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Abstract
Feature learning in neural networks is crucial for
their expressive power and inductive biases, moti-
vating various theoretical approaches. Some ap-
proaches describe network behavior after train-
ing through a change in kernel scale from initial-
ization, resulting in a generalization power com-
parable to a Gaussian process. Conversely, in
other approaches training results in the adapta-
tion of the kernel to the data, involving directional
changes to the kernel. The relationship and re-
spective strengths of these two views have so far
remained unresolved. This work presents a theo-
retical framework of multi-scale adaptive feature
learning bridging these two views. Using methods
from statistical mechanics, we derive analytical
expressions for network output statistics which
are valid across scaling regimes and in the contin-
uum between them. A systematic expansion of
the network’s probability distribution reveals that
mean-field scaling requires only a saddle-point
approximation, while standard scaling necessi-
tates additional correction terms. Remarkably,
we find across regimes that kernel adaptation can
be reduced to an effective kernel rescaling when
predicting the mean network output in the spe-
cial case of a linear network. However, for linear
and non-linear networks, the multi-scale adaptive
approach captures directional feature learning ef-
fects, providing richer insights than what could
be recovered from a rescaling of the kernel alone.
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1. Introduction
A central phenomenon that is essential for explaining the
power of neural networks (NNs) is feature learning (FL),
where networks learn meaningful high-dimensional repre-
sentations of the data (Bengio et al., 2013). FL plays an
increasingly important role in our ability to understand and
rationalize the behavior of large language models (LLMs).
Sparse autoencoders can extract so called monosemantic
features from LLMs that are given by a superposition of
layer activations (Bricken et al., 2023); these features allow
interpreting and even altering model behavior (Templeton
et al., 2024). Beyond interpretability, FL is essential for
efficient generalization with finite data, as it enhances infor-
mative directions in the learned representations, reducing
the sample complexity of learning functions of these direc-
tions (Abbe et al., 2021; Paccolat et al., 2021; Dandi et al.,
2024). Despite its significance, many open questions re-
main regarding the mechanisms underlying the emergence
of these feature directions.

A well-characterized case in NN theory is the limit of
infinite-width and finite sample size, where networks behave
as Gaussian processes (GPs) (MacKay, 2003), characterized
by the neural network Gaussian process (NNGP) kernel
(Neal, 1996; Williams, 1998; Matthews et al., 2018; Lee
et al., 2018). However, the NNGP does not capture FL,
which emerges at finite network width, in the proportional
limit, where both network width and sample size tend to in-
finity proportionally (Li & Sompolinsky, 2021), or in certain
scaling regimes (Yang et al., 2024). Hence the NNGP fails
to capture the networks’ nuanced internal representations
that arise from feature learning (van Meegen & Sompolin-
sky, 2024). Multiple theoretical approaches have emerged
to describe this phenomenon, yet there is no consensus on
how to characterize FL. A common approach is to study the
change of the network kernel, though the existing frame-
works differ in their predictions for this change.

One prominent class of theories, which are commonly re-
ferred to as rescaling theories (Li & Sompolinsky, 2021;
Pacelli et al., 2023; Baglioni et al., 2024), predicts that
the average network output and variance can be described
by a rescaled NNGP kernel. Initially developed for linear
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networks in the standard scaling regime1, this framework
surprisingly yields impressively accurate predictions even
in mean-field scaling2. Despite the strong FL in this regime,
the average network outputs can be obtained from an output
kernel that is a rescaled NNGP kernel.

However, FL is often considered a structural phenomenon,
as in the case of Gabor filters (Gabor, 1946; Rai & Rivas,
2020) that emerge in the latent layers of convolutional neural
networks (Luan et al., 2018). Thus, the expectation is that
the effect of FL on the output should be directional as well.
The rescaling result raises fundamental questions about how
learned features are represented in network outputs and can
be captured theoretically.

In contrast, adaptive theories of FL (Roberts et al., 2022;
Seroussi et al., 2023; Bordelon & Pehlevan, 2023; Fischer
et al., 2024b; van Meegen & Sompolinsky, 2024) consider
learned features, predicting that the kernel undergoes a struc-
tural change and incorporates features explicitly. Conse-
quentially, these theories are able to predict phenomena in
networks that stem from FL such as a reduction in sam-
ple complexity – the required amount of samples to learn
a given task – relative to that of a GP (Naveh & Ringel,
2021b) as well as grokking (Rubin et al., 2024). However,
adaptive theories are significantly more complex computa-
tionally than rescaling theories, while yielding comparable
predictions for quantities such as the network loss. A funda-
mental open question remains: How can two such different
descriptions of FL be valid at the same time?

In this work, we address this pivotal question by systemati-
cally connecting different FL theories as well as discussing
their differences. Using methods from statistical physics, we
recast the theoretical description of the posterior distribution
of network outputs into a minimization problem with respect
to a quantity which we call the “order parameter”. We find
that different theories result from different choices of order
parameters, in particular with regard to their dimensionality
(see Fig. 1a). Our main contributions are:

• We derive a multi-scale adaptive theory that is valid
across the full range of scaling regimes, from mean-
field to standard scaling, which allows us to system-
atically include finite-width corrections (see Fig. 1b).
This generalizes previous adaptive approaches, which
were restricted to specific scaling regimes, and holds
for arbitrary tasks as well as non-linear networks.

• By analyzing the simplest non-trivial model, we rec-
oncile adaptive and rescaling theories: we show that
for the mean network output the multi-scale adaptive
theory can be approximated in certain limits to yield

1A scaling where readout weight variance scales as 1/width.
2A scaling where readout weight variance scales as 1/width2.
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Figure 1. (a) The multi-scale adaptive theory bridges between
rescaling and adaptive theories of feature learning. Starting from
the distribution of network outputs for trained networks, the choice
of order parameter decides whether a rescaling (red) or adaptive
(blue) theory is obtained. The choice of order parameter recasts
feature learning into either a (i) low-dimensional minimization
or (ii) high-dimensional minimization problem. An approxima-
tion of the multi-scale adaptive theory in certain limits yields the
result of the rescaling approach, but in addition describes (iii)
directional aspects of feature learning. (b) Training (solid line)
and test errors (dashed line) across scaling regimes for different
approaches. While standard scaling (green shaded area) requires a
one-loop approximation with fluctuation corrections (Fluct. Corr.),
a saddle-point or tree-level approximation (Saddle-Point) is suffi-
cient in mean-field scaling (orange shaded area). We show results
for the kernel rescaling theory by (Li & Sompolinsky, 2021) as
reference (Rescaling). We here show results for a linearly separa-
ble task; for results on MNIST see Fig. 6 in App. D. Parameters:
γ = 1, Ptrain = 80, N = 100, D = 200, κ0 = 1, Ptest = 103,
gv = gw = 0.5, ∆p = 0.1.
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an effective rescaling of the kernel. This explains why
certain FL phenomena do not appear in rescaling theo-
ries.

• Our theory reveals how the two approaches differ. In
linear networks, rescaling and adaptive theories yield
equivalent predictions for the mean network output, but
not for the output covariance. In mean-field scaling,
the covariance exhibits clear adaptation to task-relevant
directions, accurately captured by our adaptive theory
and not by a rescaling theory. In non-linear networks,
the disparity between the approaches emerges already
at the level of the mean predictions: our adaptive the-
ory correctly predicts a change in sample complexity
class relative to the NNGP, a phenomenon that is not
captured by rescaling theories.

Overall, our findings suggest that a comprehensive under-
standing of FL requires moving beyond kernel rescaling
towards high-dimensional kernel adaptation.

2. Related works
The limit of infinite network width and finite amount of
training data has been studied extensively, yielding among
others the NNGP kernel (Neal, 1995; Williams, 1998; Lee
et al., 2018; Matthews et al., 2018; Avidan et al., 2024).
This theory relates network behavior at initialization to train-
ing dynamics (Poole et al., 2016; Pennington et al., 2017;
Schoenholz et al., 2017; Xiao et al., 2018). However, the
NNGP cannot explain the often superior performance of
finite-width networks (Li et al., 2015; Chizat et al., 2019;
Lee et al., 2020; Aitchison, 2020; Refinetti et al., 2021),
requiring either the inclusion of finite-width effects or dif-
ferent infinite-width limits such as µP scaling (Yang et al.,
2022; Vyas et al., 2023).

Describing FL in neural networks in a Bayesian framework
has led to concurrent views: kernel rescaling (Li & Som-
polinsky, 2021; 2022; Pacelli et al., 2023; Bassetti et al.,
2024; Baglioni et al., 2024) and kernel adaptation (Aitchi-
son, 2020; Naveh & Ringel, 2021a; Seroussi et al., 2023;
Fischer et al., 2024b; Rubin et al., 2024; van Meegen & Som-
polinsky, 2024). These differ in the choice of order param-
eters considered and in consequence also in the explained
phenomena. A complementary perspective is provided by
Yang et al. (2023), who propose a unified theoretical frame-
work showing that FL extends classical kernel methods by
enabling the learning of data-dependent feature maps in the
infinite-width regime.

Various works study other aspects of networks in the
Bayesian framework: Zavatone-Veth & Pehlevan (2021b)
study properties of the network prior, whereas we focus
on the network posterior. Hanin & Zlokapa (2023) obtain

a rigorous non-asymptotic description of deep linear net-
works in terms of Meijer-G functions. Zavatone-Veth et al.
(2022) study the same setting but consider explicit models
on the input data in the limit of infinite pattern dimension.
Zavatone-Veth & Pehlevan (2021a) investigate deep linear
networks in different proportional limits, recovering the
results from Li & Sompolinsky in an adaptive approach.
Cui et al. (2023) study non-linear networks, exploiting the
Nishimori conditions that hold for Bayes-optimal inference,
where student and teacher have the same architecture and
the student uses the teacher’s weight distribution as a prior;
the latter is assumed Gaussian i.i.d., which allows them to
use the Gaussian equivalence principle (Goldt et al., 2020)
to obtain closed-form solutions.

Our work is distinct from perturbative approaches such
as (Antognini, 2019; Naveh et al., 2021; Cohen et al.,
2021; Halverson et al., 2021; Roberts et al., 2022; Hanin
& Zlokapa, 2023; Hanin, 2024) for the Bayesian setting or
(Dyer & Gur-Ari, 2020; Huang & Yau, 2020; Aitken & Gur-
Ari, 2020; Roberts et al., 2022; Bordelon & Pehlevan, 2023;
Buzaglo et al., 2024) for gradient-based training that use the
strength of non-Gaussian cumulants of the outputs as an ex-
pansion parameter. In contrast, we perform an expansion in
terms of fluctuations around the mean outputs, which is able
to capture phenomena that escape perturbative treatments
such as phase transitions; this technique corresponds to an
infinite resummation of perturbative terms. Our approach
is similar to van Meegen & Sompolinsky (2024) with the
difference that they scale weight variances as 1/N3, so that
readout weights concentrate (see App. B for a comparison
of the approaches).

Another line of work focuses on the dynamics of FL: Saxe
et al. (2014) derive exact learning dynamics for deep linear
networks, while Bordelon & Pehlevan (2023) use dynamical
mean-field theory to describe network behavior in the early
stages of training of gradient descent training in different
scaling regimes; in contrast we consider networks at equi-
librium. Yang & Hu (2020) consider the effect of network
training dynamics and learning rate scales in networks. An
experimental investigation of kernels in feature learning
in gradient descent settings was performed by Canatar &
Pehlevan (2022). Day et al. (2024) study the effect of weight
initialization on generalization and training speed. A differ-
ent viewpoint considers spectral properties of FL (Simon
et al., 2023; Yang et al., 2024) as well as investigating the ef-
fects of learned representations directly (Petrini et al., 2023).
Maillard et al. (2024) derive polynomial scaling limits of
the required amount of training data.
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3. Single hidden-layer network
We consider the following network architecture

hα = V xα, fα = wTϕ(hα), yα = fα + ξα, (1)

where ξ is Gaussian regularization noise ξ i.i.d.∼ N (0, κ). We
consider P tuples of training data D = {(xα, yα)}1≤α≤P

with xα ∈ RD and yα ∈ R as well as an unseen test point
(x∗, y∗) denoted by ∗. Here, ϕ denotes a non-linear acti-
vation function and fα ∈ R is the scalar network output.
We study the Bayesian setting with Gaussian priors on the
readin weights V ∈ RN×D as Vij ∼ N (0, gv/D) and the
readout weights w ∈ RN as wi ∼ N (0, gw/N

γ).

