

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MITIGATING CATASTROPHIC FORGETTING IN TARGET LANGUAGE ADAPTATION OF LLMs VIA SOURCE-SHIELDED UPDATES

Anonymous authors

Paper under double-blind review

ABSTRACT

Expanding the linguistic diversity of instruct large language models (LLMs) is crucial for global accessibility but is often hindered by the reliance on costly specialized target language labeled data and catastrophic forgetting during adaptation. We tackle this challenge under a realistic, low-resource constraint: adapting instruct LLMs using only unlabeled target language data. We introduce Source-Shielded Updates (SSU), a selective parameter update strategy that proactively preserves source knowledge. Using a small set of source data and a parameter importance scoring method, SSU identifies parameters critical to maintaining source abilities. It then applies a column-wise freezing strategy to protect these parameters before adaptation. Experiments across five typologically diverse languages and 7B and 13B models demonstrate that SSU successfully mitigates catastrophic forgetting. It reduces performance degradation on monolingual source tasks to just 3.4% (7B) and 2.8% (13B) on average, a stark contrast to the 20.3% and 22.3% from full fine-tuning. SSU also achieves target-language performance highly competitive with full fine-tuning, outperforming it on all benchmarks for 7B models and the majority for 13B models.¹

1 INTRODUCTION

Large language models (LLMs) demonstrate remarkable generalization capabilities across numerous applications (OpenAI, 2025; DeepSeek-AI et al., 2025; Yang et al., 2025; Gemma Team et al., 2025). However, they notoriously underperform in languages absent or underrepresented in their training data, creating a critical barrier to equitable access for speakers worldwide (Huang et al., 2023). The standard approach to resolve this issue is to continue pre-training (CPT) or fine-tune on target language data, i.e., target language adaptation (Cui et al., 2024; Ji et al., 2025).

Yet, adapting instruct models to these languages is uniquely challenging. Such models require specialized instruction-tuning data (Wei et al., 2022; Rafailov et al., 2023), which is often unavailable or prohibitively costly to create for underrepresented languages (Huang et al., 2024c). Furthermore, machine-translated data as a low-cost alternative is not consistently effective (Tao et al., 2024).

Consequently, unlabeled target language text is often the only viable data for adaptation. While this approach can improve target language proficiency, it often triggers catastrophic forgetting (Kirkpatrick et al., 2017; Tejaswi et al., 2024; Mundra et al., 2024; Yamaguchi et al., 2025), where new training erases prior knowledge. This issue is particularly acute for instruct models, as it cripples the general-purpose functionality of the model, which is primarily derived from core abilities like chat and instruction-following. In response, previous work has attempted **post-hoc** mitigation. For example, Yamaguchi et al. (2025) merge the weights of the original instruct model with the corresponding adapted model, while Huang et al. (2024c) treat adaptation as a task vector, applying parameter changes from CPT on the base model to the instruct model. Nonetheless, these methods largely fail to mitigate catastrophic forgetting, substantially degrading these core functionalities.

The shortcomings of post-hoc methods suggest that *mitigation should occur during adaptation*. We therefore turn our focus to **the CPT stage**. Specifically, we leverage selective parameter updates,

¹Our anonymous code is available on <https://anonymous.4open.science/r/ssu-iclr-2026/>.

054 a method of restricting which weights are modified during training. This approach is proven more
 055 effective at mitigating catastrophic forgetting than alternatives like parameter-efficient fine-tuning,
 056 regularization, or model merging (Zhang et al., 2024a; Hui et al., 2025). However, **existing selective**
 057 **parameter tuning paradigms for adapting LLMs** are ill-suited for the specific challenge of adapting
 058 instruct models with unlabeled target language text. They either rely on **random selection**, offering
 059 no principled way to preserve knowledge, or on signals from the new data to guide updates (**target-**
 060 **focused**). The latter approaches are particularly vulnerable in this scenario because signals from raw,
 061 target unstructured text are misaligned with the core chat and instruction-following capabilities of
 062 the models. Optimizing for this out-of-distribution format risks corrupting the very foundational
 063 capabilities we aim to preserve.

064 We therefore introduce **Source-Shielded Updates (SSU)**, a
 065 novel **source-focused** approach that *proactively shields*
 066 *source knowledge before adaptation begins* (Figure 1). First,
 067 SSU identifies parameters critical to source abilities using a small set of source data and a parameter importance
 068 scoring method, such as those used in model pruning (e.g.,
 069 Wanda (Sun et al., 2024)). Second, it uses these element-
 070 wise scores to construct a column-wise freezing mask. This
 071 structural design is crucial. Unlike naive element-wise
 072 freezing that corrupts feature transformations, our column-
 073 wise approach preserves them entirely. Finally, this mask
 074 is applied during CPT on unlabeled target language data,
 075 keeping the shielded structural units frozen. This process al-
 076 lows SSU to effectively preserve the general-purpose ability
 077 of the model while improving target language performance.

078 We verify the effectiveness of our approach through ex-
 079 tensive experiments with five typologically diverse languages
 080 and two different model scales (7B and 13B). We evaluate
 081 performance on the source language (English) across mul-
 082 tiple dimensions, including chat and instruction-following,
 083 safety, and general generation and classification abilities,
 084 alongside performance on the target language. We summarize our contributions as follows:

- A novel method for adapting instruct models to a target language without specialized target instruction-tuning data, addressing a key bottleneck to expand linguistic accessibility.
- At two model scales, SSU consistently outperforms all baselines on all core instruction-following and safety tasks. It achieves leading target-language proficiency rivaling full fine-tuning while almost perfectly preserving general source-language performance.
- Extensive analysis validates the efficacy of SSU, confirming the superiority of column-wise freezing and the importance of source data-driven parameter scoring. Qualitatively, we observe that SSU avoids the linguistic code-mixing that state-of-the-art methods suffer from, explaining its superior abilities across source chat and instruction-following tasks.

096 2 RELATED WORK

097 **Language Adaptation.** CPT on target language data is the standard method for adapting LLMs to
 098 target languages (Cui et al., 2024; Fujii et al., 2024; Da Dalt et al., 2024; Cahyawijaya et al., 2024;
 099 Nguyen et al., 2024; Yamaguchi et al., 2024; Nag et al., 2025; Ji et al., 2025, *inter alia*). While
 100 effective, CPT often leads to substantial degradation of the original capabilities of a model (Tejaswi
 101 et al., 2024; Mundra et al., 2024; Yamaguchi et al., 2025), a phenomenon known as catastrophic
 102 forgetting. This trade-off presents a major obstacle, especially for instruct models where preserving
 103 core chat and instruction-following abilities is vital for their general-purpose functionality.²

104 ²While some research addresses tokenization overfragmentation, where words are split into inefficiently small
 105 units, via vocabulary adaptation (Tejaswi et al., 2024; Mundra et al., 2024; Yamaguchi et al., 2025, *inter alia*),
 106 we focus on catastrophic forgetting during **parameter updates** with a fixed architecture. We consider vocabulary
 107 adaptation orthogonal to our approach; combining it with SSU offers a promising avenue for future work.

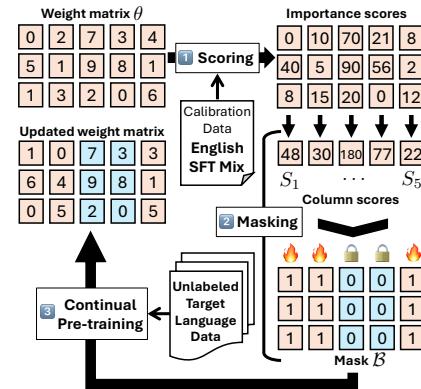


Figure 1: Overview of Source-Shielded Update (SSU). The method comprises three stages: importance scoring, column-wise mask generation, and continual pre-training on unlabeled target language data with the masks.

108 **Catastrophic Forgetting.** Mitigating catastrophic forgetting is a long-standing challenge in continual learning. Proposed solutions generally fall into five categories: (1) **Regularization-based**
 109 methods add a penalty term to the loss function to discourage significant changes to weights deemed
 110 important for previous tasks (Kirkpatrick et al., 2017; Chen et al., 2020; Zhang et al., 2022, *inter*
 111 *alia*). (2) **Replay-based** methods interleave old and new data (de Masson d’Autume et al., 2019;
 112 Rolnick et al., 2019; Huang et al., 2024b, *inter alia*). (3) **Model merging** methods interpolate
 113 between original and fine-tuned models (Wortsman et al., 2022; Yadav et al., 2023; Yu et al., 2024;
 114 Huang et al., 2024a, *inter alia*). (4) **Architecture-based** methods like LoRA (Hu et al., 2022) add
 115 and train new parameters while freezing the original model (Houlsby et al., 2019; Hu et al., 2022;
 116 Zhang et al., 2023, *inter alia*). (5) **Selective parameter updates** restrict which existing weights are
 117 modified during training (Zhang et al., 2024a; Hui et al., 2025). Our work belongs to this category.³
 118

119 Studies on multilingual CPT for LLMs similarly employ these strategies. Examples include mixing
 120 source (English) data (Category 2) (Zheng et al., 2024; Elhadji et al., 2025), model merging (Category
 121 3) (Alexandrov et al., 2024; Blevins et al., 2024), and concurrent work on architecture-based solutions
 122 (Category 4) (Owodunni & Kumar, 2025). Optimization strategies, such as controlling learning
 123 rates (Winata et al., 2023), are also utilized. These methods are largely orthogonal to our work. SSU,
 124 in contrast, focuses on **selective parameter updates** (Category 5), distinguished by a proactive,
 125 source-driven approach which we detail next.

126 **Selective Parameter Updates.** While often utilized for training efficiency (Liu et al., 2021; Lodha
 127 et al., 2023; Li et al., 2023a; Pan et al., 2024; Yang et al., 2024; Li et al., 2024; Ma et al., 2024; Li
 128 et al., 2025; He et al., 2025), selective parameter updates have also proven effective for mitigating
 129 catastrophic forgetting (Zhang et al., 2024a; Hui et al., 2025). These methods can be broadly
 130 categorized as **dynamic** or **static**. Dynamic approaches select a trainable parameter set that can
 131 change during training, based on random selection (Li et al., 2024; Pan et al., 2024) or target data
 132 signals like gradient magnitudes (Liu et al., 2021; Li et al., 2023a; Ma et al., 2024; Li et al., 2025).
 133 In contrast, static methods define a fixed trainable parameter set before training or during warm-up.
 134 This allows for straightforward integration with existing pipelines, enabling the combination of
 135 orthogonal mitigation methods like regularization and replay more easily. For example, a method
 136 closest to our work (Hui et al., 2025) randomly freezes half of the components within each transformer
 137 sub-layer (i.e., self-attention, feed-forward, and layernorm), while others are data-driven based on
 138 target data (Lodha et al., 2023; Zhang et al., 2024a; Panda et al., 2024; He et al., 2025).

139 **SSU: A Source-Focused Selective Parameter Update Approach.** SSU is a static selective pa-
 140 rameter update approach (Category 5) that introduces a new, source-focused paradigm for language
 141 adaptation. Unlike existing selective parameter update methods that rely on random choice or target
 142 data signals, SSU uses a small sample of source data (e.g., 500 samples) to identify and freeze pa-
 143 rameters critical to the source knowledge within the model before adaptation. This also distinguishes it
 144 from previous importance-based methods in other categories. For instance, regularization methods
 145 (Category 1) are reactive, applying a penalty to weight changes (Jung et al., 2020). In contrast, SSU is
 146 proactive, using a static structural mask to prevent updates before adaptation. Similarly, SSU is not an
 147 architecture-based PEFT method (Category 4), which uses importance to insert new parameters (Yao
 148 et al., 2024). SSU instead operates on full, existing parameters to select and freeze structural columns.

150 3 SSU: SELECTIVE PARAMETER UPDATES VIA IMPORTANCE FREEZING

151 We address the challenge of adapting an instruct model using only raw, unlabeled target language
 152 data. Unlike prior work that focuses on post-hoc mitigation (Huang et al., 2024c; Yamaguchi et al.,
 153 2025), we introduce Source-Shielded Updates (SSU), a method that targets the CPT process itself.
 154 The goal is to mitigate catastrophic forgetting during CPT, thereby maintaining the general-purpose
 155 functionality of an instruct model. Concurrently, SSU aims to achieve performance gains in the target
 156 language tasks comparable to those from full fine-tuning. Formally, given an instruct model \mathcal{M} ,
 157 calibration data $\mathcal{D}_{\text{calib}}$, unlabeled target language data $\mathcal{D}_{\text{target}}$, and a parameter freezing ratio k , SSU
 158 adapts \mathcal{M} on $\mathcal{D}_{\text{target}}$ in three stages (Figure 1).

159
 160 ³SSU also relates to foundational continual learning methods that protect critical parameters, such as
 161 HAT (Serra et al., 2018), CAT (Ke et al., 2020), and SPG (Konishi et al., 2023). See Appendix E for discussions.

162
163

3.1 SOURCE-DRIVEN PARAMETER IMPORTANCE SCORING

164 The first stage of SSU scores parameter importance to identify weights critical to source model
 165 capabilities. We posit that a **source-data-driven score** is suitable, as it directly aligns with the goal
 166 of preserving source knowledge. For this purpose, we adopt the importance score from Wanda (Sun
 167 et al., 2024), a popular pruning method.⁴ Using a small sample of source data $\mathcal{D}_{\text{calib}}$, Wanda computes
 168 an importance score s_{ij} for each weight θ_{ij} as the product of its magnitude and the L2-norm of its
 169 corresponding input activations X_j : $s_{ij} = |\theta_{ij}| \cdot \|X_j\|_2$. This identifies weights that are both large
 170 and consistently active. Scores are computed for all parameters in \mathcal{M} except for the embeddings and
 171 language modeling head, as all these are updated during training following Hui et al. (2025).
 172

173

3.2 COLUMN-WISE MASKING

174 In the second stage, SSU converts element-wise importance scores into a structured freezing mask. A
 175 structured approach is crucial because naive, element-wise freezing disrupts feature transformations
 176 and causes catastrophic forgetting (Table 3). To avoid this, SSU operates at the column level. For
 177 instance, in a forward pass $Y = WX$, freezing an entire column of the weight matrix W leaves
 178 the corresponding output dimension of Y unchanged, ensuring a complete feature pathway. *The
 179 approach is analogous to protecting the core structural columns of a building during renovation; the
 180 foundational support remains untouched while peripheral elements are modified.*

181 Mask generation begins by aggregating scores for each column. For a weight matrix $\theta \in \mathbb{R}^{d_{\text{out}} \times d_{\text{in}}}$,
 182 a column corresponds to all parameters associated with a single input feature. The total importance
 183 score S_j for each column j is the sum of its individual importance scores: $S_j = \sum_i s_{ij}$. S_j
 184 robustly measures the contribution of each input feature, identifying the core structural columns to be
 185 preserved. For 1D parameters, such as biases, each element is treated as its own column; thus, its
 186 per-weight score s_i serves as its aggregated score S_i .

