts.

Chat and Instruction-following Safety Source language Target language (Igbo)

Approach IFEval AE2 MTB GSM8K T3 MT SUM MRC MMLU MT SUM MRC MMLU

Source .675
+0.0

32.6
+0.0

3.98
+0.0

.796
+0.0

.851
+0.0

28.5
+0.0

22.8
+0.0

.880
+0.0

.618
+0.0

23.0
+0.0

23.3
+0.0

.301
+0.0

.323
+0.0

SSU-Rand .564
-16.4

12.5
-61.6

3.75
-5.7

.680
-14.6

.838
-1.6

45.9
+61.3

22.4
-1.6

.856
-2.7

.597
-3.4

37.3
+62.5

26.4
+13.4

.401
+33.2

.355
+10.0

SSU-Mag .497
-26.3

8.9
-72.7

3.59
-9.8

.638
-19.9

.828
-2.7

45.1
+58.5

21.7
-4.7

.852
-3.2

.592
-4.2

36.6
+59.5

26.2
+12.5

.379
+25.9

.348
+7.8

SSU-Wanda (Default) .670
-0.7

25.0
-23.2

3.92
-1.5

.756
-5.0

.851
-0.0

46.3
+62.7

23.3
+2.3

.870
-1.1

.603
-2.4

37.1
+61.7

26.3
+12.9

.401
+33.2

.371
+14.9

SSU-SparseGPT .678
+0.5

24.5
-24.8

3.89
-2.2

.751
-5.7

.843
-1.0

46.2
+62.3

23.1
+1.4

.876
-0.5

.604
-2.3

37.2
+62.1

26.5
+13.8

.400
+32.8

.372
+15.2

SSU-FIM .669
-0.8

26.3
-19.2

3.94
-1.0

.747
-6.2

.847
-0.5

46.4
+63.0

23.2
+1.9

.874
-0.7

.609
-1.5

37.1
+61.7

26.5
+13.8

.399
+32.5

.371
+14.9

Table 5: Performance of SSU-Wanda with different calibration data sources and sizes, using Igbo as
the target language.

Chat and Instruction-following Safety Source language Target language (Igbo)

Approach IFEval AE2 MTB GSM8K T3 MT SUM MRC MMLU MT SUM MRC MMLU

Source .675 32.6 3.98 .796 .851 28.5 22.8 .880 .618 23.0 23.3 .301 .323

Default (500 examples) .670 25.0 3.92 .756 .851 46.3 23.3 .870 .603 37.1 26.3 .401 .371
Alpaca (500 examples) .673 24.0 3.97 .750 .849 46.7 23.1 .874 .604 37.1 26.2 .394 .379

Default (128 examples) .682 24.3 3.89 .754 .852 46.4 23.2 .873 .600 37.2 26.3 .410 .371

Alternative Importance Scoring Methods. SSU is compatible with alternative importance scoring
methods beyond Wanda. To demonstrate this, we evaluate two different source-data-driven methods:
SparseGPT (Frantar & Alistarh, 2023) and the diagonal of the Fisher Information Matrix (Kirkpatrick
et al., 2017, FIM); see Appendix B for details. In monolingual source tasks, SSU-SparseGPT and
SSU-FIM show comparable average performance drops (4.3% and 3.5%, respectively) to SSU-Wanda
(4.0%), as detailed in Table 4. This contrasts sharply with the larger drops of data-free variants
like SSU-Rand (13.5%) and SSU-Mag (17.9%). These findings demonstrate the versatility of SSU,
offering strong performance across various source-data-driven scoring methods.

Calibration Data for Parameter Importance Scoring. SSU-Wanda requires source calibration
data to identify critical model weights since it relies on Wanda for parameter importance scoring.
While we use the original instruction-tuning data for OLMo 2 in our main experiments, this is often
unavailable for other frontier models. We therefore investigate the efficacy of using an alternative,
publicly available dataset. Specifically, we use Alpaca (Taori et al., 2023) as the calibration dataset
and follow the exact same preprocessing and training procedures as the original data. Table 5 shows
that performance with Alpaca is highly comparable to that with the original data, with a maximum
difference of only 1.0, demonstrating the robustness of SSU-Wanda to the choice of calibration data.

Calibration Data Size for Parameter Importance Scoring. SSU uses 500 source calibration
examples by default to compute parameter importance scores (§4.3). To assess sensitivity to this
hyperparameter, we compare the default (500 examples,∼1M tokens) with a smaller 128-example set
(∼0.26M tokens), a size common in model pruning literature (Williams & Aletras, 2024). The results
in Table 5 show minimal changes across tasks; the maximum performance difference observed is only
1.2 points on IFEval. This confirms the robustness of SSU to calibration data size, demonstrating that
a small sample set suffices for effective importance scoring.

Comparison to Additional Baselines. We also compare SSU-Wanda to other selective parameter
update methods: LoTA (Panda et al., 2024) and S2FT (Yang et al., 2024), using their default
configurations. We evaluate LoTA at its default 90% sparsity and at 50% sparsity to match the
freezing ratio of SSU. For S2FT, we test its default down projection-focused adaptation. As shown in
Table 6, LoTA at 90% sparsity exhibits inferior source preservation compared to SSU-Wanda (e.g.,
7.6% vs. 4.0% average drop on monolingual source tasks) and lower target gains (23.9% vs. 30.7%).
While LoTA at 50% sparsity achieves substantial target gains (31.7%), it suffers severe catastrophic
forgetting on monolingual source tasks (19.9% drop). S2FT effectively preserves source capabilities
(3.3% drop) but yields minimal target gains (2.3%). These results underscore that only SSU-Wanda
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Table 6: Performance of additional adaptation baselines: LoTA and S2FT using Igbo as the target.
Bold and underlined denote best and second-best adaptation approaches with relative changes in
subscripts. More results are in Appendix D.