We differentiate between two cases: (a) standard scaling
for γ = 1 and (b) mean-field scaling for γ = 2. Accord-
ingly, we scale the regularization noise as κ = κ0N

1−γ

so that it does not dominate the network output in mean-
field scaling. For concise notation, we use the shorthands
fD = (fα)1≤α≤P , X = (xα)1≤α≤P and y = (yα)1≤α≤P

in the following. Further, summations over repeated indices
are implied Vklxl ≡

∑N
l=1 Vklxl. The code for theory and

experiments can be found in 10.5281/zenodo.15480898.

4. Multi-scale adaptive feature learning theory
We compute the network posterior on the test point (x∗, y∗)
by conditioning on the training data D and derive a set of
self-consistency equations for the average discrepancies ⟨∆⟩
between labels y and mean posterior network outputs ⟨fD⟩
on the training data. This description on the level of the
discrepancies yields a high-resolution picture of the network
behavior: it allows us to explain kernel rescaling results in
the proportional limit as well as predict directional aspects
of FL.

4.1. Predictor statistics of the neural network

We are interested in the Bayesian network posterior for the
network output on training points fD and a test point f∗,
which corresponds to training the network with Langevin
stochastic gradient descent (LSGD) (Welling & Teh, 2011;
M et al., 2017; Naveh et al., 2021) until convergence (see
App. C.3 for details). We denote the joint vector of out-
puts as f := (fD, f∗) ∈ RP+1. Following along the lines
of Segadlo et al. (2022a), we write the joint distribution as

p(fD, f∗, y) = N (y|fD, κ0N
1−γ) (2)

×
∫

df̃D

∫
df̃∗ exp

[
− if̃Tf +W (if̃D, if̃∗)

]
,

with f̃ := (f̃D, f̃∗) the conjugate fields to f = (fD, f∗).
The cumulant-generating function W (if̃D, if̃∗) of the net-

work prior is given by

W (if̃D, if̃∗) = ln

〈
exp

(
P+1∑
a=1

if̃awjϕ
(
haj

))〉
wj ,haj

,

(3)

where the average ⟨. . . ⟩wj ,hj
is over the prior distribution

on the network parameters and the hidden pre-activations

haj
i.i.d. over j∼ N (0, C(xx)) with C(xx) = gv/DXXT ∈

R(P+1)×(P+1). The detailed derivation can be found in
App. A. The statistics of the conjugate fields f̃D are directly
linked to the statistics of the network predictors fD via the
output discrepancies ∆ = y − fD on the training data as

⟨∆⟩ = −iκ0N
1−γ⟨f̃D⟩. (4)

To obtain the statistics of the conjugate variables
(f̃D, f̃∗) and thus also of the network outputs (fD, f∗),
we define a conditional cumulant-generating function
W(k, j∗|y) := ln ⟨exp(j∗f∗ + ikTf̃D)⟩f∗,f̃D which yields

W(k, j∗|y) = ln

∫
df̃ exp

[
ikTf̃D + S(f̃D, j∗|y)

]
, (5)

S(f̃D, j∗|y) = −iyTf̃D − κ0

2
N1−γ f̃T

Df̃D

+W (if̃D, j∗).

Here, we introduced source terms (k, j∗) with k ∈ RP ,
j∗ ∈ R to obtain the statistics of (f̃D, f∗) as derivatives. On
the training points, we have

⟨f̃D⟩ = −i∇kW|k,j∗=0, ⟨⟨f̃Df̃T
D⟩⟩ = −∇2

kW|k,j∗=0, (6)

with ⟨⟨f̃Df̃T
D⟩⟩ the covariance of f̃D. On the test point, we

get

⟨f∗⟩ = ∂j∗W|k,j∗=0, ⟨⟨f2
∗ ⟩⟩ = ∂2

j∗W|k,j∗=0. (7)

However, the cumulant-generating function W(k, j∗|y) in
(5) in general does not have an analytical solution. Instead,
we perform a systematic expansion in terms of fluctuations
of the network output using the Legendre transform of the
cumulant-generating function W of the network posterior

Γ(
¯̃
f, j∗|y) = extrk ikT

¯̃
f −W(k, j∗|y), (8)

where we take the extremum with respect to k. This trans-
form is a function of the mean conjugate field ¯̃

f = ⟨f̃D⟩ (in
the following, we drop the index D for readability), defined
self-consistently by the stationary condition given by

∂ ¯̃
f
Γ(

¯̃
f, j∗|y)

!
= 0. (9)

The Legendre transform Γ(
¯̃
f, j∗|y) is thus a natural way of

constructing a minimization problem that yields the quantity
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Figure 2. (a) Training discrepancies ⟨∆⟩ = y − ⟨fD⟩ and (b) test discrepancies ⟨∆∗⟩ = y∗ − ⟨f∗⟩ on an Ising task in mean-field scaling.
We show theoretical values for both NNGP and tree-level against empirical results, where the gray line marks the identity. In contrast to
the NNGP, the tree-level approximation accurately matches the empirical values. While we use ϕ = id here, the non-linear case ϕ = erf
yields similar results (see Fig. 9 in App. D). Parameters: γ = 2, Ptrain = 80, N = 100, D = 200, κ0 = 1, Ptest = 103, gv = gw = 0.5,
∆p = 0.1.

we are interested in. It recasts the problem of computing
the statistics of the posterior, which is the stationary solu-
tion of the stochastic minimization problem described by
the LSGD training, into an effective deterministic optimiza-
tion problem of Γ with regard to the mean discrepancies
¯̃
f ; intuitively, we may therefore think of Γ as an effective
loss function that explicitly depends only on the mean dis-
crepancies ⟨∆⟩ ∝ ¯̃

f , but implicitly takes fluctuations of ∆
into account. Moreover, it allows computing corrections to
the mean network outputs in a systematic manner, building
on a broad foundation of methods from statistical physics
(Zinn-Justin, 1996; Helias & Dahmen, 2020).

Using the relationship between first-order parametric deriva-
tives of the Legendre transform Γ and the cumulant-
generating function W(k, j∗|y), we obtain

⟨f∗⟩ = −∂j∗Γ|k,j∗=0. (10)

Next, we consider systematic approximations of Γ for differ-
ent scaling regimes, from which we determine the network
output statistics.

4.2. Exact network prior for linear networks

The above expressions are exact but require knowledge of
the cumulant-generating function W of the network prior
in (3). For general non-linear activation functions ϕ, the
cumulant-generating function W can only be approximated,
e.g. using a cumulant expansion (see App. A.1.2 for details).
For linear activations ϕ(h) = h, however, we derive an
exact expression

W (if̃D, if̃∗) = −N

2
ln det

[
I+

gw
Nγ

Ĉ(xx)f̃ f̃T
]
. (11)

Since the goal of this work is to connect existing theories
while also studying their differences, we consider the linear
setting in the following as the simplest setting possible. De-
spite this choice, the theoretical framework presented here
also applies to the non-linear case as discussed in App. A.

4.3. Saddle-point approximation in mean-field scaling

In mean-field scaling, the exponent S of the cumulant-
generating function in (5) scales linearly with the network
width N , while the fluctuations of the network output scale
as ⟨⟨ffT⟩⟩ ∼ 1/N and become negligible. Thus, we can
perform a saddle-point approximation for the integral in
(5) and obtain the tree-level approximation of the Legendre
transform (Helias & Dahmen, 2020) by replacing f̃ by its
mean value f̃ 7→ ¯̃

f yielding

Γ(
¯̃
f, j∗|y) ≈ ΓTL(

¯̃
f, j∗|y) = −S( ¯̃f, j∗|y) . (12)

We derive this result more rigorously in App. A.2 using
a large deviation principle (Touchette, 2009). From the
stationary condition in (9), we obtain a self-consistency
equation for ¯̃

f given by

¯̃
f = −i

(
κ0N

−1I+ CTL
( ¯̃
f
)
C

(xx)
DD

)−1

y , (13)

CTL
( ¯̃
f
)
= gwN

−1
[
I+

gw
N2

C
(xx)
DD

¯̃
f
¯̃
fT
]−1

, (14)

where C
(xx)
DD ∈ RP×P refers to the training data submatrix

of C(xx). In the remainder of this section, ¯̃
f refers to the

solution of (13). We obtain the discrepancies on the training
points as

⟨∆⟩TL = κ0

(
κ0I+ CTL

( ¯̃
f
)
C

(xx)
DD

)−1

y . (15)

For the test point, we get

⟨f∗⟩TL (16)

=
[
CTL

( ¯̃
f
)
C

(xx)
D∗

]T (
κ0N

1−γI+ CTL
( ¯̃
f
)
C

(xx)
DD

)−1

y

where C
(xx)
D∗ := {gv/D xα · x∗}1≤α≤P ∈ RP×1, recover-

ing results by Seroussi et al. (2023). In Fig. 2, we compare
theoretical values for training and test discrepancies against
empirical measurements for linear networks trained on a
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Figure 3. (a) Training discrepancies ⟨∆⟩ = y − ⟨fD⟩ and (b) test discrepancies ⟨∆∗⟩ = y∗ − ⟨f∗⟩ on an Ising task in standard scaling.
Upper row: theoretical values for different theories against empirical results; gray line marks the identity. Lower row: difference of
theoretical values to the NNGP as a baseline against NNGP predictions, indicating small differences between the different approaches.
Results of the kernel rescaling approach by Li & Sompolinsky (2021) are shown as reference (LS). Parameters: γ = 1, Ptrain = 80,
N = 100, D = 200, κ0 = 0.4, Ptest = 103, gv = 0.5, gw = 0.2, ∆p = 0.1.

linearly separable Ising task (see App. C.3 for details). Com-
paring to the NNGP as a baseline, we find that, while the
NNGP fails to match network outputs, the multi-scale adap-
tive theory accurately predicts the values observed in trained
networks. For similar results on non-linear networks, see
Fig. 9 in App. D.

4.4. Fluctuation corrections in standard scaling

In standard scaling, output fluctuations are not scaled down
by the network width N and instead become non-negligible.
To obtain the leading-order fluctuation corrections, we ex-
pand the exponent S of the cumulant-generating function in
(5) around its saddle-point ¯̃

f to second order as

S
(
f̃D, j∗|y

)
≈ S

( ¯̃
f, j∗

)
+
1

2

(
f̃D− ¯̃

f
)TS(2)

(
f̃D− ¯̃

f
)
, (17)

where S(2) denotes the Hessian of S(f̃ , j∗|y) with respect to
f̃ at the saddle-point ¯̃

f . Calculating the Gaussian integral in
(5), we obtain the one-loop approximation of the Legendre
transform (Helias & Dahmen, 2020) as

Γ1-Loop(
¯̃
f, j∗|y) = −S( ¯̃f, j∗)−

1

2
log det(−S(2)) . (18)

The self-consistency equation for ¯̃
f from the stationary con-

dition in (9) is then given by

¯̃
fα =

[
A
( ¯̃
f
)]−1

αβ

[
−iyβ − 1

2

[
S(2)

]−1

δϵ
S(3)
ϵδβ

∣∣∣∣
j∗=0

]
, (19)

where A
( ¯̃
f
)
= κ0I + CTL

( ¯̃
f
)
C

(xx)
DD and S(n) refers to

the n-th derivative of the exponent S with respect to f̃

evaluated at ¯̃
f (see App. A.2 for details). In the remainder

of this section, ¯̃f refers to the self-consistent solution of (19),
which is not necessarily the same as the one of (13) in the
previous section. This yields for the training discrepancies
⟨∆⟩1-Loop = iκ0

¯̃
f as in (4) and for the test point from (10)

⟨f∗⟩1-Loop (20)

= κ−1
0 C

(xx)
∗D CTL

( ¯̃
f
)T⟨∆⟩+ 1

2
(S(2))−1

βαS
(3)
αβ∗

∣∣∣∣
j∗=0

.