187 The binary mask \mathcal{B} for each weight matrix is generated by ranking columns by their S_j and then
 188 selecting the top $k\%$ to freeze (50% by default following Hui et al. (2025)). The corresponding
 189 columns in the mask \mathcal{B} are set to 0 (freeze), while all others are set to 1 (update).

190

191

3.3 CONTINUAL PRE-TRAINING

192

193

In the third stage, the model \mathcal{M} is continually pre-trained on unlabeled data $\mathcal{D}_{\text{target}}$ using a standard
 causal language modeling objective, denoted as the loss L . During the backward pass, the static mask
 \mathcal{B} is applied to the gradients, zeroing out updates for frozen columns. The gradient update rule for
 a weight θ_{ij} is thus $\theta_{ij} \leftarrow \theta_{ij} - \eta \cdot b_{ij} \cdot \nabla_{\theta_{ij}} L$. Here, η is the learning rate, and $b_{ij} \in \{0, 1\}$ is the
 value from the mask \mathcal{B} corresponding to the weight θ_{ij} . This method preserves knowledge stored in
 the most critical input-feature pathways, thus mitigating catastrophic forgetting.

194

195

4 EXPERIMENTAL SETUP

196

197

4.1 SOURCE MODELS

198

199

Following Hui et al. (2025) who used 7B and 13B models from the same family (i.e., Llama 2), we use
 the 7B and 13B OLMo 2 Instruct models (Walsh et al., 2025) for our experiments. The OLMo 2 models offer
 strong instruction-following capabilities and fully documented training data, allowing full control and
 transparency in our language adaptation experiments.

200

201

4.2 TARGET LANGUAGES

202

203

We experiment with five typologically diverse languages (Table 1) that are significantly underrepresented
 in the training data of the source models but with wide availability of datasets with consistent

204

205

⁴While we use Wanda for its simplicity and popularity, *the SSU framework is agnostic to the importance metric*. To demonstrate this, we also evaluate two alternative source-driven scoring methods (§6).

Table 1: Source (English) and target languages. Code is based on ISO 639-1, and the language-specific ratio in Common Crawl (CC Ratio) as of CC-MAIN-2025-21.

Language	Code	Script	Family	CC Ratio
English	en	Latin	Indo-European	43.7876
Nepali	ne	Devanagari	Indo-European	.0521
Kyrgyz	ky	Cyrillic	Turkic	.0103
Amharic	am	Ge'ez	Afro-Asiatic	.0032
Hausa	ha	Latin	Afro-Asiatic	.0032
Igbo	ig	Latin	Niger-Congo	.0007

task formulations (though data variations preclude direct performance comparisons between languages). These languages appear at least 840x less frequently than English in Common Crawl (CC),⁵ which accounts for over 95% of the OLMo 2 pre-training corpus (Walsh et al., 2025).

4.3 CALIBRATION AND TRAINING DATA

We use tulu-3-sft-olmo-2-mixture (Lambert et al., 2025), the original instruction-tuning data for OLMo 2, for calibration (i.e., choosing which parameters to freeze). We randomly select 500 samples with a sequence length of 2,048. For CPT, we use a clean subset of MADLAD-400 (Kudugunta et al., 2023), sampling 200M tokens per language as recommended by Tejaswi et al. (2024).⁶

4.4 BASELINES

We compare our approach against baselines from three categories: performance benchmarks, a reference approach from a related paradigm, and state-of-the-art methods.

Source: Off-the-shelf OLMo 2, reporting performance without any adaptation.

FFT: Full fine-tuning that updates all the parameters of the model via CPT on target language data, quantifying the extent to which a model suffers from catastrophic forgetting without any intervention.

AdaLoRA (Zhang et al., 2023): An architecture-based method to mitigate catastrophic forgetting. This achieves the best overall performance among LoRA-like methods in Hui et al. (2025).

HFT: A state-of-the-art **static** selective parameter update method (Hui et al., 2025). It updates 50% of parameters using a fine-grained, per-layer strategy by randomly freezing two out of the four self-attention matrices (W_Q, W_K, W_V, W_O); and two out of three feed-forward matrices ($W_{up}, W_{down}, W_{gate}$) in a random half of the layers and one matrix in the remaining half. Since SSU is also a static method, HFT serves as a key baseline.

GMT: A state-of-the-art **dynamic** selective parameter update approach (Li et al., 2025) that drops gradients of a pre-defined ratio (50% in this study for fair comparison with HFT and SSU) with smaller absolute values on the target data.

To validate our use of source calibration data for scoring, we also introduce two calibration data-free ablation variants: (1) **SSU-Rand** that freezes an equal number of randomly-selected columns. This provides no principled way to preserve functionally important knowledge. (2) **SSU-Mag** that freezes columns based only on the magnitude score (i.e., $|\theta_{ij}|$; unlike $|\theta_{ij}| \cdot \|X_j\|_2$ for SSU-Wanda), isolating the effect of the activation term.

4.5 EVALUATION BENCHMARKS AND METRICS

We report performance in the source and target languages across standard benchmarks.

Chat and Instruction-following: (1) **IFEval** (Zhou et al., 2023), reporting zero-shot accuracy (strict prompt); (2) AlpacaEval 2.0 (Li et al., 2023b; Dubois et al., 2024, **AE2**), reporting the zero-shot, length-controlled win-rate against GPT-4 (1106-preview) (OpenAI et al., 2024), with judgments from GPT-4.1 nano (2025-04-14); (3) MT-Bench (Zheng et al., 2023, **MTB**), using the mean Likert-5 score over two turns, judged by Flow-Judge-v0.1 per the Hugging Face LightEval protocol (Fourrier et al., 2023); and (4) **GSM8K** for multi-turn, few-shot mathematical reasoning (Cobbe et al., 2021), reporting the five-shot exact match score.

Safety: We use the Tülu 3 safety evaluation suite (Lambert et al., 2025, **T3**) and report the macro average score in a zero-shot setting, following Lambert et al. (2025) and Walsh et al. (2025).⁷

Source Language (English): We evaluate target-to-English machine translation (**MT**) on FLORES-200 (NLLB Team et al., 2022), reporting three-shot chrF++ (Popović, 2017) on 500 samples, following previous work (Ahia et al., 2023; Yamaguchi et al., 2025). For summarization (**SUM**) on

⁵CC Ratio is based on <https://commoncrawl.github.io/cc-crawl-statistics/plots/languages>.

⁶During CPT, we remove the chat template to support unlabeled data lacking role annotations (e.g., user).

⁷As instruct models typically undergo extensive safety alignment (Gemma Team et al., 2025; Lambert et al., 2025, *inter alia.*), verifying that this is not compromised during adaptation is a crucial aspect of our analysis.

270

271
272
273
Table 2: Aggregated average performance across all languages per task. **Green** denotes scores
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10099
100100
100101
100102
100103
100104
100105
100106
100107
100108
100109
100110
100111
100112
100113
100114
100115
100116
100117
100118
100119
100120
100121
100122
100123
100124
100125
100126
100127
100128
100129
100130
100131
100132
100133
100134
100135
100136
100137
100138
100139
100140
100141
100142
100143
100144
100145
100146
100147
100148
100149
100150
100151
100152
100153
100154
100155
100156
100157
100158
100159
100159
100160
100161
100162
100163
100164
100165
100166
100167
100168
100169
100169
100170
100171
100172
100173
100174
100175
100176
100177
100178
100179
100179
100180
100181
100182
100183
100184
100185
100186
100187
100188
100189
100189
100190
100191
100192
100193
100194
100195
100196
100197
100198
100199
100199
100200
100201
100202
100203
100204
100205
100206
100207
100208
100209
100210
100211
100212
100213
100214
100215
100216
100217
100218
100219
100220
100221
100222
100223
100224
100225
100226
100227
100228
100229
100230
100231
100232
100233
100234
100235
100236
100237
100238
100239
100240
100241
100242
100243
100244
100245
100246
100247
100248
100249
100250
100251
100252
100253
100254
100255
100256
100257
100258
100259
100259
100260
100261
100262
100263
100264
100265
100266
100267
100268
100269
100269
100270
100271
100272
100273
100274
100275
100276
100277
100278
100279
100280
100281
100282
100283
100284
100285
100286
100287
100288
100289
100289
100290
100291
100292
100293
100294
100295
100296
100297
100298
100299
100299
100300
100301
100302
100303
100304
100305
100306
100307
100308
100309
100310
100311
100312
100313
100314
100315
100316
100317
100318
100319
100320
100321
100322
100323
100324
100325
100326
100327
100328
100329
100329
100330
100331
100332
100333
100334
100335
100336
100337
100338
100339
100339
100340
100341
100342
100343
100344
100345
100346
100347
100348
100349
100349
100350
100351
100352
100353
100354
100355
100356
100357
100358
100359
100359
100360
100361
100362
100363
100364
100365
100366
100367
100368
100369
100369
100370
100371
100372
100373
100374
100375
100376
100377
100378
100379
100379
100380
100381
100382
100383
100384
100385
100386
100387
100388
100389
100389
100390
100391
100392
100393
100394
100395
100396
100397
100398
100399
100399
100400
100401
100402
100403
100404
100405
100406
100407
100408
100409
100410
100411
100412
100413
100414
100415
100416
100417
100418
100419
100420
100421
100422
100423
100424
100425
100426
100427
100428
100429
100429
100430
100431
100432
100433
100434
100435
100436
100437
100438
100439
100439
100440
100441
100442
100443
100444
100445
100446
100447
100448
100449
100449
100450
100451
100452
100453
100454
100455
100456
100457
100458
100459
100459
100460
100461
100462
100463
100464
100465
100466
100467
100468
100469
100469
100470
100471
100472
100473
100474
100475
100476
100477
100478
100479
100479
100480
100481
100482
100483
100484
100485
100486
100487
100488
100489
100489
100490
100491
100492
100493
100494
100495
100496
100497
100498
100499
100499
100500
100501
100502
100503
100504
100505
100506
100507
100508
100509
100510
100511
100512
100513
100514
100515
100516
100517
100518
100519
100519
100520
100521
100522
100523
100524
100525
100526
100527
100528
100529
100529
100530
100531
100532
100533
100534
100535
100536
100537
100538
100539
100539
100540
100541
100542
100543
100544
100545
100546
100547
100548
100549
100549
100550
100551
100552
100553
100554
100555
100556
100557
100558
100559
100559
100560
100561
100562
100563
100564
100565
100566
100567
100568
100569
100569
100570
100571
100572
100573
100574
100575
100576
100577
100578
100579
100579
100580
100581
100582
100583
100584
100585
100586
100587
100588
100589
100589
100590
100591
100592
100593
100594
100595
100596
100597
100598
100599
100599
100600
100601
100602
100603
100604
100605
100606
100607
100608
100609
100610
100611
100612
100613
100614
100615
100616
100617
100618
100619
100619
100620
100621
100622
100623
100624
100625
100626
100627
100628
100629
100629
100630
100631
100632
100633
100634
100635
100636
100637
100638
100639
100639
100640
100641
100642
100643
100644
100645
100646
100647
100648
100649
100649
100650
100651
100652
100653
100654
100655
100656
100657
100658
100659
100659
100660
100661
100662
100663
100664
100665
100666
100667
100668
100669
100669
100670
100671
100672
100673
100674
100675
100676
100677
100678
100679
100679
100680
100681
100682
100683
100684
100685
100686
100687
100688
100689
100689
100690
100691
100692
100693
100694
100695
100696
100697
100698
100699
100699
100700
100701
100702
100703
100704
100705
100706
100707
100708
100709
100710
100711
100712
100713
100714
100715
100716
100717
100718
100719
100719
100720
100721
100722
100723
100724
100725
100726
100727
100728
100729
100729
100730
100731
100732
100733
100734
100735
100736
100737
100738
100739
100739
100740
100741
100742
100743
100744
100745
100746
100747
100748
100749
100749
100750
100751
100752
100753
100754
100755
100756
100757
100758
100759
100759
100760
100761
100762
100763
100764
100765
100766
100767
100768
100769
100769
100770
100771
100772
100773
100774
100775
100776
100777
100778
100779
100779
100780
100781
100782
100783
100784
100785
100786
100787
100788
100789
100789
100790
100791
100792
100793
100794
100795
100796
100797
100798
100799
100799
100800
100801
100802
100803
100804
100805
100806
100807
100808
100809
100809
100810
100811
100812
100813
100814
100815
100816
100817
100818
100819
100819
100820
100821
100822
100823
100824
100825
100826
100827
100828
100829
100829
100830
100831
100832
100833
100834
100835
100836
100837
100838
100839
100839
100840
100841
100842
100843
100844
100845
100846
100847
100848
100849
100849
100850
100851
100852
100853
100854
100855
100856
100857
100858
100859
100859
100860
100861
100862
100863
100864
100865
100866
100867
100868
100869
100869
100870
100871
100872
100873
100874
100875
100876
100877
100878
100879
100879
100880
100881
100882
100883
100884
100885
100886
100887
100888
100889
100889
100890

324 Finally, the low performance of baseline SSU variants (SSU-Rand and SSU-Mag) highlights the
 325 importance of the source-data-driven scoring. While both freezing random columns (SSU-Rand) and
 326 columns selected by magnitude alone (SSU-Mag) outperform FFT, they substantially underperform
 327 SSU-Wanda. SSU-Rand performance is 18.2% (7B) and 16.0% (13B) lower than Source, while SSU-
 328 Mag causes even greater drops of 23.0% (7B) and 21.7% (13B). The substantial underperformance
 329 of these calibration data-free approaches underscores the critical need for a source-data-informed
 330 importance scoring method for preserving the core capabilities of an instruct model in the source
 331 language. As we demonstrate in §6, this principle is not limited to Wanda; other source-data-driven
 332 scoring methods are also highly effective, confirming the versatility of the SSU framework.

