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Abstract

Fixed-frequency control in robotics imposes a trade-off between the efficiency of
low-frequency control and the robustness of high-frequency control, a limitation not
seen in adaptable biological systems. We address this with a reinforcement learning
approach in which policies jointly select control actions and their application
durations, enabling robots to autonomously modulate their control frequency in
response to situational demands. We validate our method with zero-shot sim-
to-real experiments on two distinct hardware platforms: a high-speed RC car
and a quadrupedal robot. Our method matches or outperforms fixed-frequency
baselines in terms of rewards while significantly reducing the control frequency
and exhibiting adaptive frequency control under real-world conditions.

1 Introduction

Efficient and adaptive control is a hallmark of intelligent systems. Biological systems, for instance,
masterfully adapt their control effort to the complexity of a situation [[Crevecoeur et al.,|2020, [Babic
et al.,|2016]. Walking on a sidewalk requires little conscious control, our steps are automatic, and
corrections are infrequent. In contrast, walking on a slack line requires constant attention, frequent
corrections, and adjustments to maintain balance. This ability to dynamically modulate control
frequency is fundamental to the robustness and efficiency of human motor skills [|Crevecoeur et al.,
2020].

In sharp contrast, most existing control methods in robotics rely on a fixed control frequency in all
scenarios [Hwangbo et al.,|2019| Di Carlo et al., 2018} Wu et al., 2023, [Schuchert and Karimi, 2024},
Oleiwi et al.|[2025]). For example, a self-driving car is controlled at the same frequency when driving
straight compared to when performing a complicated drift maneuver. Although adaptability has been
extensively studied in human-robot interaction and collaborative contexts [[Schneider and Kummert,
2021} Tanevska et al., 2020} Nikolaidis et al.,|2017]], this dynamic modulation of control frequency
remains under-addressed.

The fixed-frequency approach, in turn, forces a fundamental compromise. A too low control frequency,
while computationally cheap, risks failure when the controller must react to sudden changes in its
state or environment. Conversely, a too high frequency ensures robustness and reactivity but comes at
a significant and often unnecessary computational cost. In robotics, this trade-off leads to a preference
for the latter approach, accepting a high computational burden to guarantee performance in the
worst-case scenario [Hwangbo et al.l 2019, D1 Carlo et al.| [2018| Wu et al.| [2023] |Schuchert and
Karimi, 2024, |Oleiwi et al., [2025]].

In this work, we present Time-Adaptive Robotic Control (TARC), a reinforcement learning (RL)
approach that enables robots to modulate their control frequency. Our policies learn to jointly output

*Project  website: https://arnavsukhija.github.io/projects/tarc/. Supplementary  video:
https://youtu.be/w0Oy6uusnPYc
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Figure 1: The performance of TARC on scenarios requiring adaptation in control frequency. The
quadruped’s control frequency spikes when experiencing a push, demonstrating state-dependent
frequency modulation.

a control action and its application duration, building on the TaCoS framework [Treven et al, [2024],
which allows this joint output to be learned using any standard RL algorithm. We demonstrate the
effectiveness and generalizability of TARC via zero-shot sim-to-real deployment on two distinct
dynamic platforms. Its core capability of modulating control frequency in response to situational
demands is illustrated in Fig.[I] Our key contributions are summarized as follows:

* We introduce an adaptive frequency control method and validate it on two dynamically
distinct robotic tasks: a high-speed RC car drifting and quadrupedal locomotion.

* We demonstrate that such adaptive policies achieve task performance comparable to fixed-
frequency baselines while requiring less control interventions.

* We show that our learned policies autonomously modulate their control frequency in response
to situational demands.

