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Abstract

We consider the problem of selecting instrumental
variables from observational data, a fundamental
challenge in causal inference. Existing methods
mostly focus on additive linear, constant effects
models, limiting their applicability in complex
real-world scenarios. In this paper, we tackle a
more general and challenging setting: the additive
non-linear, constant effects model. We first pro-
pose a novel testable condition, termed the Cross
Auxiliary-based independent Test (CAT) condi-
tion, for selecting the valid IV set. We show that
this condition is both necessary and sufficient for
identifying valid instrumental variable sets within
such a model under milder assumptions. Building
on this condition, we develop a practical algo-
rithm for selecting the set of valid instrumental
variables. Extensive experiments on both syn-
thetic and two real-world datasets demonstrate
the effectiveness and robustness of our proposed
approach, highlighting its potential for broader
applications in causal analysis.

1. Introduction
Instrumental variables (IVs) are a powerful tool for estimat-
ing unbiased causal effects in the presence of unobserved
confounders. They have been widely applied in various
fields, such as economics (Imbens, 2014; Imbens & Ru-
bin, 2015), epidemiology (Hernán & Robins, 2006; Baioc-
chi et al., 2014), and sociology (Pearl, 2009; Spirtes et al.,
2000). Informally speaking, a valid instrumental variable
needs to satisfy the following three conditions: (C1) the
instrument is related to the exposure (relevance); (C2) the
instrument has no direct effect on the outcome (exclusion
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restriction); and (C3) the instrument is not related to un-
measured variables that affect both the exposure and the
outcome (exogeneity) (see Section 3.1 for a formal defini-
tion of valid IVs). For example, Figure 1 is an illustration of
the IV conditions. Here, Quarter of Birth is a valid IV rel-
ative to the causal relationship Education Level→ Income.
In some scenarios, researchers can directly select suitable
variables as IVs through expert knowledge or background
information. However, in many practical applications, such
information is often lacking, making it difficult to select
valid IVs and obtain the unbiased causal effect of interest.
Therefore, developing statistical methods for selecting valid
IVs from observational data is crucial.
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Figure 1. Graphical illustration of a valid IV model, where dashed
lines indicate the absence of arrows. The variable Quarter of Birth
severe as a valid IV relative to the causal relationship Education
Level→Income. Unmeasured Variables, such as ability, are in-
cluded as unobserved confounders (Angrist & Krueger, 1991).

The problem of IV selection has been extensively studied
in finding a single valid IV, and several necessary criteria
have been established (Pearl, 1995; Manski, 2003; Palmer
et al., 2011; Kitagawa, 2015; Wang et al., 2017; Kédagni
& Mourifié, 2020), such as Pearl’s instrumental inequality
and generalized instrumental inequality. Although these
methods have been used in a range of fields, these methods
typically require discrete treatment variables and assume
that condition C2 holds, i.e., the instrument has no direct
effect on the outcome, which is not always feasible in prac-
tical settings. For instance, in Mendelian randomization
scenarios, the genetic variants’ pleiotropic effects on the
outcome (Burgess et al., 2017), violating C2 and making
it challenging to find suitable IVs. Additionally, in cases
where the treatment variable is continuous, such as vitamin
levels (Skaaby et al., 2013), these methods are less appli-
cable. Recently, two novel necessary conditions, IV-GIN
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(Generalized Independent Noise) (Xie et al., 2022) and AIT
(Auxiliary-based Independence Test) (Guo et al., 2024),
have been proposed for continuous variables. However,
both conditions face challenges when it comes to testing
condition C2 (see the example in Section 4.1).

Another line of research attempts to select valid IV sets (i.e.,
all IVs in the set are valid) in the additive linear, constant
effects (ALICE) model. Interesting developed along this
line include (Kang et al., 2016; Bowden et al., 2016; Hartwig
et al., 2017; Guo et al., 2018; Windmeijer et al., 2021; Lin
et al., 2024). However, these methods typically rely on
the ratio of valid IVs within the potential IV set, adhering
to assumptions such as the majority rule or the plurality
rule. Silva & Shimizu (2017) relaxed the aforementioned
conditions and demonstrated that an IV set can be identified
when at least two or more valid IVs are present in the system,
under the assumption of rank-faithfulness. This assumption
asserts that every rank constraint on a sub-covariance matrix
holding in distribution P is implied by any free-parameter
linear structural model whose path diagram corresponds
to the causal graph G. Although these methods allow for
continuous treatment variables and do not require Condition
C2 hold, they often assume an additive linear model, which
severely limits their applicability.

In this paper, we focus on violations of the exclusion re-
striction and exogeneity of IV. We address the challenge
of IV identification in more complex scenarios, referred
to as the Additive NonlInear, Constant Effects (ANICE)
model, where the relationship between the treatment and
IVs can be nonlinear. Specifically, we make the following
contributions:

• We introduce a testable condition, termed the Cross
Auxiliary-based independent Test (CAT) condition for
selecting the valid IV set within an ANICE model.

• We demonstrate that the CAT condition is a necessary
and sufficient condition to detect all observable viola-
tions of Conditions C2 (exclusion restriction) and C3
(exogeneity) under milder assumptions.

• We propose a practical algorithm for selecting valid IV
sets by leveraging the CAT condition.

• We validate the efficacy of our algorithm in assessing
IV validity through experiments on both synthetic data
and real-world datasets.

2. Related Works
The Durbin-Wu-Hausman test (Durbin, 1954; Wu, 1973;
Hausman, 1978; Nakamura & Nakamura, 1981) is a well-
established method for evaluating instrumental variable (IV)
models. It allows for testing whether a set of potential can-
didates can be considered valid IVs, assuming a subset of
valid IVs is already identified. However, the test provides

no guidance on how to select the initial set of valid IVs.
Significant efforts have been devoted to identifying valid
IVs solely from observational data, without relying on prior
knowledge of any valid IVs. Existing approaches can gener-
ally be categorized into two main strategies.

Single IV. One typical strategy is to focus on discrete vari-
able setting. Well-known methods along this line include
instrumental inequality (Pearl, 1995), and its various exten-
sions (Manski, 2003; Palmer et al., 2011; Kitagawa, 2015;
Wang et al., 2017; Kédagni & Mourifié, 2020). Another line
of work addresses continuous-variable settings, including
the IV-GIN method, which leverages the Generalized In-
dependent Noise (GIN) condition (Xie et al., 2020) within
linear non-Gaussian acyclic models (Xie et al., 2022), the
IV-PIM method, which is based on the Principle of Inde-
pendent Mechanisms (PIM) (Jonas et al., 2017; Janzing &
Schölkopf, 2018) under the linear IV framework (Burauel,
2023); and the AIT condition for additive nonparametric
models (Guo et al., 2024). Methods in the above two strate-
gies typically focus on selecting a single valid IV, while our
approach targets the valid IV set. Moreover, these methods
struggle to evaluate the exclusion restriction condition (C2).
We demonstrate that IV sets impose additional information
to identify invalid IVs that single IV methods cannot detect
(see Section 4).

IV Set. Based on the assumed constraints, approaches along
this line can be categorized into the following types: (1)
Proportion of Invalid IVs. Approaches under this category
include the Majority Rule constraint, which assumes that
over 50% of the candidate IVs are valid (Han, 2008; Kang
et al., 2016; Bowden et al., 2016; Windmeijer et al., 2019;
Hartford et al., 2021), and the Plurality Rule constraint,
which states that the number of valid IVs exceeds that of
any group of invalid IVs sharing the same ratio estimator
limit (Hartwig et al., 2017; Guo et al., 2018; Windmeijer
et al., 2021; Lin et al., 2024); (2) The InSIDE constraint.
This constraint assumes that the pleiotropic effects of IVs
on the outcome are uncorrelated with their effects on the
treatment (Bowden et al., 2015; Kolesár et al., 2015; Sander-
son et al., 2022); (3) Two Valid IVs constraint. This requires
that there are at least two valid IVs and assumes the Rank-
faithfulness assumption. Methods based on rank constraints
include those in (Silva & Shimizu, 2017; Cheng et al., 2023).
Compared to existing methods based on IV sets, which typ-
ically focus on the additive linear, constant effect models,
our work tackles the more challenging scenario of additive
non-linear, constant effect models.