In the next section, we will see how these expressions re-
duce to a kernel rescaling theory in the proportional limit
N ∝ P → ∞, which in linear networks we refer to as one-
loop simplified in Fig. 3, where we compare theoretical pre-
dictions to empirical measurements on the Ising task. We
show results for the multi-scale adaptive theory presented
here as well as the rescaling theory by Li & Sompolinsky
(2021), which was derived for the standard scaling regime.
Due to the weak FL in standard scaling, all theories match
the network behavior relatively well. However, by taking the
NNGP as a reference, the differences between the theories
become discernable: The tree-level solution shows devia-
tions from the other solutions, predicting overly small test
errors compared to the one-loop solution and compared to
empirics. Furthermore, predictions of the one-loop solution
agree to those of the rescaling theory by Li & Sompolinsky
(2021).

The one-loop solution takes into account leading-order fluc-
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tuation corrections. The latter vanish in mean-field scaling,
so one expects the one-loop approximation to converge to
the tree-level result in this scaling regime. We show this ex-
plicitly in Fig. 1b, where we demonstrate how the different
theories transition between the two scaling regimes by scal-
ing κ0 7→ κ0/χ and gw 7→ gw/χ with 0.1/N < 1/χ < 10
determining the scale of fluctuations. As expected, train
and test errors decrease for increasing FL in the mean-field
regime. Due to non-negligible fluctuations, the tree-level
and one-loop solutions differ in standard scaling. When
further increasing the fluctuations scale, even the one-loop
solution does not accurately predict empirical measurements
anymore since this regime requires fluctuation corrections
beyond first order. In principle, the multi-scale adaptive
approach allows computing these higher-order correction
terms (Helias & Dahmen, 2020). When decreasing the
fluctuations towards the mean-field scaling regime, the one-
loop solution converges to the tree-level solution. Notably,
the here presented multi-scale adaptive approach accurately
predicts train and test errors across both scaling regimes,
including the intermediate regime.

5. Kernel rescaling theory as an approximation
of the multi-scale adaptive theory

Existing rescaling theories (Li & Sompolinsky, 2021; 2022;
Pacelli et al., 2023; Bassetti et al., 2024; Baglioni et al.,
2024) and adaptive theories (Naveh & Ringel, 2021a;
Seroussi et al., 2023; Fischer et al., 2024b; Rubin et al.,
2024; van Meegen & Sompolinsky, 2024) make both qual-
itatively and quantitatively different predictions regarding
network behavior. On the one hand, rescaling approaches
predict that the mean network output is equivalent to that
obtained by a rescaled NNGP kernel. On the other hand,
adaptive approaches such as the multi-scale adaptive theory
presented here, as well as other existing approaches, predict
that the kernel adapts to the data in a richer manner, show-
ing changes in specific directions that are determined by the
training data’s statistics. While these approaches are quite
different, we here expose the close relation between them in
two respects: (i) We show that the adaptive and the rescal-
ing approach can both be derived from the same starting
point; the expression for the joint distribution of the network
outputs (2). (ii) We show that for linear networks the adap-
tive approach in the proportional limit N ∝ P → ∞ can be
approximated by a kernel rescaling for the mean outputs.
For output fluctuations and for certain non-linear networks,
however, such a reduction does not hold.

Technically, the differences between the two viewpoints
stem from different choices of the order parameter used in
the approximation of the posterior, utilizing either a saddle-
point approximation or including fluctuation corrections.
Specifically, with point (i), we show in App. A.4 that the

equations obtained by Li & Sompolinsky (2021) can be
obtained from (2) by marginalizing over the hidden pre-
activations h in (3) and performing a change of variables
so that the posterior is a function of a single scalar order
parameter Q := ∥w∥2. A saddle-point approximation with
respect to this variable yields a self-consistency equation for
Q and consequently expressions for the predictor statistics
on test and training points, such as the mean and fluctua-
tions. As the order parameter is scalar here, it is limited to
describing scalar changes to the kernel.

Conversely, the choice of the high-dimensional order param-
eter in the multi-scale adaptive approach, which in mean-
field scaling reproduces equations from the approach in
(Seroussi et al., 2023), results in structural changes to the
kernel. Notably, the choice of a high-dimensional order
parameter results in the need to correct for fluctuations that
arise in standard scaling, requiring us to go beyond the
saddle-point approximation by using fluctuation corrections.

Surprisingly, as we have shown in the previous section, for a
linear network on the level of the mean predictors, the multi-
scale adaptive approach converges to that of the rescaling
one, even though they have qualitatively different kernels.
This observation motivates (ii), showing that for a linear
network in the proportional limit N ∝ P → ∞, regardless
of the initial choice of order parameter, the mean network
output can be obtained from kernel regression (Rasmussen
& Williams, 2006) with a rescaled NNGP kernel. For non-
linear networks, however, differences already arise on the
level of the mean predictors, as shown in the next section.

In the kernel rescaling case, the predictor for the
mean output is obtained by replacing the NNGP kernel
KNNGP = gwN

1−γC
(xx)
DD with a rescaled kernel

Krescaling = Q/(gwN
1−γ)KNNGP . (21)

For the multi-scale adaptive approach presented here, the
output statistics in mean-field scaling are obtained from

Kadaptive, TL =
[
I+

gw
Nγ

C
(xx)
DD

¯̃
fTL

¯̃
fT

TL

]−1

KNNGP . (22)

The appearing matrix product allows a non-trivial change
of the NNGP kernel in certain meaningful directions, e.g. a
teacher direction or dominant eigendirections of the input
kernel that align with the target, thereby yielding additional
insights. However, we derive an equivalent equation for
the mean predictor by simplifying (11) using the matrix-
determinant-lemma, which yields the mean output from a
rescaled NNGP kernel given by

Krescaling, TL = QTL
( ¯̃
f
)
/(gwN

1−γ)KNNGP , (23)

where QTL
( ¯̃
f
)
= gwN

1−γ/
(
1 + gw

Nγ

¯̃
fTC(xx) ¯̃f

)
and ¯̃

f sat-
isfies (13). So even though the adaptive approach in mean-
field scaling considers a directional change to the kernel,
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in terms of the mean output this is equivalent to a rescaled
kernel.

In standard scaling, one cannot immediately express the
mean output in terms of a rescaled kernel. However, in the
proportional limit N ∝ P → ∞, certain fluctuation correc-
tion terms become negligible, reducing the expressions to a
rescaling form again (see App. A.5). The rescaling factor is
given by

Q1-loop(
¯̃
f) (24)

= QTL(
¯̃
f)− Q2

TL(
¯̃
f)

N
Tr
[
A−1(

¯̃
f)C

(xx)
DD

]
,

where A(
¯̃
f) := κ0I+QTL

( ¯̃
f
)
C

(xx)
DD , and ¯̃

f satisfies (141).

We thus find that known theoretical approaches are all de-
rived from the same original posterior distribution by con-
sidering different order parameters, while their resulting pre-
dictions for the mean network output behave like a rescaled
NNGP. However the rescaling equivalence of mean predic-
tors holds only for linear networks, as well as non-linear
networks approximated using a cumulant expansion of the
non-linearity as described in App. A.1, since one only needs
to substitute C

(xx)
DD 7→ C

(ϕϕ)
DD . However this equivalence

does not necessarily hold for more fine-grained methods
of approximating the non-linearity, such as the approach
described in App. A.2.3. Applying such approximations
within the adaptive approach allows predicting various phe-
nomena that emerge in non-linear networks such as phase
transitions (Rubin et al., 2024) and changes to sample com-
plexity App. A.2.3, that escape a description by a rescaled
kernel.

6. Directional feature learning emerges in
adaptive description

The power of NNs stems from their ability to detect high-
dimensional features in the data, implying that in the transi-
tion from the lazy to the rich regime this would be reflected
in the network output statistics in a non-trivial manner. It is
well established that the network weights adapt during train-
ing in an anisotropic manner, detecting relevant directions
present in the training data (Seroussi et al., 2023; Fischer
et al., 2024b); yet surprisingly, for the mean output of a
linear network this adaptation seems to be equivalent to an
isotropic rescaling of the NNGP kernel.

Teacher-student setting In this section, we demonstrate
that the directional aspect of FL is nonetheless present in
output fluctuations, which is only captured by the adaptive
approach. Given a normalized feature direction ϕ̂, we de-
fine a directional FL measure Φ

(
ϕ̂
)

that indicates to which
degree this feature is represented by the network as

Φ
(
ϕ̂
)
:= ϕ̂T⟨⟨ffT⟩⟩ϕ̂. (25)

Directional Output 
Distribution

Directional Output 
Distribution

eriment

Figure 4. Relative directional feature learning in a teacher student
setting as a function of the fluctuation scale 1/χ. Both NNGP
and rescaling theory fail to capture directional feature learning,
while the multi-scale adaptive theory accurately predicts network
behavior. Insets show the output distribution in different direc-
tions; a detailed version can be found in Fig. 12 in the Appendix.
Parameters: Ptrain = 80, N = 200, D = 50, κ0 = 2, gv = 0.01,
gw = 2.

Then, Φ
(
ϕ̂
)
≈ Tr

(
⟨⟨ffT⟩⟩

)
indicates that the feature direc-

tion ϕ̂ dominates the covariance, implying that this feature
has been perfectly learned, whereas Φ

(
ϕ̂
)
≪ Tr

(
⟨⟨ffT⟩⟩

)
is an indication of weak directional FL. As derived in
App. A.2, we obtain for the covariance of the network out-
puts on the training data

⟨⟨ffT⟩⟩adaptive = κI− κ2
(
A+

2Q2
TL

Nκ2
0

F
)−1

, (26)

where we observe a structural change in the covariance ma-
trix in form of the term F := C

(xx)
DD ⟨∆⟩⟨∆⟩TC(xx)

DD , which
is not present in a rescaling of the NNGP, whose covariance
is (see (129) in App. A.4 for details)

⟨⟨ffT⟩⟩rescaling = κI− κ2
(
κI+QC

(xx)
DD

)−1
. (27)

As evident from the expressions for the covariance, the
directional FL measure Φ differs significantly between the
two approaches, which is illustrated most easily for a kernel
C(xx) ∝ I: the isotropy of the rescaling theory then results
in the same value of Φ

(
ϕ̂
)

independent of the direction of
ϕ̂, whereas the structural change of the covariance in the
adaptive theory by the rank-one term ⟨∆⟩⟨∆⟩T in (26) may
yield larger values of Φ

(
ϕ̂
)

for features ϕ̂ ∥ ⟨∆⟩.

We show the directional aspect of FL in a teacher-student
setting, where the teacher is given by y = Xw∗ with
X ∼ N (0, I) and the student is a linear network as in
Section 3 with ϕ(h) = h. In this setting, the teacher

8
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defines a feature direction ŷ∗ = Xw∗/ |Xw∗|, and for
comparison, we consider another possible feature direction
ŷ⊥ = Xw⊥/ |Xw⊥|, orthogonal to the former in the sense
that w⊥ ⊥ w∗. The latter can be thought of as the direction
of a randomly selected teacher that differs in the weights
of the hidden layer from that of the actual target teacher.
In Fig. 4, we show the relative directional FL measure
Φ
(
ŷ∗
)
/Φ
(
ŷ⊥
)

between the target teacher and a random,
orthogonal teacher direction. While the rescaling theory
does not differentiate between these directions, the adap-
tive theory accurately predicts amplification of the teacher
direction when entering the mean-field regime.

Amplification of kernel structure The expression (26)
likewise exposes a cooperative effect caused by feature
learning as a result of shaping the kernel jointly by the
input and the output statistics. To illustrate this effect, we
consider the Ising task (see (C.3)), where the input ker-
nel C(xx)

DD = gv (I+ ϵ yyT) contains a rank-one term com-
posed of the binary classification labels, unlike the teacher-
student input kernel where C

(xx)
DD ∝ I. Although the factor

ϵ = 1 + 4p(1 − p) is potentially small, as is the case for
weakly distinguishable patterns (0 ≤ p − 1/2 ≪ 1), the
matrix factor F appearing in (26) can significantly amplify
this signal. Consider the case that the target is not learned
well, for example at large ridge κ, so one has ⟨∆⟩ ≃ y. The
matrix factor

F ≃ g2V yyT (1 + ϵ P )2 (28)

then shows that the weak structure ∝ ϵ present in the input
kernel has been amplified by a factor P (see Fig. 11 in
App. D). For an unstructured kernel C(xx) ∝ I (ϵ = 0) the
rank-one component still persists F = g2V yyT, but it is not
amplified by P here. The cooperative effect, in contrast,
shows that feature learning may utilize coherent statistics
between input and output.

