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Abstract

The rapid progress of generative Al has enabled powerful image editing tools that
can convincingly manipulate localized regions of real images. Such Al-edited
images are increasingly exploited to spread misinformation, yet existing detectors,
which primarily designed for whole-image synthesis or DeepFakes, struggle to
generalize and often fail against partial manipulations. In this paper, we study Al-
edited image detection from a zero-shot perspective, drawing inspiration from how
humans approach the task. Humans are generally reliable because they are exposed
primarily to authentic images and treat unusual or inconsistent regions as anomalies.
Vision language models (VLMs), trained on large and diverse image—text corpora,
offer a scalable analogue to this human ability. Leveraging VLMs for zero-shot
inference provides a principled framework for anomaly detection while mitigating
the overfitting issues that plague training-based detectors. We present SHIELD, the
first benchmark study of zero-shot Al-edited image detection using VLMs. Our
evaluation covers 24 models under two prompting strategies (direct prompting
and Chain-of-Thought prompting) and two inference modes (greedy decoding
and sampling). The results show that detection accuracy generally correlates with
overall model capability. Notably, direct prompting with greedy decoding achieves
the strongest performance, suggesting a “first impression” effect. We also examine
detection performance under different datasets, generative models, and editing
methods, and discuss potential directions for improving the detection accuracy. The
source code used in this study is available at https://github.com/Megum 1/SHIELD.

1 Introduction

Generative Al is transforming the way we create and consume information, with breakthroughs
spanning art [56, 49, 1], healthcare [15, 53, 64], and autonomous driving [43, 62, 50]. Among the
most striking innovations is text-to-image generation [18, 41]: tools like MidJourney [32] can turn a
short description into a vivid, photorealistic image within seconds. Despite these advances, the misuse
of image generation technologies has become a growing concern. A major risk lies in fabricating
fake identities (e.g., DeepFakes [55, 39, 42]) and producing deceptive content such as fake news,
which fuels misinformation and public distrust. For example, it is disturbingly straightforward to
generate realistic images that fabricate sensational stories, such as falsely depicting public figures in
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controversial situations’. Such misuse undermines the trustworthiness of generative Al and poses
significant challenges for its safe deployment. Hence, developing reliable methods to detect synthetic
images is of urgent importance.

Existing research [51, 27, 33, 46] has primarily focused on detecting whole-image synthesis, i.e.,
images entirely generated by Al without any image reference. Efforts have largely focused on
DeepFake detection [61, 65, 7] or general fake image detection [59, 8, 60], with detectors showing
strong performance when test data closely matches the training distribution. However, these methods
struggle to generalize. For instance, models trained on GAN-generated images often fail when applied
to diffusion-based images [51]. Their robustness is also limited: simple post-processing operations
such as JPEG compression can significantly degrade accuracy [8], suggesting that many detectors
overfit to pixel-level artifacts in training data. More critically, recent misinformation increasingly
exploits image editing, where only localized regions of authentic images are manipulated. Such
partial edits are both more practical and more convincing, yet detectors trained on whole-image
synthesis often struggle to identify them. Prior studies [36] have shown that detectors designed for
whole-image fakes perform poorly when faced with partial manipulations.

In this paper, we investigate a more practical and increasingly prevalent misuse scenario: Al-edited
image detection. Rather than relying on training-based classifiers, which often suffer from poor
generalization, we formulate the task as a zero-shot anomaly detection problem. The intuition is
similar to how humans identify fake images: by leveraging a strong understanding of authentic
content and treating deviations as suspicious. Vision language models (VLMs) [29, 28, 67] are
particularly well suited for this setting. Pretrained on massive corpora of images and multimodal tasks
such as image captioning [63] and object detection [11], VLMs acquire broad semantic knowledge
and naturally support zero-shot inference, reducing the risk of overfitting to specific styles or artifacts.
While a few recent works have explored using VLMs for detection, they either incorporate VLMs
as components of supervised detectors [65, 5] or focus narrowly on DeepFake detection [37]. By
contrast, we conduct a comprehensive investigation into leveraging VLMs as zero-shot detectors
for Al-edited images, aiming to establish their potential as a practical and generalizable solution to
synthetic media detection.

We present SHIELD, the first comprehensive Benchmark Study on Zero-SHot Detection of A1-Edited
Images with Vision Language ModDls. Specifically, we evaluate 24 VLMs under two prompting
strategies and two inference modes. The prompting strategies include direct prompting, where the
model is asked to judge whether an image is real or fake, and Chain-of-Thought (CoT) [54] prompting,
which encourages step-by-step reasoning before producing an answer. For inference, we consider
greedy decoding, which selects the most confident token at each step, and sampling-based decoding,
which aggregates predictions from multiple sampled responses. Together, these four combinations
mirror how humans may approach the task, ranging from instinctive judgments to deliberate reasoning
and from confident single responses to reconsideration through multiple trials.