In summary, existing methods are either limited to identi-
fying single valid IVs or rely on strong assumptions within
linear models. Our work extends to the more general setting
of additive nonlinear, constant-effect models and introduces
a testable condition for identifying valid IV sets.
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(a) Valid IV set model
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(b) IV set model that violates C2
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(c) IV set model that violates C3

Figure 2. Graphical illustration of IV set Z = {Z1, Z2} models, where U is the set of unmeasured confounders. (a) Z is a valid IV set.
(b) Z is an invalid IV set due to the edge Z1 → Y (Violate C2). (c) Z is an invalid IV set due to the edge U → Z2 (Violate C3).

3. Notations and Background
3.1. Notations and Definitions

This study builds upon the framework of causal graphical
models (Pearl, 2009; Spirtes et al., 2000). Specifically, we
represent causal relationships using the directed acyclic
graph (DAG), denoted as G, where nodes represent variables
and directed edges (arrows) indicate causal links between
those variables. We denote the treatment (exposure) by X ,
outcome by Y , the candidate IVs by Z, and the unmeasured
confounders between X and Y by U. Let E(X) denote the
expected value of the random variable X . For statistical
independence, we use the notation X ⊥⊥ Y to denote “X is
statistically independent of Y ”, and X ⊥̸⊥ Y to denote “X
is not statistically independent of Y ”. We use “w.r.t.” as a
shorthand to denote “with respect to.”

Definition 1 (Instrumental Variable (IV) (Pearl, 2009)). A
variable is said to be an instrumental variable w.r.t. X → Y ,
if a variable Zi satisfies the following three conditions:

C1. (Relevance). IV Zi is associated with the treatment X;
C2. (Exclusion Restriction). IV Zi does not directly affect

the outcome Y .
C3. (Exogeneity or Randomness). IV Zi is independent

of the unmeasured confounders U;

Definition 2 (IV Set). A set Z is said to be a valid IV set
w.r.t. X → Y if each instrument Zi ∈ Z satisfies Conditions
C1 ∼ C3. Otherwise, we say that Z is an invalid IV set
w.r.t. X → Y .

Figure 2 (a) shows an example of a valid IV set {Z1, Z2}. In
contrast, Figure 2 (b) presents an example of an invalid IV
set {Z1, Z2}, where Z1 violates Condition C2, while Figure
2 (c) shows an example of an invalid IV set {Z1, Z2}, where
Z2 violates Condition C3.

3.2. Additive Nonlinear, Constant Effects Model

In this paper, we focus on the Additive NonlInear, Constant
Effects (ANICE) model with variables {X,Y,Z,U}. With-
out loss of generality, we assume that all variables have a
zero mean (otherwise can be centered) and that there are
no baseline covariates (We will briefly discuss the situation
where covariates are included in Section 5.1.). Specifically,

the generation of the ANICE model is as follows 1:

X = g(Z) + φX(U) + εX︸ ︷︷ ︸
δ

,

Y = βX + f(Z̃) + φY (U) + εY︸ ︷︷ ︸
ϵ

,
(1)

where parameter β represents the causal effect of interest,
functions g(·), f(·), and φ∗(·) are smooth functions from
R → R, and Z̃ ⊆ Z. The noise terms εX and εY are
mutually independent. Note that the non-zero f(Z̃) func-
tion indicates that subset Z̃ directly affects the outcome Y ,
thereby violating the exclusion restriction condition (C2).
Furthermore, if there exist Zi ∈ Z that is dependent on U,
this indicates the violation of the exogeneity condition (C3).
In the remainder of this paper, we denote Z = {ZV ,ZI},
where ZV and ZI represent the valid and invalid IVs, re-
spectively.

In contrast to the additive linear, constant effects model
(ALICE) studied in Holland (1988); Bowden et al. (2015);
Kang et al. (2016); Silva & Shimizu (2017); Guo et al.
(2018); Windmeijer et al. (2021); Lin et al. (2024), our work
explores a more challenging scenario, where g(·), f(·), and
φ∗(·) may be non-linear functions.

Our Task. The goal of this paper is to identify valid IV
sets that satisfy the conditions C1 ∼ C3 for a given causal
relationship X → Y , and estimate the causal effect of
treatment X on outcome Y simultaneously.

Remark 1. Using a statistical independence test, one can
easily verify Condition C1 (relevance). Therefore, our fo-
cus is on addressing the remaining Conditions, C2 ∼ C3.
Notably, causal discovery methods based on conditional
independence tests, such as the FCI (Fast Causal Inference)
algorithm (Spirtes et al., 1995) and its extensions (Colombo
et al., 2012; Akbari et al., 2021), often produce a fully
connected graph over {X,Y, Zi} due to unmeasured con-
founders U (Zi ⊥̸⊥ Y |X). Hence, it becomes challenging
to verify Conditions C2 ∼ C3 and identify valid IVs.

1In some studies, the unmeasured confounders U are often im-
plicitly represented by δ and ϵ, which are not independent. In this
work, we explicitly represent U to facilitate subsequent analysis.
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3.3. Instrumental Variable Estimator

Below, we briefly demonstrate that, given a valid IV Zi ∈
ZV w.r.t. the causal relationship X → Y , the causal effect
β of interest in the ANICE model can be consistently es-
timated via the instrumental variable formula (Bowden &
Turkington, 1990; Pearl, 2009; Wooldridge et al., 2016)2:

β̂i =
∂E(Y |do(X = x))

∂x
=

Cov(Y, Zi)

Cov(X,Zi)
= β. (2)

However, if an invalid IV Zj ∈ ZI is used, the estimated
causal effect β̂j becomes biased, as shown in the following
formula:

β̂j =
∂E(Y |do(X = x))

∂x
=

Cov(Y, Zj)

Cov(X,Zj)
(3)

= β +
Cov(f(Z̃) + φY (U) + εY , Zj)

Cov(X,Zj)︸ ︷︷ ︸
βbias

. (4)

4. CAT Condition and Its Implications
In this section, we first formulate the Cross Auxiliary-based
Independent Test (CAT) condition, which acts as a neces-
sary criterion for determining valid IV sets. We further
illustrate the implications of the CAT condition in the AN-
ICE model, showing that it is both necessary and sufficient
for identifying valid IV sets under mild assumptions.

4.1. CAT Condition: A Brief Formulation

We introduce the key concept of the “auxiliary variable”
alongside the definition of the CAT condition for pairwise
IVs, which characterizes the independent relationships be-
tween the “auxiliary variable” and a separate, distinct IV.

Definition 3 (Auxiliary Variable). Let X , Y , and Zi ∈ Z
denote the treatment, outcome, and candidate IV, respec-
tively. The auxiliary variable for the causal relationship
X → Y relative to Zi is defined as:

AX→Y ||Zi
:= Y − β̂iX, (5)

where β̂i satisfies E[AX→Y ||Zi
· Zi] = 0 and β̂i ̸= 0.

It is worth noting that the concept of the “auxiliary variable”
or similar ideas have been explored in the context of various
tasks (Drton & Richardson, 2004; Chen et al., 2017; Cai
et al., 2019; Guo et al., 2024). However, our formalization
differs from these prior works (see Equation (6)). To the
best of our knowledge, the cross-independence property
involving such an auxiliary variable has not been previously
identified as a criterion for assessing the validity of the IV
set in the ANICE model.

2Here, do(X = x) denotes an intervention that sets the vari-
able X to the value x, removing any influence of other variables
on X .