Non-linear networks Directional effects in linear net-
works emerge only in the covariance of the outputs. For
non-linear networks, however, these effects appear in the
mean outputs, and have qualitative effects on network per-
formance. The adaptive approach described in App. A.2.3
enables structural changes in the kernel which enhance spe-
cific features of the data. This enhancement, in turn, al-
lows the network to learn non-linear functions of those
features with significantly fewer data points than would typ-
ically be expected. In particular, introducing even a small
non-linearity can lead to a fundamental difference in the
behavior of approaches that rely on a rescaled or adapted
kernel. InApp. A.2.3 we demonstrate this for a teacher-
student setting similar to the one above but where we take
both teacher and student to be non-linear. We find that the
adaptive approach accurately predicts that the student will

learn the non-linear component of the teacher, in contrast
to the NNGP and kernel rescaling approaches which pre-
dict the non-linearity would not be learned (see Fig. 5 in
App. A.2.3). These results reflect a change to the sample
complexity class, and establish a principled connection be-
tween feature learning and improved network performance.

7. Discussion
In this work we present a unified theoretical framework
to understand feature learning (FL) in the Bayesian set-
ting across scaling regimes, from lazy to rich learning.
This framework describes both effects of data adaptation
in trained networks, i.e. directional changes of the net-
work’s output statistics in response to statistical dependen-
cies present in the training data, as well as output rescaling
phenomena that were described in previous works (Li &
Sompolinsky, 2021; Pacelli et al., 2023). Our theory thus
creates links between existing and so far unconnected previ-
ous theories. In the rich regime, the presented multi-scale
adaptive theory clearly exposes directional aspects of FL,
thus going beyond rescaling theories. By considering the
simplest non-trivial case of a linear network, we finally
reconcile the apparent contradiction between directional
adaptation and rescaling by recovering the latter as an ap-
proximation of the former on the level of the mean output.

Furthermore, the multi-scale adaptive theory presented here
applies to both standard and mean-field scaling and the en-
tirety of the scaling spectrum. The latter is possible since
the presented theoretical framework allows systematically
computing fluctuation corrections depending on the scaling
regime. While the tree-level solution and its equivalence
to rescaling applies only to γ = 2, the one-loop theory
applies to the full regime γ ∈ [1, 2] and thus also the equiva-
lence to rescaling (see Section 5). Note that this equivalence
is restricted to the mean predictor, while the adaptive the-
ory captures additional aspects, like directional FL in the
variance terms (see Section 6). Moreover, this equivalence
breaks down in the case of non-linear networks, where the
presence of FL results in changes to the sample complexity
class. In addition, our theory does not make any assump-
tions on the data set; we show results for an Ising task, a
teacher student task and MNIST.

Outlook In this work, we study shallow networks, but
we expect directional FL to be crucial for network perfor-
mance in deeper networks as well. Beyond this, it will be
valuable to extend the theoretical framework to other net-
work architectures such as convolutional networks, residual
networks, and transformers, using the respective network
priors (Garriga-Alonso et al., 2019; Hron et al., 2020; Fis-
cher et al., 2024a). To study the effect of noise in input
data on FL (Lindner et al., 2023), we would like to include
fluctuations of the input kernel in the theoretical framework.
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A. General approach to train and test statistics
We are interested in the training discrepancies ⟨∆α⟩ = yα − ⟨fα⟩ with ⟨fα⟩ denoting the mean network output, and in the
mean network output ⟨f∗⟩ for a test point x∗ after conditioning on the training data D = {(xα, yα)}1≤α≤P . For clarity,
in the appendix we make all index notations explicit instead of using D as in the main text, and denote summations over
training data points with Greek letters. We refer to the mean network outputs as predictors. The joint prior distribution for
(f, f∗, y) can be computed as in (Segadlo et al., 2022b; Fischer et al., 2024b) and is given by

p(f, f∗, y) = N (y|f, κ0N
1−γ)

∫
d(P )f̃

∫
df̃∗ exp

(
−

P+1∑
a=1

if̃afa +W (if̃ , if̃∗)

)
, (29)

W (f̃D, f̃∗) = ln

〈
exp

( P+1∑
a=1

f̃a

N∑
j=1

wj ϕ(haj)

)〉
wi,hai

, (30)

where we use the shorthands
∫

d(P )f̃ =
∏P

α=1

∫∞
−∞ df̃α/(2π), the P + 1 index corresponds to the test point, and i is the

imaginary unit. The i.i.d. distribution of the readin weights Vkl implies that hαj
i.i.d. over j∼ N (0, Ĉ(xx)) with the covariance

matrix of the hidden-layer representation given by

Ĉ(xx) =

 C(xx)
{
C

(xx)
α∗

}P

α=1{
C

(xx)
∗α

}P

α=1
C

(xx)
∗∗

 , (31)

where C(xx) = gv/DXXT,and C
(xx)
∗α = gv/D xα · x∗. To keep notation concise, summations over repeated indices on

the right are implied in the following.

We may obtain training discrepancies ⟨∆α⟩ and the test predictor ⟨f∗⟩ from the joint cumulant-generating function W for
the test point defined as

W(j∗|y) = ln

∫
df∗

∫
df exp(j∗f∗) p(f, f∗, y). (32)

Taking its derivatives w.r.t. to either training labels yα or the source term j∗ yields the posterior of the desired quantities

⟨∆α⟩ = −κ0N
1−γ ∂W(j∗|y)

∂yα
|j∗ , (33)

⟨f∗⟩ =
∂W(j∗|y)

∂j∗

∣∣∣∣
j∗=0

, (34)

because the outer derivative of the logarithm produces the normalization by the model evidence (marginal likelihood)
1/p(y) = 1/

∫
df
∫
df∗ p(f, f

∗, y).

Likewise, the variances follow as

⟨⟨∆α∆β⟩⟩ = κ0N
1−γ − κ2

0N
2−2γ ∂

2W(j∗|y)
∂yα∂yβ

|j∗=0, (35)

⟨⟨f2
∗ ⟩⟩ =

∂2W(j∗|y)
∂(j∗)2

∣∣∣∣
j∗=0

, (36)

By inserting (29) into (32) and performing the integration over f , we can rewrite W as

W(j∗|y) = ln

∫
d(P )f̃ exp

(
− iyαf̃α − κ0

2
N1−γ f̃αf̃α +W (if̃D, j∗)

)
. (37)

Comparing (33), (35), and (37), we note that y acts as a linear source term for f̃D, from which we see that the physical
meaning of the field f̃D is related to the discrepancy between target and network output

⟨∆α⟩ = κ0N
1−γ⟨if̃α⟩, (38)

⟨⟨∆α∆β⟩⟩ = κ0N
1−γδαβ + κ2

0N
2−2γ ⟨⟨f̃αf̃β⟩⟩. (39)
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For computational convenience, we now introduce a source term k

W(k, j∗|y) = ln

∫
df̃ exp

(
ikαf̃α −iyαf̃α − κ0

2
N1−γ f̃αf̃α +W (if̃ , j∗)︸ ︷︷ ︸

S

)
, (40)

allowing us to compute moments of f̃ by differentiating by k instead of y and subsequently setting k = 0. We define the
latter part of the exponent of W as the action

S(f̃ , j∗|y) := −iyαf̃α − κ0

2
N1−γ f̃αf̃α +W (if̃ , j∗|y). (41)

Depending on the scaling in γ, the network outputs f fully concentrate on their mean values or require corrections due to
non-negligible fluctuations. To treat both cases jointly and systematically, we introduce the so-called effective action (Helias
& Dahmen, 2020) as

Γ(
¯̃
f, j∗|y) = extrk ikT

¯̃
f −W(k, j∗|y), (42)

where we explicitly keep the dependence on the source term j∗ for the test point in order to compute parametric derivatives
to obtain test point statistics. This corresponds to the Legendre transform of the cumulant-generating function W; in the
case that W(k, j∗|y) has a scaling form, a large deviation principle can be applied and the effective action corresponds to
the rate function (Touchette, 2009).

The argument ¯̃
f is implicitly defined by the stationary point (sometimes referred to as the equation of state)

∂Γ(
¯̃
f, j∗|y)
∂
¯̃
fα

= ikα = 0, (43)

as we set the source term k to 0 by definition. Using the definition of Γ in (42), the extremum condition yields a
self-consistency equation for ¯̃

f

i
¯̃
f(j∗) =

∂W(k, j∗|y)
∂k

. (44)

In the following we determine approximations of the Legendre transform Γ(
¯̃
f, j∗|y) to different orders of statistical

fluctuations, corresponding to different scaling regimes. From the definition of the effective action Γ follows as well that we
obtain the mean output on that test point from

⟨f∗⟩ =
∂W(k, j∗|y)

∂j∗

∣∣∣∣
k,j∗=0

= −∂Γ(
¯̃
f, j∗|y)
∂j∗

∣∣∣∣
j∗=0

. (45)

A.1. Cumulant-generating function W of the network prior

We recall that hαj is i.i.d Gaussian in j with covariance given by (31). Likewise, the weights wi are i.i.d., so that we may
factorize the expectation to get an overall factor of N in (30)

W (f̃D, f̃∗) = N ln

〈
exp

( P+1∑
a=1

f̃awϕ(ha)

)〉
w,ha

, (46)

reducing the expectation over w and h to scalars with regard to the former neuron index j.

A.1.1. LINEAR ACTIVATION FUNCTION

For linear activation function ϕ(h) = h, we compute first the Gaussian integral in (46) over w and then over the hidden-layer
representations h, yielding

W (f̃D, f̃∗) = N ln

〈
exp

(
f̃Thw

)〉
w,ha

= −N

2
ln det

[
I− gw

Nγ
Ĉ(xx)f̃ f̃T

]
. (47)
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Taking the integrals in the opposite order yields

W (f̃D, f̃∗) = N ln
〈
exp

(1
2
f̃T Ĉ(xx) f̃ w2

)〉
w

= −N

2
ln
[
1− gw

Nγ
f̃TĈ(xx)f̃

]
. (48)

The two expressions are identical also by the matrix-determinant lemma.

A.1.2. NON-LINEAR ACTIVATION FUNCTION

For a non-linear activation function ϕ(h), the integral in (46) in general cannot be solved in a closed form. However, one
may perform a cumulant-expansion of the cumulant-generating function (46) in terms of the first two cumulants of ϕ as

W (f̃D, f̃∗) = N ln

〈
exp

(
f̃Tϕ(h)w

)〉
w,ha

, (49)

= N ln
〈
exp

(
w f̃Tm+

1

2
w2 f̃TĈ(ϕϕ)f̃

)〉
w
,

where we introduced the short hands for the cumulants of ϕ as

ma := ⟨ϕ(ha)⟩ha∼N (0,Ĉ(xx)) , (50)

Ĉ
(ϕϕ)
ab :=

〈
ϕ(ha)ϕ(hb)

〉
(ha,hb)∼N (0,Ĉ(xx))

.

Taking the expectation over w of (49) yields

W (f̃D, f̃∗) = −N

2
ln
[
1− gw

Nγ
f̃TĈ(ϕϕ)f̃

]
(51)

+
N

2

[
f̃Tm

]2 [Nγ

gw
− f̃TĈ(ϕϕ)f̃

]−1

.

For point-symmetric activation functions ϕ(−h) = −ϕ(h), such as erf or tanh activation, the mean m ≡ 0 vanishes and
comparing to (48) the only replacement that appears is Ĉ(xx) → Ĉ(ϕϕ).

