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Abstract

Pre-trained language models (PLMs) have ig-
nited a surge in demand for effective fine-
tuning techniques, particularly in low-resource
domains and languages. Active learning (AL),
a set of algorithms designed to decrease label-
ing costs by minimizing label complexity, has
shown promise in confronting the labeling bot-
tleneck. In parallel, adapter modules designed
for parameter-efficient fine-tuning (PEFT) have
demonstrated notable potential in low-resource
settings. However, the interplay between AL
and adapter-based PEFT remains unexplored.
We present an empirical study of PEFT behav-
ior with AL in low-resource settings for text
classification tasks. Our findings affirm the su-
periority of PEFT over full-fine tuning (FFT)
in low-resource settings and demonstrate that
this advantage persists in AL setups. We fur-
ther examine the properties of PEFT and FFT
through the lens of forgetting dynamics and
instance-level representations, where we find
that PEFT yields more stable representations
of early and middle layers compared to FFT.
Our research underscores the synergistic poten-
tial of AL and PEFT in low-resource settings,
paving the way for advancements in efficient
and effective fine-tuning.1

1 Introduction

Pre-trained language models (PLMs) have quickly
become a staple in the field of natural language
processing. With the growing demand for data
for training these models, developing efficient fine-
tuning methods has become critical. This is par-
ticularly relevant for many domains and languages
where obtaining large amounts of labeled training
data is difficult or downright impossible. In such
low-resource settings, it becomes essential to effec-
tively leverage and adapt PLMs while minimizing
the need for extensive labeled data.

1Our code is available at https://github.com/
josipjukic/adapter-al

Data labeling is notoriously time-consuming and
expensive, often hindering the development of siz-
able labeled datasets required for training high-
performance models. Active learning (AL) (Cohn
et al., 1996; Settles, 2009) has emerged as a poten-
tial solution to this challenge. In contrast to passive
learning, in which the training set is sampled at ran-
dom, AL encompasses a unique family of machine
learning algorithms specifically designed to reduce
labeling costs by reducing label complexity, i.e., the
number of labels required by an acquisition model
to achieve a certain level of performance (Dasgupta,
2011). With the advent of PLMs, AL research has
pivoted towards investigating training regimes for
PLMs, such as task-adaptive pre-training (TAPT;
Gururangan et al., 2020), that could be combined
with AL to further reduce the label complexity.

While AL aims at directly minimizing the label
complexity of learning, training efficiency can also
be improved by reducing the parameter complex-
ity of the model. This becomes more important
as PLMs grow larger, and fine-tuning becomes
increasingly challenging due to the sheer num-
ber of parameters involved. To address this issue,
adapters (Houlsby et al., 2019) have been intro-
duced as compact modules that can be incorporated
between the layers of PLMs. Adapters enable con-
siderable parameter-sharing, facilitating parameter-
efficient fine-tuning (PEFT) through modular learn-
ing (Pfeiffer et al., 2023). In this process, only
the parameters of the adapters are updated dur-
ing the tuning for a specific downstream task. Re-
cent research (He et al., 2021; Li and Liang, 2021;
Karimi Mahabadi et al., 2021) has revealed that
some PEFT methods outperform full fine-tuning
(FFT) in low-resource settings, potentially due to
better stability and a decreased risk of overfitting.
In contrast, FFT has been shown to exhibit instabil-
ity in scenarios with limited data.

Despite the promising results demonstrated by
PEFT methods in low-resource settings, there is a

https://github.com/josipjukic/adapter-al
https://github.com/josipjukic/adapter-al


striking gap in research on parameter-efficient train-
ing with respect to how PEFT interacts with AL.
Given that the majority of real-world AL scenarios
involve a restricted amount of data, PEFT meth-
ods emerge as strong candidates for AL acquisition
models. However, there has been no exploration
of AL in conjunction with adapters. Investigating
this uncharted territory can further advance our un-
derstanding of AL and reveal novel strategies for
optimizing performance in low-resource settings.