Definition 4 (CAT Condition). Let X , Y , and {Zi, Zj} ⊆
Z denote the treatment, outcome, and candidate IV set, re-
spectively. We say that {X,Y ||{Zi, Zj}} follows the Cross
Auxiliary-based Independence Test (CAT) condition if and
only if the following independent relationships hold:

AX→Y ||Zi
⊥⊥ Zj , and AX→Y ||Zj

⊥⊥ Zi. (6)

In general, the CAT condition describes the independence
between candidate IVs and auxiliary variables, similar to a
“cross-test”. Specifically, given a reference IV Zi, we test
the independence between the auxiliary variable AX→Y ||Zi

and another candidate IV Zj . Similarly, using Zj as the
reference, we test the independence between AX→Y ||Zj

and Zi.

We next give an example to illustrate that there is a connec-
tion between the CAT condition and the validity of an IV
set. Let’s consider the causal diagram in Figure 2. Assume
that the data are generated from a linear causal model with
Gaussian noise terms. We have the following observations:

• In the subgraph (a), {Z1, Z2} is a valid IV set
w.r.t. X → Y , we have that {X,Y ||{Zi, Zj}} follows
the CAT condition, as explained below. The gener-
ation mechanisms are defined as: U = εU , Z1 =
εZ1

, Z2 = εZ2
, X = b1Z1 + b2Z2 + cXU + εX ,

Y = βX + cY U + εY , where the normal noise
terms εU , εZ1 , εZ2 , εX , εY are assumed to be indepen-
dent of each other. According to the above equations,
E[AX→Y ||Z1

· Z1] = 0 =⇒ β̂1 = β. Then we
can see that AX→Y ||Z1

= cY U + εY , and further we
have AX→Y ||Z1

⊥⊥ Z2. Similarly, for Z2, we have
AX→Y ||Z1

= cY U + εY ⊥⊥ Z1. Hence, these imply
that {X,Y ||{Zi, Zj}} follows the CAT condition.

• In the subgraph (b), {Z1, Z2} is an invalid IV set
w.r.t. X → Y . Compared to subgraph (a), the gen-
eration mechanism of Y changes to: Y = βX+ d1Z1

+ cY U + εY . E[AX→Y ||Z1
· Z1] = 0 =⇒ β̂1 =

β + d1

b1
̸= β. Then, we can see that AX→Y ||Z1

=

−d1b2
b1

Z2 + (cY − d1

b1
cX)U + εY − d1

b1
εX , and fur-

ther we have AX→Y ||Z1
⊥̸⊥ Z2. This implies that

{X,Y ||{Zi, Zj}} violates the CAT condition.

In summary, the above facts show that lack of edge Z1 → Y ,
i.e., IV does not directly affect the outcome (exclusion re-
striction condition C2), has a testable implication. It is
noteworthy that the validity of a single IV Z1 (or Z2) cannot
be verified in subfigure (b). This is because the property of
being an IV imposes no constraints on the joint marginal
distribution of the observed variables (X,Y, Z1) (see the
discussion in Section 3 of Chu et al. (2001) or Proposi-
tion 3 of Guo et al. (2024)). This also explains why the
identifiability condition for the IV set is necessary.
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Building on the above observations, we now present the
CAT condition as a necessary criterion for identifying a
valid IV set.
Theorem 1 (Necessary Condition for IV Set). Let X , Y ,
and Z be the treatment, outcome, and candidate IV set in
an ANICE model, respectively. Suppose that X , Y , and Z
are correlated and that the sample size n→∞ holds. If the
candidate IVs {Zi, Zj} ⊆ Z is a valid IV set w.r.t. X → Y ,
then {X,Y ||{Zi, Zj}} always satisfies the CAT condition.

Theorem 1 states that if {X,Y ||{Zi, Zj}} violates the CAT
condition, then the candidate IV set {Zi, Zj} w.r.t. X → Y
is invalid. Otherwise, {Zi, Zj} may or may not be valid.

4.2. Implications of CAT Condition in ANICE Models

In the above section, we have shown that the CAT condition
is a necessary condition for identifying an IV set. Below,
we investigate the sufficient conditions that render the IV
set identifiable in ANICE models.

Before presenting the theoretical results, we state the key
assumption: the algebraic equation condition.
Assumption 1 (Algebraic Equation Condition). As-
sume that the probability densities p(εY ) and p(εZi

)
(i ∈ {1, ..., |Z|}) are twice differentiable, and positive on
(−∞,∞). At least one of the cross second-order partial

derivatives,
∂2 log p(AX→Y ||Zi

,Zj)

∂AX→Y ||Zi
∂Zj

or
∂2 log p(AX→Y ||Zj

,Zi)

∂AX→Y ||Zj
∂Zi

is non-zero. Define the algebraic equation condition char-
acterizing the cross second-order partial derivative below:

∂2 log p(AX→Y ||Zi
, Zj)

∂AX→Y ||Zi
∂Zj

=
∂2(K1 +K2 +K3)

∂AX→Y ||Zi
∂Zj

̸= 0,

(7)
i.e.,

K ′′
1

∂εY
∂Ai

· ∂εY
∂Zj

+K ′
1

∂2εY
∂Ai∂Zj

+K ′′
2

∂εZj

∂Ai
·
∂εZj

∂Zj

+K ′
2

∂2εZj

∂Ai∂Zj
+K ′′

3

∂|J |
∂Ai

· ∂|J |
∂Zj

+K ′
3

∂2|J |
∂Ai∂Zj

̸= 0,

(8)
whereAX→Y ||Zi

= f(Z̃)+φY (U)+εY −βi
bias ·X , K1 =

log p(εY ), K2 = log p(εZj
), and K3 = log |J |. Here, |J |

represents the Jacobian matrix of the transformation from
(AX→Y ||Zi

, Zj) to (εY , εZj
).

Assumption 1 is a natural condition that one expects to
hold to identify the invalid IV set. Although its formu-
lation may seem complex due to the nonlinearities and
interaction effects inherent in the model structure (i.e.,
g(Z) and f(Z̃)), this complexity is expected. When ad-
ditional information, such as the linearity of the IV model,
is available, the algebraic equation condition can be written

as:
∂2 log p(AX→Y ||Zi

,Zj)

∂AX→Y ||Zi
∂Zj

= K ′′
1

∂εY
∂Ai
· ∂εY∂Zj

+K ′′
2

∂εZj

∂Ai
· ∂εZj

∂Zj
.

Remark 2. CAT’s core characterization is the indepen-
dence between two variables. We leverage the linear sepa-

rability of the logarithm of the joint density of independent
variables, which, as shown in Lin (1997), states that for a
set of independent, twice-differentiable random variables,
the Hessian of their logarithmic density is diagonal, leading
to Assumption 1.

Proposition 1 (Sufficient Condition for IV Set). Let X ,
Y , and Z be the treatment, outcome, and candidate IV set
in an ANICE model, respectively. Suppose that X , Y , Z
are correlated, the sample size n→∞, and Assumption 1
holds. If the candidate IV set {Zi, Zj} is invalid, then the
{X,Y ||{Zi, Zj}} violates the CAT condition.

Proposition 1 states that under Assumption 1, all invalid IV
sets can be identified. Next, we provide a counterexample
to illustrate that violating Assumption 1 is an extreme case.

Example 1. (Counterexample) Consider the graph in
Figure 3, where {Z1, Z2} is an invalid IV set. Let
X = g1(Z1) + g2(Z2) + φX(U) + εX and Y = βX +
f1(Z1) + f2(Z2) + φY (U) + εY . If the direct causal ef-
fects of Zi → Y share the same coefficients as the direct
causal effects of Zi → X for each candidate IV Zi (i.e.,
f1(Z1) = a · g1(Z1) + b1, f2(Z2) = a · g2(Z2) + b2),
then {X,Y ||{Zi, Zj}} satisfies the CAT condition. Proof
in Appendix B.1.

U

Z1 Z2 X Y

g1(Z1)

g2(Z2)

f1(Z1)
f2(Z2)

Figure 3. Invalid IV set Z = {Z1, Z2} that each candidate IV
solely violates the exclusion restriction condition (C2).