333 **Safety.** SSU-Wanda also best preserves the safety alignment of the source, with small performance
 334 drops of only 0.1% (7B) and 2.0% (13B) compared to Source. In contrast, FFT and the target-data-
 335 driven GMT cause large drops, with safety scores dropping by up to 10.2%. While other selective
 336 methods partially preserve source performance, they still lag behind SSU-Wanda.
 337

338 **Source Language.** SSU-Wanda not only preserves source language capabilities but also enhances
 339 them in the cross-lingual translation task. For the 7B model, SSU-Wanda is the top performer across
 340 all source benchmarks. For the 13B model, it ranks top in MT and MMLU and is a close second in
 341 SUM and MRC. Notably, its performance on MT (target-to-English) improves substantially by up to
 342 52.3% relative to Source. For monolingual tasks (SUM, MRC, and MMLU), performance is almost
 343 perfectly maintained, with relative drops never exceeding 2.0% (7B) and 1.0% (13B). AdaLoRA
 344 is the second-best performer overall, also showing strong preservation across monolingual tasks.
 345 However, its gains in the MT task are substantially smaller, the worst among all approaches. This
 346 suggests that while LoRA-based methods effectively prevent forgetting, the structural isolation of
 347 their updates may be less adept at integrating new linguistic knowledge for complex cross-lingual
 348 tasks. The remaining adaptation methods generally exhibit greater performance degradation than
 349 SSU-Wanda, consistent with instruction-following and safety results.
 350

351 **Target Language.** Finally, SSU-Wanda demonstrates exceptional performance on target language
 352 tasks, securing the best results across all benchmarks for both model scales in the majority of cases.
 353 Crucially, its performance is highly competitive with FFT, even surpassing it on all benchmarks
 354 for 7B models and on half for 13B models. The performance difference between SSU and FFT is
 355 consistently minimal, confirming that SSU-Wanda achieves the target-language gains of a full update
 356 with drastically smaller catastrophic forgetting. This aligns with observations from optimization
 357 theory, arguing that freezing parameters acts as a regularization term that stabilizes training and
 358 enables a sparse fine-tuned model to match or exceed the performance of its dense counterpart (Fu
 359 et al., 2023; Zhang et al., 2024b; Hui et al., 2025). All the other selective parameter update methods
 360 also yield solid improvements, though typically smaller than those of SSU-Wanda. In contrast,
 361 AdaLoRA shows the smallest improvement and often fails to surpass the source model. This confirms
 362 that LoRA-based methods have a smaller inductive bias from the target data (Biderman et al., 2024;
 363 Hui et al., 2025). This highlights the unique effectiveness of SSU-Wanda, which successfully masters
 364 tasks in the target language while preserving its original knowledge and abilities in the source.
 365

366 *Overall, SSU-Wanda demonstrates the benefits of full fine-tuning without the associated catastrophic
 367 forgetting, consistently outperforming all other evaluated methods.*

368 6 ANALYSIS

369 This section evaluates the robustness of the SSU framework by isolating the impact of core design
 370 choices and hyperparameters. Due to resource constraints, we use the 7B model with our primary
 371 method, SSU-Wanda. We select Igbo as the target language, as it is the most underrepresented
 372 language among our target languages (Table 1).

373 **Parameter Freezing Ratio.** While we use a default 50% freezing ratio for fair comparison with
 374 baselines following Hui et al. (2025), this hyperparameter can impact performance. We therefore
 375 evaluate freezing ratios from 0% (defaulting to FFT) to 87.5% in 12.5% increments. As shown in
 376 Figure 2, performance on source language capabilities, such as chat and safety, generally improves
 377 as the freezing ratio increases. In contrast, performance on target language tasks often shows an

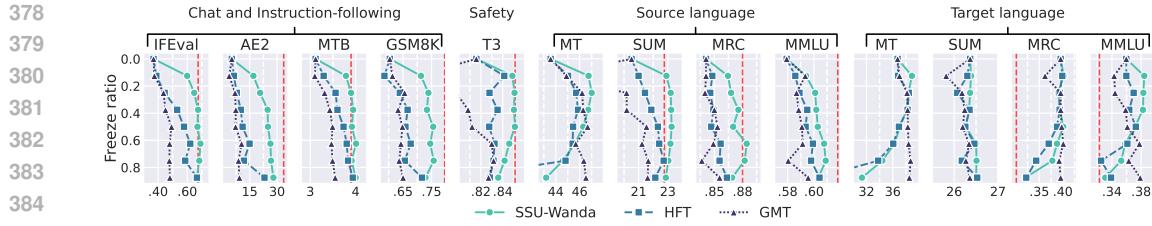


Figure 2: Model performance (SSU-Wanda, HFT, GMT) on Igbo as target language across freezing ratios. The dashed red line indicates Source performance (omitted for MT and SUM due to very low scores). Some data points for HFT and GMT are also omitted due to extremely low performance.

Table 3: Performance of different freezing strategies in SSU-Wanda and Igbo as the target language. **Bold** and underlined indicate the best and second-best methods, respectively.

Approach	Chat and Instruction-following				Safety		Source language				Target language (Igbo)			
	IFEval	AE2	MTB	GSM8K	T3	MT	SUM	MRC	MMLU	MT	SUM	MRC	MMLU	
Source	.675	32.6	3.98	.796	.851	28.5	22.8	.880	.618	23.0	23.3	.301	.323	
Column-wise (Default)	.670	25.0	3.92	.756	.851	46.3	23.3	.870	.603	37.1	26.3	.401	.371	
Row-wise	<u>.548</u>	<u>11.3</u>	<u>3.74</u>	<u>.675</u>	<u>.846</u>	<u>46.0</u>	<u>21.8</u>	<u>.862</u>	<u>.598</u>	<u>36.9</u>	<u>26.5</u>	<u>.407</u>	<u>.358</u>	
Element-wise	.457	7.7	3.35	.657	.829	46.4	21.1	.851	.587	38.3	26.5	.399	.370	

opposite trend, degrading as more parameters are frozen, with a particularly sharp drop in MMLU after reaching a 37.5% ratio. Target-to-English MT is a notable exception. Although the models generate English text, performance declines as the freezing ratio increases, particularly after 37.5%. This trend contradicts other source tasks. This occurs because MT requires knowledge of both source and target languages.

Our results show a trade-off between source knowledge retention and target language acquisition. Therefore, we recommend practitioners tailor the freezing ratio based on their specific goals: **General purpose**: A default 50% ratio offers a robust and balanced performance. **Source-capability priority**: A higher ratio (e.g., $\sim 60\%$ or higher) is optimal, as performance on tasks like IFEval, MRC, and MMLU plateaus around this point. **Target-language priority**: A lower ratio (e.g., $\sim 40\%$ or lower) is preferable, given the performance drops observed in MT and MMLU beyond this threshold.

Impact of Freezing Ratio on Baselines. We extend this analysis to state-of-the-art selective parameter update baselines (Figure 2). The closest baseline, the static method HFT, follows a trend similar to SSU but fails to surpass the performance of SSU across tasks and freezing ratios. In contrast, the dynamic method GMT exhibits a different trend. While it often achieves strong target language and MT performance at ratios above 60%, it consistently yields low performance on monolingual source tasks regardless of the freezing ratio. We attribute this to the dynamic nature of GMT, which allows updates to any parameter over time, leading to cumulative corruption from unstructured target data optimization (§1 and §5). Ultimately, this confirms SSU as the optimal method for simultaneously achieving strong source preservation and high target language gains.

Alternative Freezing Methods. SSU employs column-wise freezing to preserve the entire processing pathway of critical source features (§3.2). To validate this design choice, we compare its effectiveness against row-wise and element-wise freezing. As shown in Table 3, the results demonstrate a clear advantage for our column-wise approach. Column-wise freezing consistently achieves the best performance on chat, safety, and source language tasks.⁸ On target language tasks, it remains highly competitive, with only a 1.2 point drop on MT compared to element-wise freezing. These results validate the guiding hypothesis for the design of SSU: *preserving entire feature pathways is a critical strategy to safeguard source knowledge while enabling effective target-language adaptation.*

⁸While row-wise freezing preserves all connections from a single input neuron, it fails to protect any single, complete output feature. This explains its weaker performance across chat, safety, and source language tasks.

432

433 Table 4: Performance of different SSU importance scoring methods using Igbo as the target. **Bold** and
434 underlined denote best and second-best adaptation approaches with relative changes in subscripts.

Approach	Chat and Instruction-following					Safety				Source language				Target language (Igbo)			
	IFEval	AE2	MTB	GSM8K	T3	MT	SUM	MRC	MMLU	MT	SUM	MRC	MMLU	MT	SUM	MRC	MMLU
Source	<u>.675</u> _{+0.0}	32.6 _{+0.0}	3.98 _{+0.0}	.796 _{+0.0}	<u>.851</u> _{+0.0}	28.5 _{+0.0}	22.8 _{+0.0}	.880 _{+0.0}	.618 _{+0.0}	23.0 _{+0.0}	23.3 _{+0.0}	.301 _{+0.0}	.323 _{+0.0}				
SSU-Rand	<u>.564</u> _{-16.4}	12.5 _{-61.6}	3.75 _{-5.7}	.680 _{-14.6}	.838 _{-1.6}	45.9 _{+61.3}	22.4 _{-1.6}	.856 _{-2.7}	.597 _{-3.4}	<u>37.3</u> _{+62.5}	<u>26.4</u> _{+13.4}	.401 _{+33.2}	.355 _{+10.0}				
SSU-Mag	<u>.497</u> _{-26.3}	8.9 _{-72.7}	3.59 _{-2.2}	.638 _{-19.9}	.828 _{-2.7}	45.1 _{+58.5}	21.7 _{-3.2}	.852 _{-4.2}	.592 _{-3.2}	36.6 _{+59.5}	26.2 _{+12.5}	.379 _{+25.9}	.348 _{+7.8}				
SSU-Wanda (Default)	<u>.670</u> _{-0.7}	<u>25.0</u> _{-23.2}	<u>3.92</u> _{-1.5}	<u>.756</u> _{-5.0}	<u>.851</u> _{-0.0}	<u>46.3</u> _{+62.7}	<u>23.3</u> _{+2.3}	.870 _{-1.1}	.603 _{-2.4}	37.1 _{+61.7}	26.3 _{+12.9}	.401 _{+33.2}	<u>.371</u> _{+14.9}				
SSU-SparseGPT	.678 _{+0.5}	24.5 _{-24.8}	3.89 _{-2.2}	<u>.751</u> _{-5.7}	.843 _{-1.0}	46.2 _{+62.3}	23.1 _{+1.4}	<u>.876</u> _{-0.5}	<u>.604</u> _{-2.3}	<u>37.2</u> _{+62.1}	<u>26.5</u> _{+13.8}	<u>.400</u> _{+32.8}	.372 _{+15.2}				
SSU-FIM	.669 _{-0.8}	26.3 _{-19.2}	3.94 _{-1.0}	.747 _{-6.2}	<u>.847</u> _{-0.5}	46.4 _{+63.0}	<u>23.2</u> _{+1.9}	.874 _{-0.7}	<u>.609</u> _{-1.5}	37.1 _{+61.7}	<u>26.5</u> _{+13.8}	.399 _{+32.5}	<u>.371</u> _{+14.9}				

442

443

444 Table 5: Performance of SSU-Wanda with different calibration data sources and sizes, using Igbo as
445 the target language.

Approach	Chat and Instruction-following					Safety				Source language				Target language (Igbo)			
	IFEval	AE2	MTB	GSM8K	T3	MT	SUM	MRC	MMLU	MT	SUM	MRC	MMLU	MT	SUM	MRC	MMLU
Source	.675	32.6	3.98	.796	.851	28.5	22.8	.880	.618	23.0	23.3	.301	.323				
Default (500 examples)	.670	25.0	3.92	.756	.851	46.3	23.3	.870	.603	37.1	26.3	.401	.371				
Alpaca (500 examples)	.673	24.0	3.97	.750	.849	46.7	23.1	.874	.604	37.1	26.2	.394	.379				
Default (128 examples)	.682	24.3	3.89	.754	.852	46.4	23.2	.873	.600	37.2	26.3	.410	.371				

452

453

Alternative Importance Scoring Methods. SSU is compatible with alternative importance scoring methods beyond Wanda. To demonstrate this, we evaluate two different source-data-driven methods: SparseGPT (Frantar & Alistarh, 2023) and the diagonal of the Fisher Information Matrix (Kirkpatrick et al., 2017, FIM); see Appendix B for details. In monolingual source tasks, SSU-SparseGPT and SSU-FIM show comparable average performance drops (4.3% and 3.5%, respectively) to SSU-Wanda (4.0%), as detailed in Table 4. This contrasts sharply with the larger drops of data-free variants like SSU-Rand (13.5%) and SSU-Mag (17.9%). These findings demonstrate the versatility of SSU, offering strong performance across various source-data-driven scoring methods.

461

462

Calibration Data for Parameter Importance Scoring. SSU-Wanda requires source calibration data to identify critical model weights since it relies on Wanda for parameter importance scoring. While we use the original instruction-tuning data for OLMo 2 in our main experiments, this is often unavailable for other frontier models. We therefore investigate the efficacy of using an alternative, publicly available dataset. Specifically, we use Alpaca (Taori et al., 2023) as the calibration dataset and follow the exact same preprocessing and training procedures as the original data. Table 5 shows that performance with Alpaca is highly comparable to that with the original data, with a maximum difference of only 1.0, demonstrating the robustness of SSU-Wanda to the choice of calibration data.

470

471

Calibration Data Size for Parameter Importance Scoring. SSU uses 500 source calibration examples by default to compute parameter importance scores (§4.3). To assess sensitivity to this hyperparameter, we compare the default (500 examples, ~1M tokens) with a smaller 128-example set (~0.26M tokens), a size common in model pruning literature (Williams & Aletras, 2024). The results in Table 5 show minimal changes across tasks; the maximum performance difference observed is only 1.2 points on IFEval. This confirms the robustness of SSU to calibration data size, demonstrating that a small sample set suffices for effective importance scoring.

477

478

Comparison to Additional Baselines. We also compare SSU-Wanda to other selective parameter update methods: LoTA (Panda et al., 2024) and S2FT (Yang et al., 2024), using their default configurations. We evaluate LoTA at its default 90% sparsity and at 50% sparsity to match the freezing ratio of SSU. For S2FT, we test its default down projection-focused adaptation. As shown in Table 6, LoTA at 90% sparsity exhibits inferior source preservation compared to SSU-Wanda (e.g., 7.6% vs. 4.0% average drop on monolingual source tasks) and lower target gains (23.9% vs. 30.7%). While LoTA at 50% sparsity achieves substantial target gains (31.7%), it suffers severe catastrophic forgetting on monolingual source tasks (19.9% drop). S2FT effectively preserves source capabilities (3.3% drop) but yields minimal target gains (2.3%). These results underscore that only SSU-Wanda

486
487
488
489Table 6: Performance of additional adaptation baselines: LoTA and S2FT using Igbo as the target. **Bold** and underlined denote best and second-best adaptation approaches with relative changes in subscripts. More results are in Appendix D.490
491
492
493
494
495

Approach	Chat and Instruction-following					Safety				Source language				Target language (Igbo)			
	IFEval	AE2	MTB	GSM8K	T3	MT	SUM	MRC	MMLU	MT	SUM	MRC	MMLU	MT	SUM	MRC	MMLU
Source	.675 _{+0.0}	32.6 _{+0.0}	3.98 _{+0.0}	.796 _{+0.0}	.851 _{+0.0}	28.5 _{+0.0}	22.8 _{+0.0}	.880 _{+0.0}	.618 _{+0.0}	23.0 _{+0.0}	23.3 _{+0.0}	.301 _{+0.0}	.323 _{+0.0}				
SSU-Wanda	<u>.670</u> _{-0.7}	<u>25.0</u> _{-23.2}	<u>3.92</u> _{-1.5}	<u>.756</u> _{-5.0}	<u>.851</u> _{-0.0}	<u>46.3</u> _{+62.7}	<u>23.3</u> _{+2.3}	<u>.870</u> _{-1.1}	<u>.603</u> _{-2.4}	<u>37.1</u> _{+61.7}	<u>26.3</u> _{+12.9}	<u>.401</u> _{+33.2}	<u>.371</u> _{+14.9}				
LoTA (90% Sparsity)	.638 _{-5.4}	20.4 _{-37.4}	<u>3.98</u> _{+0.0}	.706 _{-11.3}	.827 _{-2.8}	45.2 _{+58.8}	<u>22.7</u> _{-0.3}	<u>.864</u> _{-1.8}	<u>.606</u> _{-2.0}	34.4 _{+49.9}	26.2 _{+12.5}	.366 _{+21.5}	.360 _{+11.5}				
LoTA (50% Sparsity)	.449 _{-33.4}	8.3 _{-74.5}	3.45 _{-13.3}	.636 _{-20.1}	.824 _{-3.2}	<u>45.8</u> _{+60.9}	21.5 _{+5.6}	.844 _{-4.1}	.590 _{-4.6}	<u>37.8</u> _{+64.7}	<u>26.4</u> _{+12.5}	<u>.402</u> _{+33.5}	<u>.372</u> _{+15.2}				
S2FT (Down)	<u>.695</u> _{+3.0}	<u>27.9</u> _{-14.3}	<u>3.99</u> _{+0.3}	<u>.732</u> _{-8.0}	<u>.834</u> _{-2.0}	36.7 _{+29.0}	22.6 _{-0.7}	.857 _{-2.6}	<u>.603</u> _{-2.4}	21.7 _{-5.4}	26.0 _{+11.6}	.303 _{+0.6}	.331 _{+2.5}				

496
497

achieves both strong source preservation and high target language gains comparable to FFT. This trend holds across different hyperparameter settings (see Appendix D).