We demonstrate average detection accuracy across the four evaluation settings and compare the results
with the Open VLM Leaderboard [35], a well-established benchmark spanning diverse vision tasks
(see Figure 1). The overall trend is nearly consistent: models that rank higher on the leaderboard,
which reflects general performance across diverse vision tasks, also tend to achieve stronger zero-shot
performance on Al-edited image detection. Notably, we also observe some counterintuitive results.
Direct prompting with greedy inference achieves the best performance among the four settings. We
attribute this to a “first impression” effect, where the initial high-confidence prediction captures
decisive cues for abnormality, while extended reasoning or sampling introduces noise and uncertainty.
This phenomenon parallels human decision-making, in which immediate judgments can sometimes
outperform deliberate overanalysis. Additional observations and detailed analyses are provided in
section 4.

2 Background and Related Work

Synthetic Image Generation and Editing. Recent years have witnessed rapid advances in synthetic
image generation driven by deep learning. Early approaches were dominated by variational auto-
encoders (VAEs) [21, 22] and generative adversarial networks (GANs) [14, 13]. Since 2020, diffusion
models (e.g., DDPM [18], LDM [41], Stable Diffusion [41]) have surpassed these earlier paradigms,
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Figure 1: Comparison between the Open VLM leaderboard and our benchmark SHIELD. The
left y-axis shows the average detection accuracy across four setting, while the right y-axis shows the
Open VLM score. The overall trends are largely consistent across the two benchmarks.

achieving state-of-the-art fidelity and, crucially, enabling text-based controllability for both generation
and editing. At their core, diffusion models learn to reverse a gradual noising process through a
denoising network, thereby generating images from pure noise. Today, they power production-scale
applications such as Midjourney [32] and DALL-E [34], supporting diverse styles ranging from
photorealistic imagery to animation. In this work, we focus on image editing instead of generation
from scratch, where the model receives both an input image and a text description. This can be
realized in two ways: (i) inpainting [4], where a semantic mask specifies the region to be filled; or (ii)
prompt-based editing [17], where a textual instruction guides modifications to the original image.

Synthetic Image Detection. The objective of synthetic image detection is to determine whether
an image has been generated by Al models. Early research primarily targeted fake face images,
known as DeepFake detection [61, 65, 7]. As generative models have advanced and begun producing
increasingly high-quality content across diverse domains, detection efforts have expanded to general
image categories. Early methods [51] treated the task as typical binary classification, relying on
large-scale training sets and carefully designed data augmentations to train deep networks such
as ResNet-50 [16]. While these approaches achieved strong performance on in-distribution tests
(i.e., images generated by models seen during training), their generalization to out-of-distribution
cases remained limited. Subsequent works explored distinctive properties of synthetic images
to improve robustness. For example, some methods exploit abnormal patterns in the frequency
domain [12, 45], pixel-level artifacts [47, 46, 52], or semantic-level discrepancies compared with
real images [33, 30, 6]. More recent approaches integrate multiple types of artifacts to enhance
generalizability [59, 8]. In this paper, we focus on image editing detection, which differs from
whole-image generation detection. Editing detection is often more challenging, as it includes an
additional step of localizing modifications within a real image.

Vision-Language Models (VLMs) as Synthetic Image Detectors. VLMs [29, 26, 25] integrate
visual information into language model processing, aiming to serve as unified models for diverse
vision tasks such as visual question answering (VQA), object detection, and image captioning. Recent
works have begun exploring their potential for synthetic image detection. AntifakePrompt [5] was
among the first to apply VLMs to deepfake detection by formulating the task as VQA. The authors
tuned soft prompts for InstructBLIP [9] using real images and a custom fake dataset containing fully
or partially generated images. However, this approach emphasized training for binary classification
rather than leveraging zero-shot capabilities. DD-VQA [65] extended deepfake detection into a
reasoning-based VQA task. While effective, such training-based approaches remain vulnerable to
out-of-distribution data. In contrast, we explore a more reliable, human-inspired zero-shot approach:
just as humans detect synthetic content by noticing anomalies against everyday objects, VLMs can
leverage their broad visual knowledge to spot abnormalities. A recent work [37] explored zero-shot
VLM detection for deepfake faces. In this paper, we study a more challenging problem of detecting
image edits across general categories.

3  Design

In this section, we present the experimental design for evaluating the detection performance of VLMs
on Al-edited images. An overview is shown in Figure 2, which consists of two main components:
(1) Prompting Strategy and (2) Inference Mode. Given an input image, we apply a vision language
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Figure 2: Overview. We evaluate the detection performance of VLMs under two prompting strategies
and two inference modes to enable a comprehensive assessment.

model (VLM) with a chosen prompt and inference mode to obtain the result. The output can be
either a binary decision (0 or 1) or an anomaly score ([0, 1]), depending on the inference mode. In the
following, we elaborate on these two components in detail.