Based on Theorem 1 and Proposition 1, we present the
necessary and sufficient conditions for identifying valid IV
sets within the ANICE models.

Theorem 2 (Necessary and Sufficient Condition for IV
Set). Let X , Y , and Z be the treatment, outcome, and
candidate IV set in an ANICE model, respectively. Suppose
that X , Y , and Z are correlated, the sample size n → ∞,
and Assumption 1 holds. The candidate IV set {Zi, Zj} is a
valid IV set if and only if {X,Y ||{Zi, Zj}} always satisfies
the CAT condition.

Above, we discussed identifiability from joint density under
arbitrary distributions. Below, we focus on the second-order
moments, assuming that the variables follow a joint nor-
mal distribution, where uncorrelation implies independence.
This leads to a less stringent identifiability assumption and
corresponding conclusion about the identification.

Assumption 2 (Distinct Causal Effect Biases). For an
invalid IV set {Zi, Zj} ⊆ Z, the causal effect bias estimates
obtained using the two IVs differ, i.e., β̂i − β ̸= β̂j − β.
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Proposition 2 (Sufficient Condition for IV Set Using Sec-
ond-Order Moments). Let X , Y , and Z be the treatment,
outcome, and candidate IV set in an ANICE model, respec-
tively. Suppose that X , Y , and Z are correlated, the sample
size n → ∞, and Assumption 2 holds. If the candidate
IV set {Zi, Zj} ⊆ Z is invalid, then the {X,Y ||{Zi, Zj}}
violates the CAT condition.

Intuitively, Assumption 2 ensures that E(AX→Y ||Zi
·Zj) ̸=

0 for any invalid IV set {Zi, Zj} (i.e., they are correlated).
This implies that AX→Y ||Zi

and Zj are not independent, so
the CAT condition does not hold.

Corollary 1. Let X , Y , and Z be the treatment, outcome,
and candidate IV set in a linear Gaussian model, respec-
tively. Suppose that X , Y , and Z are correlated, the sample
size n→∞, and Assumption 2 holds. The candidate IV set
{Zi, Zj} is a valid IV set if and only if {X,Y ||{Zi, Zj}}
always satisfies the CAT condition.

In Corollary 1, we provide the necessary and sufficient
conditions for identifying valid IV sets within the linear
Gaussian model, a special case of the ANICE model.

Although the second-order moment is typically sufficient to
identify most invalid IV sets, Proposition 2 may not capture
all such sets, as shown in Example 2.

Example 2. (Counterexample) Consider the graph in Fig-
ure 4. Let U = εU , Z1 = U2 + εZ1

, Z2 = U2 + εZ2
,

X = Z1 + Z2 + U2 + εX , and Y = X + U2 + εY , where
all noise terms are standard Gaussian distribution. We
found that Assumption 2 does not hold, and in this case,
E(AX→Y ||Z1

· Z2) = E(AX→Y ||Z2
· Z1) = 0 (Uncorre-

lated). However, {X,Y ||{Z1, Z2}} violates the CAT condi-
tion because Assumption 1 is satisfied.

U

Z1 Z2 X Y

Figure 4. Invalid IVs set Z = {Z1, Z2} that variables solely vio-
late exogeneity condition (C3).

This example highlights that algebraic equation conditions
are stricter than second-order moment conditions and em-
phasizes the need for Assumption 1 in identifying valid IV
sets.

5. Practical Algorithm
In this section, we first address how to apply the CAT con-
dition when covariates are present. We then present our
method, which leverages the CAT condition and is suitable
for limited sample sizes.

5.1. CAT Condition with Covariates

The generation of the ANICE model with covariates be-
comes:

X = g(Z) + tX(W) + φX(U) + εX ,

Y = βX + tY (W) + f(Z̃) + φY (U) + εY ,
(9)

where W denotes the covariates. Below, we show that the
CAT condition in Definition 4 can be easily extended to
address the issue of covariates through regression, as stated
below.

Definition 5 (CAT Condition with Covariates). Let X ,
Y , W, and {Zi, Zj} ⊆ Z denote the treatment, outcome,
covariates, and candidate IV set, respectively. Further-
more, let X , Y , Z represent the residual from the regres-
sions of X , Y , Z on W, respectively (e.g., for each IV,
Zi := Zi−E[Zi|W]). We say that {X,Y ||({Zi, Zj},W)}
follows the CAT condition if and only if the following inde-
pendent relationships hold:

AX→Y||(Zi,W) ⊥⊥ Zj , and AX→Y||(Zj ,W) ⊥⊥ Zi. (10)

Based on Definition 5 and Theorem 1, we derive the nec-
essary condition for an IV set in the presence of covariates
W, as stated in the following corollary.

Corollary 2 (Necessary Condition for IV Set with Co-
variates). Let X , Y , W, and Z be the treatment, outcome,
covariates, and candidate IV set in an ANICE model, re-
spectively. Suppose that X , Y , W, and Z are correlated
and that the sample size n→∞ holds. If the candidate IVs
{Zi, Zj} ⊆ Z is a valid IV set relative to X → Y given
W, then {X,Y ||({Zi, Zj},W)} always satisfies the CAT
condition.
Corollary 2 states that if {X,Y ||({Zi, Zj},W)} violates
CAT condition, then {Zi, Zj} is invalid IV set.

5.2. CAT Algorithm with Finite Data

In this section, we provide a practical method to identify the
valid IV set. Theorems 1 ∼ 2, and Corollary 2 have paved
the way to discover the foundation for identifying a valid IV
set. However, in practice, we face two key issues:

• How to efficiently search for the IV set.
• How to test the CAT condition.

First, we address the first issue. To avoid a combinatorial
search, we introduce a parametric value K, which represents
the number of valid IVs to be selected from the candidate
IV set Z. In practical applications, we treat K as prior
knowledge. If this knowledge is unavailable, a small value
of K can be used, such as K = 2. Hence, for an IV set S
of length K, the number of subsets to be tested is

(
K
2

)
(i.e.,

the number of ways to choose 2 elements from K.

Remark 3. Theoretically, when K exceeds the true number
of valid IVs, the candidate IV set should fail to satisfy the
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CAT condition. Therefore, in the absence of prior knowl-
edge, we suggest that users validate IVs incrementally (in
ascending order) to ensure robustness and prevent the inclu-
sion of unnecessary invalid IVs.

Next, we address the second issue. Since we do not assume
Gaussian distributions, we here use a non-parametric inde-
pendence method. Specifically, we apply the distance cor-
relation test (Székely et al., 2007; Székely & Rizzo, 2009).
Unlike the classical definition of correlation, distance corre-
lation is zero only if the random vectors are independent. Let
Sc be the set to be tested, where |Sc| = K. Let dCor(·, ·)
denote the distance correlation between two variables. Our
basic idea for selecting a valid IV set is as follows: given
the candidate set Sc, we first evaluate the pairwise CAT
condition among the variables using the distance correlation.
We then sum these pairwise distance correlations. Finally,
we choose the set Sc that yields the smallest total distance
correlation as the valid IV set. This procedure is motivated
by Theorem 1, which indicates that a perfect distance cor-
relation of 0 is achieved when Sc is valid. The detailed
procedure is given in Lines 7 ∼ 16 of Algorithm 1.

We now present the complete algorithm, which primarily
comprises two key steps: First, for each candidate IV sub-
set Sc with |Sc| = K, we identify the valid IV subset Sc
that minimizes the cross distance correlation between the
auxiliary variables and the IV subset (Step I). Second, we
estimate the causal effect β̂ using the IV set S (Step II).
For causal effect estimation, we apply the point estimator
(PE) from Guo et al. (2018) in linear models, and for non-
linear models, we use the generalized method of moments
(GMM) as described by Hansen (1982). The entire process
is summarized in Algorithm 1.