500

Qualitative Analysis. SSU-Wanda surpasses other state-of-the-art selective parameter update baselines across all chat and instruction-following benchmarks (Table 2). This performance gap arises partly because baseline methods are prone to code-mixing (i.e., the unintentional blending of multiple languages in responses) or generating responses entirely in the target language, despite English instructions. A typical example of this behavior for models trained on Igbo is as below: Analyzing the language ratio in generated responses on AE2 shows that SSU produces code-mixed text in only 1.0% of its responses on average for the 7B models. In contrast, HFT and GMT generate code-mixed text in 6.4% and 16.9%, respectively.⁹ This substantial reduction in the occurrence of code-mixing reflects the more robust retention of the source language abilities and superior chat and instruction-following performance of SSU.

Instruction in EN: How do I take care of a wooden table?
HFT Response: *To take care nke a wood table, clean ya na a soft duster ma q b̄i microfiber towel iji wep̄u dust na grime. N’ihe banyere stains, mix otu teaspoon nke mild detergent na mmiri na-a teaspoon n’ime mmiri... (continued.)*
SSU Response: *To take care, clean your wooden table regularly with mild soap and water. Use a soft cloth for polishing, applying wood polish or beeswax to maintain its natural finish. Avoid placing hot items directly on the surface to prevent scratches. Keep it away from direct sunlight and excessive moisture.*

514

Theoretical Analysis. SSU addresses the stability-plasticity dilemma in neural systems (Grossberg, 1982), balancing plasticity for new knowledge with stability for prior knowledge. SSU mitigates catastrophic forgetting by identifying and freezing a source-critical subnetwork, extending the Lottery Ticket Hypothesis (Frankle & Carbin, 2019) to transfer learning. Using an importance score to shield crucial parameters, SSU proactively preserves source capabilities by enforcing a hard constraint that confines updates to a subspace that avoids interfering with the source language knowledge. This approach aligns with findings on spurious forgetting (Zheng et al., 2025), which suggest that performance drops can stem from task misalignment caused by nearly orthogonal weight updates. Furthermore, SSU employs structured, column-wise masking, motivated by the need to preserve entire learned features. Unlike unstructured pruning which can degrade learned representations, pruning entire columns of a weight matrix corresponds to removing specific neurons or feature detectors (Voita et al., 2019). This structural preservation ensures that the core feature space of the source model remains intact, enabling effective adaptation to the target language.

527

7 CONCLUSION

529

We introduced Source-Shielded Updates (**SSU**) for language adaptation of instruct models using only unlabeled target language data. SSU is a framework that proactively identifies critical source knowledge using an importance scoring method and a small set of source calibration data. It then shields this knowledge via a column-wise freezing strategy before adaptation, effectively preventing catastrophic forgetting in the source language. Extensive experiments across five languages and two model scales show that SSU best preserves crucial source capabilities, such as instruction-following and safety, over strong baselines while achieving target language proficiency matching or surpassing full fine-tuning. This work provides an effective and scalable pathway to expand the linguistic reach of instruct models without costly, specialized data, opening avenues for robust model adaptation.

539

⁹We use GlotLID (Kargaran et al., 2023, Commit 28d4264) to compute the language ratio of each response. If the normalized confidence for English is less than 0.9, it is regarded as code-mixed.

540
541 ETHICS STATEMENT542
543 The authors acknowledge the use of Large Language Models (LLMs) during the preparation of this
544 work. Gemini 2.5 Pro was utilized to find related work and to improve the grammar and clarity of the
545 draft. Additionally, GPT-5 served as a coding assistant for implementation and debugging.546
547 REPRODUCIBILITY STATEMENT548
549 Our code and a step-by-step guide for preprocessing, training, evaluation, and analysis for
550 both the proposed method and all baselines are available on an anonymous GitHub repository:
551 <https://anonymous.4open.science/r/ssu-iclr-2026/>. The repository reflects updates made on November
552 20, 2025, to include the additional baselines: LoTA and S2FT. This resource will remain accessible un-
553 til the ICLR 2026 decision notification date: January 22, 2026 (AOE). Full details on hyperparameters,
554 software, and hardware, including specific versions used, are provided in Appendix B.555
556 REFERENCES557
558 Orevaoghene Ahia, Sachin Kumar, Hila Gonen, Jungo Kasai, David Mortensen, Noah Smith, and
559 Yulia Tsvetkov. Do all languages cost the same? tokenization in the era of commercial language
560 models. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference*
561 *on Empirical Methods in Natural Language Processing*, pp. 9904–9923, Singapore, December
562 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.614. URL
563 <https://aclanthology.org/2023.emnlp-main.614/>.564
565 Anton Alexandrov, Veselin Raychev, Mark Niklas Müller, Ce Zhang, Martin Vechev, and Kristina
566 Toutanova. Mitigating catastrophic forgetting in language transfer via model merging. In Yaser Al-
567 Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Findings of the Association for Computational*
568 *Linguistics: EMNLP 2024*, pp. 17167–17186, Miami, Florida, USA, November 2024. Association
569 for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.1000. URL <https://aclanthology.org/2024.findings-emnlp.1000/>.570
571 Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
572 Memory aware synapses: Learning what (not) to forget. In *Computer Vision – ECCV 2018:*
573 *15th European Conference, Munich, Germany, September 8–14, 2018, Proceedings, Part III*, pp.
574 144–161, Berlin, Heidelberg, 2018. Springer-Verlag. ISBN 978-3-030-01218-2. doi: 10.1007/
575 978-3-030-01219-9_9. URL https://doi.org/10.1007/978-3-030-01219-9_9.576
577 Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesensky, Bin
578 Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta Chauhan, Anjali Chourdia, Will Constable,
579 Alban Desmaison, Zachary DeVito, Elias Ellison, Will Feng, Jiong Gong, Michael Gschwind, and
580 others. PyTorch 2: Faster machine learning through dynamic Python bytecode transformation and
581 graph compilation. In *Proceedings of the 29th ACM International Conference on Architectural*
582 *Support for Programming Languages and Operating Systems, Volume 2*, ASPLOS ’24, pp. 929–947,
583 New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400703850. doi:
584 10.1145/3620665.3640366. URL <https://doi.org/10.1145/3620665.3640366>.585
586 Lucas Bandarkar, Davis Liang, Benjamin Muller, Mikel Artetxe, Satya Narayan Shukla, Donald
587 Husa, Naman Goyal, Abhinandan Krishnan, Luke Zettlemoyer, and Madian Khabsa. The belebele
588 benchmark: a parallel reading comprehension dataset in 122 language variants. In Lun-Wei
589 Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the*
590 *Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 749–775, Bangkok,
591 Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
592 acl-long.44. URL <https://aclanthology.org/2024.acl-long.44/>.593
594 Dan Biderman, Jacob Portes, Jose Javier Gonzalez Ortiz, Mansheej Paul, Philip Greengard, Connor
595 Jennings, Daniel King, Sam Havens, Vitaliy Chiley, Jonathan Frankle, Cody Blakeney, and
596 John Patrick Cunningham. LoRA learns less and forgets less. *Transactions on Machine Learning*
597 *Research*, 2024. ISSN 2835-8856. URL <https://openreview.net/forum?id=aloEru2qCG>.
598 Featured Certification.

594 Terra Blevins, Tomasz Limisiewicz, Suchin Gururangan, Margaret Li, Hila Gonen, Noah A. Smith,
 595 and Luke Zettlemoyer. Breaking the curse of multilinguality with cross-lingual expert language
 596 models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024*
 597 *Conference on Empirical Methods in Natural Language Processing*, pp. 10822–10837, Miami,
 598 Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.604. URL <https://aclanthology.org/2024.emnlp-main.604/>.

600 Samuel Cahyawijaya, Holy Lovenia, Fajri Koto, Rifki Putri, Wawan Cenggoro, Jhonson Lee, Salsabil
 601 Akbar, Emmanuel Dave, Nuurshadieq Nuurshadieq, Muhammad Mahendra, Rr Putri, Bryan Wilie,
 602 Genta Winata, Alham Aji, Ayu Purwarianti, and Pascale Fung. Cendol: Open instruction-tuned
 603 generative large language models for Indonesian languages. In Lun-Wei Ku, Andre Martins,
 604 and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for*
 605 *Computational Linguistics (Volume 1: Long Papers)*, pp. 14899–14914, Bangkok, Thailand,
 606 August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.796.
 607 URL <https://aclanthology.org/2024.acl-long.796/>.

608 Sanyuan Chen, Yutai Hou, Yiming Cui, Wanxiang Che, Ting Liu, and Xiangzhan Yu. Recall and
 609 learn: Fine-tuning deep pretrained language models with less forgetting. In Bonnie Webber,
 610 Trevor Cohn, Yulan He, and Yang Liu (eds.), *Proceedings of the 2020 Conference on Empirical*
 611 *Methods in Natural Language Processing (EMNLP)*, pp. 7870–7881, Online, November 2020.
 612 Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.634. URL <https://aclanthology.org/2020.emnlp-main.634/>.

613 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 614 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
 615 Schulman. Training verifiers to solve math word problems. *arXiv*, abs/2110.14168, 2021. URL
 616 <https://arxiv.org/abs/2110.14168>.

617 Yiming Cui, Ziqing Yang, and Xin Yao. Efficient and effective text encoding for Chinese LLaMA
 618 and Alpaca. *arXiv*, abs/2304.08177, 2024. URL <https://arxiv.org/abs/2304.08177>.

619 Severino Da Dalt, Joan Llop, Irene Baucells, Marc Pamies, Yishi Xu, Aitor Gonzalez-Agirre, and
 620 Marta Villegas. FLOR: On the effectiveness of language adaptation. In Nicoletta Calzolari, Min-
 621 Yen Kan, Veronique Hoste, Alessandro Lenci, Sakriani Sakti, and Nianwen Xue (eds.), *Proceedings*
 622 *of the 2024 Joint International Conference on Computational Linguistics, Language Resources*
 623 *and Evaluation (LREC-COLING 2024)*, pp. 7377–7388, Torino, Italia, May 2024. ELRA and
 624 ICCL. URL <https://aclanthology.org/2024.lrec-main.650/>.

625 Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In
 626 *Proceedings of the Twelfth International Conference on Learning Representations*, 2024. URL
 627 <https://openreview.net/forum?id=mZn2Xyh9Ec>.

628 Cyprien de Masson d'Autume, Sebastian Ruder, Lingpeng Kong, and Dani Yogatama. Episodic
 629 memory in lifelong language learning. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
 630 Buc, E. Fox, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 32.
 631 Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/f8d2e80c1458ea2501f98a2cafadb397-Paper.pdf.

632 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
 633 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
 634 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, and others. DeepSeek-R1: Incentivizing
 635 reasoning capability in LLMs via reinforcement learning. *arXiv*, abs/2501.12948, 2025. URL
 636 <https://arxiv.org/abs/2501.12948>.

637 Yann Dubois, Percy Liang, and Tatsunori Hashimoto. Length-controlled AlpacaEval: A simple
 638 debiasing of automatic evaluators. In *Proceedings of the First Conference on Language Modeling*,
 639 2024. URL <https://openreview.net/forum?id=CybBmzWBX0>.

640 Ahmed Elhadji, Eneko Agirre, and Mikel Artetxe. Emergent abilities of large language models under
 641 continued pre-training for language adaptation. In Wanxiang Che, Joyce Nabende, Ekaterina
 642 Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the*
 643 *Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 32174–32186, Vienna,
 644 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.2913.

648 Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi:
 649 10.18653/v1/2025.acl-long.1547. URL <https://aclanthology.org/2025.acl-long.1547/>.
 650

651 Clémentine Fourrier, Nathan Habib, Thomas Wolf, and Lewis Tunstall. LightEval: A lightweight
 652 framework for LLM evaluation. <https://github.com/huggingface/lighteval>, 2023.
 653

654 Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
 655 networks. In *Proceedings of the Seventh International Conference on Learning Representations*,
 656 2019. URL <https://openreview.net/forum?id=rJ1-b3RcF7>.
 657

658 Elias Frantar and Dan Alistarh. SparseGPT: Massive language models can be accurately pruned
 659 in one-shot. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
 660 Sabato, and Jonathan Scarlett (eds.), *Proceedings of the 40th International Conference on Machine
 661 Learning*, volume 202 of *Proceedings of Machine Learning Research*, pp. 10323–10337. PMLR,
 23–29 Jul 2023. URL <https://proceedings.mlr.press/v202/frantar23a.html>.
 662

663 Zihao Fu, Haoran Yang, Anthony Man-Cho So, Wai Lam, Lidong Bing, and Nigel Collier. On
 664 the effectiveness of parameter-efficient fine-tuning. *Proceedings of the AAAI Conference on
 665 Artificial Intelligence*, 37(11):12799–12807, Jun. 2023. doi: 10.1609/aaai.v37i11.26505. URL
 666 <https://ojs.aaai.org/index.php/AAAI/article/view/26505>.
 667

668 Kazuki Fujii, Taishi Nakamura, Mengsay Loem, Hiroki Iida, Masanari Ohi, Kakeru Hattori, Hirai
 669 Shota, Sakae Mizuki, Rio Yokota, and Naoaki Okazaki. Continual pre-training for cross-lingual
 670 LLM adaptation: Enhancing Japanese language capabilities. In *Proceedings of the First Conference
 671 on Language Modeling*, 2024. URL <https://openreview.net/forum?id=TQdd1VhWbe>.
 672

673 Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles
 674 Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas
 675 Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron,
 676 Lintang Sutawika, and others. A framework for few-shot language model evaluation. <https://zenodo.org/records/10256836>, 12 2023.
 677

678 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
 679 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, Louis Rouillard, Thomas
 680 Mesnard, Geoffrey Cideron, Jean bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Casbon,
 681 Etienne Pot, Ivo Penchev, and others. Gemma 3 technical report. *arXiv*, abs/2503.19786, 2025.
 682 URL <https://arxiv.org/abs/2503.19786>.
 683

684 Ian J. Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical
 685 investigation of catastrophic forgetting in gradient-based neural networks. *arXiv*, abs/1312.6211,
 686 2015. URL <https://arxiv.org/abs/1312.6211>.
 687

688 Stephen Grossberg. *Studies of mind and brain: neural principles of learning, perception, development,
 689 cognition, and motor control*. Boston studies in the philosophy of science; 70. D. Reidel Publishing
 690 Company, 1982. ISBN 9027713596.
 691

692 Tahmid Hasan, Abhik Bhattacharjee, Md. Saiful Islam, Kazi Mubasshir, Yuan-Fang Li, Yong-Bin
 693 Kang, M. Sohel Rahman, and Rifat Shahriyar. XL-sum: Large-scale multilingual abstractive
 694 summarization for 44 languages. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli
 695 (eds.), *Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021*, pp. 4693–
 696 4703, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
 697 findings-acl.413. URL <https://aclanthology.org/2021.findings-acl.413/>.
 698

699 Haoze He, Juncheng B Li, Xuan Jiang, and Heather Miller. SMT: Fine-tuning large language models
 700 with sparse matrices. In *Proceedings of the Thirteenth International Conference on Learning
 701 Representations*, 2025. URL <https://openreview.net/forum?id=GbgCRJedQ7>.
 702

703 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
 704 Steinhardt. Measuring massive multitask language understanding. In *Proceedings of the Ninth
 705 International Conference on Learning Representations*, 2021. URL [https://openreview.net/forum?id=d7KBjmI3GmQ](https://openreview.net/

 706 forum?id=d7KBjmI3GmQ).
 707

702 Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
 703 Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning
 704 for NLP. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), *Proceedings of the 36th*
 705 *International Conference on Machine Learning*, volume 97 of *Proceedings of Machine Learning*
 706 *Research*, pp. 2790–2799. PMLR, 09–15 Jun 2019. URL <https://proceedings.mlr.press/v97/houlsby19a.html>.