2 Related Work

2.1 Choice of Control Frequency in Robotic Systems

Traditional robotic control schemes often operate at a fixed frequency, which introduces several
practical limitations. Fixed-frequency controllers can be wasteful if the frequency is too high, and
their limitations have been extensively addressed in recent literature/Park et al| [2021]] and [Amin
show that variable action durations can significantly improve learning performance.
Although high frequencies can ensure reactivity, they incur significant computational costs and can
hinder training [Karimi et al.,[2023] [Wang and Beltrame}, [2024a]). In contrast, low-frequency control
is efficient and can improve latency insensitivity [Gangapurwala et al.}, 2023]], but it risks instability
when rapid reactions are needed. These challenges are not unique to learning-based methods;
challenge the "one frequency for all" intuition by using different control frequencies
for different scenarios. They consider a dynamic jumping maneuver on legged robots using Model
Predictive Control (MPC) and observe more robust results with different control frequencies for
the in-flight phase and the ground phase. Similarly, [Li et al.| [2025b] use a two-agent framework
for humanoid locomotion, where a high-frequency agent stabilizes the upper body while a lower-
frequency agent controls the gait, highlighting the benefit of specialized frequencies for tasks with
mismatched dynamics. These previous works highlight the trade-offs of frequency selection and
motivate the need for more flexible, adaptive control strategies.

2.2 Adaptive Frequency Control

To overcome these limitations, recent research has explored methods that adapt the control frequency
during run-time. A significant amount of research has been conducted on repetitive action reinforce-
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Figure 2: Overview of our framework. The RL agent outputs an action a, and an application duration
At, which allows the policy to modulate control frequency. We train completely offline in simulation
(left), and deploy the policy zero-shot on the hardware (right).

ment learning, which enables agents to repeat actions over multiple time steps [Hafner et al., 2020,
Braylan et al.| 2015 Sharma et al., 2017, Metelli et al., |2020]. Furthermore, [Wang and Beltrame
[2024bla]] explore variable time-step reinforcement learning with adaptive control frequencies where
the agent adapts the control frequencies based on task requirements. Their method extends Soft-
Actor-Critic (SAC) [Haarnoja et al.,|2018]] with variable time steps and reward shaping, enabling the
agent to select both which action to take and its execution duration using additional hyperparameter
tuning. Similar concepts have appeared in MPC, where neural-augmented methods simultaneously
optimize step location, step duration, and contact forces for natural variable-frequency locomotion
[Li et al., 2025al].

In contrast, our work generalizes these concepts. We use the flexible TaCoS framework [Treven
et al.,|2024]], which formalizes an extended Markov Decision Process (MDP) that any standard RL
algorithm can solve without extensive reward shaping or hyperparameter adjustment.

3 Method

In this section, we describe our methodology for learning time-adaptive control policies that jointly
predict the next action and their application durations. Fig.[2] provides an overview of our methodol-

ogy.

3.1 Time-Adaptive Control

To obtain time-adaptive control policies, we adopt the interaction cost setting of the Time-adaptive
Control and Sensing (TaCoS) framework [Treven et al., [2024]]. TaCoS transforms a continuous-time
MDP to an extended discrete-time MDP which any standard RL algorithm can solve.

Although the intricate system dynamics behind both of our robotic platforms is continuous-time,
their hardware implementations work in discrete-time, which means that control is applied at a fixed
frequency fy,q.. Thus, we adapt the framework to a discrete-time setting in which the agent may
choose to repeat actions over multiple control steps. This allows the policy to implicitly select the
applied control frequency.

3.1.1 Policy Class

Let ¢ € N denote the maximum repetition count. In our setting, this corresponds to the maximum
number of control steps that the agent can select as the action’s application duration. The policy class
we consider extends a standard action-selection policy to include time-adaptive duration selection:

Definition 1 (Time-Adaptive Policy ) Let X be the state space, A the action space, and T € N
the episode horizon. At step t € {0,1,..,T}, let the agent observe the state s; = (14,t) €
X x {0,1,..,T}, where xy € X is the environment state. A time-adaptive policy is a function



m: X x{0,1,..,T} = Ax{1,2,..,i} such that
m(st) = (ar, At) ()
where a; € A is the action and At € {1, 2, .., i} the application duration.

We refer to a controller using such a policy as TARC-i. Since control actions are kept constant for
the At time steps, the resulting control frequency dynamically varies as
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3.1.2 Switch Cost and Reward

To encourage sparser control intervention and thus lower control frequencies, we penalize the agent
for each action switch with a fixed cost ¢ € R (see the interaction cost formulation in the TaCoS
paper [Treven et al.||2024]). The goal is to discourage high-frequency control actions unless they are
necessary for task performance.