3.1 Prompting Strategy

As shown in the yellow region of Figure 2, we employ two representative prompting approaches:
direct prompting and Chain-of-Thought (CoT) prompting. To facilitate evaluation, we provide light
instructions to guide the output format. However, we avoid imposing strict formatting constraints, as
these may negatively affect the model’s generative ability [44].

Direct Prompting. We directly ask the model to decide whether an image is Al-edited without
providing additional reasoning steps. This setting evaluates the model’s ability to make a judgment
based on its “first impression” rather than a detailed analysis. Surprisingly, this approach yields better
results than extended reasoning, as shown in subsection 4.2.

Direct Prompt

Is this image edited or modified by AI? Start your answer with "Yes" or "No".

CoT Prompting. Chain-of-thought (CoT) prompting [54] elicits intermediate reasoning before the
final decision. By encouraging step-by-step analysis, it can decompose the task into smaller parts and
potentially improve accuracy. In our setup, we use a standard CoT instruction that asks the model to
reason step by step and then decide whether the input image is Al-edited.

CoT Prompt

Think step-by-step to decide whether this image is edited or modified by AI.
Then conclude your answer with "The answer is" followed by your final answer.

3.2 Inference Mode

After selecting a prompt strategy, we select an inference mode before getting the output. The pink
part of Figure 2 presents two representative inference modes, namely (1) Greedy and (2) Sampling.

Greedy. This is a greedy way to select subsequent tokens with the highest confidence. Technically,
we disable the sampling option and set temperature equal to O in the model forwarding function. The
greedy inference represent the high confidence output by the model without hesitation and rethinking.

Sampling. In addition to greedy inference, we also evaluate sampling-based inference. Specifically,
we generate multiple responses for each input (default: 5) and average the binary outputs to obtain
an anomaly score. The sampling temperature is set to 0.7, a commonly used value that balances
diversity and stability in generation. Sampling serves as a reference to examine whether introducing
stochasticity can improve robustness compared to deterministic greedy decoding.



3.3 Extracting Binary Outputs from Model Responses

With appropriate instructions to constrain the output format, extracting binary predictions from model
responses is generally straightforward. For example, under direct prompting, the output typically
begins with either "Yes" or "No", which we map to label 1 and 0, respectively. For CoT prompting,
we extract the final answer following the phrase "The answer is" and again assign 1 or 0 depending
on whether the response begins with "Yes" or "No".

Occasionally, however, models deviate slightly from the prescribed format. In such cases, we employ
a secondary judge model to standardize the response and extract a valid binary output. Specifically,
we use Llama-3.1-8B as our judge model. We design a prompt into which we insert the {Raw VLM
Response} and provide three illustrative examples for few-shot guidance. To handle uncertainty, we
map the output "Not sure" to label 0, meaning the model considers the input image unedited, as it
lacks sufficient evidence of abnormality.

Judge Model Prompt

Read the following description and determine the expressed attitude toward
whether the image is edited or modified by AI:

{Raw VLM Response}

The attitude should be summarized as one of:

- "Yes": the description affirms it is edited or modified by AI
- "No": the description denies it is edited or modified by AI

- "Not sure": the description expresses uncertainty

Examples:

Description: '"yes, the image is edited or modified by AI."

Answer: Yes

Description: '"the image is not edited by ai"
Answer: No

Description: "can not decide without further information"
Answer: Not sure

Respond only with: "Yes", "No", or "Not sure".

4 Evaluation

We conduct extensive experiments to evaluate the ability of different VLMs to detect Al-edited
images. Unless otherwise specified, all experiments are run on a server equipped with eight NVIDIA
RTX A6000 GPUs.

4.1 Experiment Setup

Dataset. We adopt the recent large-scale dataset Semi-Truths [36], which is designed for evaluating
Al-augmented image detectors. For a fair yet computationally affordable evaluation, we randomly
sample 1,000 real images and 1,000 Al-edited images from three source datasets: ADE20K [66],
CelebAHQ [20], and Openlmages [24]. The dataset covers two representative editing types: (1)
image inpainting, where pixels within a semantic mask are replaced, and (2) prompt-based editing,
where regions are modified according to textual descriptions. Examples are provided in Appendix B.
Five widely used generative models are employed for editing, including Kandinsky 2.2 [40], Stable
Diffusion v1.4 [41], Stable Diffusion v1.5 [41], Stable Diffusion XL [2], and OpenJourney [38]. We
carefully balance the distribution across editing types and models to ensure diversity and fairness.

Vision-Language Models (VLMs). We benchmark 24 open-source VLMs spanning seven repre-
sentative families: LLaVA [29, 28], Llama-3.2 [10], DeepSeek-VL2 [57], InternVL3 [67], Qwen2.5-
VL [3], Kimi-VL [48], and Ovis2 [31]. A complete list of model sources can be found in Appendix A.
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Table 1: Detection Performance of Open-Source VLMs on AI-Edited Images. Higher values
indicate better performance for Acc., TPR, AUC, and TPR@, while lower values are better for FPR.
All metrics are reported in %, and computation time is measured in seconds. The best result in each
column is highlighted in bold underline, and the average across models is reported in the last row.