In this paper, we present an empirical study on
the behavior of PEFT in low-resource settings for
text classification tasks. We analyze PEFT with
and without AL and compare it against FFT. While
our results confirm that PEFT exhibits superior per-
formance in low-resource setups compared to FFT,
we show that the improved performance with PEFT
extends to AL scenarios in terms of performance
gains over passive learning. Furthermore, we an-
alyze the efficacy of TAPT in conjunction with
AL and PEFT. We find that TAPT is beneficial in
AL scenarios for both PEFT and fully fine-tuned
models, thus representing a viable technique for
improving performance in low-resource settings.
Finally, aiming to illuminate why PEFT and TAPT
improve AL performance in low-resource settings,
we analyze the properties of PEFT and FFT via for-
getting dynamics (Toneva et al., 2019) and PLMs’
instance-level representations. We find that AL
methods choose fewer unforgettable and more mod-
erately forgettable examples when combined with
PEFT and TAPT, where forgetfulness indicates the
model’s tendency to learn and forget the gold label
of a particular instance. Compared to FFT, we ob-
serve that PEFT yields representations in the early
and middle layers of a model that are more sim-
ilar to the representations of the base PLM. We
hypothesize that this property mitigates the issue
of forgetting the knowledge obtained during pre-
training when fine-tuning for downstream tasks.

In summary, we show that in AL low-resource
settings for text classification, (1) PEFT yields
greater performance improvements compared to
FFT and (2) TAPT enhances the overall classifi-
cation performance of adapters and is well-suited
for AL scenarios. We also show that (3) AL meth-
ods choose fewer unforgettable and more moder-
ately forgettable examples with PEFT and that (4)
PEFT produces instance-level representations of
early and middle layers that are more similar to the
base PLM than FFT. Our results uncover the intrica-

cies of positive interactions between AL, PEFT, and
TAPT, providing empirical justification for their
combined use in low-resource settings.

2 Related Work

Our research involves combining AL with PLMs
and investigating the use of PEFT techniques
within the confines of low-resource settings.

AL with PLMs. Until recently, the conventional
approach for integrating PLMs with AL involved
performing full fine-tuning with a fixed number
of training epochs and training the model from
scratch in each AL step (Ein-Dor et al., 2020; Mar-
gatina et al., 2021; Shelmanov et al., 2021; Karam-
cheti et al., 2021; Schröder et al., 2022). However,
studies by Mosbach et al. (2021) and Zhang et al.
(2021) revealed that fine-tuning in low-resource
setups is prone to instability, particularly when
training for only a few epochs. This instability,
often sensitive to weight initialization and data or-
dering (Dodge et al., 2020), presents a significant
challenge for AL, which frequently operates in low-
resource settings. Recent research has looked into
the impact of PLM training regimes on AL perfor-
mance (Grießhaber et al., 2020; Yuan et al., 2020;
Yu et al., 2022), suggesting that the choice of train-
ing regime is more critical than the choice of the
AL method. Notably, TAPT has proven particularly
effective in enhancing AL performance (Margatina
et al., 2022; Jukić and Šnajder, 2023).

Adapters in low-resource settings. Research on
adapters in low-resource settings has primarily fo-
cused on areas such as cross-lingual transfer for
low-resource languages (Ansell et al., 2021; Lee
et al., 2022; Parović et al., 2022), where the em-
phasis lies on exploring diverse methods of fusing
adapters. In monolingual settings with scarce data,
adapters have been found to outperform full fine-
tuning (Li and Liang, 2021; Mao et al., 2022). A
study by He et al. (2021) demonstrated that adapter-
based tuning exhibits enhanced stability and gen-
eralization capabilities by virtue of being less sen-
sitive to learning rates than traditional fine-tuning
methods. While incorporating task adaptation tech-
niques, such as TAPT, has been shown to match
or even improve performance over FFT in low-
resource setups, Kim et al. (2021) noted an interest-
ing caveat: the benefits of integrating TAPT with
adapters tend to taper off as the amount of data
increases.



Despite the established effectiveness of adapters
in setups with limited resources, their integration
into AL frameworks — which frequently face anal-
ogous resource constraints — remains an untapped
area of research. This gap is particularly notable
given that AL’s iterative learning process could
significantly benefit from adapters’ parameter effi-
ciency and transferability, especially in scenarios
where data scarcity or labeling costs are primary
concerns.

3 Preliminaries

We now describe the experimental setup, providing
details on the datasets as well as the PEFT and AL
methods used in our study.

3.1 Datasets
We employ four single-text classification tasks com-
monly used for AL evaluation: (1) the subjectiv-
ity dataset (SUBJ; Pang and Lee, 2004), designed
to assess the subjectivity of a given text; (2) the
question type classification dataset (TREC; Li and
Roth, 2002), designed for categorizing questions
according to their types; (3) the Stanford Sentiment
Treebank (SST; Socher et al., 2013), which focuses
on sentiment analysis; (4) AG’s news classification
dataset (AGN; Zhang et al., 2015), which classifies
news articles into different categories. We provide
the dataset statistics in the appendix for further
reference (cf. Appendix Table 3).