Chat and Instruction-following Safety Source language Target language (Igbo)

Approach IFEval AE2 MTB GSM8K T3 MT SUM MRC MMLU MT SUM MRC MMLU

Source .675
+0.0

32.6
+0.0

3.98
+0.0

.796
+0.0

.851
+0.0

28.5
+0.0

22.8
+0.0

.880
+0.0

.618
+0.0

23.0
+0.0

23.3
+0.0

.301
+0.0

.323
+0.0

SSU-Wanda .670
-0.7

25.0
-23.2

3.92
-1.5

.756
-5.0

.851
-0.0

46.3
+62.7

23.3
+2.3

.870
-1.1

.603
-2.4

37.1
+61.7

26.3
+12.9

.401
+33.2

.371
+14.9

LoTA (90% Sparsity) .638
-5.4

20.4
-37.4

3.98
+0.0

.706
-11.3

.827
-2.8

45.2
+58.8

22.7
-0.3

.864
-1.8

.606
-2.0

34.4
+49.9

26.2
+12.5

.366
+21.5

.360
+11.5

LoTA (50% Sparsity) .449
-33.4

8.3
-74.5

3.45
-13.3

.636
-20.1

.824
-3.2

45.8
+60.9

21.5
-5.6

.844
-4.1

.590
-4.6

37.8
+64.7

26.4
+13.4

.402
+33.5

.372
+15.2

S2FT (Down) .695
+3.0

27.9
-14.3

3.99
+0.3

.732
-8.0

.834
-2.0

36.7
+29.0

22.6
-0.7

.857
-2.6

.603
-2.4

21.7
-5.4

26.0
+11.6

.303
+0.6

.331
+2.5

achieves both strong source preservation and high target language gains comparable to FFT. This
trend holds across different hyperparameter settings (see Appendix D).

Qualitative Analysis. SSU-Wanda surpasses other state-of-the-art selective parameter update
baselines across all chat and instruction-following benchmarks (Table 2). This performance gap
arises partly because baseline methods are prone to code-mixing (i.e., the unintentional blending
of multiple languages in responses) or generating responses entirely in the target language, despite
English instructions. A typical example of this behavior for models trained on Igbo is as below:

Instruction in EN: How do I take care of a wooden table?
HFT Response: To take care nke a wood table, clean ya na
a soft duster ma o. bu. microfiber towel iji wepu. dust na grime.
N’ihe banyere stains, mix otu teaspoon nke mild detergent na
mmiri na-a teaspoon n’ime mmiri... (continued.)
SSU Response: To take care, clean your wooden table regularly
with mild soap and water. Use a soft cloth for polishing, apply-
ing wood polish or beeswax to maintain its natural finish. Avoid
placing hot items directly on the surface to prevent scratches.
Keep it away from direct sunlight and excessive moisture.

Analyzing the language ratio in generated re-
sponses on AE2 shows that SSU produces code-
mixed text in only 1.0% of its responses on average
for the 7B models. In contrast, HFT and GMT gen-
erate code-mixed text in 6.4% and 16.9%, respec-
tively.9 This substantial reduction in the occurrence
of code-mixing reflects the more robust retention
of the source language abilities and superior chat
and instruction-following performance of SSU.

Theoretical Analysis. SSU addresses the stability-plasticity dilemma in neural systems (Grossberg,
1982), balancing plasticity for new knowledge with stability for prior knowledge. SSU mitigates
catastrophic forgetting by identifying and freezing a source-critical subnetwork, extending the Lottery
Ticket Hypothesis (Frankle & Carbin, 2019) to transfer learning. Using an importance score to shield
crucial parameters, SSU proactively preserves source capabilities by enforcing a hard constraint
that confines updates to a subspace that avoids interfering with the source language knowledge.
This approach aligns with findings on spurious forgetting (Zheng et al., 2025), which suggest that
performance drops can stem from task misalignment caused by nearly orthogonal weight updates.
Furthermore, SSU employs structured, column-wise masking, motivated by the need to preserve
entire learned features. Unlike unstructured pruning which can degrade learned representations,
pruning entire columns of a weight matrix corresponds to removing specific neurons or feature
detectors (Voita et al., 2019). This structural preservation ensures that the core feature space of the
source model remains intact, enabling effective adaptation to the target language.

7 CONCLUSION

We introduced Source-Shielded Updates (SSU) for language adaptation of instruct models using
only unlabeled target language data. SSU is a framework that proactively identifies critical source
knowledge using an importance scoring method and a small set of source calibration data. It then
shields this knowledge via a column-wise freezing strategy before adaptation, effectively preventing
catastrophic forgetting in the source language. Extensive experiments across five languages and two
model scales show that SSU best preserves crucial source capabilities, such as instruction-following
and safety, over strong baselines while achieving target language proficiency matching or surpassing
full fine-tuning. This work provides an effective and scalable pathway to expand the linguistic reach
of instruct models without costly, specialized data, opening avenues for robust model adaptation.

9We use GlotLID (Kargaran et al., 2023, Commit 28d4264) to compute the language ratio of each response.
If the normalized confidence for English is less than 0.9, it is regarded as code-mixed.
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E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper files/paper/
2019/file/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Paper.pdf.

Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic
forgetting with hard attention to the task. In Jennifer Dy and Andreas Krause (eds.), Proceedings
of the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 4548–4557. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.
press/v80/serra18a.html.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In Proceedings of the Third International Conference on Learning Representations,
pp. 1–14, 2015. URL https://arxiv.org/abs/1409.1556.

Shivalika Singh, Angelika Romanou, Clémentine Fourrier, David Ifeoluwa Adelani, Jian Gang Ngui,
Daniel Vila-Suero, Peerat Limkonchotiwat, Kelly Marchisio, Wei Qi Leong, Yosephine Susanto,
Raymond Ng, Shayne Longpre, Sebastian Ruder, Wei-Yin Ko, Antoine Bosselut, Alice Oh, Andre
Martins, Leshem Choshen, Daphne Ippolito, and others. Global MMLU: Understanding and
addressing cultural and linguistic biases in multilingual evaluation. In Wanxiang Che, Joyce
Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.

17

https://arxiv.org/abs/2207.04672
https://cdn.openai.com/pdf/8124a3ce-ab78-4f06-96eb-49ea29ffb52f/gpt5-system-card-aug7.pdf
https://cdn.openai.com/pdf/8124a3ce-ab78-4f06-96eb-49ea29ffb52f/gpt5-system-card-aug7.pdf
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2509.11414
https://proceedings.neurips.cc/paper_files/paper/2024/file/687163285b8affc8ee933bdca8e75747-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/687163285b8affc8ee933bdca8e75747-Paper-Conference.pdf
https://arxiv.org/abs/2406.16797
https://aclanthology.org/W17-4770/
https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Paper.pdf
https://proceedings.mlr.press/v80/serra18a.html
https://proceedings.mlr.press/v80/serra18a.html
https://arxiv.org/abs/1409.1556


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

18761–18799, Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN
979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.919. URL https://aclanthology.org/
2025.acl-long.919/.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. In Proceedings of the Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=PxoFut3dWW.

Mingxu Tao, Chen Zhang, Quzhe Huang, Tianyao Ma, Songfang Huang, Dongyan Zhao, and
Yansong Feng. Unlocking the potential of model merging for low-resource languages. In Yaser Al-
Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings of the Association for Computational
Linguistics: EMNLP 2024, pp. 8705–8720, Miami, Florida, USA, November 2024. Association
for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.508. URL https://
aclanthology.org/2024.findings-emnlp.508/.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford Alpaca: An instruction-following LLaMA model.
https://github.com/tatsu-lab/stanford alpaca, 2023.

Atula Tejaswi, Nilesh Gupta, and Eunsol Choi. Exploring design choices for building language-
specific LLMs. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings of the
Association for Computational Linguistics: EMNLP 2024, pp. 10485–10500, Miami, Florida,
USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
findings-emnlp.614. URL https://aclanthology.org/2024.findings-emnlp.614/.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head self-
attention: Specialized heads do the heavy lifting, the rest can be pruned. In Anna Korhonen, David
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A EVALUATION DETAILS

Table 7 shows language-specific prompt templates for each task.

B IMPLEMENTATION DETAILS

B.1 GENERAL SETUP

Hyperparameters. Tables 8 and 9 list the hyperparameters in CPT and evaluation, respectively.

Software. We use HF datasets (Lhoest et al., 2021, v3.6.0) for preprocessing, HF transformers (Wolf
et al., 2020, v4.52.4), HF peft (Mangrulkar et al., 2022, v0.15.2), FlashAttention-2 (Dao, 2024, v2.7.4)
and PyTorch (Ansel et al., 2024, v2.6.0) for training. We use lm-evaluation-harness (Gao et al., 2023,
v0.4.8) for IFEval and GSM8K evaluation, alpaca-eval (Li et al., 2023b, v0.6.6) for AE2 evaluation,
Ai2 Safety Tool for T3 evaluation,10 and HF LightEval (Fourrier et al., 2023, Commit 327071f) for
the rest.

Hardware. We mainly use a single AMD MI300X GPU with ROCm 6.4.1 for experiments.
Additionally, we use either a single NVIDIA H100 80GB, A100 80GB, or A100 40GB GPU with
CUDA 12.9 for evaluation.

B.2 ALTERNATIVE SCORING METHOD IMPLEMENTATIONS

SSU-SparseGPT. This method employs a metric from Frantar & Alistarh (2023) that approximates
second-order information. The score for any weight θij in an input column j is the average squared
activation of the corresponding input neuron: sij = Ex∈Dcalibx

2
j .

SSU-FIM. This method uses the diagonal of the Fisher Information Matrix, which measures output
sensitivity to parameter changes (Kirkpatrick et al., 2017). We approximate the Fisher score for
a parameter θij as the average squared gradient of the negative log-likelihood loss L over Dcalib:
sij = E(x,y)∈Dcalib(

∂L
∂θij

)2.

C SUPPLEMENTARY RESULTS

Tables 10, 11, 12, and 13 show performances on English chat and instruction-following benchmarks,
English safety alignment benchmark, general English benchmarks, and general target language
benchmarks, respectively. Results for IFEval, AE2, MTB, GSM9K, MT, and SUM are averaged
across three different runs. The rest are single-run results as they are evaluated in a deterministic-
manner.

10Following Lambert et al. (2025), we use their forked version: https://github.com/nouhadziri/
safety-eval-fork (Commit 2920bb8).
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Table 7: Language-specific prompt templates. We generate the templates for each target language
using a machine translation API, following Yong et al. (2023).