Definition 2 (Reward function R) Let r : X x A — R denote the original reward function of
the underlying MDP, v € (0,1] be the discount factor, ¢ € R the switch cost, s; = (xy,t) the
augmented state at time t, uy = (a¢, At) the augmented action. We define the reward function R of
our discrete-time augmented MDP as:

At—1
R(st,up) = ( Z fykr(a:t+k,at)> —c 3
k=0

where

* T4 is the state observed at time t + k by repeatedly executing a,

* ay is held constant for At steps

This reward structure encourages the agent to maximize task performance while minimizing un-
necessary interventions through the switch penalty. This hyperparameter is tuned to align with the
specific control requirements, the degree to which low control frequencies are encouraged, and the
characteristics of the robotic platform.

If c is too low, the agent tends to favor high-frequency control, similar to the fixed-rate baseline. In
contrast, a very high c can discourage necessary control updates, causing the agent to repeat actions
excessively or act conservatively. Selecting an appropriate value of ¢ is important to balance the costs
of control intervention with responsiveness.

For each robotic platform, we provide the values of ¢ used in our experiments in section[d] while a
complete list is also available in appendix [A]

4 Experimental Setup

For both platforms, we compare our TARC policies with a fixed-frequency baseline controller
operating at the base control frequency f,4.. The baseline simply picks an action at each step and
acts within the standard, non-augmented MDP.

Training is done offline with the help of simulators and deployed zero-shot on to the real hardware
platform. All policies are optimized using Proximal Policy Optimization (PPO) [Schulman et al.|
2017, [Freeman et al.l 2021]]. We consider several variants of adaptive policies as per Definition I}
specifically, TARC-3, TARC-4, TARC-5, TARC-10.

For our evaluations, we consider the following performance metrics, both directly reported on the
hardware in Section

» Total Reward: We report the cumulative reward per episode under two conditions. The
penalized reward includes the switch cost ¢ to evaluate how well the policy balances task
performance against the cost of frequent control interventions. The unpenalized reward
excludes this cost to provide a direct measure of pure task performance.



* Average Control Frequency: The average number of control actions applied per second
(Hz). This metric directly quantifies the policy’s intervention rate.

4.1 RC Car

The RC car is similar to those of Bhardwaj et al.|[2024], |Sukhija et al.|[2023]]. The RL task is a
reverse parking maneuver: starting approximately 2m from a target position, the car must rotate
180°, typically requiring a drift (see Fig. [3). This scenario is chosen to have high and low control
demand, so that a non-adaptive f,,,, baseline can be compared against the adaptive controller. This
task is considered over one episode of 200 control steps at base frequency of f,q.. = 30Hz, which

corresponds to % = 6.6 seconds.

Figure 3: Desired reverse parking maneuver which involves rotating the car 180°and parking approx.
2m away.

The dynamics model is based on|Kabzan et al. [2020] and uses the Pacejka tire model [Pacejka and
Bakker, [1992] to accurately capture drifting effects. We employ domain randomization over physical
parameters such as mass, tire stiffness, and motor power to improve robustness. Furthermore, to
account for an observed hardware delay 80ms, we augment the 6D physical state with the last three
actions, forming a 12 dimensional base observation vector. As per Definition [I| we augment this 12
dimensional observation vector with an additional time component for the TARC policies. The full
details of the state space and randomization ranges are in appendix [A.T]

The reward function, based on the work of Rothfuss et al. [2024], is:
(@, a1) = Tstate(Te) — w - [|ag||? )

where 744¢c 1S a tolerance-based reward that encourages closeness to the target pose. We use a
control penalty weight of w = 0.005. This reward function is used as the underlying reward function
for our method according to Definition [2] using an empirically tuned switch cost of ¢ = 0.1. The
complete reward formulation and training hyperparameters are detailed in appendix [A.T]

4.2 The quadruped

For the quadrupedal locomotion task, we use the Unitree Gol, a robot with a 48-dimensional state
space and a 12-dimensional action space. We use MuJoCo Playground [Zakka et al., 2025]], known
for its robust sim-to-real transfer, allowing policies to be trained in simulation and deployed zero-shot
onto the hardware with control actions issued at a base control frequency of f,,q. = 50Hz.