3.2 PEFT methods
We consider four prototypical PEFT techniques:

Adapter incorporates trainable bottleneck layers
after both the multi-head attention and feed-
forward block in each Transformer layer
(Houlsby et al., 2019);

Prefix-tuning adds new parameters in the multi-
head attention blocks within each Transformer
layer (Li and Liang, 2021);

LoRA (Low-rank adaptation) represents an addi-
tive method that incorporates trainable low-
rank decomposition matrices into the layers
of a pre-trained model (Hu et al., 2022);

UniPELT combines multiple PEFT approaches,
namely LoRA, Prefix-tuning, and Adapter, in
a single unified setup (Mao et al., 2022). Each
constituent is a submodule, and UniPELT em-
ploys gating mechanisms to activate them ef-
fectively.

All of the above PEFT methods fall under the
category of lightweight fine-tuning. While prefix-
tuning does not technically qualify as an adapter,
He et al. (2022) demonstrated that it shares for-
mal similarities with adapters, with prefix-tuning
performing weighted addition and an adapter em-
ploying unweighted addition. We refer to all four
considered methods as adapters for terminologi-
cal simplicity. We use BERT (Devlin et al., 2019)
as the base PLM for every adapter. Additionally,
we adhere to the hyperparameter settings for each
adapter as recommended in the respective papers
that introduced them (cf. Appendix A.2 for details).

3.3 AL methods

Our study considers five sampling strategies, in-
cluding random selection (RND) as a passive learn-
ing baseline. The other four strategies are AL meth-
ods originating from different families, chosen for
their robustness (ability to perform well across var-
ious tasks) and widespread usage in the field:

Maximum entropy (ENT; Lewis and Gale, 1994)
comes from the family of uncertainty strate-
gies. The method queries instances where the
model is least certain based on the maximum
entropy criterion of the prediction output;

Monte Carlo dropout (MC; Gal and Ghahramani,
2016) resembles ENT but utilizes the stochas-
ticity of forward passes with dropout layers
(Srivastava et al., 2014) to estimate the entropy
for a given instance;

Core-set (CS; Sener and Savarese, 2018) encour-
ages instance diversity by using the learned
representations of the acquisition model. This
method aims to minimize the distance be-
tween an example in the unlabeled set and
its closest counterpart in the labeled subset;

Discriminative active learning (DAL; Gissin and
Shalev-Shwartz, 2019) frames AL as a binary
classification of instances into those that are
labeled and those that are not, with the objec-
tive of making the labeled and unlabeled sets
indistinguishable.

3.4 Experimental setup

In AL runs, we select 50 new examples in each
step of each AL experiment, using 100 examples
for the warm start (randomly sampled labeled data



to initiate the model). To probe different PEFT ap-
proaches with and without AL in low-resource set-
tings, we establish a labeling budget limit of 1, 000
instances. To sidestep the need for a validation set
in our experiments, which is typically unavailable
in real-world AL scenarios, we adopt the Besov
early stopping (Jukić and Šnajder, 2023). This
method utilizes the smoothness of Transformer lay-
ers to decide at which epoch to stop training.

In the case of TAPT, we pre-train the base model
on a masked language modeling task using unla-
beled training data. For adapters, we only update
the injected parameters while keeping the remain-
ing parameters of the base model frozen. This ap-
proach aligns with the primary function of adapters,
which is to utilize a common base model across
diverse tasks. For every setting, we perform five
runs using different random seeds. We report the
average F1 score at each sampling step (with and
without AL for FFT and PEFT) to show the cor-
responding learning curve averaged over five runs.
We provide details on training and hyperparameters
in Appendix A.5.

3.5 Evaluation
To evaluate the overall performance of an AL
method, we employ the area under the performance
curve (AUC). In each individual AL step with a
specific quantity of labeled examples, we measure
the classification performance in terms of the F1

score. The overall AUC is calculated using the F1

scores obtained at each step. We advocate for using
AUC alongside the AL curves, as AUC serves as
a suitable approximation of AL feasibility through
a summary numeric score, as recommended in re-
cent AL literature (Schröder et al., 2022; Jukić and
Šnajder, 2023).

As our experiments involve different training
regimes, we compare each AL sampling strategy
SAL to passive learning SPL within the same train-
ing regime to isolate the effects of AL. The primary
objective of AL is to improve label efficiency over
passive learning. To test whether AL is successful,
we calculate the relative improvement over passive
learning (RIPL), which we define as follows:

RIPL(SAL, SPL) =
AUC(SAL)− AUC(SPL)

1− AUC(SPL)

Intuitively, RIPL estimates the proportion of maxi-
mum possible improvement achievable by a given
AL method compared to the passive learning base-
line. A score of 1 indicates the maximum theoret-

ical improvement, which would be tantamount to
attaining an F1 score of 1 in the initial sampling
step and sustaining that score throughout all steps.
Conversely, a negative score indicates that the AL
method performs worse than passive learning.