Direct Prompting CoT Prompting

VLMs Greedy Sampling Greedy Sampling

Acc. TPR FPR Time Acc. AUC TPR@ Time Acc. TPR FPR Time Acc. AUC TPR@ Time

LLaVA-1.5-7B 60.30 40.10 19.50 0.18 58.05 59.95 20.74 0.81 51.40 58.90 56.10 3.26 54.05 53.83 13.96 17.32
LLaVA-1.5-13B 66.05 60.80 28.70 0.30 62.50 65.97 27.33 1.30 5530 16.10 5.50 8.34 54.10 60.36 19.88 39.73
LLaVA-1.6-7B 67.15 69.80 3550 125 61.75 65.87 2624 554 5250 8.00 3.00 14.98 52.55 59.22 21.79 75.57
LLaVA-1.6-13B 66.05 51.70 19.60 1.38 65.45 69.93 31.36 6.28 56.85 17.50 3.80 16.17 54.40 62.20 23.05 109.04
LLaVA-1.6-34B 65.55 82.30 51.20 158.9 64.00 66.98 21.88 774.6 55.50 16.00 5.00 838.7 53.50 65.50 33.00 4640.6
Llama-3.2-11B 5490 11.00 12.00 1.90 55.75 61.76 30.30 10.00 50.60 22.20 21.00 13.78 54.70 58.48 16.90 71.11

DeepSeek-VL2-tiny 61.85 47.10 23.40 0.54 61.55 65.03 26.65 2.53 53.35 37.30 30.60 2.56 57.75 59.41 2047 12.92
DeepSeek-VL2-small 57.50 19.60 4.60 0.48 58.00 61.60 25.11 220 58.25 60.40 43.90 10.52 62.20 66.71 2548 47.38

DeepSeek-VL2 58.75 48.70 31.20 0.79 59.40 62.88 23.10 3.69 57.55 73.80 58.70 15.64 61.30 66.91 2822 73.13
InternVL3-1B 50.50 99.20 98.20 1.65 52.30 58.10 12.65 7.17 53.75 28.10 20.60 17.89 53.20 57.25 16.06 64.16
InternVL3-2B 63.50 44.00 17.00 1.69 61.55 66.60 30.69 7.36 59.55 31.80 12.70 15.65 55.30 59.96 20.60 81.42
InternVL3-8B 61.80 31.50 7.90 3.72 60.85 66.99 31.09 17.70 53.65 48.40 41.10 25.74 60.25 63.63 23.19 119.09
InternVL3-14B 59.65 24.10 4.80 4.84 60.05 64.06 31.42 21.29 59.15 35.70 17.40 51.84 58.00 62.58 24.10 131.52
InternVL3-38B 62.35 38.50 13.80 4.72 61.05 63.60 30.92 20.90 62.40 41.20 16.40 26.89 62.55 66.41 32.55 132.14

Qwen2.5-VL-3B 64.70 42.00 12.60 0.57 60.00 63.95 29.53 3.31 57.15 60.10 45.80 5.97 58.05 60.92 19.93 33.87
Qwen2.5-VL-7B 57.80 17.70 2.0 0.44 5775 62.72 3094 2.01 56.35 27.80 15.10 7.91 58.10 63.72 2845 37.84
Qwen2.5-VL-32B 60.05 23.60 3.50 9.60 59.65 63.29 35.13 14.47 60.35 32.30 11.60 48.20 61.75 65.70 33.98 48.47

Kimi-VL-A3B 57.95 2290 7.00 0.58 58.20 60.95 25.07 2.87 53.20 39.10 32.70 15.64 56.10 59.32 18.16 76.36
Ovis2-1B 50.15 100.00 99.70 0.68 50.80 56.47 11.70 4.71 59.85 37.50 17.80 2.60 62.25 66.62 28.86 16.12
Ovis2-2B 50.05 100.00 99.90 0.62 50.30 51.64 10.36 4.50 55.90 65.10 53.30 4.66 59.60 62.76 21.25 22.63
Ovis2-4B 52.15 98.10 93.80 2.52 52.10 54.29 11.04 10.08 54.65 78.40 69.10 6.26 54.90 57.66 13.21 36.70
Ovis2-8B 50.40 7490 74.10 3.55 50.75 51.43 1029 13.43 56.95 64.90 51.00 7.85 54.05 57.46 15.73 42.54
Ovis2-16B 63.75 4450 17.00 6.67 63.40 66.83 32.17 32.27 60.70 29.30 7.90 19.59 60.75 65.52 35.58 90.93
Ovis2-34B 63.60 51.60 2440 7.55 6245 6541 31.32 41.93 60.20 26.20 5.80 24.74 60.50 63.03 31.35 112.75
Average 59.44 51.82 3340 896 58.65 62.35 24.88 42.12 56.46 39.84 26.91 50.22 57.50 61.88 23.57 255.55