Below, we demonstrate that, with limited sample sizes, our
algorithm identifies the valid IV set and provides an unbi-
ased estimate of the causal effect for the relationship.

Theorem 3 (Correctness). Assume that the input data
{X,Y,W,Z} strictly follows the ANICE model and at least
two valid IVs are present in the system. Furthermore, as-
sume Assumption 1 holds. Given infinite samples, the CAT
algorithm outputs the valid IV set and true causal effect β
correctly.

We finally analyze the complexity of the CAT algorithm. Let
n denote the sample size, m = |Z|, and p = |W|. The time
complexity of our algorithm consists of three components:

1. Covariates residual calculation: O(n ·m · p2);
2. Step I (find the valid IV set): O(n2 ·

(
m
K

)
·K2);

3. Step II (estimate the causal effect):
(1) for the PE method, O(n · (K + p)2);
(2) for the GMM method, O(n ·K2).

Hence, the overall computational complexity is: O(n2 ·

(
m
K

)
·K2) +O(n ·m · p2) +O(n · (K + p)2).

Algorithm 1 CAT

Input: Observed datasetD = {X,Y,W,Z}; K, the num-
ber of valid IVs to consider;

1: Initialize: valid IV set S ← ∅;
2: if W ̸= ∅ then
3: X , Y , Z← the residuals from the regressions of X ,

Y , Z on W, respectively ;
4: else
5: X , Y , Z ← X , Y , Z.
6: end if

Step I: Find the valid IV set
7: for each subset Sc ⊆ Z with |Sc| = K do
8: TSc ← 0
9: repeat

10: Select pairwise IV set {Zi,Zj} from Sc;
11: AX→Y||Zi

← Y − β̂iX , where β̂i ← Cov(Y,Zi)
Cov(X ,Zi)

;

12: AX→Y||Zj
← Y − β̂jX , where β̂j ← Cov(Y,Zj)

Cov(X ,Zj)
;

13: TSc
= TSc

+ dCor(AX→Y||Zi
,Zj) +

dCor(AX→Y||Zj
,Zi)

14: until all pairwise IV sets in Sc are selected.
15: end for
16: Find a IV set S that yields the smallest total distance

correlation : S ← argminSc⊂P TSc
, where P is a set

containing all subsets of length K from the set Z;
Step II: Estimate the causal effect β̂

17: The causal effect β̂ ← Causal Effect Estimator
(X,Y,W,S);

Output: β̂, the causal effect of X on Y .

6. Experiments
In this section, we begin by validating the proposed method
using synthetic data. We then apply our algorithm to two
real-world datasets to highlight its practical benefits. The
source code is available in the Supplementary Material.

6.1. Synthetic Data

Here, we evaluate the performance of the proposed meth-
ods in estimating causal effects from synthetic data. We
consider four typical cases, each involving two valid IVs.
Specifically, in Case 1, three invalid IVs violate the exclu-
sion restriction (C2); in Case 2, three invalid IVs violate the
exogeneity (C3); in Case 3, three invalid IVs violate both
the exclusion restriction (C2) and exogeneity (C3); and in
Case 4, four candidate IVs are included, where two are in-
valid IVs that violate Assumption 2 but satisfy Assumption
1 (see Example 2), demonstrating the benefits of algebraic
equation condition to identify the IV set. In all four cases,
the data are generated by the ANICE model, and the causal
effect of X on Y is set to β = 1, as in Guo et al. (2018).
Due to space constraints, the detailed causal graphs and data
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Figure 5. Performance of NAIVE, MR-Egger, TSHT, CIIV, sisVIVE, IV-tetrad, and CAT across four cases in the ANICE model.

generation mechanism are provided in Appendix D.1.

We compare the proposed method, the CAT algorithm,
against the following approaches: 1) NAIVE, the least-
squares regression coefficient of Y on X; 2) the MR-Egger
algorithm (Bowden et al., 2015); 3) the TSHT algorithm
(Guo et al., 2018); 4) the CIIV algorithm (Windmeijer et al.,
2021); 5) the sisVIVE algorithm (Kang et al., 2016); and 6)
the IV-tetrad algorithm (Silva & Shimizu, 2017). Note that
approaches 3) to 6) first select a valid IV set before estimat-
ing the causal effect, whereas the NAIVE and MR-Egger
algorithms directly estimate the causal effect. To ensure
a fair comparison, for methods 3) to 6) and our algorithm,
we use the same IV estimator after selecting the valid IV
set. Each experiment is repeated 100 times using randomly
generated data, and the results are averaged. The sample
sizes are chosen from 1, 000 (1k), 3, 000 (3k), 5, 000 (5k).

Results. Figure 5 summarizes the causal effect estimates
of each method in the additive nonlinear, constant effects
(ANICE) model. As expected, the proposed CAT algorithm
consistently outperforms the other methods across all four
cases and sample sizes, exhibiting minimal variance and pro-
ducing estimates closest to the true causal effect. In contrast,
the NAIVE method performs poorly in all cases due to un-
measured confounders U. We observed that all comparison
methods perform poorly across all cases because they rely
on the assumption of linearity, whereas the data generation
process is nonlinear. Additionally, we found that the MR-

Egger algorithm yields inaccurate results. A possible reason
for this is that, in addition to the linearity assumption, this
method requires the InSIDE assumption, which states that
the instruments’ pleiotropic effects on the outcome Y are
uncorrelated with their effects on the exposure X . Further-
more, we also provide comparison results for linear models
and ANICE model with covariates W in Appendix D.1 (see
Figure 7 ∼ 8 for details). We found that our method per-
forms well here as well, yielding results consistent with
methods 3) to 6) in the linear model, and outperforming all
others in the ANICE model with covariates.

6.2. Real-world Data

In this section, we evaluate the performance of the CAT
algorithm on two real-world datasets. More details of the
real-world data as described in Appendix D.2.

Colonial Origins Data (Acemoglu et al., 2001). This
dataset examines the impact of social systems on economic
development. It contains five key variables across 63 coun-
tries (excluding those with missing data): Mortality Mor,
Euro1990 Euro, Latitude Lat, Institutions Ins, and Eco-
nomic Development Ed. We test the validity of the candidate
IV set {Mor, Euro} by applying our CAT condition while
conditioning on Lat. Notably, because the dataset contains
only two candidate IVs, we here use distance correlation-
based independence tests from Székely et al. (2007) to as-
sess the CAT conditions. Specifically, we first regress Mor,
Euro, Ins, and Ed on the covariate Lat to obtain M̃or, Ẽuro,
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Ĩns, and Ẽd, respectively. We then conduct independence
tests for A

M̃or
, Ẽuro, which yields a p-value of 0.21, and

for AẼuro
, M̃or, which yields a p-value of 0.25. These

results suggest that we cannot reject the hypothesis that
{Mor, Euro} is a valid IV set with respect to Ins → Ed,
consistent with the findings of Acemoglu et al. (2001).

Children and Mothers’ Labor Supply Data (Angrist &
Evans, 1996). This dataset comes from an empirical study
on the effect of childbearing on mothers’ labor supply. Af-
ter applying filtering criteria, it includes 254,652 obser-
vations. We used 21 variables: week worked (weeksm1),
more than two children (morekids), 12 candidate instru-
mental variables (CandIVs): Two boys (boys2), Two girls
(girls2), AGEQK, AGEQ2ND, KIDCOUNT, YOBM, non-
momil, educm, hsormore, nonmomi, ageqm, agefstd, and 7
covarites W: Mother’s age at first birth (agem1), Father’s
age at first birth (agefstm), etc. Angrist & Evans (1996)
demonstrated that boys2 and girls2 are valid IVs. Due to
the large sample size, distance correlation (dCor) could not
be computed directly, so we randomly selected 5% of the
data and averaged the results over 10 repeated tests. We
tested the candidate IV set with K = 2 using the CAT
method. We find that the smallest distance correlation dCor
is 0.022 w.r.t. {boys2, girls2}, confirming its validity as an
IV set for morekids→ weeksm1, consistent with Angrist
& Evans (1996).