4 Experiments

In this section, we first examine the performance of
PEFT methods in comparison to FFT with passive
learning and then proceed to analyze the applica-
tion of PEFT in AL settings.

4.1 PEFT vs. FFT

Previous research on the use of adapters in low-
resource settings (Li and Liang, 2021; Mao et al.,
2022; He et al., 2021) has demonstrated that
adapters perform comparable to, and sometimes
even better than FFT. However, these findings were
based on comparing FFT to a single adapter variant
on a full dataset or evaluating the performance at
only a few discrete points.

In the first part of our experiments, we build
upon these findings by conducting a more nuanced
analysis. We generate detailed learning curves that
facilitate the comparison of multiple adapters with
FFT under the passive learning setup. Our compar-
ison, summarized by the AUC metric in Table 1, re-
veals that UniPELT and Prefix-tuning consistently
outperform FFT with a significant difference across
all datasets used in our study. Conversely, the per-
formance of Adapter and LoRA is mostly compa-
rable to FFT, although there are cases where they
either outperform or underperform FFT. In cases
in which Adapter and LoRA perform better than
FFT with significant differences, the degree of im-
provement is smaller than what is observed with
UniPELT and Prefix-tuning.

Next, we look into how the models’ performance
changes as the training set increases. To that end,
we show the corresponding learning curves for
adapters and FFT in Figure 1. The performance
disparities between adapters and FFT become more
apparent under conditions of extreme data scarcity
(100–300 labeled instances). Notably, the great-
est differences in performance occur at the initial
step (only 100 labels). This highlights the promise
of adapter-based methods in low-resource settings,
particularly for Prefix-tuning and UniPELT.
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Figure 1: Learning curves under the passive learning setup with different PEFT methods and FFT. The results are
averaged over five runs. The shaded bands denote the standard deviation. Best viewed on a computer screen.

SUBJ TREC SST AGN

ad
ap

te
rs Adapter .926 .804 .800† .871†

LoRA .929 .750† .798† .860
Prefix-tuning .936† .847† .847† .875†

UniPELT .934† .877† .836† .875†

FFT .928 .810 .787 .860

Table 1: The performance of adapters and FFT in a pas-
sive learning setup in terms of the AUC metric (based
on F1 score) averaged over five runs. Numbers in bold
represent the best-performing variant for a particular
dataset. The “†” symbol indicates when the mean AUC
of an adapter is significantly different from the corre-
sponding mean AUC of FFT (p < .05 using a two-sided
Man-Whitney U test adjusted for family-wise error rate
with the Holm-Bonferroni method).

4.2 PEFT with AL

Motivated by our initial findings on using PEFT un-
der the passive learning setup, where PEFT exhib-
ited promising properties in low-resource settings,
we further explore the behavior of adapters in AL
scenarios. We evaluate individual PEFT methods
in AL scenarios with and without using TAPT in
terms of gains over random sampling (passive learn-
ing) using the RIPL metric described in Section 3.5.
Table 2 shows the results for different combinations
of AL methods and adapters, evaluated through the
RIPL metric. We complement these results with
absolute values in terms of AUC (cf. Appendix Ta-
ble 5). For FFT without TAPT, DAL achieved the
highest RIPL score on two datasets, while CS and
MC topped the chart on one dataset each. When we
incorporated TAPT, ENT yielded the best results on
three out of four datasets, with CS leading on one.
Looking at adapters, the most successful AL meth-
ods without TAPT vary, depending on the specific
adapter and dataset in question. Interestingly, when
TAPT is applied, the best results for all adapters are
obtained either by ENT or MC. We speculate this
could be attributed to solid compatibility between
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Figure 2: Comparison of best-performing adapters and
FFT from Table 2 and their corresponding version with
TAPT applied.

entropy-based methods and TAPT when adapters
are employed.

Furthermore, we observe that without TAPT,
adapters achieve larger gains over FFT. However,
when TAPT is applied, FFT becomes comparable
to PEFT, although Prefix-tuning and UniPELT still
yield the greatest improvements, depending on the
dataset and AL method used. In Figure 2, we select
the adapters that achieved the best improvement
according to Table 2 without TAPT and show their
RIPL value compared against FFT as well as their
corresponding version when TAPT is applied. We
conjecture that TAPT reduces the performance gap
between adapters and FFT by inducing FFT to emu-
late PEFT in aspects such as training dynamics and
representation space — a hypothesis we explore in
more detail in Section 5.