Task Language Template

X-En MT

English Translate {X: a target language} to English: {sentence} =
Nepali नेपालीलाई अङ्गे्रजीमा अनुवाद गनुर्होस्: {sentence} =
Kyrgyz Кыргызчадан англисчеге которуу: {sentence} =
Amharic አማርኛን ወደ እንግሊዝኛ ተርጉም: {sentence} =
Hausa Fassara Hausa zuwa Turanci: {sentence} =
Igbo Sụgharịa Igbo gaa na Bekee: {sentence} =

En-X MT

English Translate English to X: {sentence} =
Nepali अङ्गे्रजीलाई नेपालीमा अनुवाद गनुर्होस्: {sentence} =
Kyrgyz Англисчеден кыргызчага которуу: {sentence} =
Amharic እንግሊዝኛን ወደ አማርኛ ተርጉም: {sentence} =
Hausa Fassara Turanci zuwa Hausa: {sentence} =
Igbo Sụgharịa Bekee gaa n'Igbo: {sentence} =

SUM

English Summarize the following text in English: {text} Summary:
Nepali तलको पाठलाई नेपालीमा संके्षपमा लेख्नुहोस्: {text} सारांश:
Kyrgyz Төмөнкү текстти кыргызча кыскача жазыңыз: {text} Кыскача:
Amharic የታችኛው ጽሁፍን በአማርኛ አጭር በማድረግ አሳትረኝ።: {text} አጭር መግለጫ:
Hausa Taƙaita rubutu mai zuwa cikin Hausa: {text} Taƙaitawa:
Igbo Chịkọta edemede a n'Igbo: {text} Nchịkọta:

MRC

English {context} Question: {question} A. {option A} B. {option B} C. {option C}
D. {option D} Answer:

Nepali {context} प्रश्न: {question} A. {option A} B. {option B} C. {option C} D.
{option D} उत्तर:

Kyrgyz {context} Cуроо: {question} A. {option A} B. {option B} C. {option C}
D. {option D} Жооп:

Amharic {context} ጥያቄ: {question} A. {option A} B. {option B} C. {option C} D.
{option D} መልስ:

Hausa {context} Tambaya: {question} A. {option A} B. {option B} C. {option
C} D. {option D} Amsa:

Igbo {context} Ajụjụ: {question} A. {option A} B. {option B} C. {option C} D.
{option D} Azịza:

MMLU

English The following are multiple choice questions (with answers) about {subject}.
{context} Question: {question} A. {option A} B. {option B} C. {option C}
D. {option D} Answer:

Nepali तल {subject} सम्बन्धी बहु-िवकल्प प्रश्नहरू (उत्तर सिहत) िदइएका छन्। {context} प्रश्न:
{question} A. {option A} B. {option B} C. {option C} D. {option D} उत्तर:

Kyrgyz Бул {subject} боюнча бир нече тандоо суроолору (жоопторменен)
төмөндө келтирилген. {context} Cуроо: {question} A. {option A} B.
{option B} C. {option C} D. {option D} Жооп:

Amharic ከታች ስለ {subject} የቀረቡ ባለብዙ ምርጫ ጥያቄዎች (ከመልሶች ጋር) ናቸው። {con-
text} ጥያቄ: {question} A. {option A} B. {option B} C. {option C} D.
{option D} መልስ:

Hausa Waɗannan tambayoyi masu zaɓi da yawa (tare da amsoshi) game da
{subject} ne. {context} Tambaya: {question} A. {option A} B. {option
B} C. {option C} D. {option D} Amsa:

Igbo Nke a bụ ajụjụ ọnụ nhọrọ ọtụtụ (na azịza) gbasara {subject}. {context}
Ajụjụ: {question} A. {option A} B. {option B} C. {option C} D. {option
D} Azịza:
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Table 8: Hyperparameters for continual pre-training. Values for GMT and AdaLoRA were selected
based on our setup, as they were not provided in their respective original papers (Li et al., 2025; Hui
et al., 2025).

Hyperparameters Values

Batch size 32
Number of training steps 12,208
Optimizer adamw apex fused
Adam ϵ 1e-8
Adam β1 0.9
Adam β2 0.999
Sequence length 512
Learning rate 5e-5
Learning rate scheduler cosine
Warmup steps First 5% of steps
Weight decay 0.01
Attention dropout 0.0
Training precision BF16

HFT, GMT, SSU
Target freezing ratio 0.5

GMT
Accumulation interval 4

AdaLoRA
Target r 8
LoRA α 32
LoRA dropout 0.05
Tinit 1,000
Tfinal 8,546
δt 20
LoRA β1 0.85
LoRA β2 0.85
Coefficient of orthogonal regularization 0.5

LoTA
Mask calibration steps 100

S2FT
dratio (Down) 0.015 (equivalent to LoRA r = 8)
oratio (Output) 0.015 (equivalent to LoRA r = 8)

Table 9: Parameters for generation tasks. N/A for GSM8K indicates that a model generates text until
it detects default stop symbols or reaches its maximum sequence length.

Parameters Values

Temperature 0.8
Repetition penalty 1.1
Top k 40
Top p 0.9 (MT, SUM, MTBench)

0.8 (AE2, IFEval, GSM8K)
Sampling True
Max. generated tokens 128 (MT, SUM)

512 (AE2)
1,024 (MTBench)

1,280 (IFEval)
N/A (GSM8K)

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 10: Performance on chat and instruction-following tasks in English. The best and second-best
adaptation approaches for each model scale are indicated in bold and underlined, respectively.