Our evaluated model sizes range from 1B to 38B parameters. Due to resource constraints, we exclude
models exceeding 40B, though small- and medium-scale models already provide sufficient insights.
All models are instruction-tuned, ensuring that they follow the designed prompts and output formats,
which facilitates consistent measurement. For comparison, we also include a production-level model,
GPT-40 [19]. Each VLM is evaluated under two prompting strategies (i.e., direct and CoT) and two
inference modes (i.e., greedy and sampling). Detailed prompts are provided in subsection 3.1.

Evaluation Metrics. We adopt six metrics to assess detection performance. Under greedy inference,
where outputs are binary (either true or false), we measure accuracy, true positive rate (TPR), and
false positive rate (FPR). Under sampling inference, which yields confidence scores in [0, 1], we
compute accuracy (with threshold equals to 0.5), ROC-AUC (AUC), and TPR at 10% FPR (TPR@)
which better reflect practical deployment. In addition, we report the average detection time per image
for each VLM to quantify computational overhead.

4.2 Detection Performance of Various Open-Source VLMs

In this section, we present the main experimental results on Al-edited image detection using a diverse
set of open-source VLMs. Overall, their average detection accuracy closely mirrors their general
vision performance, as shown in Figure 1. To gain deeper insights, Table | reports results under four
settings, involving two prompting strategies and two inference modes, respectively (see Appendix C
for illustrative cases). We summarize the key insights from these evaluations as the following findings.

Finding 1: Direct prompting with greedy inference yields the best overall performance.

As shown in the last row of Table 1, direct prompting with greedy inference achieves the highest
accuracy (59.44%), outperforming the other three settings. This result is somewhat counter-intuitive,
since chain-of-thought (CoT) prompting is often reported to enhance reasoning in diverse tasks [54,



58]. We hypothesize that Al-edited image detection fundamentally differs from reasoning-intensive
problems: it relies less on multi-step deliberation and more on immediate perceptual judgment. In this
context, “overthinking” may actually harm performance, e.g., CoT prompting introduces additional
uncertainty, often leading to higher FPR (e.g., DeepSeek family) or overly conservative responses
with reduced TPR (e.g., LLaVA family).

This phenomenon suggests that detection is closer to a “first impression” task, similar to how humans
can often detect anomalies at a glance, whereas prolonged reflection may amplify doubt about
borderline cases. From a technical point of view, greedy direct prompting is also less susceptible to
drift from verbose text generation: the model’s decision (yes/no) appears immediately after the image
tokens, while CoT defers the final answer to the end of a long reasoning process, making it more
vulnerable to noise or self-contradiction. Likewise, sampling further injects randomness, moving the
prediction away from the model’s most confident “first impression”.

Finding 2: The LLaVA family achieves the best detection performance.

We observe that models in the LLaVA family outperform other VLM families in detecting Al-
edited images. This is also somewhat surprising, as prior large-scale benchmarks [35] often place
LLaVA behind families such as InternVL or Qwen on general-purpose vision-language tasks. We
suspect there are two possible reasons for this result. First, LLaVA’s streamlined architecture directly
connects visual features to the language model, enabling rapid “first impression” judgments rather
than relying on complex reasoning. Second, LLaVA is primarily optimized for grounded perception
and description rather than multi-step reasoning. Since Al-edited image detection resembles a
perceptual anomaly recognition task, this design makes LLaVA well-suited for the problem.

Finding 3: Larger models typically achieve higher detection performance.

Within the same family, we observe that larger models typically outperform their smaller counterparts,
as exemplified by the InternVL3 and Ovis2 families. This trend is expected, since larger models
possess greater parameter capacity and broader knowledge, enabling them to capture subtle cues
in an image even at a “first impression.” The pattern is also similar to human perception. For
example, adults (like larger models) generally detect anomalies more reliably than children (like
smaller models), reflecting their greater experience and cognitive capacity.

Finding 4: Sampling slightly reduces performance under direct prompting but provides minor
gains under CoT prompting.

We observe that sampling inference tends to degrade performance for direct prompting, yet offers
small improvements for CoT prompting. For instance, within the Qwen2.5 family, sampling lowers
accuracy by about 2% under direct prompting but raises it by roughly 1% under CoT prompting. This
pattern can also be explained using “first impression” hypothesis: sampling introduces additional
uncertainty, which undermines the decisiveness of direct prompting. However, in the more cautious
CoT setting, sampling can mitigate hallucinations and provide slight performance improvement.

Finding 5: Smaller models exhibit a strong bias toward positive predictions.