A.2. Tree-level approximation

To compute the output statistics, one technically requires the exact effective action Γ in (42). However, in general it does
not have an analytical solution and we instead determine a systematic expansion. A well-established method from both
statistical physics and quantum field theory is the loopwise expansion (Helias & Dahmen, 2020), expands the effective
action Γ(

¯̃
f) in terms of fluctuations of f̃ around its mean value ¯̃

f . The lowest-order term of the loopwise expansion is called
the tree-level approximation, which hence corresponds to a standard mean-field approximation: one replaces f̃D by its mean
¯̃
f in the action itself

ΓTL(
¯̃
f, j∗|y) = −S(

¯̃
f, j∗|y) (52)

= iyα
¯̃
fα +

κ0

2
N1−γ ¯̃

fα
¯̃
fα −W (i

¯̃
f, j∗). (53)

The average value of ¯̃
fα is given by the equation of state (43) of the effective action

∂ΓTL(
¯̃
f, j∗|y)

∂
¯̃
fα

∣∣∣∣
j∗=0

= 0. (54)

In mean-field scaling (γ = 2) and for N → ∞ this result becomes exact using the Gärtner-Ellis theoreom: the output
cumulant-generating function W in (5) has a scaling form as

iyαf̃α +
κ0

2N
f̃αf̃α −W (if̃D, j∗) = Nλf (f̃D/N) (55)
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with λf (k) = iyαkα + κ0

2 kαkα −W (ik, j∗). Thus, we can approximate the probability distribution of network outputs as
(Touchette, 2009)

−p(y|C(xx))/N ≈ ΓTL(
¯̃
f, j∗|y). (56)

Due to the strong suppression of fluctuations in mean-field scaling with N → ∞, the tree-level approximation is sufficient
to describe the network behavior and in particular

lim
N→∞

−p(y|C(xx))/N = ΓTL(
¯̃
f, j∗|y). (57)

However, in the case of larger output fluctuations as in standard scaling (γ = 1), we need to take into account the output
fluctuations systematically by including higher-order corrections to the tree-level result. We derive the leading-order
correction in the following section A.3.

A.2.1. LINEAR ACTIVATION FUNCTION

From the equation of state (54) we obtain a self-consistency equation for ¯̃
fα as

¯̃
f = −i

(
κ0N

1−γI+ CTL
( ¯̃
f
)
C(xx)

)−1

y, (58)

CTL
( ¯̃
f
)
= gwN

1−γ
[
I+

gw
Nγ

C(xx) ¯̃f
¯̃
fT
]−1

. (59)

Using the relation between the statistics of the discrepancies ∆ and f̃D (38), we obtain for the training discrepancies

⟨∆α⟩ = −κ0N
1−γ ∂W(k, j∗|y)

∂kα
|j∗=0 (60)

= κ0

(
κ0I+ CTL

( ¯̃
f
)
C(xx)

)−1

αβ
yβ . (61)

For the test point, we get

⟨f∗⟩TL = −∂ΓTL(
¯̃
f, j∗|y)
∂j∗

|j∗=0 =
∂W (i

¯̃
f, j∗)

∂j∗
|j∗=0 (62)

=
gw

N1−γ
C

(xx)
∗α

(
I+

gw
Nγ

C(xx) ¯̃f
¯̃
fT
)−1

αβ
i
¯̃
fβ . (63)

By substituting the self-consistency equation for ¯̃
f , we obtain

⟨f∗⟩TL = CTL
( ¯̃
f
)
δα
C

(xx)
∗δ

[(
κ0N

1−γI+ CTL
( ¯̃
f
))−1

]
αβ

yβ . (64)

For the covariance of the network predictors, we use that ∆α = yα − fα implies

⟨⟨∆α∆β⟩⟩ = ⟨(∆α − ⟨∆α⟩)(∆β − ⟨∆β⟩)⟩
= ⟨(fα − ⟨fα⟩)(fβ − ⟨fβ)⟩ = ⟨⟨fαfβ⟩⟩, (65)

so that we may obtain the covariance from (39) as

⟨⟨fαfβ⟩⟩ = κ0N
1−γδαβ − κ2

0N
2−2γ ∂

2W(j∗|y)
∂yα∂yβ

|j∗=0. (66)

Using the involutive property of the Legendre transform, we can express the Hessian of W by the inverse of the Hessian of
Γ using W(2) = −(Γ(2))−1, yielding

⟨⟨fαfβ⟩⟩ = κ0N
1−γδαβ + κ2

0N
2−2γ

(
∂2Γ(

¯̃
f |y)

∂
¯̃
f∂

¯̃
f

|j∗=0

)−1

. (67)
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In tree level approximation with ΓTL = −S, we then have

⟨⟨fαfβ⟩⟩ = κ0N
1−γδαβ + κ2

0N
2−2γ

(
∂2(−S( ¯̃f |y))

∂f̃∂f̃
|j∗=0

)−1

. (68)

Computing the Hessian of the action S, we get

∂2(−S( ¯̃f, j∗))
∂
¯̃
fα∂

¯̃
fβ

∣∣∣∣
j∗=0

= κ0δαβ +QTL
( ¯̃
f
)
Cαβ − 2

N
QTL

( ¯̃
f
)
Cαδ

¯̃
fδ QTL

( ¯̃
f
)
Cβϵ

¯̃
fϵ (69)

= A
( ¯̃
f
)
αβ

− 2

N
Q2

TL

( ¯̃
f
) [

C
¯̃
f
¯̃
fTC

]
αβ

, (70)

where we use the shorthand A
( ¯̃
f
)
= κ0I+QTL

( ¯̃
f
)
C. Using the relation between f̃ and the mean deviations from (38)

⟨∆α⟩ = iκ0
¯̃
fα, we may rewrite this expression as

∂2(−S( ¯̃f, j∗))
∂
¯̃
fα∂

¯̃
fβ

∣∣∣∣
j∗=0

= A
( ¯̃
f
)
αβ

+
2

N
Q2

TL

( ¯̃
f
)
κ−2
0

[
C

(xx)
DD ⟨∆⟩⟨∆⟩⊤C(xx)

DD

]
αβ

, (71)

which yields the expression from the main text (26) for the covariance of the network output on training data with
κ = κ0N

1−γ and hence

⟨⟨ff⊤⟩⟩ = κI− κ2

(
A
( ¯̃
f
)
+

2Q2
TL

Nκ2
0

F

)
(72)

with F = C
(xx)
DD ⟨∆⟩⟨∆⟩TC(xx)

DD .

A.2.2. NON-LINEAR ACTIVATION FUNCTION

Here we consider a point-symmetric non-linear activation function, so that the mean m = 0; the extension to the case
with m ̸= 0 is straightforward. Due to the similarity of the expressions (48) and (51), the final expressions here have the
same structure as in the case of the linear activation function, Eqs. (60) - (62), but with the replacement C(xx) → C(ϕϕ)

throughout. Because these two cases throughout lead to identical expressions except for this replacement, in the following
we denote C(xx) or C(ϕϕ) simply by C.

A.2.3. NON-LINEAR ACTIVATION FUNCTION - BEYOND CUMULANT EXPANSION

In this section we consider a more fine-grained approach compared to the cumulant expansion in the previous section.
Following results from previous sections, the self-consistency equation for ¯̃

f in a non-linear network is given by

¯̃
f = −i (K + κ0/NI)−1

y (73)

with

K = gw/N

∫
dPhϕ (h)ϕ (h)

T
exp

(
− 1

2h
TC(xx)h− gw

2N2

¯̃
fTϕ (h)ϕ (h)

T ¯̃
f
)

∫
dPh exp

(
− 1

2h
TC(xx)h− gw

2N2

¯̃
fTϕ (h)ϕ (h)

T ¯̃
f
) . (74)

In the case of linear networks, the integrals in (74) are tractable, and are replaced in previous sections by their explicit
solution, as can be seen in (47). In the case of non-linear networks, the value of K must be approximated, either via a
cumulant-expansion as in the previous section, via a variational Gaussian approximation (VGA) as in (Seroussi et al., 2023),
or via higher-order distributional approximations such as the variational Gaussian mixture approximation as in (Rubin et al.,
2024), as well as potentially richer approximations. Here we consider the VGA, but we emphasize that our framework is in
no way limited to a Gaussian assumption.

The VGA defines a matrix Σ which is chosen such that it minimizes the KL divergence between the distribution of h as it
appears in (74) and a Gaussian distribution with covariance Σ. The matrix Σ is then determined by the following equation[

Σ−1
]
ij
=
[
C(xx)

]
ij
− yT (KΣ + κ0/NI)−1 ∂KΣ

∂Σij
(KΣ + κ0/NI)−1

y (75)
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(a) (b)

Figure 5. g-learnability of target components in two-layer erf network, trained on the target given in (77), where Hi learnability is defined
according to (78), with g(X) = Hi(Xw∗). As can be seen in panel (b), the adaptive approach as derived using VGA predicts that the
network will begin to learn higher-order components of y at P ∼ O(D), due to the manifestation of directionally dependent feature
learning. On the other hand, kernel methods such as the NNGP and the rescaling approach predict that the network output will be linear,
and the cubic component of the target would require P ∼ (D3) training samples. Parameters: Ptest = 4.000, N = 1.000, D = 30,
κ0 = 2, gv = gw = 1, γ = 1, ϵ = −0.1.

where KΣ := gw/N
〈
ϕ (h)ϕ (h)

T
〉
h∼N (0,Σ)

(which is tractable for activations such as Erf, ReLU). Thus the equation for

¯̃
f can be written as

¯̃
fVGA = −i (KΣ + κ0/NI)−1

y. (76)

We note that for a linear network, the VGA approximation is exact, as the distribution of h is indeed Gaussian. The
application of the VGA approximation allows for structural changes to the kernel which do not emerge from a simple
cumulant expansion. The structural encoding of certain directions in the kernel could allow the network to learn complex
functions of these directions with significantly less data points than would be naively expected. Thus, even a small non-
linearity could lead to fundamentally different predictions by the adaptive approach compared to rescaling approaches. To
demonstrate this, we consider a teacher-student setting, where the teacher is given by

y(x) = H1(w
T
∗ x) + ϵH3(w

T
∗ x), (77)

with H1,3 being the first- and third-order Hermite polynomials, and x ∼ N (0, I). We quantify the ability of a network to
learn the different target components (linear or cubic) with a parameter we call learnability, defined so that g-learnability is
given by

g-learnability :=
f (Xtest)

T
g (Xtest)

y (Xtest)
T
g (Xtest)

, (78)

where f, y, g are applied row-wise, and g is any function. Having a learnability = 1 for a given component implies that the
network has successfully learned this component. In Fig. 5 we show the theoretical predictions as well as experimental
observations for the learnability of both target components (H1,3(w

T
∗ x)). The experimentally measured learnability of

the non-linear component is in good agreement with the adaptive predictions (obtained by VGA), which significantly
outperforms the predictions of the kernel approaches (both rescaling and NNGP).

A.3. One-Loop corrections in standard scaling

While in mean-field scaling (γ = 2) the cumulant-generating function has a scaling form and the network outputs f
concentrate, we need to account for their fluctuations in standard scaling (γ = 1). In the following, we thus set γ = 1. To
leading order, also called one-loop approximation, we have

Γ1-Loop(
¯̃
f, j∗|y) = −S( ¯̃f, j∗)−

1

2
log det(−S(2)). (79)
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The self-consistency equation for ¯̃
f then becomes

∂Γ1-Loop(
¯̃
f, j∗|y)

∂
¯̃
fδ

∣∣∣∣
j∗=0

= −∂S( ¯̃f, j∗)
∂
¯̃
fδ

∣∣∣∣
j∗=0

− 1

2

∑
αβ

(−S(2))−1
βα

∂3(−S( ¯̃f, j∗))
∂
¯̃
fα∂

¯̃
fβ∂

¯̃
fδ

∣∣∣∣
j∗=0

!
= 0. (80)

Given the form (48) of the cumulant-generating function W , taking the derivative of S with respect to ¯̃
f in (54) yields a

different expression than in the previous section

−∂S( ¯̃f, j∗)
∂
¯̃
fρ

∣∣∣∣
j∗=0

= iyρ + κ0
¯̃
fρ +QTL

( ¯̃
f
)
Cρδ f̃δ, (81)

QTL
( ¯̃
f
)
=

gw

1 + gw
Nγ

¯̃
fTC

¯̃
f
, (82)

where now QTL is a scalar. Note that in this form the tree-level equation for ¯̃
f (62) can be written as

¯̃
f = −i

(
κ0N

1−γI+QTL
( ¯̃
f
)
C
)−1

y, (83)

thereby obtaining an expression in which the input kernel C is only rescaled by a scalar, which we call a kernel rescaling
expression. For the second and third derivatives, we obtain

∂2(−S( ¯̃f, j∗))
∂
¯̃
fα∂

¯̃
fβ

∣∣∣∣
j∗=0

= κ0δαβ +QTL
( ¯̃
f
)
Cαβ − 2

N
QTL

( ¯̃
f
)
Cαδ

¯̃
fδ QTL

( ¯̃
f
)
Cβϵ

¯̃
fϵ (84)