7. Conclusion
In this paper, we explored the identifiability of the IV set
in the additive nonlinear, constant effects model. Specifi-
cally, we introduced a testable condition, termed the CAT
Condition, to detect valid IV sets. Additionally, we outlined
the necessary and sufficient conditions for identifying valid
IV sets in the ANICE model. Experimental results using
both simulation data and real datasets have further validated
the practicality of our condition and algorithm. Currently,
we assume that the causal effect of interest is constant. A
future research direction is to extend the CAT condition to
address more general cases, such as the non-linear causal
effect model of Newey & Powell (2003); Horowitz (2011),
where causal effects can be effectively estimated using tech-
niques such as kernel-based or moments-based IV estima-
tors (Singh et al., 2019; Bennett et al., 2019).
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A. Notations

Symbol Description

G A directed acyclic graph
IV Instrumental Variable (or instrument)
X Treatment (exposure)
Y Outcome
Zi A candidate (potential) IV
Z A candidate (potential) IV set
ZV A candidate (potential) valid IV set
ZI A candidate (potential) invalid IV set
U The unmeasured confounders
W Covariates
X The residual of variable X after regressing on covariates W
X̃ The residuals of X after regressing on covariates W in real-world datasets
A ⊥⊥ B A is statistically independent of B
A ⊥̸⊥ B A is statistically dependent on B
ANICE The additive nonlinear, constant effects model
|Z| The number of variables in set Z
f(Z̃) The causal effect of Z̃ on Y
ε∗ The noise term of a variable
R The field of real numbers
R → R A mapping from the real numbers to the real numbers
E(X) The expected value of random variable X
Cov(X,Y ) The covariance between random variables X and Y
AX→Y ||Zi

The auxiliary variable of causal relationship X → Y relative to Zi

Table 1. The list of main symbols used in this paper

B. More Details on the Examples in Section 4
B.1. More Details of Example 1

Proof. Suppose the candidate IVs {Z1, Z2} violate only the exclusion restriction condition, as shown in Figure 3. The
generation mechanism can be expressed as follows:

U = εU , Z1 = εZ1 , Z2 = εZ2 ,

X = g1(Z1) + g2(Z2) + φX(U) + εX ,

Y = βX + f1(Z1) + f2(Z2) + φY (U) + εY ,

(11)

where f1(Z1) = a · g1(Z1) + b1, f2(Z2) = a · g2(Z2) + b2. Next, we construct a new causal structure, as shown in
Figure 2 (a), where {Z1, Z2} forms a valid IV set. Specifically, let β′ = β + a, Z ′

1 = Z1, Z ′
2 = Z2, X ′ = X , and

Y ′ = β′X ′+φY (U)+εY −a(φX(U)+εX)+b1+b2 = Y . This transformation ensures that (X,Y, Z1, Z2) has the same
distribution as (X ′, Y ′, Z ′

1, Z
′
2), implying that the candidate variable set Z = {Z1, Z2} is a valid IV set without imposing

any constraints on the joint distribution of the observed variables. Since {Z ′
1, Z

′
2} = {Z1, Z2} is valid IV set, and according

to the Theorem 1, we know that {X,Y ||{Z1, Z2}} always satisfies the CAT condition.

B.2. More Details of Example 2

Proof. For the candidate invalid IV set {Z1, Z2} in Figure 4, the data generation mechanism is described as follows:

U = εU , Z1 = U2 + εZ1
, Z2 = U2 + εZ2

,

X = Z1 + Z2 + U2 + εX , Y = X + U2 + εY ,
(12)

12
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where all noise terms follow the Gaussian distribution N (0, 1). According to Equation (2), the estimated causal effects for
Z1 and Z2 are: 

β̂1 = Cov(Y,Z1)
Cov(X,Z1)

= 1 +
V ar(U2)

V ar(Z1) + 2V ar(U2)︸ ︷︷ ︸
β1
bias

,

β̂2 = Cov(Y,Z2)
Cov(X,Z2)

= 1 +
V ar(U2)

V ar(Z2) + 2V ar(U2)︸ ︷︷ ︸
β2
bias

.
(13)

Since all noise terms follow the Gaussian distribution N (0, 1), V ar(Z1) = V ar(U2) + V ar(εZ1
) = V ar(U2) +

V ar(εZ2) = V ar(Z2), it follows that β̂1 = β̂2, violates Assumption 2. According to the definition of the auxiliary
variable, we have the auxiliary variables are{

AX→Y ||Z1
= Y − β̂1X = U2 + εY − β1

biasX,

AX→Y ||Z2
= Y − β̂2X = U2 + εY − β2

biasX.
(14)

And, we know that {
E(AX→Y ||Z1

· Z1) = E
[
(U2 + εY − β1

biasX) · Z1

]
= 0,

E(AX→Y ||Z2
· Z2) = E

[
(U2 + εY − β2

biasX) · Z2

]
= 0,

(15)

which lead to: {
E[(U2 + εY ) · Z1] = E(β1

biasX · Z1),
E[(U2 + εY ) · Z2] = E(β2

biasX · Z2).
(16)

The cross second-order moments between auxiliary variables and candidate IVs are:{
E(AX→Y ||Z1

· Z2) = E
[
(U2 + εY − β1

biasX) · Z2

]
= E

[
(β2

bias − β1
bias)X · Z2

]
= E(∆β1,2

biasX · Z2),

E(AX→Y ||Z2
· Z1) = E

[
(U2 + εY − β2

biasX) · Z1

]
= E

[
(β1

bias − β2
bias)X · Z1

]
= E(−∆β1,2

biasX · Z1).
(17)

Combine the estimate causal effect β̂1 = β̂2, we know that Equation (17) is zero, i.e., E(AX→Y ||Z1
· Z2) = E(AX→Y ||Z2

·
Z1) = 0. Below, we compute the cross second-order partial derivatives. Combining Equations (12) and (14), we observe
that the transformation from (AX→Y ||Z1

, Z2) to (εY , εZ2
) is:

εY = AX→Y ||Z1
+ β1

biasX − U2,

εZ2
= Z2 − U2.

(18)

For the sake of conciseness, we denote AX→Y ||Z1
as A1 when there is no ambiguity. Let |J | denote the Jacobian

matrix of this transformation, giving by |J | = ∂εY
∂A1
· ∂εZ2

∂Z2
− ∂εY

∂Z2
· ∂εZ2

∂A1
. Define p(AX→Y ||Z1

, Z2) as the joint density
of (AX→Y ||Z1

, Z2). Then, we have p(AX→Y ||Z1
, Z2) = p(εY , εZ2)|J | = p(εY ) · p(εZ2) · |J |. Let K1 ≜ log p(εY ),

K2 ≜ log p(εZ2), and K3 ≜ log(|J |). Since the densities p(εY ) and p(εZ2) are twice differentiable and positive on
(−∞,∞), we have

log p(AX→Y ||Z2
, Z2) = log(p(εY ) · p(εZ2

) · |J |)
= log p(εY ) + log p(εZ2

) + log(|J |)
= K1 +K2 +K3.

(19)

One can find the (1, 2)-th entry of the Hessian matrix of log p(AX→Y ||Z1
, Z2):

∂2 log p(AX→Y ||Z1
, Z2)

∂AX→Y ||Z1
∂Z2

=
∂2(K1 +K2 +K3)

∂AX→Y ||Z1
∂Z2

= −K ′′
1 + (2 +

V ar(Z1)

V ar(U2)
)K ′′

2

=
1

V ar(εY )
− (2 +

V ar(Z1)

V ar(U2)
) · 1

V ar(εZ1)
= −2− 1

V ar(U2)
.

(20)

Then, we find that ∂2 log p(AX→Y ||Z1
,Z2)

∂AX→Y ||Z1
∂Z2

̸= 0, which confirms that Assumption 1 is satisfied, and {X,Y ||{Z1, Z2}} violates
the CAT condition. In summary, the IV model (12) violates Assumption 2, satisfies Assumption 1, and {X,Y ||{Z1, Z2}}
violates the CAT condition.