Within a model family, smaller models often predict images as Al-edited regardless of the ground
truth. This trend is evident in the Ovis2 and InternVL3 families, where 1B and 2B models yield nearly
100% TPR but also nearly 100% FPR. We attribute this behavior to their limited visual perceptual
capacity, which leads them to treat almost any irregularity as evidence of Al-editing.

4.3 Comparison with Production VLMs

In addition to evaluating open-source VLMs, we also include a production-level model, GPT-4o, for
comparison. Due to budget constraints, we randomly sample 100 real and 100 Al-edited images
for a lightweight test. For baselines, we select the best-performing open-source models under each
prompting strategy: LLaVA-1.6-7B with direct prompting and InternVL3-38B with CoT prompting.
All models are evaluated using greedy inference without sampling. As shown in Table 2, GPT-40
substantially outperforms the strongest open-source models, achieving 11.5% higher accuracy than



Table 2: Comparison of the best open-source model with GPT-40. Results are reported under
greedy inference. The best result in each column is marked in bold underline.

Direct Prompting CoT Prompting
Acc. T TPR 1 FPR | Time (s) Acc.T TPRT FPR|  Time (s)

LLaVA-1.6-7B 67.5% 74.0% 39.0% 1.25 53.5% 8.0% 1.0% 14.98
InternVL3-38B  59.5% 31.0% 12.0% 4.72 61.5% 35.0% 12.0% 26.89

VLMs

GPT-40 76.0% 88.0% 36.0% 1.24 67.5% 53.0% 18.0% 5.05
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Figure 3: Comparative analysis across different settings. We evaluate performance across datasets,
generative models, and editing methods.

LLaVA-1.6-7B and 6% higher than InternVL3-38B. This result is expected, given GPT-40’s much
larger scale and extensive training data. Interestingly, even for GPT-4o0, direct prompting outperforms
CoT prompting by roughly 10% in accuracy, reinforcing our “first impression” hypothesis that
immediate judgments are more reliable than extended reasoning for Al-edited image detection.

4.4 Comparative Analysis Across Different Settings

In this section, we compare detection performance across different experimental settings. All studies
use direct prompting under greedy inference, and we report averaged results across all VLMs.

Across Different Datasets. We first evaluate detection performance on different source datasets.
Results are shown in Figure 3a, where each bar denotes the averaged accuracy with error bars
representing the standard deviation. Detection performance is slightly higher on CelebAHQ compared
to ADE20K and Openlmages, likely because CelebAHQ focuses on human faces, a narrower domain
that is easier to detect than the broader and more diverse content of the other two datasets.

Across Different Generative Models. We then compare detection performance on Al-edited images
generated by different models. Results are presented in Figure 3b, where the bars indicate averaged
TPR, since only edited images are considered. Kandinsky is the most vulnerable to detection,
potentially due to its relatively poor generation quality. In contrast, SDXL, known for high-quality
editing, produces images that are the most difficult to detect.

Across Different Editing Methods. Finally, we examine detection performance across editing
methods and editing strengths, as shown in Figure 3c. Bars again indicate averaged TPR. For each
editing method, we compare three editing strengths: mask size for inpainting and semantic similarity
for prompt-based editing [36]. For example, a larger mask size corresponds to a stronger editing
strength (see Appendix B). Observe that prompt-based editing is generally harder to detect than
inpainting, as inpainting often leaves artifacts at mask boundaries. Moreover, larger editing strength
consistently leads to better detection, as larger modifications are easier for VLMs to capture.

4.5 Insights for Performance Improvement

The detection performance of VLMs remains limited, even for GPT-40. We therefore explore potential
strategies to improve performance. One natural direction is to adopt more fine-grained, object-wise
inspection, since some edits only modify small regions of an image. To validate this idea, we conduct



Table 3: Performance compari-
son with different types of hints.
Experiments are conducted under
direct prompting using GPT-4o.

Direct Prompting
4 GPT-40 R
2 . . TPR Time (s)
No Hint Given Semantic Mask Given Bounding Box -
No hint 85% 0.89

Figure 4: Illustration of different hints. The image is edited Given mask  86% 6.57
with SD-v1.5 (the right lipstick). The hints are highlighted in red.  Given bbox  89% 6.26

a lightweight experiment by providing GPT-40 with hints for inpainted images. Specifically, we
randomly select 50 inpainted images and compare performance under different types of hints. As
illustrated in Figure 4, we highlight the ground-truth inpainting region and ask GPT-4o to focus on that
area during detection. We consider two hint types: (1) the semantic outline of the mask, and (2) the
bounding box surrounding the mask. The results in Figure 3 show that both hints improve detection
accuracy, with the bounding box achieving slightly better gains. We suspect that the semantic outline
may sometimes introduce artifacts along the highlighted boundary, which can confuse the model.