= A
( ¯̃
f
)
αβ

− 2

N
Q2

TL

( ¯̃
f
) [

C
¯̃
f
¯̃
fTC

]
αβ

, (85)

∂3(−S( ¯̃f, j∗))
∂
¯̃
fα∂

¯̃
fβ∂

¯̃
fδ

∣∣∣∣
j∗=0

= − 2

N
Q2

TL

( ¯̃
f
) [

CαβCδϵ
¯̃
fϵ + CαδCβϵ

¯̃
fϵ + CβδCαϵ

¯̃
fϵ

]
(86)

+
8

N2
Q3

TL

( ¯̃
f
)
Cαα′

¯̃
fα′ Cββ′

¯̃
fβ′ Cδδ′

¯̃
fδ′ (87)

= − 2

N
Q2

TL

( ¯̃
f
) (

Cαβ

[
C

¯̃
f
]
δ
+ Cαδ

[
C

¯̃
f
]
β
+ Cβδ

[
C

¯̃
f
]
α

)
(88)

+
8

N2
Q3

TL

( ¯̃
f
) [

C
¯̃
f
]
α

[
C

¯̃
f
]
β

[
C

¯̃
f
]
δ
. (89)

Here, we use the shorthand A
( ¯̃
f
)
= κ0I+QTL

( ¯̃
f
)
C. Overall, we obtain

¯̃
fδ =

[
A
( ¯̃
f
)−1
]
δϵ

[
− iyϵ +

1

2

∑
αβ

(−S(2))−1
βα

∂3(−S( ¯̃f, j∗))
∂
¯̃
fα∂

¯̃
fβ∂

¯̃
fϵ

∣∣∣∣
j∗=0

]
. (90)

Similarly to the previous section, the training discrepancies are given by

⟨∆α⟩ = iκ0
¯̃
fα. (91)

For the test predictor, we have

⟨f∗⟩1-Loop = −
∂Γ1-Loop(

¯̃
f, j∗|y)

∂j∗

∣∣∣∣
j∗=0

(92)

= −∂W (
¯̃
f, j∗)

∂j∗

∣∣∣∣
j∗=0

− 1

2

∑
αβ

(−S(2))−1
βα

∂3(−S( ¯̃f, j∗))
∂
¯̃
fα∂

¯̃
fβ∂j∗

∣∣∣∣
j∗=0

(93)

= QTL
( ¯̃
f
)
C∗α

¯̃
fα − 1

2

∑
αβ

(−S(2))−1
βα

∂3(−S( ¯̃f, j∗))
∂
¯̃
fα∂

¯̃
fβ∂j∗

∣∣∣∣
j∗=0

. (94)
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The appearing derivatives of the action are structurally similar but we replace the training point xγ by the test point x∗,
yielding

∂3(−S( ¯̃f, j∗))
∂
¯̃
fα∂

¯̃
fβ∂j∗

∣∣∣∣
j∗=0

= − 2

N
Q2

TL

( ¯̃
f
) (

Cαβ

[
C

¯̃
f
]
∗
+ Cα∗

[
C

¯̃
f
]
β
+ Cβ∗

[
C

¯̃
f
]
α

)
(95)

+
8

N2
Q3

TL

( ¯̃
f
) [

C
¯̃
f
]
α

[
C

¯̃
f
]
β

[
C

¯̃
f
]
∗
. (96)

When solving these equations, we backtransform to the imaginary variables ¯̃
f 7→ i

¯̃
f , which changes multiple signs and

absorbs the appearing imaginary units.

A.4. Kernel rescaling approach

We here derive the results by Li & Sompolinsky (2021) and Ariosto et al. (2023) in our multi-scale adaptive theory: Using
that hαj ∼ N (0, C(xx)) i.i.d. over the neuron index j, we can rewrite the cumulant-generating function W (30) for the case
of a linear activation function ϕ(h) = h conditioned on readout weights w as

W (f̃D|w) = ln
〈
exp(−f̃αwjhαj)

〉
hαj

=
1

2
f̃αC

(xx)
αβ f̃β ∥w∥2, (97)

where we drop the test point here to keep notation concise. The result for the test point will follow naturally later. Likewise,
performing a cumulant expansion up to second order in ϕ for a point-symmetric activation function as in (49), we obtain

W (f̃D|w) = ln
〈
exp(f̃αwjϕ(hαj)

〉
hαj

=
1

2
f̃αC

(ϕϕ)
αβ f̃β ∥w∥2, (98)

where C(ϕϕ) is defined as in (50). As in the adaptive approach, we here again write C for short to refer to C(xx) in the case
of linear activation function and to C(ϕϕ) in the case of the non-linear point symmetric activation.

We observe that the readout weights only appear in the form of the squared norm ∥w∥2. The distribution of the network
output is hence

p(y, f |C) = N (y|f, κ0)

∫
df̃D

〈
exp

(
− if̃αfα − 1

2
f̃αCαβ f̃β ∥w∥2

)〉
wi

i.i.d.∼ N (0, gwN )
. (99)

Since both, the prior measure of the weights w ∼ N (w|0, gwN−1) ∝ exp(N ∥w∥2/2gw) and the explicit appearance of w,
is only in the form of ∥w∥2, we may introduce this quantity as an auxiliary variable, which we name Q := ∥w∥2 =

∑N
i=1 w

2
i

and which corresponds to the Euclidean norm of the readout weight vector w. Note that, given ∥w∥2, the integral over f̃D
simply yields f |∥w∥2 ∼ N (0, ∥w∥2C), so

p(y, f |C) = N (y|f, κ0)

∫
dQN (f |0, QC) p(Q). (100)

Here the distribution of the squared norm is

p(Q) =
〈
δ[−Q+ ∥w∥2]

〉
wi

i.i.d.∼N (0, gwN )
(101)

=

∫ i∞

−i∞

dQ̃

2πi

〈
exp

(
Q̃
[
−Q+ ∥w∥2

])〉
wi

i.i.d.∼N (0, gwN )
(102)

=

∫ i∞

−i∞

dQ̃

2πi
exp

(
− Q̃Q+W (Q̃)

)
, (103)

where W (Q̃) = ln ⟨exp
(
Q̃ ∥w∥2)⟩

wi
i.i.d.∼N (0, gwN )

is the cumulant-generating function of Q . Using that the wj are i.i.d, we
get

W (Q̃) = N ln
〈
exp

(
Q̃∥w∥2

)〉
w∼N (0,gw/N)

(104)

= −N

2
ln
[
1− 2gw

N
Q̃
]
, (105)
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where we performed the one-dimensional Gaussian integral over w. Up to here, all steps are exact.

(100) shows that the auxiliary variable Q being a scalar may only carry fluctuations of the overall scaling of the kernel and
hence all descriptions and approximations in terms of Q can only change the scale of the kernel, which is consistent with the
results in (Li & Sompolinsky, 2021; Pacelli et al., 2023).

A.4.1. APPROXIMATION OF NETWORK PRIOR FOR WIDE NETWORKS

One expects that Q concentrates for large N according to the central limit theorem since Q = ∥w∥2 =
∑N

i=1 w
2
i with i.i.d.

wi ∼ N (0, gw/N). The cumulant-generating function W can be written as a scaling form λN (k) := N−1 W (N k) =
− 1

2 ln
[
1 − 2gwk

]
and its limit N → ∞ then exists trivially, so that we may approximate p(Q) with the Gärtner-Ellis

theorem (Touchette, 2009) as

ln p(Q) ≃ sup
Q̃

−QQ̃+W (Q̃) (106)

= − N

2gw

[
1− gw

Q

]
Q− N

2
ln
[gw
Q

]
(107)

= −N

2

[ Q
gw

− 1− ln
Q

gw

]
=: −Γ(Q). (108)

Intuitively, by the scaled cumulant-generating function of the form N W (Q̃/N) = −N
2 ln

[
1− 2gw

Q̃
N

]
the mean of is of

order ⟨Q⟩ = O(1) and all higher-order cumulants of Q are being suppressed by at least O(N−1). So on exponential scales,
one may parametrize the probability by the mean, namely one obtains the distribution of Q from the rate function as e−Γ(Q).
To obtain (106), the supremum condition has been used 0

!
= −Q + gw

[
1 − 2gw

Q̃
N

]−1
, solved for 1 − 2gw

N Q̃ = gw
Q and

Q̃ = N
2gw

[
1− gw

Q

]
and inserted into the first line of (106) to obtain the second line. The rate function, being the Legendre

transform of W , obeys the equation of state

d

dQ
Γ(Q) = Q̃ =

N

2gw

[
1− gw

Q

]
. (109)

So the final expression for the joint probability of y and f , the network prior, is

p(y, f |C) ≃ N (y|f, κ0)

∫
dQN (f |0, QC) e−Γ(Q), (110)

=

∫
dQeS(Q|f,y),

where the action S(Q|f, y) is

S(Q|f, y) = −∥y − f∥2

2κ0
− P

2
lnκ0 (111)

− 1

2
fT
(
QC
)−1

f − 1

2
ln det

(
QC
)
− Γ(Q) + const.

A.4.2. MAXIMUM A POSTERIORI ESTIMATE FOR Q

To obtain the posterior distribution for Q we marginalize (110) over the network outputs f , which yields

p(y|C) ≡
∫

df p(y, f |C) (112)

=

∫
dQ exp

(
S(Q|y)

)
,

which yields the action

S(Q|y) = −1

2
yT
(
QC + κ0I

)−1
y − 1

2
ln det

(
QC + κ0I

)
− Γ(Q), (113)
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and which reproduces Eq. A11 in Li & Sompolinsky (2021) after inserting the rate function (106) and using C = C(xx) for
the linear network. It likewise reproduces Eq. (33) in (Ariosto et al., 2023) when inserting C = C(ϕϕ) for the non-linear
activation function.

When computing the maximum a posteriori value QLS, it only depends on the numerator of

p(Q|y) = p(y|Q) p(Q)

p(y)
, (114)

since the form of (112) is p(y) =
∫
dQp(y|Q) p(Q). Thus, computing the Q-integral in saddle point approximation

comprises to the maximum a posteriori (MAP) QLS as ln p(y|Q) p(Q) = S(Q|y) + const has the same stationary point as
p(y|Q) p(Q).

The length Q = ∥w∥2 in their theory is obtained by the maximum of (113), which is given by

0
!
=

∂S

∂Q
=

1

2
yT
(
QC + κ0I

)−1
C
(
QC + κ0I

)−1
y (115)

− trC
(
QC + κ0I

)−1 − N

2

( 1

gw
− 1

Q

)
.

This self-consistency equation yields the tree-level approximation for ∥w∥2 = QLS.