IFEval AE2 MTB GSM8K

Approach ne ky am ha ig ne ky am ha ig ne ky am ha ig ne ky am ha ig

7B

Source .675 .675 .675 .675 .675 32.6 32.6 32.6 32.6 32.6 3.98 3.98 3.98 3.98 3.98 .796 .796 .796 .796 .796

FFT .520 .480 .495 .417 .369 14.3 12.6 12.1 7.8 5.2 3.80 3.50 3.60 3.40 3.12 .623 .619 .593 .602 .604
AdaLoRA .668 .679 .681 .646 .669 27.2 25.7 25.7 24.6 20.0 3.98 3.96 3.89 3.92 3.87 .736 .742 .737 .704 .685
HFT .636 .652 .636 .604 .578 22.6 18.3 21.0 15.1 11.1 3.95 3.82 3.85 3.77 3.73 .699 .689 .692 .646 .659
GMT .596 .571 .577 .405 .492 17.7 14.2 16.1 7.3 7.3 3.92 3.74 3.79 3.44 3.49 .671 .607 .645 .606 .648

SSU-Rand .619 .624 .634 .599 .564 24.0 19.1 19.8 14.8 12.5 3.86 3.81 3.87 3.79 3.75 .701 .678 .693 .660 .680
SSU-Mag .595 .617 .591 .548 .497 19.2 16.8 18.3 11.5 8.9 3.87 3.86 3.81 3.79 3.59 .682 .665 .660 .629 .638

SSU-Wanda .655 .664 .661 .688 .670 28.1 28.7 28.5 24.6 25.0 4.02 4.02 3.96 3.91 3.92 .746 .759 .749 .741 .756

13
B

Source .763 .763 .763 .763 .763 37.2 37.2 37.2 37.2 37.2 4.06 4.06 4.06 4.06 4.06 .853 .853 .853 .853 .853

FFT .549 .468 .506 .405 .314 23.6 14.7 18.6 11.9 3.7 3.91 3.66 3.69 3.43 2.93 .768 .730 .732 .733 .737
AdaLoRA .720 .733 .737 .728 .675 34.6 34.1 33.2 30.0 28.7 4.10 4.08 4.09 4.03 3.94 .812 .814 .812 .821 .815
HFT .693 .680 .676 .578 .528 31.2 29.1 27.4 23.4 17.9 4.08 4.04 3.99 3.84 3.69 .802 .793 .762 .760 .765
GMT .628 .527 .543 .404 .381 28.1 20.1 19.8 16.2 12.3 3.91 3.89 3.54 3.55 3.34 .787 .759 .688 .763 .771

SSU-Rand .672 .703 .677 .558 .539 30.2 28.2 26.8 21.9 16.2 3.97 3.97 3.98 3.85 3.66 .787 .795 .777 .766 .780
SSU-Mag .651 .648 .636 .489 .434 28.3 24.8 23.5 16.8 9.7 4.00 3.93 3.98 3.76 3.35 .782 .768 .755 .756 .751

SSU-Wanda .718 .723 .733 .739 .739 34.7 33.7 32.2 33.8 32.8 4.04 4.11 4.01 4.10 4.01 .831 .827 .814 .808 .830

Table 11: Performance on Tülu 3 safety evaluation suite (T3). The best and second-best adaptation
approaches for each model scale are indicated in bold and underlined, respectively.

T3 (↑)
Approach ne ky am ha ig

7B

Source .851 .851 .851 .851 .851

FFT .770 .791 .800 .807 .816
AdaLoRA .842 .829 .836 .806 .805
HFT .812 .816 .839 .833 .828
GMT .777 .791 .811 .782 .812

SSU-Rand .824 .838 .841 .832 .838
SSU-Mag .811 .813 .831 .829 .828

SSU-Wanda .842 .846 .855 .856 .851

13
B

Source .821 .821 .821 .821 .821

FFT .745 .710 .792 .657 .782
AdaLoRA .816 .805 .815 .759 .799
HFT .790 .743 .817 .764 .812
GMT .756 .735 .751 .736 .798

SSU-Rand .798 .756 .792 .768 .799
SSU-Mag .774 .742 .804 .747 .811

SSU-Wanda .809 .789 .819 .797 .813
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Table 12: Performance on source language (English) tasks. Scores that are better than Source are
highlighted in green . The best and second-best adaptation approaches for each model scale are
indicated in bold and underlined, respectively.

MT SUM MRC MMLU

Approach ne ky am ha ig ne ky am ha ig ne ky am ha ig ne ky am ha ig

7B

Source 45.4 28.8 19.5 27.9 28.5 22.8 22.8 22.8 22.8 22.8 .880 .880 .880 .880 .880 .618 .618 .618 .618 .618

FFT 49.5 44.2 28.0 48.6 43.6 21.8 20.6 20.1 21.1 20.5 .842 .829 .852 .843 .841 .574 .582 .586 .578 .579
AdaLoRA 47.6 33.1 14.1 39.8 36.2 22.4 22.9 22.6 22.1 22.1 .874 .878 .871 .860 .847 .608 .614 .611 .585 .593
HFT 52.5 43.7 35.8 48.4 45.4 22.6 22.7 22.0 22.1 22.3 .858 .863 .857 .846 .847 .596 .597 .604 .586 .594
GMT 50.3 43.7 37.8 49.1 46.7 22.4 22.2 21.6 20.5 21.5 .850 .818 .856 .829 .853 .579 .578 .599 .565 .591

SSU-Rand 51.6 44.1 36.4 49.4 45.9 22.7 22.8 22.1 22.2 22.4 .858 .864 .872 .856 .856 .600 .599 .605 .584 .597
SSU-Mag 51.4 43.4 35.8 47.9 45.1 22.5 22.0 21.9 22.1 21.7 .863 .864 .867 .849 .852 .592 .595 .607 .581 .592