13
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C. Proofs
In this section, we provide detailed proofs for the theorems, propositions, and corollaries. We begin by introducing a local
geometric information theorem that characterizes the independence of two nonlinear statistics (Lin, 1997), which serves as
the foundation for the subsequent results.
Theorem 4. The Hessian Hf of function f is block diagonal everywhere, ∂i∂jf

∣∣
s⃗0

= 0 for all points s⃗0 and all i ≤ k,
j > k, if and only if f is separable into a sum f(s1, ..., sn) = g(s1, ..., sk) + h(sk+1, ..., sn) for some functions g and h.

The above proposition states that function f is separable if and only if its mixed second-order partial derivative is zero.

C.1. Proof of Theorem 1

Proof. To prove this theorem 1, we need to show that if candidate IV set {Zi, Zj} is a valid IV set relative to X → Y in
the ANICE model, then {X,Y ||{Zi, Zj}} will satisfy the CAT condition. According to the definition of auxiliary variable
w.r.t. X → Y , AX→Y ||Zi

:= Y − β̂iX , where β̂i satisfies E[AX→Y ||Zi
· Zi] = 0 and β̂i ̸= 0. Since Zi and Zj are valid

IVs relative to X → Y and following the IV estimator, e.g., the instrumental variable formula (Bowden & Turkington, 1990;
Pearl, 2009; Wooldridge et al., 2016) (Equation (2) of Section 3.3), β̂i, β̂j are the unbiased causal effect β of X on Y as the
sample size n→∞, i.e., β̂i = β̂j = β. Thus, we can express the auxiliary variable as:{

AX→Y ||Zi
:= Y − β̂iX = Y − βX = f(Z̃) + φY (U) + εY ,

AX→Y ||Zj
:= Y − β̂jX = Y − βX = f(Z̃) + φY (U) + εY .

(21)

Below, we prove this theorem using the linear separability of the logarithm of the joint density of independent variables,
which states the fact that for a set of independent random variables whose joint density is twice differentiable, the Hessian of
the logarithm of their density is diagonal everywhere from Lin (1997) (see Theorem 4 for further details).

Combining Zj = εZj with Equation (21), we observe that the transformation from (AX→Y ||Zi
, Zj) to (εY , εZj ) is:

εY = AX→Y ||Zi
− f(Z̃)− φY (U),

εZj = Zj .
(22)

For the sake of conciseness, we denoteAX→Y ||Zi
asAi when there is no ambiguity. Let |J | denote the Jacobian matrix of this

transformation, giving by |J | = ∂εY
∂Ai
· ∂εZj

∂Zj
− ∂εY

∂Zj
· ∂εZj

∂Ai
. Define p(AX→Y ||Zi

, Zj) as the joint density of (AX→Y ||Zi
, Zj).

Then, we have p(AX→Y ||Zi
, Zj) = p(εY , εZj

)|J | = p(εY ) · p(εZj
) · |J |. Let K1 ≜ log p(εY ), K2 ≜ log p(εZj

), and
K3 ≜ log(|J |). Since the densities p(εY ) and p(εZj

) are twice differentiable and positive on (−∞,∞), we have

log p(AX→Y ||Zi
, Zj) = log(p(εY ) · p(εZj ) · |J |),

= log p(εY ) + log p(εZj ) + log(|J |)
= K1 +K2 +K3.

(23)

One can find the (1, 2)-th entry of the Hessian matrix of log p(AX→Y ||Zi
, Zj):

∂2 log p(AX→Y ||Zi
, Zj)

∂AX→Y ||Zi
∂Zj

=
∂2(K1 +K2 +K3)

∂AX→Y ||Zi
∂Zj

=
∂(K ′

1
∂εY
∂Zj

+K ′
2

∂εZj

∂Zj
+K ′

3
∂|J|
∂Zj

)

∂Ai

= K ′′
1

∂εY
∂Ai

· ∂εY
∂Zj

+K ′
1

∂2εY
∂Ai∂Zj

+K ′′
2

∂εZj

∂Ai
·
∂εZj

∂Zj

+K ′
2

∂2εZj

∂Ai∂Zj
+K ′′

3

∂|J |
∂Ai

· ∂|J |
∂Zj

+K ′
3

∂2|J |
∂Ai∂Zj

.

(24)

For a valid IV set {Zi, Zj}, the following conditions hold: ∂εY
∂Zj

= 0, ∂2εY
∂Ai∂Zj

= 0,
∂εZj

∂Ai
= 0,

∂2εZj

∂Ai∂Zj
= 0, ∂|J|

∂Zj
= 0,

and ∂2|J|
∂Ai∂Zj

= 0. Consequently, the cross second-order partial derivative
∂2 log p(AX→Y ||Zi

,Zj)

∂AX→Y ||Zi
∂Zj

= 0, which implies that
AX→Y ||Zi

and Zj are statistically independent. Likewise, for pairwise (AX→Y ||Zj
, Zi), we can derive that AX→Y ||Zj

is
independent of Zi. In other words, {X,Y ||{Zi, Zj}} always satisfies the CAT condition.
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C.2. Proof of Proposition 1

Proof. Since the candidate IV set {Zi, Zj} violates the IV conditions, the data generation mechanism can be described as
follows:

U = εU , Zi = φZi
(U) + εZi

, Zj = φZj
(U) + εZj

,

X = g(Z) + φX(U) + εX , Y = βX + f(Z̃) + φY (U) + εY ,
(25)

where function g(·), f(·), and φ∗(·) are twice differentiable. Hence, β̂i satisfies E[(Y − β̂iX) · Zi] = 0 and β̂i ̸= 0.
According to the definition of the auxiliary variables, we have{

AX→Y ||Zi
:= Y − β̂iX = f(Z̃) + φY (U) + εY − βi

biasX,

AX→Y ||Zj
:= Y − β̂jX = f(Z̃) + φY (U) + εY − βj

biasX,
(26)

where βi
bias = β̂i − β, βj

bias = β̂j − β. Below, we prove this proposition using the linear separability of the logarithm of
the joint density of independent variables, which states the fact that for a set of independent random variables whose joint
density is twice differentiable, the Hessian of the logarithm of their density is diagonal everywhere from Lin (1997) (see
Theorem 4 for further details).

Combining Equations (25) and (26), we observe that the transformation from (AX→Y ||Zi
, Zj) to (εY , εZj

) is:

εY = AX→Y ||Zi
+ βi

biasX − f(Z̃)− φY (U),

εZj
= Zj − φZj

(U).
(27)

For the sake of conciseness, we denoteAX→Y ||Zi
asAi when there is no ambiguity. Let |J | denote the Jacobian matrix of this

transformation, giving by |J | = ∂εY
∂Ai
· ∂εZj

∂Zj
− ∂εY

∂Zj
· ∂εZj

∂Ai
. Define p(AX→Y ||Zi

, Zj) as the joint density of (AX→Y ||Zi
, Zj).

Then, we have p(AX→Y ||Zi
, Zj) = p(εY , εZj

)|J | = p(εY ) · p(εZj
) · |J |. Let K1 ≜ log p(εY ), K2 ≜ log p(εZj

), and
K3 ≜ log(|J |). Since the densities p(εY ) and p(εZj

) are twice differentiable and positive on (−∞,∞), we have

log p(AX→Y ||Zi
, Zj) = log(p(εY ) · p(εZj

) · |J |)
= log p(εY ) + log p(εZj

) + log(|J |)
= K1 +K2 +K3.