4.2.1 Training Setup

Policies are trained on the joystick locomotion task [J1 et al.| 2022} |Rudin et al., 2022[], where the
agent learns to map high-level velocity commands to low-level joint actions. Our training is based
on the JoystickFlatTerrain environment from MuJoCo Playground, adopting its reward function and
base hyperparameters. Our TARC method extends this setup, enabling the policy to dynamically
select its intervention rate using an empirically tuned switch cost of ¢ = 0.005. Full details on the
training procedure and TARC implementation are provided in appendix [A.2}

4.2.2 Evaluation Scenarios

To evaluate generalization and the effectiveness of our time-adaptive policies, we deploy our policies
on the hardware and test them on three distinct scenarios, each conducted over a 20-second episode.



Importantly, these specific command profiles were not encountered during training as such, the agent
was simply trained to map joystick commands to actual joint targets, and we test the performance of
this in these three different scenarios:

* Gentle Curve: The robot receives time-varying joystick commands that guide it along a
smooth and predictable low-speed curve.

* Velocity Changes: The robot is commanded to walk straight at varying speeds, exposing
the agent to different magnitudes of the same direction command.

* Run Then Turn The robot begins with a running command, followed by an abrupt switch to
a in-place turn command, testing the agent’s reactivity and adaptability to sudden changes.

Representative command profiles for each scenario are shown in Fig. 4]
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Figure 4: The three evaluation scenarios for the Unitree Gol, defined by their command profiles over
a 20-second episode. Each plot shows the commanded forward velocity (solid blue line, left axis) and
yaw rate (dashed orange line, right axis) over time for each scenario (a) Gentle Curve, (b) Velocity
Changes, and (c) Run Then Turn.

5 Results and Discussion

In this section, we present the results of TARC applied to the RC car and Unitree Gol. For both
platforms, we evaluate policy performance on total reward (with and without switch cost penalties)
and average control frequency, reporting the mean and standard error over 5 random seeds.

5.1 RC Car

We first analyze the hardware performance of the RC car using the reward formulation defined in
(@) and the formulation of Definition 2} Our results are summarized in Fig.[5}] The TARC policies
achieve a higher penalized reward than the baseline (Fig.[5h), a direct result of their lower control
frequencies (Fig. k) which incur fewer switching penalties. In the unpenalized setting (Fig. [5b),
while the mean rewards are comparable, the TARC policies exhibit significantly smaller variance,
indicating more robust and consistent hardware performance.

The notable exception is TARC-10, which shows a clear degradation in hardware reward. This
result is counterintuitive; According to our formulation in Definition |1{and , a higher maximum
repetition count ¢ provides the policy with the greatest flexibility by giving it access to a larger range
of control frequencies. With this flexibility, the TARC-10 agent could have chosen to operate at a
higher frequency if it were optimal. However, the simulation and hardware comparison in Fig. [6]
reveals why this did not translate to better real-world performance. Although all TARC policies
perform strongly in simulation (Fig. [6(a,b)), the figure vividly illustrates the amplified sim-to-real
gap for TARC-10. This confirms that its longer open-loop control intervals (up to 10 steps) are more
sensitive to inaccuracies in the approximated dynamics.

Finally, Fig. 5t shows that TARC policies operate at less than half the frequency of the baseline.
Furthermore, Fig. [6c reveals that the policy’s learned control frequency strategy transfers almost
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Figure 5: Performance comparison of controllers on the RC Car task averaged over 5 seeds. The
subplots show: (a) Total reward penalized with ¢ = 0.1. (b) Total reward excluding the penalty (c)
Average control frequency over the episode
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Figure 6: Comparison of Simulation and Hardware performance for the TARC policies on the RC car.