707

708 Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 709 and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *Proceedings of the*
 710 *Tenth International Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=nZeVKeeFYf9>.

711

712

713 Chenyu Huang, Peng Ye, Tao Chen, Tong He, Xiangyu Yue, and Wanli Ouyang. EMR-
 714 Merging: Tuning-free high-performance model merging. In A. Globerson, L. Mackey,
 715 D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neu-
 716 ral Information Processing Systems*, volume 37, pp. 122741–122769. Curran Associates,
 717 Inc., 2024a. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/dda5cac5272a9bcd4bc73d90bc725ef1-Paper-Conference.pdf.

718

719 Haoyang Huang, Tianyi Tang, Dongdong Zhang, Xin Zhao, Ting Song, Yan Xia, and Furu Wei. Not all
 720 languages are created equal in LLMs: Improving multilingual capability by cross-lingual-thought
 721 prompting. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Findings of the Association*
 722 *for Computational Linguistics: EMNLP 2023*, pp. 12365–12394, Singapore, December 2023.
 723 Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.826. URL
 724 <https://aclanthology.org/2023.findings-emnlp.826/>.

725

726 Jianheng Huang, Leyang Cui, Ante Wang, Chengyi Yang, Xinting Liao, Linfeng Song, Junfeng Yao,
 727 and Jinsong Su. Mitigating catastrophic forgetting in large language models with self-synthesized
 728 rehearsal. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd*
 729 *Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
 730 1416–1428, Bangkok, Thailand, August 2024b. Association for Computational Linguistics. doi:
 731 10.18653/v1/2024.acl-long.77. URL <https://aclanthology.org/2024.acl-long.77/>.

732

733 Shih-Cheng Huang, Pin-Zu Li, Yu-chi Hsu, Kuang-Ming Chen, Yu Tung Lin, Shih-Kai Hsiao,
 734 Richard Tsai, and Hung-yi Lee. Chat vector: A simple approach to equip LLMs with instruction
 735 following and model alignment in new languages. In Lun-Wei Ku, Andre Martins, and Vivek
 736 Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational*
 737 *Linguistics (Volume 1: Long Papers)*, pp. 10943–10959, Bangkok, Thailand, August 2024c.
 738 Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.590. URL <https://aclanthology.org/2024.acl-long.590/>.

739

740 Tingfeng Hui, Zhenyu Zhang, Shuohuan Wang, Weiran Xu, Yu Sun, and Hua Wu. HFT: Half
 741 fine-tuning for large language models. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and
 742 Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association*
 743 *for Computational Linguistics (Volume 1: Long Papers)*, pp. 12791–12819, Vienna, Austria, July
 744 2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/
 745 2025.acl-long.626. URL <https://aclanthology.org/2025.acl-long.626/>.

746

747 Shaoxiong Ji, Zihao Li, Indraneil Paul, Jaakko Paavola, Peiqin Lin, Pinzhen Chen, Dayyán O’Brien,
 748 Hengyu Luo, Hinrich Schütze, Jörg Tiedemann, and Barry Haddow. EMMA-500: Enhancing
 749 massively multilingual adaptation of large language models. *arXiv*, abs/2409.17892, 2025. URL
 750 <https://arxiv.org/abs/2409.17892>.

751

752 Sangwon Jung, Hongjoon Ahn, Sungmin Cha, and Taesup Moon. Continual learning with node-
 753 importance based adaptive group sparse regularization. In H. Larochelle, M. Ranzato, R. Hadsell,
 754 M.F. Balcan, and H. Lin (eds.), *Advances in Neural Information Processing Systems*, volume 33, pp.
 755 3647–3658. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/258be18e31c8188555c2ff05b4d542c3-Paper.pdf.

756

757 Amir Hossein Kargaran, Ayyoob Imani, François Yvon, and Hinrich Schuetze. GlotLID: Language
 758 identification for low-resource languages. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.),

756 *Findings of the Association for Computational Linguistics: EMNLP 2023*, pp. 6155–6218, Sin-
 757 gapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
 758 findings-emnlp.410. URL <https://aclanthology.org/2023.findings-emnlp.410/>.

759
 760 Zixuan Ke, Bing Liu, and Xingchang Huang. Continual learning of a mixed sequence of similar
 761 and dissimilar tasks. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.),
 762 *Advances in Neural Information Processing Systems*, volume 33, pp. 18493–18504. Curran Asso-
 763 ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/d7488039246a405baf6a7cbc3613a56f-Paper.pdf.

764
 765 James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A.
 766 Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hassabis,
 767 Claudia Clopath, Dharrshan Kumaran, and Raia Hadsell. Overcoming catastrophic forgetting
 768 in neural networks. *Proceedings of the National Academy of Sciences*, 114(13):3521–3526,
 769 2017. doi: 10.1073/pnas.1611835114. URL <https://www.pnas.org/doi/abs/10.1073/pnas.1611835114>.

770
 771 Tatsuya Konishi, Mori Kurokawa, Chihiro Ono, Zixuan Ke, Gyuhak Kim, and Bing Liu. Parameter-
 772 level soft-masking for continual learning. In Andreas Krause, Emma Brunskill, Kyunghyun
 773 Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *Proceedings of the 40th
 774 International Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning
 775 Research*, pp. 17492–17505. PMLR, 23–29 Jul 2023. URL <https://proceedings.mlr.press/v202/konishi23a.html>.

776
 777 Sneha Kudugunta, Isaac Rayburn Caswell, Biao Zhang, Xavier Garcia, Derrick Xin, Aditya Kusupati,
 778 Romi Stella, Ankur Bapna, and Orhan Firat. MADLAD-400: A multilingual and document-level
 779 large audited dataset. In *Proceedings of the Thirty-seventh Conference on Neural Information
 780 Processing Systems Datasets and Benchmarks Track*, 2023. URL <https://openreview.net/forum?id=Y45ZCxslFx>.

781
 782 Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
 783 Lester James Validad Miranda, Alisa Liu, Nouha Dziri, Xinxi Lyu, Yuling Gu, Saumya Malik,
 784 Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Christopher
 785 Wilhelm, Luca Soldaini, and others. Tulu 3: Pushing frontiers in open language model post-
 786 training. In *Proceedings of the Second Conference on Language Modeling*, 2025. URL <https://openreview.net/forum?id=i1uGbfHHpH>.

787
 788 Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, Abhishek Thakur, Patrick von Platen,
 789 Suraj Patil, Julien Chaumond, Mariama Drame, Julien Plu, Lewis Tunstall, Joe Davison, Mario
 790 Šaško, Gunjan Chhablani, Bhavitya Malik, Simon Brandeis, Teven Le Scao, Victor Sanh, Canwen
 791 Xu, Nicolas Patry, and others. Datasets: A community library for natural language processing. In
 792 Heike Adel and Shuming Shi (eds.), *Proceedings of the 2021 Conference on Empirical Methods
 793 in Natural Language Processing: System Demonstrations*, pp. 175–184, Online and Punta Cana,
 794 Dominican Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/
 795 v1/2021.emnlp-demo.21. URL <https://aclanthology.org/2021.emnlp-demo.21/>.

796
 797 Hanqi Li, Lu Chen, Da Ma, Zijian Wu, Su Zhu, and Kai Yu. Evolving subnetwork training for large
 798 language models. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria
 799 Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), *Proceedings of the 41st International
 800 Conference on Machine Learning*, volume 235 of *Proceedings of Machine Learning Research*, pp.
 801 27547–27562. PMLR, 21–27 Jul 2024. URL <https://proceedings.mlr.press/v235/li24k.html>.

802
 803 Haoling Li, Xin Zhang, Xiao Liu, Yeyun Gong, Yifan Wang, Qi Chen, and Peng Cheng. Enhancing
 804 large language model performance with gradient-based parameter selection. *Proceedings of the
 805 AAAI Conference on Artificial Intelligence*, 39(23):24431–24439, Apr. 2025. doi: 10.1609/aaai.
 806 v39i23.34621. URL <https://ojs.aaai.org/index.php/AAAI/article/view/34621>.

807
 808 Sheng Li, Geng Yuan, Yue Dai, Youtao Zhang, Yanzhi Wang, and Xulong Tang. SmartFRZ: An
 809 efficient training framework using attention-based layer freezing. In *Proceedings of the Eleventh
 810 International Conference on Learning Representations*, 2023a. URL https://openreview.net/forum?id=i9U1Ar1T_xl.

810 Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
 811 Liang, and Tatsunori B. Hashimoto. AlpacaEval: An automatic evaluator of instruction-following
 812 models. https://github.com/tatsu-lab/alpaca_eval, 2023b.

813

814 Yuhan Liu, Saurabh Agarwal, and Shivaram Venkataraman. AutoFreeze: Automatically freezing
 815 model blocks to accelerate fine-tuning. *arXiv*, abs/2102.01386, 2021. URL <https://arxiv.org/abs/2102.01386>.

816

817 Abhilasha Lodha, Gayatri Belapurkar, Saloni Chalkapurkar, Yuanming Tao, Reshma Ghosh,
 818 Samyadeep Basu, Dmitrii Petrov, and Soundararajan Srinivasan. On surgical fine-tuning for
 819 language encoders. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Findings of the Association
 820 for Computational Linguistics: EMNLP 2023*, pp. 3105–3113, Singapore, December 2023.
 821 Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.204. URL
 822 <https://aclanthology.org/2023.findings-emnlp.204/>.

823

824 Da Ma, Lu Chen, Pengyu Wang, Hongshen Xu, Hanqi Li, Liangtai Sun, Su Zhu, Shuai Fan, and Kai
 825 Yu. Sparsity-accelerated training for large language models. In Lun-Wei Ku, Andre Martins, and
 826 Vivek Srikumar (eds.), *Findings of the Association for Computational Linguistics: ACL 2024*, pp.
 827 14696–14707, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi:
 828 10.18653/v1/2024.findings-acl.875. URL [https://aclanthology.org/2024.findings-acl.875/](https://aclanthology.org/2024.findings-acl.875).

829

830 Arun Mallya and Svetlana Lazebnik. PackNet: Adding multiple tasks to a single network by iterative
 831 pruning. In *Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern
 832 Recognition*, pp. 7765–7773, 2018. doi: 10.1109/CVPR.2018.00810.

833

834 Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggyback: Adapting a single network to multiple
 835 tasks by learning to mask weights. In *Computer Vision – ECCV 2018: 15th European Conference,
 836 Munich, Germany, September 8–14, 2018, Proceedings, Part IV*, pp. 72–88, Berlin, Heidelberg,
 837 2018. Springer-Verlag. ISBN 978-3-030-01224-3. doi: 10.1007/978-3-030-01225-0_5. URL
 838 https://doi.org/10.1007/978-3-030-01225-0_5.

839

840 Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and Benjamin
 841 Bossan. PEFT: State-of-the-art parameter-efficient fine-tuning methods. <https://github.com/huggingface/peft>, 2022.

842

843 Nandini Mundra, Aditya Nanda Kishore Khandavally, Raj Dabre, Ratish Puduppully, Anoop
 844 Kunchukuttan, and Mitesh M Khapra. An empirical comparison of vocabulary expansion and initial-
 845 ization approaches for language models. In Libby Barak and Malihe Alikhani (eds.), *Proceedings of
 846 the 28th Conference on Computational Natural Language Learning*, pp. 84–104, Miami, FL, USA,
 847 November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.conll-1.8.
 848 URL <https://aclanthology.org/2024.conll-1.8/>.

849

850 Arijit Nag, Soumen Chakrabarti, Animesh Mukherjee, and Niloy Ganguly. Efficient continual pre-
 851 training of LLMs for low-resource languages. In Weizhu Chen, Yi Yang, Mohammad Kachuee, and
 852 Xue-Yong Fu (eds.), *Proceedings of the 2025 Conference of the Nations of the Americas Chapter of
 853 the Association for Computational Linguistics: Human Language Technologies (Volume 3: Industry
 854 Track)*, pp. 304–317, Albuquerque, New Mexico, April 2025. Association for Computational
 855 Linguistics. ISBN 979-8-89176-194-0. doi: 10.18653/v1/2025.naacl-industry.25. URL <https://aclanthology.org/2025.naacl-industry.25/>.

856

857 Xuan-Phi Nguyen, Wenxuan Zhang, Xin Li, Mahani Aljunied, Zhiqiang Hu, Chenhui Shen, Yew Ken
 858 Chia, Xingxuan Li, Jianyu Wang, Qingyu Tan, Liying Cheng, Guanzheng Chen, Yue Deng, Sen
 859 Yang, Chaoqun Liu, Hang Zhang, and Lidong Bing. SeaLLMs - large language models for
 860 Southeast Asia. In Yixin Cao, Yang Feng, and Deyi Xiong (eds.), *Proceedings of the 62nd Annual
 861 Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)*,
 862 pp. 294–304, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi:
 863 10.18653/v1/2024.acl-demos.28. URL <https://aclanthology.org/2024.acl-demos.28/>.