A.4.3. PREDICTOR STATISTICS

To obtain predictions beyond the length of the readout ∥w∥, we start from 112. We obtain statistics of the training
discrepancies ∆ = yα − fα from

∂

∂yα
ln p(y|C)

MAP Q
≃ d

dyα
sup
Q

S(Q|y) (116)

=
∂

∂yα
S(QLS|y) +

∂S

∂Q︸︷︷︸
=0

∂Q

∂yα

∣∣
Q=Q∗ , (117)

where the derivative by Q vanishes because QLS has been determined by the supremum condition as the stationary point of
the action. The partial derivative by yα only acts on −yT

(
QC + κ0I

)−1
y/2 in the expression for (113)

⟨∆α⟩ = κ0

(
QLSC + κ0I

)−1
y. (118)

In consequence, the test predictor is identical to the NNGP predictor with a different regularizer κ0/QLS

⟨f∗⟩LS =
[
C∗α

] (
C + κ0/QLSI

)−1

αβ
yβ . (119)

To compute the variance of the predictor, we generalize(99) such that instead of the variance κ0I in N (y|f, κ0I), we insert a
general covariance matrix K into the Gaussian measure N (y|f,K) and perform an integration over f

p(y|K,C(xx)) =

∫
df N (y|f,K)

〈 P∏
α=1

δ
[
fα −

N∑
i=1

wi ϕ(hαi)
]〉

wi
i.i.d.∼N (0, gwN ), hαi

i.i.d. over i∼ N (0,C(xx))
. (120)

The presence of the general matrix K allows us to measure the statistics of the discrepancies ∆α = yα− zα, because writing
the Gaussian N (y|f,K) ∝ exp

(
− 1

2 (y − f)TK−1(y − f) + 1
2 ln det (K−1)

)
explicitly we observe that derivatives by[

K−1
]
αβ

yield

∂

∂[K]−1
αβ

ln p(y|K,C)
∣∣∣
K=κ0I

= −1

2
⟨(y − f)α(y − f)β⟩+

1

2
κ0 δαβ . (121)
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With the same manipulations that led to (112) one then has

p(y|K,C) ≡
∫

dQ exp
(
S(Q|K, z)

)
, (122)

where the action, corresponding to (113), is

S(Q|y,K) = −1

2
yT
(
C +K

)−1
y − 1

2
ln det

(
C +K

)
− N

2

( Q
gw

− ln Q
)∣∣

C=QC
. (123)

So in the approximation replacing Q by its MAP QLS we get

∂

∂[K]−1
αβ

ln p(y|K,C)
∣∣∣
K=κ0I

=
d

d[K]−1
αβ

sup
Q

S(Q|y,K)
∣∣∣
K=κ0I

(124)

=
∂

∂[K]−1
αβ

S(QLS|y,K)
∣∣∣
K=κ0I

, (125)

where the inner derivative by ∂S/∂Q drops out due to stationarity at QLS, which is given by the solution of (115). The latter
partial derivative evaluates to

∂

∂[K]−1
αβ

S(Q|y,K)
∣∣∣
K=κ0I

=
[
− 1

2
K
[
c+K

]−1
yyT

[
c+K

]−1
K +

1

2
K (c+K)−1 K

]
αβ

∣∣∣
K=κ0I, c=QLS C

(126)

= κ2
0

[
− 1

2

[
c+ κ0I

]−1
yyT

[
c+ κ0I

]−1
+

1

2
(c+ κ0I)−1

]
αβ

∣∣∣
c=QLS C

, (127)

where we used that ∂Kγδ/∂[K]−1
αβ = −Kγα Kβδ , which follows by symmetry from ∂K−1

γδ /∂Kαβ = −K−1
γα K−1

βδ .

So the second moment of the discrepancies with (121) is

⟨∆α∆β⟩ = κ0δαβ + κ2
0

[ [
c+ κ0I

]−1
yyT

[
c+ κ0I

]−1 − (c+ κ0I)−1
]
αβ

∣∣∣
c=QLS C

= ⟨∆α⟩⟨∆β⟩+ κ0δαβ − κ2
0 (c+ κ0I)−1

αβ

∣∣∣
c=QLS C

, (128)

where we used (118) in the last step. Because ∆ = y− f and the target label y do not fluctuate, the latter two terms in (128)
are the variance

⟨⟨∆α,∆β⟩⟩ = ⟨⟨fα, fβ⟩⟩ (129)

= κ0δαβ − κ2
0 (c+ κ0I)−1

αβ

∣∣∣
c=QLS C

(130)

= c− c [c+ κ0I]−1 c
∣∣∣
c=QLS C

, (131)

which is the usual expression for the variance of the NNGP predictor of a Gaussian process with the kernel c = QLS C.

A.5. Connecting kernel rescaling and adaptive approach

While the kernel rescaling approach holds in the proportional limit N ∝ P → ∞, the one-loop approximation holds also for
large but finite P,N ≫1. As we have seen in Fig. 3 in the main text, they yield almost identical results in certain settings.
By considering the proportional limit, we may connect these two approaches: some correction terms vanish in this limit,
leaving only a scalar term.

To this end, we look at the scaling of each correction term with both P and N . We have

−S(2) = κ0I+QTL C
(xx) − 2

N
Q2

TL C
(xx) ¯̃f

¯̃
fTC(xx) (132)

= κ0I+QTL C
(xx) +O(1/N), (133)
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since (QC(xx) + κ)
¯̃
f ∝ y = O(1) and thus also C(xx) ¯̃f = O(1). Here, we drop the dependence of QTL on ¯̃

f for brevity.
The fluctuation correction is given by

1

2

∑
αβ

(−S(2))−1
βα

∂3(−S( ¯̃f, j∗))
∂
¯̃
fα∂

¯̃
fβ∂

¯̃
fδ

∣∣∣∣
j∗=0

(134)

= − 1

N
Q2

TL

∑
αβ

(−S(2))−1
βα

(
C

(xx)
αβ

[
C(xx) ¯̃f

]
γ
+ C(xx)

αγ

[
C(xx) ¯̃f

]
β
+ C

(xx)
βγ

[
C(xx) ¯̃f

]
α

)
(135)

+
4

N2
Q3

TL

∑
αβ

(−S(2))−1
βα

[
C(xx) ¯̃f

]
α

[
C(xx) ¯̃f

]
β

[
C(xx) ¯̃f

]
γ

(136)

Looking at the individual terms, we have for the first term in the second line

1

N
Q2

TL Tr
[
(κ0I+QTLC

(xx) +O(1/N))−1 C(xx)
]
C

(xx)
γδ

¯̃
fδ = O(P/N), (137)

where the factor P results from the appearing trace. Assuming the regularization noise κ0 to be small compared to the
kernel C(xx), we see for the other terms that they scale as

1

N
Q2

TL

∑
αβ

(κ0I+QTLC
(xx) +O(1/N))−1

βα

(
C(xx)

αγ C
(xx)
βδ

¯̃
fδ + C

(xx)
βγ C

(xx)
αδ

¯̃
fδ

)
≈ 4

N
QTLC

(xx)
γδ

¯̃
fδ = O(1/N), (138)

4

N2
Q3

TL

∑
αβ

(κ0I+QTLC
(xx) +O(1/N))−1

βα

[
C(xx) ¯̃f

]
α

[
C(xx) ¯̃f

]
β

[
C(xx) ¯̃f

]
γ
= O(P/N2). (139)

In the proportional limit P ∝ N → ∞, only the first term does not vanish and the self-consistency equation for ¯̃
f becomes

iy + κ0
¯̃
f +QTL

( ¯̃
f
)
C(xx) ¯̃f − 1

N
Q2

TL

( ¯̃
f
)

Tr
[
(κ0I+QTL

( ¯̃
f
)
C(xx))−1C(xx)

]
C(xx) ¯̃f

!
= 0, (140)

yielding

i
¯̃
f =

(
κ0I+QTL

( ¯̃
f
) (

1− 1

N
QTL

( ¯̃
f
)

Tr
[
(κ0I+QTL

( ¯̃
f
)
C(xx))−1C(xx)

])
C(xx)

)−1

y. (141)

The rescaling factor is thus given by

Q1-Loop := QTL − 1

N
Q2

TLTr
[
(κ0I+QTLC

(xx))−1C(xx)
]
, (142)

where QTL = QTL
( ¯̃
f
)

depends on the self-consistent solution in (141). The tree-level solution is the leading term here and
receives a correction due to the output fluctuations. We cannot directly compare the expression for this rescaling factor to
the one in (Li & Sompolinsky, 2021), since the latter is given by the self-consistency equation (113) and the former by the
self-consistency equation (141) for the training discrepancies inserted into (142). Nevertheless, Fig. 3 in the main text shows
that these two expressions yield the same value and thus the same predictions for the mean discrepancies numerically.

B. Other scaling regimes
We here expose the relation of our theory to the work by van Meegen & Sompolinsky (2024) where yet another scaling
regime is considered. We start from the effective action in tree-level approximation (53) and the form for W given by (46)

ΓTL(
¯̃
f, j∗|y) = iyα

¯̃
fα +

κ0

2
N−1 ¯̃fα

¯̃
fα −W (i

¯̃
f, j∗) (143)

W (f̃D, f̃∗) = N ln

〈∫
dw exp

( P+1∑
a=1

f̃a
w

N
ϕ(ha)− P

w2

2gw

)〉
ha∼N (0,C(xx))

+ const.,

where, as in the original work, we scale the variance of the readout weights by an additional factor P (see ref. (van Meegen
& Sompolinsky, 2024), their Section “1. Weight Posterior” second last paragraph). In the proportional limit P ∝ N it
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entails w ∝ N− 3
2 , which scales down the readout weights even more strongly than mean-field scaling. This scaling allows

taking the integral over w in saddle point approximation because the exponent
∑P+1

a=1 f̃awϕ(ha)− P w2/2gw scales with
P . With (57) one therefore has with l = (

¯̃
f, j∗)/N

− ln p(y|C(xx))/N = ΓTL(N l |y)/N (144)

= iyTl +
κ0

2
lTl

− ln

∫
dw
〈
exp

(
− P

w2

2gw
+ w

[
ilTϕ(h)

])〉
h∼N (0,C(xx))

+ const.

P∝N≃ iyTl +
κ0

2
lTl

− extrw

{
− P

w2

2gw
+ ln

〈
exp

(
w
[
ilTϕ

])〉
h∼N (0,C(xx))

}
+ const.

The extremum condition may have multiple degenerate values wγ that appear with the relative log probability given by the
entropy

ln pγ = −P
w2

γ

2gw
+ ln

〈
exp

(
wγ

[
il∗Tϕ

])〉
h∼N (0,C(xx))

+ const., (145)

which corresponds to Eq. (B10) in (van Meegen & Sompolinsky, 2024) and the constant is determined such that
∑

γ pγ = 1.
The distribution of w hence approximates the posterior p(w) ≃

∑
γ pγ δ(w − w∗

γ), which is used in (144) to obtain the

equation of state (54) for ¯̃
f by taking a partial derivative of by lα, which yields

yα =
∑
γ

pγ w
∗
γ

[
ϕα

]
l∗,w∗ + κ0il

∗ , (146)

which corresponds to Eq. (B17) in (van Meegen & Sompolinsky, 2024), where the expectation value
[
. . .
]
l∗,w∗ is given by

[. . .]l∗,w∗
γ
:=

∫
dPh . . . exp

(
w∗

γ

[
il∗Tϕ(h)

]
− 1

2h
TC(xx)h

)
∫
dPh exp

(
w∗

γ

[
il∗Tϕ(h)

]
− 1

2h
TC(xx)h

) . (147)

The extremum condition appearing in (144) leads to stationary values of the weights:

w∗
γ =

gw
P

il∗T
[
ϕ(h)

]
l∗,w∗

γ
, (148)

which corresponds to eq. B16 of (van Meegen & Sompolinsky, 2024).

In summary, the difference to our work is that in the scaling considered in the work by van Meegen & Sompolinsky
(2024), w ∝ 1/(N

√
P ), the readout weights w tend to concentrate to non-fluctuating values w∗

γ , while in mean-field
scaling w ∝ 1/N , which we treat in the main part of our work, only the network outputs concentrate. Compared to the
standard scaling w ∝ 1/N both scalings only require a tree-level approximation to describe the mean predictor whereas the
fluctuations in the standard scaling require the inclusion of one-loop corrections.