(a, b) A sim-to-real gap in reward is visible for all controllers and is most pronounced for TARC-10,

highlighting the effect of longer open-loop execution. (c) In contrast, the learned average control

frequency transfers almost perfectly from simulation to hardware, demonstrating the robustness of

the learned frequency modulation strategy.

perfectly. The average frequencies selected by the TARC agents are nearly identical between the
simulation and the hardware, with negligible variance. For this task, agents in both domains converge
to a low-frequency, consistent strategy as the optimal solution. However, unlike fixed action repetition
methods, our approach allows the policy to discover the optimal rate autonomously, illustrating the
benefit of learning state-dependent control durations.

In addition to frequency and reward, we evaluated the smoothness of the motor commands on
hardware by measuring the jitter ||a; — a;—1||, that is, the change in motor input between two
consecutive steps over time. We report the mean and standard error of this data across 3 seeds
on the TARC-4 policies. As shown in Fig.[7]] TARC policies produce smaller changes in motor
command compared to the high-frequency baseline. This reduction in throttle delta demonstrates that
high-frequency controllers lead to unnecessarily rapid actuation changes, which can cause increased
mechanical wear, energy inefficiency, and control noise in hardware systems. By learning to minimize
the intervention rate, TARC not only reduces computational and switching penalties, but also delivers
smoother, more hardware-friendly actuation patterns.

5.2 The Unitree Gol

We evaluate our time-adaptive control approach on the Unitree Gol across the three scenarios
represented in Fig. @} Gentle Curve, Velocity Changes, and Run Then Turn. Using the reward
function from MuJoCo Playground [Zakka et al.,[2025]] and the reward formulation according to
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Figure 7: Jitter of the throttle data across time for TARC policies and the fixed-frequency baseline.
TARC produces smoother motor commands with lower deltas, showing that reducing high-frequency
interventions avoids unnecessary command oscillations.
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Figure 8: Performance and efficiency metrics for the Unitree Gol across the three evaluation scenarios.
The subplots show a comparison of the baseline controller against the TARC variants on: (a) total
reward with a switch cost of 0.005, (b) total reward without the penalty, and (c) the resulting average
control frequency.

Definition [2] we assess performance in both penalized and unpenalized settings and measure the
average control frequency per episode. The results are summarized in Fig. [8]

Fig. [8h shows that adaptive controllers achieve higher penalized rewards than the baseline in all
scenarios. The differences between the TARC policies are smaller than those observed on the RC car,
likely due to the lower switch cost ¢ = 0.005 employed and the superior sim-to-real transfer to the
Gol using the powerful MuJoCo Playground simulator. Among the adaptive controllers, TARC-4
consistently attains the best performance with the highest penalized reward and the smallest standard
error. The baseline performs particularly poorly in the more challenging Run Then Turn scenario,
underscoring the robustness benefits of frequency adaptation. Additionally, TARC-4, TARC-5, and
TARC-10 exhibit reduced variance compared to the baseline, highlighting their more consistent
performance. In the unpenalized setting (Fig. [8b), the rewards are broadly comparable, although
TARC-10’s performance is slightly lower. This again suggests limitations of open-loop action
repetition under greater durations with sim-to-real transfer, the impact although, remains marginal
due to the accurate simulation environment.

The frequency analysis in Fig. [8c indicates that the average control frequency can be reduced by
at least half relative to the baseline, reflecting what we observe on the RC car. Frequencies are
lower on the simpler Gentle Curve scenario and increase for Velocity Changes and Run Then Turn,
reflecting adaptive modulation in response to state difficulty. Furthermore, despite greater frequency
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Figure 9: The frequency response of TARC-4 to an external perturbation on the Gol. We observe
the controller uses a low frequency (16.7Hz) in a stable standstill (a, ¢) but immediately increases
its frequency to the maximum (50Hz) to counteract the push while airborne (b). This dynamic
modulation is a key benefit of adaptive frequency control.

flexibility, the differences in control frequency between TARC-4, TARC-5, and TARC-10 remain
modest, demonstrating the agent’s capacity to select higher frequencies when necessary.