SSU-Wanda 52.3 43.9 36.4 49.7 46.3 22.7 23.1 22.2 22.9 23.3 .871 .868 .874 .863 .870 .606 .608 .609 .605 .603

13
B

Source 50.7 30.5 22.7 31.0 31.9 24.5 24.5 24.5 24.5 24.5 .897 .897 .897 .897 .897 .665 .665 .665 .665 .665

FFT 49.7 39.2 39.2 43.5 28.8 21.5 8.6 19.0 14.4 14.8 .890 .891 .901 .891 .889 .650 .643 .657 .650 .637
AdaLoRA 52.1 33.1 19.8 40.6 37.2 24.1 25.6 24.4 24.7 23.4 .906 .901 .898 .894 .892 .662 .663 .662 .660 .651
HFT 55.1 38.6 41.6 50.1 35.1 24.5 20.5 22.7 16.8 18.8 .897 .896 .893 .899 .888 .659 .652 .665 .657 .655
GMT 48.7 37.1 23.2 45.2 33.4 23.4 12.9 15.9 14.1 16.4 .892 .893 .900 .896 .897 .653 .658 .660 .654 .643

SSU-Rand 54.4 39.7 36.3 49.7 39.6 24.9 23.6 22.9 16.6 20.4 .897 .903 .900 .897 .891 .658 .654 .663 .653 .653
SSU-Mag 53.4 37.4 32.5 45.9 31.5 24.4 20.6 20.7 16.8 18.6 .893 .896 .896 .894 .883 .659 .656 .662 .659 .647

SSU-Wanda 55.7 45.1 43.8 51.4 45.1 24.4 25.3 24.0 23.8 23.8 .898 .901 .893 .898 .897 .662 .660 .664 .659 .659

Table 13: Performance on target language tasks. Scores that are better than Source are highlighted in
green . The best and second-best adaptation approaches for each model scale are indicated in bold

and underlined, respectively.

MT SUM MRC MMLU

Approach ne ky am ha ig ne ky am ha ig ne ky am ha ig ne ky am ha ig

7B

Source 27.0 21.1 5.1 24.4 23.0 22.4 22.9 8.6 23.7 23.3 .382 .379 .276 .332 .301 .301 .301 .276 .321 .323

FFT 32.5 33.8 12.1 38.6 36.7 22.1 23.7 9.3 32.2 26.4 .360 .441 .309 .460 .396 .293 .312 .288 .372 .360
AdaLoRA 28.1 22.3 4.0 22.9 22.3 21.7 23.1 6.5 31.6 26.6 .351 .343 .276 .328 .291 .309 .311 .272 .278 .324
HFT 32.7 32.4 9.6 37.5 36.9 22.4 23.8 8.6 32.1 26.3 .368 .411 .282 .438 .388 .293 .314 .287 .346 .373
GMT 32.3 33.5 11.6 39.0 38.3 22.3 23.8 9.9 32.4 26.2 .346 .419 .312 .451 .398 .279 .308 .296 .353 .361

SSU-Rand 33.2 32.6 9.5 38.4 37.3 22.4 23.8 8.8 32.2 26.4 .388 .428 .299 .457 .401 .305 .311 .288 .362 .355
SSU-Mag 33.1 32.2 9.7 37.1 36.6 22.2 23.7 9.2 32.3 26.2 .372 .418 .297 .451 .379 .303 .307 .291 .346 .348

SSU-Wanda 34.0 32.2 9.0 42.6 37.1 22.4 24.2 8.9 32.2 26.3 .401 .458 .316 .439 .401 .313 .329 .296 .355 .371

13
B

Source 32.4 22.5 6.0 25.3 25.7 22.9 23.2 10.0 25.3 22.4 .501 .393 .318 .348 .310 .345 .322 .293 .333 .351

FFT 37.5 36.9 16.5 40.2 37.1 21.8 23.7 10.6 32.7 25.4 .500 .564 .381 .579 .438 .342 .335 .315 .417 .397
AdaLoRA 33.7 24.0 5.7 26.3 25.4 22.2 22.9 9.4 31.6 25.4 .448 .391 .293 .371 .322 .340 .307 .277 .324 .307
HFT 37.6 36.3 14.4 41.6 38.4 21.9 23.4 10.4 32.4 26.1 .498 .538 .376 .538 .429 .348 .356 .312 .384 .375
GMT 37.3 36.6 16.5 40.2 36.8 22.0 23.4 9.8 32.7 26.0 .501 .559 .355 .530 .420 .348 .356 .318 .404 .338

SSU-Rand 37.5 36.1 14.5 41.8 37.9 22.3 23.4 10.4 32.9 26.1 .492 .556 .364 .540 .440 .352 .361 .313 .383 .369
SSU-Mag 37.2 36.1 14.5 39.7 36.5 22.0 23.0 9.7 32.1 26.0 .474 .533 .361 .546 .419 .345 .357 .311 .394 .342

SSU-Wanda 37.9 35.7 13.7 44.0 39.1 22.8 23.8 11.0 32.3 25.9 .520 .549 .377 .542 .441 .354 .355 .302 .390 .395
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Table 14: Performance of additional baselines: LoTA and S2FT with SSU-Wanda. We use Igbo as
the target language. Bold and underlined denote best and second-best adaptation approaches with
relative changes in subscripts. ⋆ indicates that the approach is a default baseline used in §6.