We further investigate the behavior of adapters
with AL throughout the individual steps. Fig-
ure 3 shows the learning curves for corresponding
adapter models with and without applying TAPT.
Due to space constraints, we show the learning
curves only for the SUBJ dataset, as similar trends
occur for other datasets. Without TAPT, the per-
formance of adapters is largely independent of
the specific AL method used, where Prefix-tuning
and UniPELT consistently outperform Adapter and
LoRA across all AL steps. With TAPT, the differ-



without TAPT with TAPT

ENT MC CS DAL ENT MC CS DAL

S
U

B
J

FFT .050 .059 .061 .077 .140 .140 .142 .126
Adapter .112 .102 .100 .092 .137 .151 .111 .067

LoRA .127 .115 .091 .081 .165 .160 .122 .100
Prefix-tuning .095 .110 .106 .111 .186 .181 .170 .151

UniPELT .129 .153 .131 .128 .159 .167 .163 .157
T

R
E

C

FFT .011 .022 .038 .034 .162 .180 .141 .159
Adapter .027 .069 .137 .084 .124 .146 .079 .154

LoRA .098 .065 .048 .007 .254 .237 .243 .074
Prefix-tuning .093 .105 .068 .093 .246 .227 .205 .241

UniPELT .138 .165 .082 .200 .302 .334 .276 .236

S
S

T

FFT .002 .011 −.039 .004 .080 .079 .075 .070
Adapter .015 .048 .025 .002 .035 .034 .028 .008

LoRA .001 .007 .064 .031 .036 .022 .032 .014
Prefix-tuning .049 .060 .114 .031 .152 .143 .137 .126

UniPELT .037 .043 .040 .008 .082 .101 .083 .080

A
G

N

FFT .014 .032 .007 .092 .134 .021 .089 .017
Adapter .074 .046 .015 .062 .115 .089 .077 .080

LoRA .020 .025 .067 .016 .028 .102 .071 .023
Prefix-tuning .054 .023 .040 .033 .035 .143 .098 .092

UniPELT .074 .096 .089 .095 .185 .151 .112 .081

Table 2: Improvement over passive learning in terms of the RIPL metric for four AL methods considered (ENT, MC,
CS, and DAL) and for all combinations of adapters and datasets considered, shown separately without TAPT and
with TAPT. Positive values indicate improvement over passive learning, while negative values indicate performance
drops compared to passive learning. Values in bold denote the best result for a particular dataset across different
adapters and AL methods within the same regime (with or without TAPT).
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Figure 3: AL learning curves compared with random sampling on the SUBJ dataset. The first and the second rows
show learning curves for adapters without and with TAPT, respectively. The third row shows learning curves for
FFT, without and with TAPT. The results are averaged over five runs, and the shaded bands denote the standard
deviation. Best viewed on a computer screen.



ences between AL and random sampling are more
pronounced starting from the early steps, typically
already with 200 instances. In contrast, the gap
becomes more apparent only with 500 or more in-
stances when TAPT is not employed.

5 Analysis

In Section 4, we have demonstrated that PEFT ex-
hibits larger gains than FFT when combined with
AL in low-resource settings, which is also accompa-
nied by superior performance with passive leaning.
To better understand why PEFT displays superior
behavior with limited data, we now examine two
specific properties of adapters and FFT models.
First, we analyze the influence of TAPT on the for-
getting dynamics during training. We continue with
example-level representation analysis, where we
investigate the representation similarity of PEFT
and FFT to their respective base models.

5.1 Forgetting dynamics

We employ forgetting dynamics to compare PEFT
and FFT’s learning stability and their impact on AL
data selection. The underlying hypothesis is that
having fewer forgetting events in adapters would
indicate a more stable and effective learning pro-
cess. In utilizing forgetting dynamics, we draw
upon the study by Toneva et al. (2019), focusing on
the occurrence of forgetting events — cases where
a specific training example transitions from cor-
rect to incorrect classification over the course of
multiple learning epochs. More specifically, we
divide the instances into three categories: (1) un-
forgettable instances, i.e., the ones that have never
experienced a forgetting event during training, (2)
instances that have encountered one or two forget-
ting events, labeled as moderately forgettable, and
(3) instances subjected to three or more forgetting
events, referred to as highly forgettable instances.
As pointed out in the original study, moderately
forgettable, ambiguous instances are more valuable
for the learning model than unforgettable, easy in-
stances. However, it is worth noting that AL is
often hindered by too hard or impossible-to-learn
examples (Karamcheti et al., 2021), which roughly
correspond to the highly forgettable examples.