864

865 NLLB Team, Marta R. Costa-jussà, James Cross, Onur Çelebi, Maha Elbayad, Kenneth Heafield,
 866 Kevin Heffernan, Elahe Kalbassi, Janice Lam, Daniel Licht, Jean Maillard, Anna Sun, Skyler Wang,
 867 Guillaume Wenzek, Al Youngblood, Bapi Akula, Loic Barrault, Gabriel Mejia-Gonzalez, Prangtip
 868

864 Hansanti, and others. No language left behind: Scaling human-centered machine translation. *arXiv*,
 865 abs/2207.04672, 2022. URL <https://arxiv.org/abs/2207.04672>.

866

867 OpenAI. GPT-5 system card. <https://cdn.openai.com/pdf/8124a3ce-ab78-4f06-96eb-49ea29ffb52f/gpt5-system-card-aug7.pdf>, 2025.

868

869 OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
 870 Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor
 871 Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian,
 872 Jeff Belgum, and others. GPT-4 technical report. *arXiv*, abs/2303.08774, 2024. URL <https://arxiv.org/abs/2303.08774>.

873

874 Abraham Toluwase Owodunni and Sachin Kumar. Continually adding new languages to multilingual
 875 language models. *arXiv*, abs/2509.11414, 2025. URL <https://arxiv.org/abs/2509.11414>.

876

877 Rui Pan, Xiang Liu, Shizhe Diao, Renjie Pi, Jipeng Zhang, Chi Han, and Tong Zhang. Lisa:
 878 Layerwise importance sampling for memory-efficient large language model fine-tuning. In
 879 A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.),
 880 *Advances in Neural Information Processing Systems*, volume 37, pp. 57018–57049. Curran Asso-
 881 ciates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/687163285b8affc8ee933bdca8e75747-Paper-Conference.pdf.

882

883 Ashwinee Panda, Berivan Isik, Xiangyu Qi, Sanmi Koyejo, Tsachy Weissman, and Prateek Mittal.
 884 Lottery ticket adaptation: Mitigating destructive interference in LLMs. *arXiv*, abs/2406.16797,
 885 2024. URL <https://arxiv.org/abs/2406.16797>.

886

887 Maja Popović. chrF++: words helping character n-grams. In Ondřej Bojar, Christian Buck, Rajen
 888 Chatterjee, Christian Federmann, Yvette Graham, Barry Haddow, Matthias Huck, Antonio Jimeno
 889 Yepes, Philipp Koehn, and Julia Kreutzer (eds.), *Proceedings of the Second Conference on Machine
 890 Translation*, pp. 612–618, Copenhagen, Denmark, September 2017. Association for Computational
 891 Linguistics. doi: 10.18653/v1/W17-4770. URL <https://aclanthology.org/W17-4770/>.

892

893 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and
 894 Chelsea Finn. Direct preference optimization: Your language model is secretly a reward
 895 model. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.),
 896 *Advances in Neural Information Processing Systems*, volume 36, pp. 53728–53741. Curran Asso-
 897 ciates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf.

898

899 David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience
 900 replay for continual learning. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc,
 901 E. Fox, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 32.
 902 Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Paper.pdf.

903

904 Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic
 905 forgetting with hard attention to the task. In Jennifer Dy and Andreas Krause (eds.), *Proceedings
 906 of the 35th International Conference on Machine Learning*, volume 80 of *Proceedings of Machine
 907 Learning Research*, pp. 4548–4557. PMLR, 10–15 Jul 2018. URL <https://proceedings.mlr.press/v80/serra18a.html>.

908

909 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
 910 recognition. In *Proceedings of the Third International Conference on Learning Representations*,
 911 pp. 1–14, 2015. URL <https://arxiv.org/abs/1409.1556>.

912

913 Shivalika Singh, Angelika Romanou, Clémentine Fourrier, David Ifeoluwa Adelani, Jian Gang Ngui,
 914 Daniel Vila-Suero, Peerat Limkonchotiwat, Kelly Marchisio, Wei Qi Leong, Yosephine Susanto,
 915 Raymond Ng, Shayne Longpre, Sebastian Ruder, Wei-Yin Ko, Antoine Bosselut, Alice Oh, Andre
 916 Martins, Leshem Choshen, Daphne Ippolito, and others. Global MMLU: Understanding and
 917 addressing cultural and linguistic biases in multilingual evaluation. In Wanxiang Che, Joyce
 Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd
 Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.

918 18761–18799, Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN
 919 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.919. URL <https://aclanthology.org/2025.acl-long.919/>.

920

921 Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
 922 for large language models. In *Proceedings of the Twelfth International Conference on Learning
 923 Representations*, 2024. URL <https://openreview.net/forum?id=PxoFut3dWW>.

924

925 Mingxu Tao, Chen Zhang, Quzhe Huang, Tianyao Ma, Songfang Huang, Dongyan Zhao, and
 926 Yansong Feng. Unlocking the potential of model merging for low-resource languages. In Yaser Al-
 927 Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Findings of the Association for Computational
 928 Linguistics: EMNLP 2024*, pp. 8705–8720, Miami, Florida, USA, November 2024. Association
 929 for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.508. URL <https://aclanthology.org/2024.findings-emnlp.508/>.

930

931 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
 932 Liang, and Tatsunori B. Hashimoto. Stanford Alpaca: An instruction-following LLaMA model.
 933 https://github.com/tatsu-lab/stanford_alpaca, 2023.

934

935 Atula Tejaswi, Nilesh Gupta, and Eunsol Choi. Exploring design choices for building language-
 936 specific LLMs. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Findings of the
 937 Association for Computational Linguistics: EMNLP 2024*, pp. 10485–10500, Miami, Florida,
 938 USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
 939 findings-emnlp.614. URL <https://aclanthology.org/2024.findings-emnlp.614/>.

940

941 Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head self-
 942 attention: Specialized heads do the heavy lifting, the rest can be pruned. In Anna Korhonen, David
 943 Traum, and Lluís Màrquez (eds.), *Proceedings of the 57th Annual Meeting of the Association for
 944 Computational Linguistics*, pp. 5797–5808, Florence, Italy, July 2019. Association for Computational
 945 Linguistics. doi: 10.18653/v1/P19-1580. URL <https://aclanthology.org/P19-1580/>.

946

947 Evan Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita Bhagia, Yuling Gu,
 948 Shengyi Huang, Matt Jordan, Nathan Lambert, Dustin Schwenk, Oyvind Tafjord, Taira Anderson,
 949 David Atkinson, Faeze Brahman, Christopher Clark, Pradeep Dasigi, Nouha Dziri, Allyson Ettinger,
 950 and others. 2 OLMo 2 furious (COLM’s version). In *Proceedings of the Second Conference on
 951 Language Modeling*, 2025. URL <https://openreview.net/forum?id=2ezugTT9kU>.

952

953 Wenjin Wang, Yunqing Hu, Qianglong Chen, and Yin Zhang. Task difficulty aware parameter
 954 allocation & regularization for lifelong learning. In *Proceedings of the 2023 IEEE/CVF Conference
 955 on Computer Vision and Pattern Recognition (CVPR)*, pp. 7776–7785, 2023. doi: 10.1109/
 956 CVPR52729.2023.00751.

957

958 Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
 959 Andrew M. Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In
 960 *Proceedings of the Tenth International Conference on Learning Representations*, 2022. URL
 961 <https://openreview.net/forum?id=gEZrGCozdqR>.

962

963 Miles Williams and Nikolaos Aletras. On the impact of calibration data in post-training quantization
 964 and pruning. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd
 965 Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
 966 10100–10118, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi:
 967 10.18653/v1/2024.acl-long.544. URL <https://aclanthology.org/2024.acl-long.544/>.

968

969 Genta Winata, Lingjue Xie, Karthik Radhakrishnan, Shijie Wu, Xisen Jin, Pengxiang Cheng, Mayank
 970 Kulkarni, and Daniel Preotiuc-Pietro. Overcoming catastrophic forgetting in massively multilingual
 971 continual learning. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Findings of
 972 the Association for Computational Linguistics: ACL 2023*, pp. 768–777, Toronto, Canada, July
 973 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.48. URL
 974 [https://aclanthology.org/2023.findings-acl.48/](https://aclanthology.org/2023.findings-acl.48).

975

976 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
 977 Moi, Pierrick Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,

972 Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Syl-
 973 vain Gugger, and others. Transformers: State-of-the-art natural language processing. In Qun
 974 Liu and David Schlangen (eds.), *Proceedings of the 2020 Conference on Empirical Methods
 975 in Natural Language Processing: System Demonstrations*, pp. 38–45, Online, October 2020.
 976 Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-demos.6. URL
 977 <https://aclanthology.org/2020.emnlp-demos.6/>.

978 Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
 979 Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and Ludwig
 980 Schmidt. Model soups: averaging weights of multiple fine-tuned models improves accuracy without
 981 increasing inference time. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
 982 Gang Niu, and Sivan Sabato (eds.), *Proceedings of the 39th International Conference on Machine
 983 Learning*, volume 162 of *Proceedings of Machine Learning Research*, pp. 23965–23998. PMLR,
 984 17–23 Jul 2022. URL <https://proceedings.mlr.press/v162/wortsman22a.html>.

985 Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. TIES-Merging:
 986 Resolving interference when merging models. In A. Oh, T. Naumann, A. Globerson, K. Saenko,
 987 M. Hardt, and S. Levine (eds.), *Advances in Neural Information Processing Systems*, volume 36, pp.
 988 7093–7115. Curran Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/1644c9af28ab7916874f6fd6228a9bcf-Paper-Conference.pdf.

989 Atsuki Yamaguchi, Aline Villavicencio, and Nikolaos Aletras. How can we effectively expand the
 990 vocabulary of LLMs with 0.01GB of target language text? *arXiv*, abs/2406.11477, 2024. URL
 991 <https://arxiv.org/abs/2406.11477>.

992 Atsuki Yamaguchi, Terufumi Morishita, Aline Villavicencio, and Nikolaos Aletras. Adapting chat
 993 language models using only target unlabeled language data. *Transactions on Machine Learning
 994 Research*, 2025. ISSN 2835-8856. URL <https://openreview.net/forum?id=6IdoIKowfe>.

995 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 996 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng
 997 Hu, Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, and others. Qwen3 technical report. *arXiv*,
 998 abs/2505.09388, 2025. URL <https://arxiv.org/abs/2505.09388>.

999 Xinyu Yang, Jixuan Leng, Geyang Guo, Jiawei Zhao, Ryumei Nakada, Linjun Zhang, Huaxiu Yao,
 1000 and Beidi Chen. S²FT: Efficient, scalable and generalizable LLM fine-tuning by structured sparsity.
 1001 In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Ad-
 1002 vances in Neural Information Processing Systems*, volume 37, pp. 59912–59947. Curran Associates,
 1003 Inc., 2024. doi: 10.52202/079017-1913. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/6e3b9fb0c0c56cf6e1ee61e6a068fca4-Paper-Conference.pdf.

1004 Kai Yao, Pinglei Gao, Lichun Li, Yuan Zhao, Xiaofeng Wang, Wei Wang, and Jianke Zhu. Layer-
 1005 wise importance matters: Less memory for better performance in parameter-efficient fine-tuning
 1006 of large language models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.),
 1007 *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp. 1977–1992, Miami,
 1008 Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/
 1009 2024.findings-emnlp.109. URL <https://aclanthology.org/2024.findings-emnlp.109/>.

1010 Zheng Xin Yong, Hailey Schoelkopf, Niklas Muennighoff, Alham Fikri Aji, David Ifeoluwa Ade-
 1011 lani, Khalid Almubarak, M Saiful Bari, Lintang Sutawika, Jungo Kasai, Ahmed Baruwa, Genta
 1012 Winata, Stella Biderman, Edward Raff, Dragomir Radev, and Vassilina Nikoulina. BLOOM+1:
 1013 Adding language support to BLOOM for zero-shot prompting. In Anna Rogers, Jordan Boyd-
 1014 Gruber, and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual Meeting of the Association
 1015 for Computational Linguistics (Volume 1: Long Papers)*, pp. 11682–11703, Toronto, Canada, July
 1016 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.653. URL
 1017 <https://aclanthology.org/2023.acl-long.653/>.

1018 Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario:
 1019 Absorbing abilities from homologous models as a free lunch. In Ruslan Salakhutdinov, Zico
 1020 Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp
 1021 (eds.), *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of

1026 *Proceedings of Machine Learning Research*, pp. 57755–57775. PMLR, 21–27 Jul 2024. URL
 1027 <https://proceedings.mlr.press/v235/yu24p.html>.

1028 Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
 1029 In Doina Precup and Yee Whye Teh (eds.), *Proceedings of the 34th International Conference on*
 1030 *Machine Learning*, volume 70 of *Proceedings of Machine Learning Research*, pp. 3987–3995.
 1031 PMLR, 06–11 Aug 2017. URL <https://proceedings.mlr.press/v70/zenke17a.html>.

1032 Han Zhang, Sheng Zhang, Yang Xiang, Bin Liang, Jinsong Su, Zhongjian Miao, Hui Wang, and
 1033 Ruijing Xu. CLLE: A benchmark for continual language learning evaluation in multilingual
 1034 machine translation. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), *Findings of the*
 1035 *Association for Computational Linguistics: EMNLP 2022*, pp. 428–443, Abu Dhabi, United Arab
 1036 Emirates, December 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
 1037 *findings-emnlp.30*. URL <https://aclanthology.org/2022.findings-emnlp.30/>.

1038 Hengyuan Zhang, Yanru Wu, Dawei Li, Sak Yang, Rui Zhao, Yong Jiang, and Fei Tan. Balancing
 1039 speciality and versatility: a coarse to fine framework for supervised fine-tuning large language
 1040 model. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Association*
 1041 *for Computational Linguistics: ACL 2024*, pp. 7467–7509, Bangkok, Thailand, August 2024a.
 1042 Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.445. URL <https://aclanthology.org/2024.findings-acl.445/>.

1043 Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen,
 1044 and Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In *Proceedings*
 1045 *of the Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=lq62uWRJjiY>.

1046 Zhi Zhang, Qizhe Zhang, Zijun Gao, Renrui Zhang, Ekaterina Shutova, Shiji Zhou, and Shanghang
 1047 Zhang. Gradient-based parameter selection for efficient fine-tuning. In *Proceedings of the 2024*
 1048 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 28566–28577,
 1049 2024b. doi: 10.1109/CVPR52733.2024.02699.

1050 Junhao Zheng, Xidi Cai, Shengjie Qiu, and Qianli Ma. Spurious forgetting in continual learning
 1051 of language models. In *Proceedings of the Thirteenth International Conference on Learning*
 1052 *Representations*, 2025. URL <https://openreview.net/forum?id=ScI7I1KGdI>.

1053 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 1054 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
 1055 Judging LLM-as-a-judge with MT-bench and chatbot arena. In *Proceedings of the Thirty-seventh*
 1056 *Conference on Neural Information Processing Systems Datasets and Benchmarks Track*, 2023.
 1057 URL <https://openreview.net/forum?id=uccHPGD1ao>.