Chat and Instruction-following Safety Source language Target language (Igbo)

Approach IFEval AE2 MTB GSM8K T3 MT SUM MRC MMLU MT SUM MRC MMLU

Source .675+0.0 32.6+0.0 3.98+0.0 .796+0.0 .851+0.0 28.5+0.0 22.8+0.0 .880+0.0 .618+0.0 23.0+0.0 23.3+0.0 .301+0.0 .323+0.0

SSU-Wanda .670-0.7 25.0-23.2 3.92-1.5 .756 -5.0 .851 -0.0 46.3+62.7 23.3+2.3 .870 -1.1 .603-2.4 37.1+61.7 26.3+12.9 .401+33.2 .371+14.9

LoTA (12.5%) .367-45.6 5.4-83.4 3.10-22.1 .590-25.9 .811-4.7 42.1+47.9 20.4-10.4 .857-2.6 .587-5.0 37.1+61.7 26.3+12.9 .402+33.5 .374+15.8
LoTA (25.0%) .366-45.8 5.0-84.6 3.09-22.3 .590-25.9 .812-4.6 42.2+48.3 20.4-10.4 .857-2.6 .587-5.0 37.1+61.7 26.4+13.4 .402+33.5 .374+15.8
LoTA (37.5%) .367-45.6 4.9-85.0 3.02-24.1 .590-25.9 .811-4.7 42.5+49.3 20.4-10.4 .857-2.6 .587-5.0 37.2+62.1 26.5+13.8 .402+33.5 .374+15.8
LoTA (50.0%) .449-33.4 8.3-74.5 3.45-13.3 .636-20.1 .824-3.2 45.8+60.9 21.5-5.6 .844-4.1 .590-4.6 37.8+64.7 26.4+13.4 .402+33.5 .372+15.2
LoTA (62.5%) .508-24.7 8.8-73.0 3.49-12.3 .660-17.1 .832-2.3 46.7+64.1 21.6-5.1 .853-3.1 .596-3.6 37.9+65.1 26.4+13.4 .402+33.5 .370+14.6
LoTA (75.0%) .573-15.1 10.2-68.7 3.76-5.5 .672-15.6 .838-1.6 46.3+62.7 22.2-2.5 .853-3.1 .593-4.1 37.6+63.8 26.3+12.9 .389+29.2 .369+14.3
LoTA (87.5%) .648-4.0 18.0-44.7 3.84-3.5 .681-14.5 .844-0.8 45.8+60.9 22.9+0.6 .863-1.9 .603-2.4 35.1+52.9 26.2+12.5 .376+24.9 .348+7.8
⋆ LoTA (90%) .638-5.4 20.4-37.4 3.98+0.0 .706-11.3 .827-2.8 45.2+58.8 22.7-0.3 .864-1.8 .606 -2.0 34.4+49.9 26.2+12.5 .366+21.5 .360+11.5

⋆ S2FT (Down) .695+3.0 27.9 -14.3 3.99+0.3 .732-8.0 .834-2.0 36.7+29.0 22.6-0.7 .857-2.6 .603-2.4 21.7-5.4 26.0+11.6 .303+0.6 .331+2.5
S2FT (Down + Output) .635-5.9 19.5-40.1 3.75-5.7 .306-61.6 .822-3.4 30.0+5.4 21.9-3.8 .632-28.2 .393-36.4 19.7-14.2 25.3+8.6 .279-7.3 .245-24.1
S2FT (Down; r = 16) .678+0.5 25.7-21.1 3.96-0.5 .735-7.7 .841-1.2 38.7+36.0 22.8+0.1 .852-3.2 .606 -2.0 24.7+7.6 25.9+11.2 .314+4.3 .328+1.6
S2FT (Down; r = 32) .661-2.0 21.6-33.7 3.92-1.5 .706-11.3 .837-1.7 41.7+46.5 22.7-0.3 .860-2.3 .603-2.4 27.4+19.4 26.1+12.1 .316+4.9 .333+3.1
S2FT (Down; r = 64) .652-3.4 19.7-39.5 3.82-4.0 .683-14.2 .846-0.6 43.2+51.8 22.9+0.6 .859-2.4 .603-2.4 31.0+35.1 26.3+12.9 .317+5.3 .344+6.5

D SUPPLEMENTARY ANALYSIS

In §6, we use the default configurations for additional baselines: LoTA and S2FT. To ensure a com-
prehensive evaluation, we extend this with a fine-grained hyperparameter ablation study (Table 14).

LoTA. We examine LoTA across sparsity ratios in 12.5% increments, consistent with our analysis
of SSU, HFT, and GMT. High sparsity ratios (e.g., 90% and 87.5%) preserve source performance
reasonably well while improving target performance. Despite these gains, these configurations
consistently underperform SSU-Wanda. At 90% sparsity, LoTA shows lower target gains (e.g., 23.9%
relative average gain vs. 30.7% for SSU-Wanda) and weaker source preservation (e.g., 7.6% average
drop in monolingual source tasks vs. 4.0%). Conversely, lower sparsity allows for more adaptation
and leads to better target performance. For instance, LoTA at 50% achieves a 31.7% average target
gain, surpassing the 30.7% gain of SSU-Wanda. However, this improvement triggers substantial
catastrophic forgetting: the average drop in monolingual source tasks reaches 19.9%, substantially
worse than the 7.6% drop at 90% sparsity. This degradation intensifies at 37.5% sparsity, reaching a
25.4% drop. These results indicate that while the default high-sparsity setting mitigates catastrophic
forgetting in LoTA, the approach fails to match the balance of source preservation and target language
acquisition achieved by SSU-Wanda.

S2FT. Following the original paper (Yang et al., 2024), we sparsely tune the down projection layers
using a parameter count equivalent to LoRA with a rank of 8 (Table 8). We additionally evaluate
larger parameter budgets equivalent to ranks of 16, 32, and 64. We also test the combination of
“Down and Output” projection tuning to determine if the poor performance reported for Mistral and
Llama3 (attributed to inflexible selection in multi-query attention) applies to OLMo 2.