In practice, ground-truth hints are unavailable. An alternative is to segment an image into objects and
inspect each individually. We conduct a preliminary test using SAM [23] to generate object masks
and aggregate GPT-40’s responses for each object. While fine-grained scanning improves sensitivity
(TPR), it also increases false positives. For instance, with five objects, a single misprediction can flip
the overall decision. Hence, balancing granularity and reliability remains our future work.

5 Conclusion

In this paper, we study zero-shot detection of Al-edited images using vision language models (VLMs).
We evaluate 24 VLMs under two prompting strategies and two inference modes, finding that detection
accuracy broadly follows overall model capability. Notably, direct prompting with greedy decoding
achieves the strongest performance, suggesting a “first impression” effect. However, overall accuracy
remains modest (55%—-60%), highlighting the need for further improvement.
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A Detailed Description of Evaluated VLMs

For reference, Table 4 provides the evaluated open-source VLMs used in our experiments, along with
their source links and release dates.

Table 4: Sources of Evaluated VLMs. Mapping of model names used in our experiments to their
source links and release dates.

VLM Name Model ID (HuggingFace Link) Release Date
LLaVA-1.5-7B llava-hf/llava-1.5-7b-hf 09.2023
LLaVA-1.5-13B llava-hf/llava-1.5-13b-hf 09.2023
LLaVA-1.6-7B llava-hf/llava-v1.6-mistral-7b-hf 07.2024
LLaVA-1.6-13B llava-hf/llava-v1.6-vicuna-13b-hf 07.2024
LLaVA-1.6-34B llava-hf/llava-v1.6-34b-hf 07.2024
Llama-3.2-11B meta-llama/Llama-3.2-11B-Vision 12.2023
DeepSeek-VL2-tiny deepseek-ai/deepseek-vI2-tiny 12.2024
DeepSeek-VL2-small deepseek-ai/deepseek-v12-small 12.2024
DeepSeek-VL2 deepseek-ai/deepseek-vI2 12.2024
InternVL3-1B OpenGVLab/InternVL3-1B 04.2025
InternVL3-2B OpenGVLab/InternVL3-2B 04.2025
InternVL3-8B OpenGVLab/InternVL3-8B 04.2025
InternVL3-14B OpenGVLab/InternVL3-14B 04.2025
InternVL3-38B OpenGVLab/InternVL3-38B 04.2025
Qwen2.5-VL-3B Qwen/Qwen2.5-VL-3B-Instruct 04.2025
Qwen2.5-VL-7B Qwen/Qwen2.5-VL-7B-Instruct 04.2025
Qwen2.5-VL-32B Qwen/Qwen2.5-VL-32B-Instruct 04.2025
Kimi-VL-A3B moonshotai/Kimi-VL-A3B-Instruct 07.2025
Ovis2-1B AIDC-AI/Ovis2-1B 03.2025
Ovis2-2B AIDC-AI/Ovis2-2B 03.2025
Ovis2-4B AIDC-AI/Ovis2-4B 03.2025
Ovis2-8B AIDC-AI/Ovis2-8B 03.2025
Ovis2-16B AIDC-AI/Ovis2-16B 03.2025
Ovis2-34B AIDC-AI/Ovis2-34B 03.2025

B Examples of AI-Edited Images

Examples of Al-edited images are shown in Figure 5 and Figure 6, illustrating both inpainting and
prompt-based editing methods across three editing strengths (small, medium, large).

C Examples of VLM Responses

We present example responses from InternVL3-38B [67] under both direct prompting and CoT
prompting (subsection 3.1). For each strategy, we illustrate four representative cases: a true positive
(Figure 7, Figure 11), a true negative (Figure 8, Figure 12), a false positive (Figure 9, Figure 13),
and a false negative (Figure 10, Figure 14). These examples provide a concrete view of how VLMs
behave across different prompting methods.
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Original Mask Inpainted

(a) Ilustration of image inpainting under small editing strength.

Original Mask Inpainted

(b) Illustration of image inpainting under medium editing strength.

Mask Inpainted

(c) Illustration of image inpainting under large editing strength.

Figure 5: Example of image inpainting as an editing method. In each row, the first column displays
the original image, the second column the semantic mask used for inpainting, and the last column the
resulting inpainted image.

15



(b) Small editing strength. A fluffy cat sitting in the
green meadow.

(c) Medium editing strength. A long-haired dog  (d) Large editing strength. A horse galloping across
sitting in the grass. a desert plain.

Figure 6: Example of prompt-based editing. Subfigure (a) shows the original image with its caption,
while (b), (c), and (d) present edited versions generated using the prompts indicated in their respective
subcaptions.

~

Is this image edited or modified bg Al? Start

SR gouranswerwitl') "Yes" or "No".

W,

o

~

v
"{es, this image appears to be edited or modified by
Al The flower on the cow's ear looks unnatural and *
out of place, suggesting digital manipulation.

Figure 7: Direct Prompting. Illustration of a true positive case.
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Is this image edited or modified by Al? Start

your answer with "Yes" or "No".