To further demonstrate adaptability and robustness, we subject the controllers to perturbations and
analyze their control frequency responses. Fig. [9]vividly illustrates the resulting adaptive behavior.
The policy maintains a low and efficient control rate of 16.7Hz during standstill (Fig.[Oa). When
pushed, it instantaneously increases its frequency to the maximum 50Hz to handle the more complex
critical state in the air and ensure a stable recovery (Fig.[Ob). As soon as a stable state is restored,
the frequency immediately returns to the low rate (Fig.[9f). In contrast, a fixed-frequency baseline
would have used 50Hz throughout the entire scenario, incurring unnecessary costs during periods of
stability.

6 Conclusion

In this work, we presented Time-Adaptive Robotic Control (TARC), an adaptive frequency control
approach. TARC enables reinforcement learning policies to jointly optimize both control actions
and their application durations. This allows the agent to dynamically modulate its control frequency,
naturally balancing performance and efficiency without requiring specialized reward shaping.

We validated our approach via zero-shot sim-to-real deployment on two distinct robotic platforms,
a drifting RC car and a quadruped. Across these platforms, our method matched or outperformed
the baselines in terms of rewards while significantly reducing the control frequency. Furthermore,
we exposed the Gol to perturbations that revealed a state-dependent adaptation in control frequency,
similar to how humans increase effort in challenging situations.

A key limitation of our current approach is the reliance on a fixed, empirically-tuned switch cost,
which requires manual selection for new platforms. A promising direction for future work is to
explore state-action-dependent switch cost functions ¢(x¢, a; ), which would allow the policy to learn
a nuanced trade-off between making cheap exploratory changes in safe states and heavily penalizing
large and destabilizing actions in critical ones.
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A Experimental Details and Hyperparameters

This appendix provides additional details on the experimental setup and hyperparameters used for
training the TARC policies.
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A.1 RC Car
A.1.1 State Space

The physical state of the RC car is a 6-dimensional vector, [ps, py, 6, vz, vy, w], containing its global
position, orientation, local-frame velocity, and angular velocity. To account for the ~80 ms delay, this
state is augmented with the three most recent actions, forming a 12-dimensional observation vector
x, that is provided to the policy network. For the TARC policies, this 12-dimensional observation
vector is further augmented with an additional time component representing the elapsed number of
control steps in this episode. The composition of this observation vector is detailed in Table[I]

Table 1: Components of the 13-D Observation Vector for the RC Car.
Dimension(s) Description

0,1 Global Position (p;, py)

2 Orientation ()

3,4 Local Velocity (v, vy)

5 Angular Velocity (w)

6,7 Actionatt — 1 (6;_1,71_1)

8,9 Action att — 2 (04_9, T¢_2)

10, 11 Action att — 3 (0;_3,Tt_3)

12 Time component ¢ (for TARC policies)

A.1.2 Action Space

The action space is a 2-dimensional continuous vector, a = [d, 7], where each component is normal-
ized to the range [—1, 1]. These normalized values are mapped to physical commands; the steering
value § is multiplied by a maximum steering angle parameter, and the throttle 7 is scaled by a
maximum throttle parameter.

* 0: Represents the normalized steering angle.
* 7: Represents the normalized motor throttle.

A.1.3 Reward Function

The goal of the movement is a target position [z, yo, fo] that the car must reach. To that extent, we
consider the following reward function:

(2, ap) = Tspate(Te) — w - |[a]| o)

This reward function, the hyperparameters, and the simulation environment are the same as those
used by [Rothfuss et al.|[2024]}"| The reward function is based on the tolerance reward from Tassa et al.
[2018]]. The tolerance function ;4. gives higher rewards when the agent is close to a desired state,
that is, in the case of the RC car, the target position. The “closeness" is quantified using a margin
parameter for the reward function. [Rothfuss et al.|[2024] use a margin of 20, while also penalizing
large steering angles and throttles with a weight factor w. In our experiments, we keep w = 0.005.
For the tolerance function 7., the “closeness” to the target is first quantified by a combined
distance metric, dyy,. This metric incorporates both the Euclidean distance to the target position
(dpos) and the shortest angular difference to the target orientation (dp), ensuring the car is rewarded

for both correct placement and alignment. The total distance is calculated as dy = 4 /clgOS + dg.