1058 Wenzhen Zheng, Wenbo Pan, Xu Xu, Libo Qin, Li Yue, and Ming Zhou. Breaking language barriers:
 1059 Cross-lingual continual pre-training at scale. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung
 1060 Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Natural Language*
 1061 *Processing*, pp. 7725–7738, Miami, Florida, USA, November 2024. Association for Computational
 1062 Linguistics. doi: 10.18653/v1/2024.emnlp-main.441. URL <https://aclanthology.org/2024.emnlp-main.441/>.

1063 Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou,
 1064 and Le Hou. Instruction-following evaluation for large language models. *arXiv*, abs/2311.07911,
 1065 2023. URL <https://arxiv.org/abs/2311.07911>.

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133**Appendix Directory**

- **Appendix A:** Evaluation Details
- **Appendix B:** Implementation Details
 - General Setup
 - Alternative Scoring Method Implementations
- **Appendix C:** Supplementary Results
- **Appendix D:** Supplementary Analysis
- **Appendix E:** Extended Related Work

A EVALUATION DETAILS

Table 7 shows language-specific prompt templates for each task.

B IMPLEMENTATION DETAILS**B.1 GENERAL SETUP**

Hyperparameters. Tables 8 and 9 list the hyperparameters in CPT and evaluation, respectively.

Software. We use HF datasets (Lhoest et al., 2021, v3.6.0) for preprocessing, HF transformers (Wolf et al., 2020, v4.52.4), HF peft (Mangrulkar et al., 2022, v0.15.2), FlashAttention-2 (Dao, 2024, v2.7.4) and PyTorch (Ansel et al., 2024, v2.6.0) for training. We use lm-evaluation-harness (Gao et al., 2023, v0.4.8) for IFEval and GSM8K evaluation, alpaca-eval (Li et al., 2023b, v0.6.6) for AE2 evaluation, Ai2 Safety Tool for T3 evaluation,¹⁰ and HF LightEval (Fourrier et al., 2023, Commit 327071f) for the rest.

Hardware. We mainly use a single AMD MI300X GPU with ROCm 6.4.1 for experiments. Additionally, we use either a single NVIDIA H100 80GB, A100 80GB, or A100 40GB GPU with CUDA 12.9 for evaluation.

B.2 ALTERNATIVE SCORING METHOD IMPLEMENTATIONS

SSU-SparseGPT. This method employs a metric from Frantar & Alistarh (2023) that approximates second-order information. The score for any weight θ_{ij} in an input column j is the average squared activation of the corresponding input neuron: $s_{ij} = \mathbb{E}_{x \in \mathcal{D}_{\text{calib}}} x_j^2$.

SSU-FIM. This method uses the diagonal of the Fisher Information Matrix, which measures output sensitivity to parameter changes (Kirkpatrick et al., 2017). We approximate the Fisher score for a parameter θ_{ij} as the average squared gradient of the negative log-likelihood loss L over $\mathcal{D}_{\text{calib}}$: $s_{ij} = \mathbb{E}_{(x,y) \in \mathcal{D}_{\text{calib}}} \left(\frac{\partial L}{\partial \theta_{ij}} \right)^2$.

C SUPPLEMENTARY RESULTS

Tables 10, 11, 12, and 13 show performances on English chat and instruction-following benchmarks, English safety alignment benchmark, general English benchmarks, and general target language benchmarks, respectively. Results for IFEval, AE2, MTB, GSM9K, MT, and SUM are averaged across three different runs. The rest are single-run results as they are evaluated in a deterministic-manner.

¹⁰Following Lambert et al. (2025), we use their forked version: <https://github.com/nouhadziri/safety-eval-fork> (Commit 2920bb8).

1134
 1135
 1136
 1137
 1138 Table 7: Language-specific prompt templates. We generate the templates for each target language
 1139 using a machine translation API, following Yong et al. (2023).
 1140

1141	Task	Language	Template
1142	X-En MT	English	Translate {X: a target language} to English: {sentence} =
1143		Nepali	नेपालीलाई अङ्ग्रेजीमा अनुवाद गर्नुहोस्: {sentence} =
1144		Kyrgyz	Кыргызчадан английсчеге которуу: {sentence} =
1145		Amharic	አማርኛን ወደ አማርኛ ተርተዋል: {sentence} =
1146		Hausa	Fassara Hausa zuwa Turanci: {sentence} =
1147		Igbo	Sugharja Igbo gaa na Bekee: {sentence} =
1148	En-X MT	English	Translate English to X: {sentence} =
1149		Nepali	अङ्ग्रेजीलाई नेपालीमा अनुवाद गर्नुहोस्: {sentence} =
1150		Kyrgyz	Англисчеден кыргызчага которуу: {sentence} =
1151		Amharic	አማርኛን ወደ አማርኛ ተርተዋል: {sentence} =
1152		Hausa	Fassara Turanci zuwa Hausa: {sentence} =
1153		Igbo	Sugharja Bekee gaa n'Igbo: {sentence} =
1154	SUM	English	Summarize the following text in English: {text} Summary:
1155		Nepali	तलको पाठ्लाई नेपालीमा सक्षेपमा लेख्नुहोस्: {text} सारांशः
1156		Kyrgyz	Төмөнкү текстти кыргызча кыскача жазыңыз: {text} Кыскача:
1157		Amharic	የታችልው ድጋፍና በአማርኛ አቀፍኛ አስተኞቸ፡፡ {text} አማርኛውን፡፡
1158		Hausa	Takaita rubutu mai zuwa cikin Hausa: {text} Takaitawa:
1159		Igbo	Chikota edemeade a n'Igbo: {text} Nchikota:
1160	MRC	English	{context} Question: {question} A. {option A} B. {option B} C. {option C} D. {option D} Answer:
1161		Nepali	{context} प्रश्नः {question} A. {option A} B. {option B} C. {option C} D. {option D} उत्तरः
1162		Kyrgyz	{context} Сүрөө: {question} A. {option A} B. {option B} C. {option C} D. {option D} Жооп:
1163		Amharic	{context} ቴጥቅ: {question} A. {option A} B. {option B} C. {option C} D. {option D} ወልድ:
1164		Hausa	{context} Tambaya: {question} A. {option A} B. {option B} C. {option C} D. {option D} Amsa:
1165		Igbo	{context} Ajụjụ: {question} A. {option A} B. {option B} C. {option C} D. {option D} Aziza:
1166		English	The following are multiple choice questions (with answers) about {subject}.
1167		Nepali	{context} Question: {question} A. {option A} B. {option B} C. {option C} D. {option D} Answer:
1168	MMLU	Kyrgyz	तल {subject} सम्बन्धी बहु-विकल्प प्रश्नहरू (उत्तर सहित) दिइएका छन। {context} प्रश्नः {question} A. {option A} B. {option B} C. {option C} D. {option D} उत्तरः
1169		Amharic	Бул {subject} боюнча бир нече тандoo суроолору (жооптор менен) төмөнде келтирилген. {context} Сүрөө: {question} A. {option A} B. {option B} C. {option C} D. {option D} Жооп:
1170		Hausa	ከታችል ስለ {subject} የቁጥር ትልዕኮ የቁጥጥቷል (ከመልስና ጽር) ፍቃዬ፡፡ {context} ቴጥቅ: {question} A. {option A} B. {option B} C. {option C} D. {option D} ወልድ፡፡
1171		Igbo	Wadannan tambayoyi masu zaɓi da yawa (tare da amsoshi) game da {subject} ne. {context} Tambaya: {question} A. {option A} B. {option B} C. {option C} D. {option D} Amsa:
1172		English	Nke a bụ ajụjụ ọnụ nñorø ọtụtụ (na aziza) gbasara {subject}. {context} Ajụjụ: {question} A. {option A} B. {option B} C. {option C} D. {option D} Aziza:
1173		Nepali	

1188

1189

1190 Table 8: Hyperparameters for continual pre-training. Values for GMT and AdaLoRA were selected
1191 based on our setup, as they were not provided in their respective original papers (Li et al., 2025; Hui
1192 et al., 2025).

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

Hyperparameters	Values
Batch size	32
Number of training steps	12,208
Optimizer	adamw_apex_fused
Adam ϵ	1e-8
Adam β_1	0.9
Adam β_2	0.999
Sequence length	512
Learning rate	5e-5
Learning rate scheduler	cosine
Warmup steps	First 5% of steps
Weight decay	0.01
Attention dropout	0.0
Training precision	BF16
HFT, GMT, SSU	
Target freezing ratio	0.5
GMT	
Accumulation interval	4
AdaLoRA	
Target r	8
LoRA α	32
LoRA dropout	0.05
T_{init}	1,000
T_{final}	8,546
δ_t	20
LoRA β_1	0.85
LoRA β_2	0.85
Coefficient of orthogonal regularization	0.5
LoTA	
Mask calibration steps	100
S2FT	
d_{ratio} (Down)	0.015 (equivalent to LoRA $r = 8$)
o_{ratio} (Output)	0.015 (equivalent to LoRA $r = 8$)

1224

1225

1226

1227

1228 Table 9: Parameters for generation tasks. N/A for GSM8K indicates that a model generates text until
1229 it detects default stop symbols or reaches its maximum sequence length.

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

Parameters	Values
Temperature	0.8
Repetition penalty	1.1
Top k	40
Top p	0.9 (MT, SUM, MTBench) 0.8 (AE2, IFEval, GSM8K)
Sampling	True
Max. generated tokens	128 (MT, SUM) 512 (AE2) 1,024 (MTBench) 1,280 (IFEval) N/A (GSM8K)

1242
 1243
 1244
 1245
 1246 Table 10: Performance on chat and instruction-following tasks in English. The best and second-best
 1247 adaptation approaches for each model scale are indicated in **bold** and underlined, respectively.

1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273	Approach	1FEval					AE2					MTB					GSM8K				
		ne	ky	am	ha	ig	ne	ky	am	ha	ig	ne	ky	am	ha	ig	ne	ky	am	ha	ig
7B	Source	.675	.675	.675	.675	.675	32.6	32.6	32.6	32.6	32.6	3.98	3.98	3.98	3.98	3.98	.796	.796	.796	.796	.796
	FFT	.520	.480	.495	.417	.369	14.3	12.6	12.1	7.8	5.2	3.80	3.50	3.60	3.40	3.12	.623	.619	.593	.602	.604
	AdaLoRA	.668	.679	.681	.646	.669	27.2	25.7	25.7	24.6	<u>20.0</u>	3.98	3.96	3.89	3.92	3.87	.736	.742	.737	.704	.685
	HFT	.636	.652	.636	.604	.578	22.6	18.3	21.0	<u>15.1</u>	11.1	3.95	3.82	3.85	3.77	3.73	.699	.689	.692	.646	.659
	GMT	.596	.571	.577	.405	.492	17.7	14.2	16.1	7.3	7.3	3.92	3.74	3.79	3.44	3.49	.671	.607	.645	.606	.648
	SSU-Rand	.619	.624	.634	.599	.564	24.0	19.1	19.8	14.8	12.5	3.86	3.81	3.87	3.79	3.75	.701	.678	.693	.660	.680
	SSU-Mag	.595	.617	.591	.548	.497	19.2	16.8	18.3	11.5	8.9	3.87	3.86	3.81	3.79	3.59	.682	.665	.660	.629	.638
13B	SSU-Wanda	<u>.655</u>	<u>.664</u>	<u>.661</u>	.688	.670	28.1	28.7	28.5	24.6	25.0	4.02	4.02	3.96	<u>3.91</u>	3.92	.746	.759	.749	.741	.756
	Source	.763	.763	.763	.763	.763	37.2	37.2	37.2	37.2	37.2	4.06	4.06	4.06	4.06	4.06	.853	.853	.853	.853	.853
	FFT	.549	.468	.506	.405	.314	23.6	14.7	18.6	11.9	3.7	3.91	3.66	3.69	3.43	2.93	.768	.730	.732	.733	.737
	AdaLoRA	.720	.733	.737	<u>.728</u>	<u>.675</u>	<u>34.6</u>	34.1	33.2	<u>30.0</u>	<u>28.7</u>	4.10	4.08	4.09	<u>4.03</u>	<u>3.94</u>	<u>.812</u>	<u>.814</u>	<u>.812</u>	.821	<u>.815</u>
	HFT	.693	.680	.676	.578	.528	31.2	29.1	27.4	23.4	17.9	4.08	4.04	3.99	3.84	3.69	.802	.793	.762	.760	.765
	GMT	.628	.527	.543	.404	.381	28.1	20.1	19.8	16.2	12.3	3.91	3.89	3.54	3.55	3.34	.787	.759	.688	.763	.771
	SSU-Rand	.672	.703	.677	.558	.539	30.2	28.2	26.8	21.9	16.2	3.97	3.97	3.98	3.85	3.66	.787	.795	.777	.766	.780
	SSU-Mag	.651	.648	.636	.489	.434	28.3	24.8	23.5	16.8	9.7	4.00	3.93	3.98	3.76	3.35	.782	.768	.755	.756	.751
13B	SSU-Wanda	<u>.718</u>	<u>.723</u>	<u>.733</u>	.739	.739	34.7	<u>33.7</u>	<u>32.2</u>	33.8	32.8	4.04	4.11	<u>4.01</u>	4.10	4.01	<u>.831</u>	<u>.827</u>	<u>.814</u>	<u>.808</u>	.830

1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273 Table 11: Performance on Tülu 3 safety evaluation suite (T3). The best and second-best adaptation
 1274 approaches for each model scale are indicated in **bold** and underlined, respectively.

1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295	Approach	T3 (↑)				
		ne	ky	am	ha	ig
7B	Source	.851	.851	.851	.851	.851
	FFT	.770	.791	.800	.807	.816
	AdaLoRA	.842	.829	.836	.806	.805
	HFT	.812	.816	.839	<u>.833</u>	.828
	GMT	.777	.791	.811	<u>.782</u>	.812
	SSU-Rand	<u>.824</u>	<u>.838</u>	<u>.841</u>	.832	<u>.838</u>
	SSU-Mag	.811	.813	.831	.829	.828
13B	SSU-Wanda	.842	.846	.855	.856	.851
	Source	.821	.821	.821	.821	.821
	FFT	.745	.710	.792	.657	.782
	AdaLoRA	.816	.805	.815	.759	.799
	HFT	.790	.743	<u>.817</u>	.764	<u>.812</u>
	GMT	.756	.735	.751	.736	.798
	SSU-Rand	.798	.756	.792	<u>.768</u>	.799
1293 1294 1295	SSU-Mag	.774	.742	.804	<u>.747</u>	.811
	SSU-Wanda	.809	.789	.819	.797	.813

1296

1297

1298

1299

1300

1301 Table 12: Performance on source language (English) tasks. Scores that are better than Source are
1302 highlighted in green. The best and second-best adaptation approaches for each model scale are
1303 indicated in **bold** and underlined, respectively.