Figure 4 shows the distribution of instances
across the three categories of forgetting events for
SUBJ and TREC datasets. We focus on these two
datasets as examples of a simple binary classifica-
tion task and a more complex multi-class classi-

fication task, respectively. Specifically, we com-
pare RND with MC, which achieves consistent per-
formance improvements across all datasets. Our
findings suggest that FFT tends to select a higher
number of unforgettable instances and fewer mod-
erately forgettable instances when compared to
adapters. Interestingly, the adapters that perform
best — Prefix-tuning and UniPELT — appear to
favor moderately forgettable instances. However,
when TAPT is applied, the discrepancies in forget-
ting profiles between FFT and the top two adapters,
Prefix-tuning and UniPELT, seem to diminish. In
contrast, TAPT amplifies the differences between
FFT and the other two adapters, LoRA and Adapter,
which typically show smaller improvements than
Prefix-tuning and UniPELT. Given their superior
AL performance, we hypothesize that the forgetting
profiles of Prefix-tuning and UniPELT are more
favorable compared to other adapters. Moreover,
FFT with TAPT approaches the performance of the
superior adapters and simultaneously develops a
forgetting profile similar to theirs.

5.2 Representation analysis

To bolster our findings, we explore the representa-
tions of adapters and FFT models. As suggested
in previous research (He et al., 2021; Li and Liang,
2021; Mao et al., 2022), adapters often display
greater stability in terms of loss, especially in sce-
narios with limited resources. Our aim is to exam-
ine the stability of their representations and their
relationship with overall AL performance.

We draw inspiration from research by Stephen-
son et al. (2021) and Baldock et al. (2021), which
suggests that different layers of networks specialize
in different features — earlier layers tend to acquire
more generalized knowledge, while the deeper lay-
ers are more focused on task-specific information.
This leads us to a layerwise examination of similar-
ity. To analyze the effect of PEFT and FFT on AL
selection with respect to their layerwise similarity
to the base model, we utilize centered kernel align-
ment (CKA) as a similarity measure between two
sets of representations (Kornblith et al., 2019). It
has been shown that PEFT methods result in rep-
resentations closer to the base model at the token
level (He et al., 2021). We extend the analysis to
example-level representation to explore the behav-
ior of models with AL. We opt for CKA as it is
designed to be invariant to invertible linear transfor-
mation and still can measure meaningful similari-
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Figure 4: Forgetting dynamics for random sampling (passive learning) and AL with MC without and with TAPT on
SUBJ and TREC. The x-axis shows the number of instances in each of the forgetting categories: the “never” category
representing unforgettable instances, moderately forgettable instances, and highly forgettable instances.
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Figure 5: Layerwise difference in representation similarity for the UniPELT adapter and the FFT model on SUBJ.
We observed similar patterns in other adapters and datasets we used (cf. Appendix B). Warm colors (positive values)
illustrate layer pairs that demonstrate higher similarity to the base model with the adapter than with FFT. Conversely,
cool colors (negative values) represent layer pairs that are more similar to the base model when using the FFT model.
Best viewed on a computer screen.

ties between representations of higher dimensions
than the number of data points. This stands in con-
trast to other metrics, which frequently falter when
dealing with high-dimensional representations.

For a more direct comparison between PEFT
and FFT, we analyze the differences between
their respective similarities to their base mod-
els. Specifically, we compute the difference
CKA(adapter, base)−CKA(FFT, base) for a spe-
cific adapter or FFT and their base models. We
hypothesize that superior PEFT performance with
AL compared to FFT will be accompanied by a
more similar early layer representation to the base
model in PEFT. Figure 5 visualizes the layerwise
difference in similarity between the base model and
the adapter model and between the base model and
the FFT model. We find that PEFT representations
are more similar to the base model in the early
and middle layers when compared to FFT. This

holds for all AL methods, with differences more
pronounced than in passive learning. Specifically,
up to the eighth layer, representations are much
more similar in adapters than in FFT models. In
the final four layers, the difference in CKA scores
between the adapter and FFT model is close to zero.
Interestingly, the penultimate layer is more similar
in the FFT model with respect to the base model.

When fine-tuning on a downstream task, we be-
lieve that the increased stability of PEFT in earlier
layers, relative to FFT, is instrumental in retaining
the foundational knowledge from the PLM’s pre-
training phase. Conversely, PEFT exhibits more
substantial transformations in the later, more task-
specific layers. This ensures the preservation of
essential pre-trained knowledge while allowing for
task-relevant flexibility. We speculate that this
strategic balance in PEFT influences its propensity
to select moderately forgettable instances when



combined with AL, contributing to its enhanced
performance over FFT. These instances are neither
too trivial to provide no learning value, nor are
they too complex to risk misinterpretation, thereby
enhancing the effectiveness of learning.