~

W,

4

o, this image does not appear to be edited or
modified by Al It looks like a natural photograph of a
fox.

~

Figure 8: Direct Prompting. Illustration of a true negative case.

Is this image edited or modified bg Al? Start

your answer with "Yes" or "No".

~

J

K

yges, this image appears to be edited or modified by
AI. The perspective and proportions seem unusual,
particularly around the elevator and the person's
position, suggesting digital manipulation.

\

~N

Figure 9: Direct Prompting. llustration of a false positive case.

Is this imagc edited or modified 139 Al? Start

your answer with "Yes" or "No".

~

J

DS

%o, this image does not appear to be edited or
modified by AL It looks like a natural photograph of a
sunflower.

~N

Figure 10: Direct Prompting. Illustration of a false negative case.
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Think s’ceP-by—steP to decide whether this
image is edited or modified bg Al Then conclude

your answer with "The answer is" followed bg

HOUT ﬁnal answer.

()
: To determine if this image is edited or modified by
AT, let's analyze it step by step:

1. Hair Color and Style: The hair color is an
unusual and uniform platinum blonde, which is
not common in natural hair. This suggests the
possibility of digital alteration.

2. Lighting and Shadows: The lighting appears
consistent, but the shadows and highlights on the
hair and face seem glightly unnatural, which
could indicate digital manipulation.

&. Skin Texture: The skin texture looks smooth
and uniform, which might be a result of AI
smoothing or retouching.

4. Overall Appearance: The overall appearance of
the image, particularly the hair, seems to be more
stylized than natural, which is a common trait in
AT-generated or heavily edited images.

Based on these observations, it is likely that the
image has been edited or modified by AL

The answer is: Yes, the image is edited or modified
by Al

Figure 11: CoT Prompting. Illustration of a true positive case.
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DN - -’:'Wl: Think s’ceP-bg—stcP to decide whether this
y image is edited or modified bg Al. Then conclude

your answer with "The answer is" followed bg

HOUT ﬁnal answer.

% ()
b X0 determine if this image is edited or modified by AI,
let's analyze it step by step:

1. Visual Comnsistency: The image shows a plate of
flatbread with some dips. The lighting and shadows
appear consistent across the image, suggesting a
natural setting.

2. Texture and Detail: The textures of the flatbread,
dips, and the tablecloth look realistic. There are no
obvious signs of blurring or unnatural transitions.

3. Composition: The composition is typical for a food
photograph, with no unusual elements or distortions
that might suggest editing.

4. Color and Lighting: The colors are natural and the
lighting is consistent, without any signs of artificial
manipulation.

5. Background and Context: The background
elements, such as the tablecloth and bowls, are in
harmony with the main subject, indicating a
coherent scene.

Based on these observations, there are no clear
indicators that the immage has been edited or modified
by Al

The answer is: The image does not appear to be
edited or modified by Al

Figure 12: CoT Prompting. Illustration of a true negative case.
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)&) determine if this image is edited or modified by AI, let's
analyze it step by step:

1. Lighting and Shadows: The lighting appears consistent
across the image. The shadows cast by the blinds are
uniform and natural, suggesting that the lighting is not
artificially altered.

2. Objects and Composition: The objects in the image (the
tube, the plant, and the blinds) are all in proportion and
perspective. There are no obvious signs of objects being
added or removed.

3. Color and Contrast: The image is in grayscale except for
the green plant. This selective coloring could be a result of
editing, as it is unusual for a natural scene to have such a
stark color contrast.

4. Edges and Blending: The edges of the plant and the tube
are sharp and well-defined, which is typical in natural
images. There are no visible signs of blending or artifacts
that would suggest digital manipulation.

5. Background and Texture: The background and textures
appear natural. The blinds and tiles have a realistic
appearance without any noticeable distortions.

Given these observations, the selective coloring of the plant
is the most likely indication of editing. The rest of the image
appears natural and unaltered.

The answer is: The image is edited.

Figure 13: CoT Prompting. Illustration of a false positive case.
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Q 5

To determine if this image is edited or modified by AT,
let's analyze it step by step:

1. Composition and Lighting: The lighting appears
natural, with sunlight coming through the window.
The shadows and light distribution seem consistent
with a real environment.

2. Objects and Details: The objects in the image, such
as the chair, desk, and items on the windowsill,
appear realistic and well-integrated into the scene.
There are no obvious signs of digital manipulation,
such as mismatched lighting or shadows

3. Background and Perspective: The view outside the
window looks natural, with a consistent perspective
and no signs of digital alteration.

4. Color and Texture: The colors and textures in the
image are consistent with a real photograph. There
are no unusual color shifts or textures that suggest
digital editing.

Based on this analysis, there are no clear indications
that the image has been edited or modified by Al

The answer is: No, the image does not appear to be
edited or modified by Al

Figure 14: CoT Prompting. Illustration of a false negative case.
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