Approach	MT					SUM					MRC					MMLU					
	ne	ky	am	ha	ig	ne	ky	am	ha	ig	ne	ky	am	ha	ig	ne	ky	am	ha	ig	
7B	Source	45.4	28.8	19.5	27.9	28.5	22.8	22.8	22.8	22.8	.880	.880	.880	.880	.880	.618	.618	.618	.618	.618	
	FFT	49.5	44.2	28.0	48.6	43.6	21.8	20.6	20.1	21.1	20.5	.842	.829	.852	.843	.841	.574	.582	.586	.578	.579
	AdaLoRA	47.6	33.1	14.1	39.8	36.2	22.4	<u>22.9</u>	<u>22.6</u>	22.1	22.1	<u>.874</u>	<u>.878</u>	.871	.860	.847	<u>.608</u>	<u>.614</u>	<u>.611</u>	.585	.593
	HFT	52.5	43.7	35.8	48.4	45.4	<u>22.6</u>	22.7	22.0	22.1	22.3	.858	.863	.857	.846	.847	.596	.597	.604	<u>.586</u>	.594
	GMT	50.3	43.7	37.8	49.1	46.7	22.4	22.2	21.6	20.5	21.5	.850	.818	.856	.829	.853	.579	.578	.599	<u>.565</u>	.591
	SSU-Rand	51.6	44.1	36.4	49.4	45.9	22.7	22.8	22.1	22.2	22.4	.858	.864	.872	.856	.856	.600	.599	.605	.584	.597
	SSU-Mag	51.4	43.4	35.8	47.9	45.1	22.5	22.0	21.9	22.1	21.7	.863	.864	.867	.849	.852	.592	.595	.607	.581	.592
13B	SSU-Wanda	52.3	43.9	<u>36.4</u>	49.7	46.3	22.7	23.1	<u>22.2</u>	22.9	23.3	<u>.871</u>	<u>.868</u>	.874	.863	.870	<u>.606</u>	<u>.608</u>	<u>.609</u>	.605	.603
	Source	50.7	30.5	22.7	31.0	31.9	24.5	24.5	24.5	24.5	.897	.897	.897	.897	.897	.665	.665	.665	.665	.665	
	FFT	49.7	<u>39.2</u>	39.2	43.5	28.8	21.5	8.6	19.0	14.4	14.8	.890	.891	.901	.891	.889	.650	.643	.657	.650	.637
	AdaLoRA	52.1	33.1	19.8	40.6	37.2	24.1	25.6	24.4	24.7	<u>23.4</u>	<u>.906</u>	<u>.901</u>	.898	.894	.892	<u>.662</u>	<u>.663</u>	.662	<u>.660</u>	.651
	HFT	55.1	38.6	<u>41.6</u>	50.1	35.1	<u>24.5</u>	20.5	22.7	16.8	18.8	.897	.896	.893	<u>.899</u>	.888	.659	.652	<u>.665</u>	.657	.655
	GMT	48.7	37.1	23.2	45.2	33.4	23.4	12.9	15.9	14.1	16.4	.892	.893	<u>.900</u>	.896	.897	.653	.658	.660	.654	.643
	SSU-Rand	54.4	<u>39.7</u>	36.3	49.7	39.6	24.9	23.6	22.9	16.6	20.4	.897	<u>.903</u>	<u>.900</u>	.897	.891	.658	.654	.663	.653	.653
	SSU-Mag	53.4	37.4	32.5	45.9	31.5	24.4	20.6	20.7	16.8	18.6	.893	.896	.896	.894	.883	<u>.659</u>	.656	.662	<u>.659</u>	.647
	SSU-Wanda	55.7	45.1	43.8	51.4	45.1	24.4	<u>25.3</u>	24.0	23.8	23.8	<u>.898</u>	<u>.901</u>	.893	<u>.898</u>	<u>.897</u>	<u>.662</u>	<u>.660</u>	<u>.664</u>	<u>.659</u>	.659

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328 Table 13: Performance on target language tasks. Scores that are better than Source are highlighted in
1329 green. The best and second-best adaptation approaches for each model scale are indicated in **bold**
1330 and underlined, respectively.

Approach	MT					SUM					MRC					MMLU					
	ne	ky	am	ha	ig	ne	ky	am	ha	ig	ne	ky	am	ha	ig	ne	ky	am	ha	ig	
7B	Source	27.0	21.1	5.1	24.4	23.0	22.4	22.9	8.6	23.7	23.3	.382	.379	.276	.332	.301	.301	.301	.276	.321	.323
	FFT	32.5	33.8	12.1	38.6	36.7	22.1	23.7	<u>9.3</u>	32.2	26.4	.360	<u>.441</u>	.309	.460	.396	.293	.312	.288	.372	.360
	AdaLoRA	28.1	22.3	4.0	22.9	22.3	21.7	23.1	6.5	31.6	26.6	.351	.343	.276	.328	.291	<u>.309</u>	.311	.272	.278	.324
	HFT	32.7	32.4	9.6	37.5	36.9	22.4	23.8	8.6	32.1	26.3	.368	.411	.282	.438	.388	.293	<u>.314</u>	.287	.346	.373
	GMT	32.3	<u>33.5</u>	<u>11.6</u>	39.0	38.3	22.3	23.8	9.9	32.4	26.2	.346	.419	<u>.312</u>	<u>.451</u>	<u>.398</u>	.279	.308	.296	.353	.361
	SSU-Rand	33.2	32.6	9.5	38.4	37.3	22.4	23.8	8.8	32.2	26.4	<u>.388</u>	.428	.299	<u>.457</u>	.401	.305	.311	.288	<u>.362</u>	.355
	SSU-Mag	33.1	32.2	9.7	37.1	36.6	22.2	23.7	9.2	<u>32.3</u>	26.2	.372	.418	.297	<u>.451</u>	.379	.303	.307	<u>.291</u>	.346	.348
13B	SSU-Wanda	34.0	32.2	9.0	42.6	37.1	22.4	24.2	8.9	32.2	26.3	<u>.401</u>	<u>.458</u>	.316	.439	.401	<u>.313</u>	<u>.329</u>	.296	.355	<u>.371</u>
	Source	32.4	22.5	6.0	25.3	25.7	22.9	23.2	10.0	25.3	22.4	.501	.393	.318	.348	.310	.345	.322	.293	.333	.351
	FFT	37.5	36.9	16.5	40.2	37.1	21.8	<u>23.7</u>	<u>10.6</u>	<u>32.7</u>	25.4	.500	<u>.564</u>	.381	<u>.579</u>	.438	.342	.335	<u>.315</u>	.417	.397
	AdaLoRA	33.7	24.0	5.7	26.3	25.4	22.2	22.9	9.4	31.6	25.4	.448	.391	.293	.371	.322	.340	.307	.277	.324	.307
	HFT	37.6	36.3	14.4	41.6	38.4	21.9	23.4	10.4	32.4	26.1	.498	.538	.376	.538	.429	.348	.356	.312	.384	.375
	GMT	37.3	<u>36.6</u>	16.5	40.2	36.8	22.0	23.4	9.8	<u>32.7</u>	26.0	.501	<u>.559</u>	.355	.530	.420	.348	.356	.318	<u>.404</u>	.338
	SSU-Rand	37.5	36.1	<u>14.5</u>	41.8	37.9	<u>22.3</u>	23.4	10.4	32.9	26.1	.492	.556	.364	.540	<u>.440</u>	.352	.361	.313	.383	.369
1344	SSU-Mag	37.2	36.1	<u>14.5</u>	39.7	36.5	22.0	23.0	9.7	32.1	26.0	.474	.533	.361	<u>.546</u>	.419	.345	<u>.357</u>	.311	.394	.342
	SSU-Wanda	37.9	35.7	13.7	44.0	39.1	22.8	23.8	11.0	32.3	25.9	<u>.520</u>	.549	<u>.377</u>	.542	.441	.354	.355	.302	.390	<u>.395</u>

1346

1347

1348

1349

1350

1351 Table 14: Performance of additional baselines: LoTA and S2FT with SSU-Wanda. We use Igbo as
1352 the target language. **Bold** and underlined denote best and second-best adaptation approaches with
1353 relative changes in subscripts. \star indicates that the approach is a default baseline used in §6.

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

D SUPPLEMENTARY ANALYSIS

1370

1371

1372 In §6, we use the default configurations for additional baselines: LoTA and S2FT. To ensure a com-
1373 prehensive evaluation, we extend this with a fine-grained hyperparameter ablation study (Table 14).

1374

1375

1376

1377 **LoTA.** We examine LoTA across sparsity ratios in 12.5% increments, consistent with our analysis
1378 of SSU, HFT, and GMT. High sparsity ratios (e.g., 90% and 87.5%) preserve source performance
1379 reasonably well while improving target performance. Despite these gains, these configurations
1380 consistently underperform SSU-Wanda. At 90% sparsity, LoTA shows lower target gains (e.g., 23.9%
1381 relative average gain vs. 30.7% for SSU-Wanda) and weaker source preservation (e.g., 7.6% average
1382 drop in monolingual source tasks vs. 4.0%). Conversely, lower sparsity allows for more adaptation
1383 and leads to better target performance. For instance, LoTA at 50% achieves a 31.7% average target
1384 gain, surpassing the 30.7% gain of SSU-Wanda. However, this improvement triggers substantial
1385 catastrophic forgetting: the average drop in monolingual source tasks reaches 19.9%, substantially
1386 worse than the 7.6% drop at 90% sparsity. This degradation intensifies at 37.5% sparsity, reaching a
1387 25.4% drop. These results indicate that while the default high-sparsity setting mitigates catastrophic
1388 forgetting in LoTA, the approach fails to match the balance of source preservation and target language
1389 acquisition achieved by SSU-Wanda.

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1390 **S2FT.** Following the original paper (Yang et al., 2024), we sparsely tune the down projection layers
1391 using a parameter count equivalent to LoRA with a rank of 8 (Table 8). We additionally evaluate
1392 larger parameter budgets equivalent to ranks of 16, 32, and 64. We also test the combination of
1393 “Down and Output” projection tuning to determine if the poor performance reported for Mistral and
1394 Llama3 (attributed to inflexible selection in multi-query attention) applies to OLMo 2.1395 First, as noted in §6, the default setting preserves source capabilities effectively (3.3% average drop
1396 vs. 4.0% for SSU-Wanda) but yields minimal target gains (2.3% vs. 30.7%). Increasing the trainable
1397 parameter budget (i.e., reducing sparsity) improves target performance but erodes source capabilities.
1398 At the equivalent of rank 64, S2FT exhibits a larger source drop (8.2%) than SSU-Wanda (4.0%)
1399 while still achieving lower target gains (15.0% vs. 30.7%). As larger capacities progressively degrade
1400 source performance without matching the target gains of SSU-Wanda, we conclude that no optimal
1401 S2FT configuration exists to surpass SSU in our problem setup. Finally, we confirm that tuning
1402 “Down and Output” projections yields suboptimal results, causing severe relative drops of up to 23.1%
1403 in monolingual source tasks and 9.25% in target tasks. In summary, regardless of hyperparameter
1404 adjustments, only SSU provides robust source preservation while elevating target language abilities
1405 to levels comparable to FFT.

1404
1405

E EXTENDED RELATED WORK

1406
1407
1408
1409
1410
1411
1412
1413
SSU addresses the core challenge of continual learning (CL): adapting a model to new tasks while mitigating catastrophic forgetting (Goodfellow et al., 2015; Kirkpatrick et al., 2017). This section situates SSU within the parameter-centric family of CL solutions. These methods protect knowledge at the parameter level, typically without accessing data from the old task for replay. They generally address two fundamental questions: (1) the **Identification Problem**, defining which parameters are critical to a previous task; and (2) the **Protection Problem**, determining the mechanism to enforce protection on those parameters. Parameter-centric approaches largely fall into three categories: **soft, regularization-based** protection; **hard, architectural-based** protection; and **adaptive, hybrid** methods.1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426

Soft Parameter Protection (Regularization-Based). These methods discourage changes to critical parameters by adding a penalty term to the loss function of the new task. Approaches differ primarily in solving the “Identification Problem.” Elastic Weight Consolidation (EWC) identifies critical parameters via the Fisher Information Matrix diagonal (Kirkpatrick et al., 2017), while Synaptic Intelligence (SI) computes importance online by tracking the cumulative contribution of each parameter to loss reduction (Zenke et al., 2017). Similarly, Memory Aware Synapses (MAS) estimates importance weights based on the sensitivity of the learned function (output function) to parameter changes, eliminating the need for original labeled data (Aljundi et al., 2018). Soft-Masking of Parameter-Level Gradient Flow (SPG) protects knowledge by directly modulating gradient flow with soft masks rather than modifying the loss objective (Konishi et al., 2023). However, such “soft” constraints often fail under severe distributional shifts (Wang et al., 2023). This limitation becomes particularly acute in our problem setup (i.e., adapting instruct models using unlabeled target language data), where optimization pressure from unlabeled target corpora can overpower regularization penalties.

1427
1428
1429
1430
1431
1432
1433
1434

Hard Parameter Protection (Isolation & Architectural). These methods enforce stability via structural constraints, such as freezing or allocating parameters, to ensure near-zero forgetting. Hard Attention to the Task (HAT) learns a binary mask, forcing gradients to zero for parameters allocated by the mask from any previous task (Serra et al., 2018). PackNet employs an “iterative prune, fix, and retrain” cycle, freezing the surviving “packed” weights and forcing new tasks to utilize only “free” parameters (Mallya & Lazebnik, 2018). Piggyback represents an extreme form, freezing an entire pre-trained backbone and learning new tasks solely by training new binary masks (Mallya et al., 2018).

1435
1436
1437
1438
1439
1440
1441
1442

Adaptive & Hybrid Protection. This emerging class assesses the properties of an incoming task to select a protection strategy dynamically. Context-aware Task-driven (CAT) automatically detects whether a new task resembles previous ones (Ke et al., 2020), applying Hard Protection (binary mask) for dissimilar tasks and Soft Protection (attention) for similar tasks. Parameter Allocation & Regularization (PAR) identifies task relatedness and applies dynamic protection: “easy” tasks are consolidated via soft regularization, while “difficult” tasks trigger the hard allocation of a new, isolated expert model (Wang et al., 2023). While promising, the application of such dynamic allocation strategies to the specific constraints of LLM language adaptation remains an interesting avenue for future research.

1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Situating SSU within Continual Learning. SSU adapts these CL principles for the linguistic adaptation of instruct LLMs. We characterize SSU as a source-focused method utilizing static hard parameter protection. It resolves the “Identification Problem” via source-data-driven importance scores (e.g., Wanda) and the “Protection Problem” via column-wise structural freezing. While conceptually aligned with hard protection, SSU overcomes specific limitations regarding **problem setting** and **scale**. Foundational CL methods largely focus on task-incremental learning, where the model learns a sequence of discrete, labeled tasks (e.g., Task 1: MNIST, Task 2: CIFAR). Consequently, methods like HAT rely on task identifiers (Task IDs) at inference time to select the correct mask. This requirement is incompatible with general-purpose instruct LLMs, where the input language (or task) is unknown and the model must operate as a unified entity without external task signals. Regarding scale, foundational methods typically target architectures with fewer than 1B parameters (e.g., PackNet uses VGG-16 ($\sim 138M$) (Simonyan & Zisserman, 2015)). Methods like the iterative pruning and retraining cycles of PackNet often become computationally prohibitive when applied to billion-parameter LLMs. In contrast, SSU utilizes a one-shot, static calculation of importance before training, making it computationally viable for modern transformer-based architectures.