First, as noted in §6, the default setting preserves source capabilities effectively (3.3% average drop
vs. 4.0% for SSU-Wanda) but yields minimal target gains (2.3% vs. 30.7%). Increasing the trainable
parameter budget (i.e., reducing sparsity) improves target performance but erodes source capabilities.
At the equivalent of rank 64, S2FT exhibits a larger source drop (8.2%) than SSU-Wanda (4.0%)
while still achieving lower target gains (15.0% vs. 30.7%). As larger capacities progressively degrade
source performance without matching the target gains of SSU-Wanda, we conclude that no optimal
S2FT configuration exists to surpass SSU in our problem setup. Finally, we confirm that tuning
“Down and Output” projections yields suboptimal results, causing severe relative drops of up to 23.1%
in monolingual source tasks and 9.25% in target tasks. In summary, regardless of hyperparameter
adjustments, only SSU provides robust source preservation while elevating target language abilities
to levels comparable to FFT.
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E EXTENDED RELATED WORK

SSU addresses the core challenge of continual learning (CL): adapting a model to new tasks while mit-
igating catastrophic forgetting (Goodfellow et al., 2015; Kirkpatrick et al., 2017). This section situates
SSU within the parameter-centric family of CL solutions. These methods protect knowledge at the
parameter level, typically without accessing data from the old task for replay. They generally address
two fundamental questions: (1) the Identification Problem, defining which parameters are critical to
a previous task; and (2) the Protection Problem, determining the mechanism to enforce protection on
those parameters. Parameter-centric approaches largely fall into three categories: soft, regularization-
based protection; hard, architectural-based protection; and adaptive, hybrid methods.

Soft Parameter Protection (Regularization-Based). These methods discourage changes to critical
parameters by adding a penalty term to the loss function of the new task. Approaches differ primarily
in solving the “Identification Problem.” Elastic Weight Consolidation (EWC) identifies critical
parameters via the Fisher Information Matrix diagonal (Kirkpatrick et al., 2017), while Synaptic Intel-
ligence (SI) computes importance online by tracking the cumulative contribution of each parameter to
loss reduction (Zenke et al., 2017). Similarly, Memory Aware Synapses (MAS) estimates importance
weights based on the sensitivity of the learned function (output function) to parameter changes,
eliminating the need for original labeled data (Aljundi et al., 2018). Soft-Masking of Parameter-Level
Gradient Flow (SPG) protects knowledge by directly modulating gradient flow with soft masks rather
than modifying the loss objective (Konishi et al., 2023). However, such “soft” constraints often fail
under severe distributional shifts (Wang et al., 2023). This limitation becomes particularly acute
in our problem setup (i.e., adapting instruct models using unlabeled target language data), where
optimization pressure from unlabeled target corpora can overpower regularization penalties.

Hard Parameter Protection (Isolation & Architectural). These methods enforce stability via
structural constraints, such as freezing or allocating parameters, to ensure near-zero forgetting. Hard
Attention to the Task (HAT) learns a binary mask, forcing gradients to zero for parameters allocated
by the mask from any previous task (Serra et al., 2018). PackNet employs an “iterative prune, fix, and
retrain” cycle, freezing the surviving “packed” weights and forcing new tasks to utilize only “free”
parameters (Mallya & Lazebnik, 2018). Piggyback represents an extreme form, freezing an entire
pre-trained backbone and learning new tasks solely by training new binary masks (Mallya et al., 2018).

Adaptive & Hybrid Protection. This emerging class assesses the properties of an incoming task
to select a protection strategy dynamically. Context-aware Task-driven (CAT) automatically detects
whether a new task resembles previous ones (Ke et al., 2020), applying Hard Protection (binary mask)
for dissimilar tasks and Soft Protection (attention) for similar tasks. Parameter Allocation & Regular-
ization (PAR) identifies task relatedness and applies dynamic protection: “easy” tasks are consolidated
via soft regularization, while “difficult” tasks trigger the hard allocation of a new, isolated expert
model (Wang et al., 2023). While promising, the application of such dynamic allocation strategies to
the specific constraints of LLM language adaptation remains an interesting avenue for future research.

Situating SSU within Continual Learning. SSU adapts these CL principles for the linguistic
adaptation of instruct LLMs. We characterize SSU as a source-focused method utilizing static hard
parameter protection. It resolves the “Identification Problem” via source-data-driven importance
scores (e.g., Wanda) and the “Protection Problem” via column-wise structural freezing. While
conceptually aligned with hard protection, SSU overcomes specific limitations regarding problem
setting and scale. Foundational CL methods largely focus on task-incremental learning, where
the model learns a sequence of discrete, labeled tasks (e.g., Task 1: MNIST, Task 2: CIFAR).
Consequently, methods like HAT rely on task identifiers (Task IDs) at inference time to select the
correct mask. This requirement is incompatible with general-purpose instruct LLMs, where the input
language (or task) is unknown and the model must operate as a unified entity without external task
signals. Regarding scale, foundational methods typically target architectures with fewer than 1B
parameters (e.g., PackNet uses VGG-16 (∼138M) (Simonyan & Zisserman, 2015)). Methods like the
iterative pruning and retraining cycles of PackNet often become computationally prohibitive when ap-
plied to billion-parameter LLMs. In contrast, SSU utilizes a one-shot, static calculation of importance
before training, making it computationally viable for modern transformer-based architectures.
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