C. Details of experiments
C.1. Self-consistency equations for numerics

In App. A, we derive train and test statistics in a framework involving imaginary variables ¯̃
f . To solve the resulting

self-consistency equations, we need to account for their imaginary nature and substitute in all of the results above ¯̃
f → i

¯̃
f ,
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changing various signs in the process. The final expressions read as follows: In tree-level approximation, we have

¯̃
f = Nγ−1

(
κ0I+QTL

( ¯̃
fα
)
C(xx)

)−1

y, (149)

QTL
( ¯̃
f
)
=

gw

1− gw
Nγ

¯̃
fTC(xx) ¯̃f

, (150)

⟨∆⟩TL = κ0N
1−γ ¯̃

f = κ0

(
κ0I+QTL

( ¯̃
f
)
C(xx)

)−1

y, (151)

⟨f∗⟩TL = QTL
( ¯̃
f
)
C

(xx)
∗α

(
κ0I+QTL

( ¯̃
f
)
C(xx)

)−1

αβ
yβ . (152)

In one-loop approximation, we have for the train discrepancies

¯̃
fδ =

[
A
( ¯̃
f
)]−1

δϵ

[
yϵ +

1

2

∑
αβ

(−S(2))−1
βα

∂3(−S)
∂
¯̃
fα∂

¯̃
fβ∂

¯̃
fϵ

]
, (153)

A
( ¯̃
f
)
= κ0I+QTL

( ¯̃
f
)
C(xx), (154)

∂2(−S)
∂
¯̃
fα∂

¯̃
fβ

∣∣∣∣
j∗=0

= A
( ¯̃
f
)
+

2

N
Q2

TL

( ¯̃
f
)
C(xx) ¯̃f

¯̃
fTC(xx), (155)

∂3(−S)
∂
¯̃
fα∂

¯̃
fβ∂

¯̃
fδ

∣∣∣∣
j∗=0

=
2

N
Q2

TL

( ¯̃
f
) (

C
(xx)
αβ

[
C(xx) ¯̃f

]
δ
+ C

(xx)
αδ

[
C(xx) ¯̃f

]
β
+ C

(xx)
βδ

[
C(xx) ¯̃f

]
α

)
(156)

+
8

N2
Q3

TL

( ¯̃
f
) [

C(xx) ¯̃f
]
α

[
C(xx) ¯̃f

]
β

[
C(xx) ¯̃f

]
δ
,

⟨∆α⟩1-Loop = κ0N
1−γ ¯̃

fα, (157)

and for the test predictors

⟨f∗⟩1-Loop = QTL
( ¯̃
f
)
C

(xx)
∗α

¯̃
fα − 1

2

∑
αβ

(−S(2))−1
βα

∂3(−S)
∂
¯̃
fα∂

¯̃
fβ∂j∗

∣∣∣∣
j∗=0

. (158)

∂3(−S)
∂
¯̃
fα∂

¯̃
fβ∂j∗

∣∣∣∣
j∗=0

=
2

N
Q2

TL

( ¯̃
f
) (

C
(xx)
αβ

[
C(xx) ¯̃f

]
∗
+ C

(xx)
α∗

[
C(xx) ¯̃f

]
β
+ C

(xx)
β∗

[
C(xx) ¯̃f

]
α

)
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+
8

N2
Q3

TL

( ¯̃
f
) [

C(xx) ¯̃f
]
α

[
C(xx) ¯̃f

]
β

[
C(xx) ¯̃f

]
∗
,

Finally, in the proportional limit P ∝ N → ∞ this reduces to

¯̃
f =

(
κ0I+Q1-Loop

( ¯̃
f
)
C(xx)

)−1

y, (160)

Q1-Loop
( ¯̃
f
)
= QTL

( ¯̃
f
)
− 1

N
Q2

TL

( ¯̃
f
)

Tr
[
(κ0I+QTL

( ¯̃
f
)
C(xx))−1C(xx)

]
, (161)

⟨∆⟩ = κ0N
1−γ
(
κ0I+Q1-Loop

( ¯̃
f
)
C(xx)

)−1

y, (162)

⟨f∗⟩1-Loop, rescaling =
[
Q1-Loop

( ¯̃
f
)
C

(xx)
∗α

] (
κ0I+Q1-Loop

( ¯̃
f
)
C(xx)

)−1

αβ
yβ . (163)

C.2. Numerical stability and computational complexity

To improve the numerical stability when solving these self-consistency equations, we use the following scheme: In standard
scaling, we use the train predictors given by the NNGP as starting values for solving the tree-level equations. Then, we use
the tree-level solution as the initial value for the one-loop equations since the latter contain additional fluctuation corrections
to the tree-level result. Further, we anneal solutions from the standard to the mean-field regime since the solutions are more
unstable in the mean-field regime (see pseudo code in 1).

The computational complexity for solving these equations is O(P 3) with a different pre-factor for tree-level and one-loop.
Note that neither the input dimension D nor the network width N but only the number of training samples P affect the
computational complexity.
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Algorithm 1 Annealing of solutions across scaling regimes
Input: data X , labels Y , scales {χi}i
Compute NNGP train predictors fNNGP

α from data X and labels Y .
Set initial value to NNGP predictor fNNGP

α .
for χ in {χi}i do

Set gw 7→ gw/χ.
Solve self-consistency solution for tree-level approximation ¯̃

fTL
α with initial value ¯̃

fNNGP
α .

Solve self-consistency solution for one-loop approximation ¯̃
f 1-Loop
α with initial value ¯̃

fTL
α .

end for

C.3. Network tasks and training

Ising task We use a linearly separable Ising task: Each pattern xα in the Ising task is D-dimensional and xαi ∈ {±1}. If
the pattern belongs to class −1, each xαi realizes xαi = +1 with a probability of p1 = 0.5−∆p and the value xαi = −1
with p2 = 0.5 + ∆p. The value for each pattern element xαi is drawn independently. If the pattern belongs to class +1,
the probabilities for xαi = 1 and xαi = −1 are inverted. The task complexity decreases with larger ∆p. We use ∆p = 0.1
throughout, corresponding to an oracle accuracy on the classification task of Poracle = 99, 78%.

Teacher-student task In this setting, the target is given by a yα = w∗ · xα, where xα ∈ RD is standard normally
distributed xαi ∼ N (0, I). The teacher direction w∗ ∈ RD is chosen to be ê1 in the standard basis.

Network training We train networks using Langevin stochastic gradient descent (LSGD) as detailed in (Naveh et al.,
2021) so that the trained networks are effectively sampled from the posterior distribution (29). Here evolving network
parameters Θ such as weights V,w with the stochastic differential equation

∂tΘ(t) = −ρΘ(t)−∇ΘL(Θ(t); y) +
√
2Tζ(t), (164)〈

ζi(t)ζj(s)
〉
= δijδ(t− s),

with the squared error loss L(Θ; y) =
∑P

α=1(fα(Θ)− yα)
2, ζ a unit variance Gaussian white noise, and fα(Θ) denoting

the network output for sample α = 1, . . . , P , leads to sampling from the equilibrium distribution for Θ for large times t
which reads

lim
t→∞

p (Θ(t)) ∼ exp

(
− ρ

2T
∥Θ∥2 − 1

T
L(Θ; y)

)
. (165)

Using the Fokker-Planck equation (Risken, 1996) one can derive this density for Θ. Further, this implies a distribution on
the network output

p(Y |X) ∝
∫

dΘ exp
(
− ρ

2T
∥Θ∥2 − 1

T
∥f − y∥2

)
(166)

∝
〈
exp

(
− 1

T
∥f − y∥2

)〉
Θk

i.i.d.∼N (0,T/ρ)

∝N (y|f, T/2) ⟨δ
[
f − f(Θ)

]
⟩
Θk

i.i.d.∼N (0,T/ρ)
,

In fact, p(f |X) ≡ ⟨δ
[
f−f(Θ)

]
⟩
Θk

i.i.d.∼N (0,T/ρ)
, leads to the posterior in (5) if one identifies κ0 = T/2 with the regularization

noise and T/ρ = g/N with the variance of the parameter Θk. Implementing the sampling in practice this corresponds to
requiring different weight decay ρ for each parameter, as weight variances can differ in the input and output layer.

The time discrete version of (164) is implemented in our PyTorch code as

Θt = Θt−1 − η (ρΘt−1 +∇ΘL(Θt−1; y)) +
√
2Tη ζt, (167)

⟨ζtζs⟩ = δts,

with standard normal ζt and finite time step η, which can also be interpreted as a learning rate. To accurately reflect the time
evolution according to (164) the learning rate η needs to be small enough.
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Hence the LSGD we implement corresponds to full-batch gradient descent with the addition of i.i.d. distributed standard
normal noise and weight decay regularization (Krogh & Hertz, 1991). The value for κ0 corresponds to a tradeoff in the
optimization between the weight priors and the likelihood in terms of the loss L. Choosing large κ0 corresponds to large
T = 2κ0 and hence a large noise in the LSGD and therefore putting more emphasis on the Gaussian parameter priors. Small
regularization values κ0 favor the training data in terms of the loss in the exponent of (165).

To faithfully compare the numerical results with our theoretical results, the LSGD needs to sample from the equilibrium
distribution. For this it needs to be ensured that the distribution is equilibrated by evolving the networks for 10.000 steps .
We ensure uncorrelated network samples by initializing different networks with different random seeds.

For the Ising task, we average over Nnetworks = 100 with different initial weights to obtain the training and test predictors.
For the teacher-student task, we average over Nnetworks = 5.000 with different initial weights to obtain the covariance of the
network output projected onto different directions.

D. Additional figures
D.1. MNIST

Since the presented approach does not make any assumption on the data, it is applicable to arbitrary data sets. We here show
results for binary classification on MNIST across scaling regimes.
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Figure 6. Binary classification on MNIST: training (solid line) and test errors (dashed line) across scaling regimes for different approaches.
While standard scaling (green shaded area) requires a one-loop approximation with fluctuation corrections (Fluct. Corr.), a saddle-point
or tree-level approximation (Saddle-Point) is sufficient in mean-field scaling (orange shaded area). Parameters: Ptrain = 80, N = 100,
D = 784, κ0 = 1, Ptest = 103, gv = gw = 2.
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Figure 7. (a) Training discrepancies ⟨∆⟩ = y − ⟨fD⟩ and (b) test discrepancies ⟨∆∗⟩ = y∗ − ⟨f∗⟩ for binary classification on MNIST in
mean-field scaling. We show theoretical values for both NNGP and tree-level against empirical results, where the gray line marks the
identity. In contrast to the NNGP, the tree-level approximation accurately matches the empirical values. Parameters: γ = 2, Ptrain = 80,
N = 100, D = 784, κ0 = 1, Ptest = 103, gv = gw = 2.
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Figure 8. (a) Training discrepancies ⟨∆⟩ = y − ⟨fD⟩ and (b) test discrepancies ⟨∆∗⟩ = y∗ − ⟨f∗⟩ for binary classification on MNIST
in standard scaling. Upper row: theoretical values for different theories against empirical results; gray line marks the identity. Lower
row: difference of theoretical values to the NNGP as a baseline against NNGP predictions, indicating small-scale differences between
the different approaches. Results of the kernel approach by Li & Sompolinsky (2021) shown as reference (LS). Parameters: γ = 1,
Ptrain = 80, N = 100, D = 784, κ0 = 1, Ptest = 103, gv = gw = 2.
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D.2. Ising task in mean-field scaling

(a) Training Discrepancies (b) Test Discrepancies

Figure 9. (a) Training discrepancies ⟨∆⟩ = y − ⟨fD⟩ and (b) test discrepancies ⟨∆∗⟩ = y∗ − ⟨f∗⟩ on an Ising task in mean-field scaling.
We show theoretical values for both NNGP and tree-level against empirical results, where the gray line marks the identity. In contrast to
the NNGP, the tree-level approximation accurately matches the empirical values. We here use a non-linear activation function ϕ = erf.
Parameters: γ = 2, Ptrain = 80, N = 100, D = 200, κ0 = 1, Ptest = 103, gv = gw = 0.5, ∆p = 0.1.
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Figure 10. Scatter plots of (a) training discrepancies ⟨∆α⟩ = yα − ⟨fα⟩ and (b) test discrepancies ⟨∆∗⟩ = y∗ − ⟨f∗⟩ on an Ising task in
mean-field scaling. We show theoretical values for NNGP and different feature learning theories against empirical results, where the
gray line marks the identity. In contrast to the NNGP, the tree-level approximation accurately matches the empirical values. Further, the
different feature learning theories lie on top of one another in mean-field scaling. Parameters: γ = 2, Ptrain = 80, N = 100, D = 200,
κ0 = 0.4, Ptest = 103, gv = 0.5, gw = 0.2, ∆p = 0.1.
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D.3. Coherent amplification of low-rank kernel structures
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Figure 11. Relative directional feature learning on the Ising task as a function of the fluctuation scale 1/χ for (a) an input kernel without
structure and (b) an input kernel with block structure (input kernels shown as insets). Both NNGP and rescaling theory fail to capture
directional feature learning, while the multi-scale adaptive theory accurately predicts network behavior. (c) An increase in structure in
the input kernel increases with the Ising probability ∆p and leads to a significantly higher directional feature learning in the adaptive
theory than in both NNGP and rescaling, matching the experiments. Parameters: Ptrain = 80, N = 100, D = 200, κ0 = 2, gv = 0.01,
gw = 0.5.

D.4. Teacher-student task
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Figure 12. (a) Directional feature learning in a teacher-student setting as a function of the fluctuation scale 1/χ. Both NNGP and rescaling
theory fail to capture directional feature learning, while the multi-scale adaptive theory accurately predicts network behavior. Output
distribution in different directions (b) in mean field scaling (χ = N ) and (c) in standard scaling (χ = 128) . Parameters: Ptrain = 80,
N = 200, D = 50, κ0 = 2, gv = 0.01, gw = 2.
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