This distance is then transformed into a reward using a “long-tail” function of the form:

1
r d =
state( tolal) (dtotal . 5)2 n 1
where s is a scaling factor derived from the margin. This function provides a maximum reward of 1
when the car is exactly at the target pose (diomy = 0) and decays smoothly as the car moves away,
creating a soft target zone rather than a hard binary objective.

(6)

2Official implementation: https://github.com/lasgroup/simulation_transfer
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A.1.4 Simulation Dynamics

The environment incorporates a dynamics model based on Kabzan et al.| [2020], using the Pacejka
tire model [Pacejka and Bakker,|1992] to better model drifting and tire-road interaction effects. For
better sim-to-real transfer, we use domain randomization: physical parameters such as center of mass,
mass, tire stiffness (drifting), and motor power are sampled across episodes [Tobin et al.,[2017], with
ranges detailed in Table 2]

Table 2: Domain Randomization Ranges for the RC Car Simulation.

Parameter Randomization Range
Mass (m) [1.6, 1.7]kg

Inertia ({.opm) [0.03, 0.18]

Front Tire Grip (dy) [0.25, 0.6]

Rear Tire Grip (d,.) [0.15, 0.45]

Motor Constant (¢,,1) [10.0, 40.0]

Steering Limit

[0.4,0.75] rad

A.1.5 Hyperparameters

The policies were trained using Proximal Policy Optimization (PPO). The key hyperparameters are

listed in Table

A.2 Unitree Gol

Table 3: Training Hyperparameters for the RC Car.

Parameter Value
Environment & Task Parameters

Episode Steps 200
Number of Environments 2048
Total Timesteps 75 x 108
Number of Random Seeds 5
TARC-Specific Parameters

Base Control Frequency (fyaz) 30 Hz
Switch Cost (¢) 0.1
Lowest Control Frequency (finin) {32, 22,32, 33} Hy
PPO Parameters

Learning Rate (Ir) 3e-4
Batch Size 1024
Number of Minibatches 32
Updates per Batch 4
Unroll Length 10
Entropy Cost 0.01
Discount Factor () 0.9
GAE Lambda () 0.95
PPO Clipping Epsilon (¢) 0.3
Optimizer Adam
Observation Normalization True
Advantage Normalization True
Network Architecture

Policy Hidden Layers 5x 32
Critic Hidden Layers 4 x 128
Activation Function Swish

This appendix provides supplementary details for the quadrupedal locomotion experiments.
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For training, we use the JoystickFlatTerrain environment from MuJoCo Playground. The underlying
MDP, including the 48-dimensional state space, 12-dimensional action space, reward function
components, and base training hyperparameters (e.g., PPO parameters, network architecture, domain
randomization ranges), are adopted from this framework without modification. The training process
also leverages an asymmetric actor-critic setup [Tobin et al.,2017]], where the policy (actor) and the
value network (critic) receive different observations. We refer the reader to the MuJoCo Playground
paper for further details of these components.

A.2.1 TARC Implementation Details

Our TARC method extends the base setup with the following modifications, which are crucial for our
method to function:

 State Observation: For the TARC policies, the 48-dimensional state vector provided by the
environment is augmented with an additional feature representing the elapsed time steps
in the episode. This results in a final 49-dimensional observation vector that is input to
the policy network. Similarly, for the asymmetric setup, the 123-dimensional privileged
state vector from the environment is also augmented with this time component, resulting in
a 124-dimensional privileged state vector.

» Switch Cost Tuning: The switch cost was empirically tuned in simulation to balance
task performance with control frequency. We observed that with switch costs lower than
¢ = 0.001, the agent did not reduce its control frequency, while with costs greater than
¢ = 0.01, the reward did not improve with more learning time and stayed low throughout the
training process. A value of ¢ = 0.005 was found to provide the most effective trade-off.

* Training Time: For robustness, we trained the TARC policies for more time steps than the
specification from MuJoCo Playground. We trained for 600M timesteps rather than 200M
timesteps.

The key TARC-specific experimental parameters are summarized in Table ]

Table 4: TARC specific parameters for the Gol
Parameter Value

Base Control Frequency (faz) 50 Hz
Switch Cost (c) 0.005

Lowest Control Frequency (fmin) {22, 52,22 201 Hz
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