6 Conclusion

Our study has shed light on the advantages of
parameter-efficient fine-tuning (PEFT) in low-
resource settings, confirming its superiority over
full fine-tuning (FFT) methods. Importantly, we
have demonstrated that the integration of PEFT
with active learning (AL) can offer substantial per-
formance gains compared to passive learning, even
in settings where labeled data is scarce. Further-
more, we highlighted the potential of task-adaptive
pre-training (TAPT) to improve model performance
further when used in conjunction with both PEFT
and AL. We found that AL methods, in combina-
tion with PEFT, tend to select fewer unforgettable
instances and more moderately forgettable exam-
ples. We further found that PEFT maintains the
integrity of early and middle layer representations
similar to the base model. We conjecture that this
property mitigates forgetting during downstream
task fine-tuning. These insights inform us of a
possible underpinning mechanism that contributes
to PEFT’s superior performance and stability in
low-resource settings. Overall, our work highlights
the potential of PEFT and AL and establishes a
foundation for developing increasingly efficient
and cost-effective approaches for training models
in low-resource settings.

Limitations

While our study advances the understanding of
PEFT and AL’s interaction in low-resource settings
and uncovers intriguing insights about the forget-
ting dynamics during fine-tuning, it has a number
of limitations.

To begin with, we have focused on text classifi-
cation tasks, which are but one aspect of the wide
range of potential applications for PLMs. Different
tasks such as question answering, translation, or
summarization might exhibit different behaviors
under the same conditions. Consequently, the ob-
served advantages of PEFT in the context of AL
might not necessarily translate to other NLP tasks.

Next, our results are limited to the specific PLMs,
AL strategies, and PEFT methods we have ex-
amined in this study. While we have attempted

to be comprehensive in our experiments, the out-
comes might vary with different models, strate-
gies, or methods. For example, the effectiveness of
AL combined with PEFT might differ if other AL
strategies are employed. Similarly, different types
of adapter architectures could potentially lead to
different results.

Although we found that PEFT methods produce
instance-level representations of early and middle
layers more similar to the base PLM than FFT,
a comprehensive understanding of how and why
this similarity leads to increased stability and per-
formance in low-resource settings is still lacking.
Our hypothesis about the role of early and middle
layer stability in mitigating the issue of forgetting
the knowledge obtained during pre-training needs
further substantiation.

Finally, it is important to acknowledge the com-
plexity and multifaceted nature of forgetting dy-
namics. While our investigation provides valuable
insights about the interaction of forgetting with
PEFT and TAPT in AL scenarios, a deeper under-
standing of the mechanisms of forgetting in the con-
text of large PLMs is needed. Particularly, it would
be interesting to investigate whether the balance
between unforgettable and moderately forgettable
instances selected by the AL methods changes as
the size of the model or the amount of available
data changes.

Future work should aim to address these limita-
tions and further explore the mechanisms behind
the promising results obtained with the combina-
tion of PEFT and AL. This will contribute to a more
comprehensive understanding of the interaction be-
tween AL and PLMs, and help refine strategies for
efficient fine-tuning in low-resource settings.
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TRAIN VAL TEST TOTAL

SUBJ 7, 000 1, 000 2, 000 10, 000
SST 6, 647 868 1, 425 8, 940
TREC 4, 881 452 500 5, 833
AGN 20, 000 7, 600 7, 600 35, 200

Table 3: Dataset sizes by splits. Although we do not
use a validation set (VAL) in our experiments, we re-
port its size for completeness. For the AGN dataset, we
performed uniform subsampling to ensure the computa-
tional feasibility of the experiments.

A Reproducibility

A.1 Dataset statistics

The sizes of the datasets per split are provided in
Table 3. Predominantly, the datasets encompass
texts in English.

A.2 Adapters

We use the implementation of adapters from
AdapterHub (Pfeiffer et al., 2020).

Adapter We set reduction factor to 16 and use
swish function as nonlinearity.

LoRA We include LoRA to the self-attention
weights, intermediate, and output MLP
weights of a model. We set the rank of the
LoRA layer and the scaling factor α to 8.

Prefix-tuning We use tanh activation for Prefix-
tuning, with prefix length set to 30 and bottle-
neck size of 512.

UniPELT We use Adapter, LoRA, and Prefix-
tuning as components of UniPELT with the
same hyperparameters as described for indi-
vidual components. The only exception is that
we set the prefix length for Prefix-tuning to 10
instead of 30.

A.3 AL methods

MC In experiments, we use ten inference cycles
to approximate the entropy of the output via
Monte-Carlo dropout sampling.

CS We use the [CLS] token representation from the
Transformer’s penultimate layer. We follow
the greedy method described in the original
work (Sener and Savarese, 2018)

FFT Adapter LoRA Prefix-tuning UniPELT

SUBJ 40.8 4.3 3.2 4.1 6.2
TREC 68.4 4.9 5.4 5.9 8.4
SST 43.9 5.1 5.0 4.9 7.6
AGN 72.1 7.3 6.1 4.4 9.3

Table 4: Experiment duration in minutes for all models
across datasets. We report the average runtime over five
different runs and five different sampling methods (five
AL methods and random sampling).

A.4 Preprocessing
We undertake a few pre-processing steps: con-
vert all tokens to lowercase, eliminate non-
alphanumeric tokens, and limit the token sequence
to a maximum length of 200.

A.5 Hyperparameters
We use a fixed learning rate of 2 × 10−5 for FFT
and 10−4 for adapters. Additionally, we set the
gradient clipping to 1 during training. In our im-
plementation of TAPT, we randomly mask 15% of
tokens for both FFT models and adapters and train
the model for 50 epochs with the learning rate set
to 10−5.

A.6 Computing infrastructure
We conducted our experiments on 4× AMD Ryzen
Threadripper 3970X 32-Core Processors and 4×
NVIDIA GeForce RTX 3090 GPUs with 24GB of
RAM. We used PyTorch version 1.9.0 and CUDA
11.4.

A.7 Average runtime
We report the average runtime of experiments in
Table 4.

B Additional Results

We report the results that were omitted from the
main part of the paper due to space constraints. Ta-
ble 5 shows AUC scores for different combinations
of AL methods and adapters, complementing the
relative improvement scores as AUC represents ab-
solute scores for each configuration. In Figure 6,
we display the difference in similarities of adapters
and FFT compared to their base models on the
remaining three datasets.



without TAPT with TAPT

RND ENT MC CS DAL RND ENT MC CS DAL

S
U

B
J

FFT .928 .931 .932 .932 .934 .938 .947 .947 .947 .946
Adapter .926 .934 .933 .933 .932 .934 .943 .944 .941 .938

LoRA .929 .938 .937 .935 .934 .935 .946 .945 .943 .942
Prefix-tuning .936 .942 .943 .943 .943 .940 .951 .951 .950 .949

UniPELT .934 .943 .944 .943 .942 .943 .952 .953 .952 .952

T
R

E
C

FFT .810 .812 .814 .817 .816 .818 .847 .851 .844 .847
Adapter .804 .809 .818 .831 .820 .820 .842 .846 .834 .848

LoRA .750 .775 .766 .762 .752 .764 .824 .820 .821 .781
Prefix-tuning .847 .861 .863 .857 .861 .862 .896 .893 .890 .895

UniPELT .877 .894 .897 .887 .902 .896 .927 .931 .925 .921

S
S

T

FFT .787 .787 .789 .779 .788 .792 .809 .808 .808 .807
Adapter .800 .803 .810 .805 .801 .812 .819 .818 .817 .814

LoRA .798 .798 .799 .811 .804 .806 .813 .810 .812 .809
Prefix-tuning .847 .854 .856 .864 .852 .868 .888 .887 .886 .885

UniPELT .836 .842 .843 .843 .837 .871 .882 .884 .882 .881

A
G

N

FFT .860 .862 .864 .861 .873 .869 .887 .872 .881 .871
Adapter .871 .881 .877 .873 .879 .882 .896 .893 .891 .891

LoRA .860 .863 .863 .869 .862 .868 .872 .881 .877 .871
Prefix-tuning .875 .882 .878 .880 .879 .886 .890 .902 .897 .896

UniPELT .875 .884 .887 .886 .887 .887 .908 .904 .900 .896

Table 5: AUC scores for AL methods with different adapters shown separately without TAPT and with TAPT. We
include random sampling for comparison with AL methods. Values in bold denote the best result for a particular
dataset within the same regime (with or without TAPT).
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Figure 6: Layerwise difference in representation similarity for the UniPELT adapter and the FFT model on TREC,
SST, and AGN. The differences are computed as CKA(adapter, base) − CKA(FFT, base), where base is the
corresponding pre-trained BERT model. Warm colors (positive values) illustrate layer pairs that demonstrate higher
similarity to the base model with the adapter than with FFT. Conversely, cool colors (negative values) represent
layer pairs that are more similar to the base model when using the FFT model. Best viewed on a computer screen.