(28)

One can find the (1, 2)-th entry of the Hessian matrix of log p(AX→Y ||Zi
, Zj):

∂2 log p(AX→Y ||Zi
, Zj)

∂AX→Y ||Zi
∂Zj

=
∂2(K1 +K2 +K3)

∂AX→Y ||Zi
∂Zj

=
∂(K ′

1
∂εY
∂Zj

+K ′
2

∂εZj

∂Zj
+K ′

3
∂|J|
∂Zj

)

∂Ai

= K ′′
1

∂εY
∂Ai

· ∂εY
∂Zj

+K ′
1

∂2εY
∂Ai∂Zj

+K ′′
2

∂εZj

∂Ai
·
∂εZj

∂Zj

+K ′
2

∂2εZj

∂Ai∂Zj
+K ′′

3

∂|J |
∂Ai

· ∂|J |
∂Zj

+K ′
3

∂2|J |
∂Ai∂Zj

.

(29)

For candidate IV set {Zi, Zj} is invalid, there are two scenarios:

• Violation the exclusion restriction condition C2 while satisfying the exogeneity condition C3,

• Violation the exogeneity condition C3;

we have : ∂εY
∂Zj
̸= 0,

∂εZj

∂Zj
̸= 0,

∂εZj

∂Ai
̸= 0, and ∂εY

∂Ai
̸= 0. According to Assumption 1, the condition that the cross

second-order partial derivative
∂2 log p(AX→Y ||Zi

,Zj)

∂AX→Y ||Zi
∂Zj

̸= 0, it follows that AX→Y ||Zi
⊥̸⊥ Zj . Similarly, we can test the

independence relationship between auxiliary variable AX→Y ||Zj
and candidate IV Zi, i.e., AX→Y ||Zj

⊥̸⊥ Zi. This implies
that {X,Y ||{Zi, Zj}} violates the CAT condition.
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C.3. Proof of Theorem 2

Proof. Below, we prove the necessary and sufficient conditions for identifying valid IV sets in the ANICE model.

(i): Assume the candidate IV set {Zi, Zj} is a valid IV set relative to X → Y . By Theorem 1, it directly follows that if the
candidate IV set {Zi, Zj} is a valid IV set relative to X → Y , then {X,Y ||{Zi, Zj}} always satisfies the CAT condition.

(ii): Assume the candidate IV set {Zi, Zj} is an invalid IV set relative to X → Y . By Proposition 1, under Assumption 1, if
the candidate IV set {Zi, Zj} is invalid, then {X,Y ||{Zi, Zj}} consequently violates the CAT condition.

From (i) and (ii), the theorem is proven.

C.4. Proof of Proposition 2

Proof. Since the candidate IV set {Zi, Zj} violates the IV conditions, the data generation mechanism can be described as
follows:

U = εU , Zi = φZi
(U) + εZi

, Zj = φZj
(U) + εZj

,

X = g(Z) + φX(U) + εX , Y = βX + f(Z̃) + φY (U) + εY ,
(30)

where function g(·), f(·), and φ∗(·) are twice differentiable. According to the definition of the auxiliary variable, we know
that

E(AX→Y ||Zi
· Zi) = E

[
(f(Z̃) + φY (U) + εY − βi

biasX) · Zi

]
= 0

E(AX→Y ||Zj
· Zj) = E

[
(f(Z̃) + φY (U) + εY − βj

biasX) · Zj

]
= 0

(31)

We can conclude that {
E[(f(Z̃) + φY (U) + εY ) · Zi] = E(βi

biasX · Zi),

E[(f(Z̃) + φY (U) + εY ) · Zj ] = E(βj
biasX · Zj).

(32)

By Equation (32), we have the cross second-order moment for i, j ∈ {1, . . . , |Z|} with i ̸= j : E(AX→Y ||Zi
· Zj) = E

[
(f(Z̃) + φY (U) + εY − βi

biasX) · Zj

]
= E

[
(βj

bias − βi
bias)X · Zj

]
= E(∆βi,j

biasX · Zj),

E(AX→Y ||Zj
· Zi) = E

[
(f(Z̃) + φY (U) + εY − βj

biasX) · Zi

]
= E

[
(βi

bias − βj
bias)X · Zi

]
= E(−∆βi,j

biasX · Zi).

(33)
Since Assumption 2 holds, we have βi

bias = β̂i − β ̸= β̂j − β = βi
bias, such that ∆βi,j

bias ̸= 0, it follows that Equation (33)
does not equal zero, i.e.AX→Y ||Zi

⊥̸⊥ Zj or AX→Y ||Zj
⊥̸⊥ Zi. Thus, {X,Y ||{Zi, Zj}} violates the CAT condition.

C.5. Proof of Corollary 1

Proof. Below, we prove the necessary and sufficient conditions for identifying valid IV sets in the linear Gaussian model.

(i): Assume the candidate IV set {Zi, Zj} is a valid IV set relative to X → Y . By Theorem 1, since the linear Gaussian
model is a special case of the ANICE model, it follows directly that if the candidate IV set {Zi, Zj} is a valid IV set relative
to X → Y , then {X,Y ||{Zi, Zj}} always satisfies the CAT condition.

(ii): Assume the candidate IV set {Zi, Zj} is an invalid IV set relative to X → Y . By Proposition 2, under Assumption 2, if
the candidate IV set {Zi, Zj} is invalid, then {X,Y ||{Zi, Zj}} consequently violates the CAT condition.

From (i) and (ii), the corollary is proven.

C.6. Proof of Corollary 2

Proof. Suppose {Zi, Zj} is valid pairwise IV set relative to X → Y given W, the generation mechanism can be expressed
as follows:

U = εU , W = φW (U) + εW , Zi = tZi(W) + εZi , Zj = tZj (W) + εZj ,

X = g(Z) + tX(W) + φX(U) + εX , Y = βX + tY (W) + f(Z̃) + φY (U) + εY ,
(34)
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where functions g(·), f(·), t(·), and φ∗(·) are smooth functions.

Let X , Y , Z = {Zi,Zj} represent the residual from the regressions of X , Y , Z on W, respectively. We observe that X , Y ,
and Z correspond to the same structure as the ANICE model without covariates. Thus, the proof follows directly from
Theorem 1.

C.7. Proof of Theorem 3

Proof. The correctness of the CAT-Condition originates from the following observations: assume that the input data
{X,Y,W,Z} strictly follow the ANICE model and at least two valid IVs are present in the system.

• Step I: As the sample size n approaches infinity, for a valid IV set Sc, the total distance correlation TSc
tends to 0

(indicating statistical independence), whereas for an invalid IV set, it does not converge to 0. According to Assumption
1 and Theorem 2, the valid IV set S ⊆ Z is identified precisely (Lines 7-16 of Algorithm 1).

• Step II: Given a valid IV set, unbiased causal effects can be accurately estimated using estimator methods, such as the
point estimator from Guo et al. (2018) or the generalized method of moments (Hansen, 1982), based on the identified
IV sets (Line 17 of Algorithm 1).

Based on the above analysis, we can identify all valid IV sets and obtain the causal effects correctly.

D. More Details on Experiments in Section 6
D.1. More Details on Simulation Experiments in Section 6.1

In this section, we provide detailed descriptions of the data generation mechanisms and causal graphs for all cases. All
experiments were performed with Intel 2.90 GHz and 2.89 GHz CPUs and 128 GB of memory.

Data Generation Mechanisms: We consider four typical cases, each involving two valid IVs, as shown in Figure 6, which
are described as follows:

• In Case 1, three invalid IVs violate the exclusion restriction (C2);

• In Case 2, three invalid IVs violate the exogeneity (C3);

• In Case 3, three invalid IVs violate both the exclusion restriction (C2) and exogeneity (C3);

• In Case 4, four candidate IVs are included, where two are invalid IVs that violate Assumption 2 but satisfy Assumption
1 (see Example 2).

In all four cases, the data are generated by the ANICE model, and the causal effect of X on Y is set to β = 1. In all four
cases, the data are generated by the ANICE model, and the causal effect of X on Y is set to β = 1, as in Guo et al. (2018)
and related works. Across all cases, under both the linear and non-linear models, the noise terms are drawn from a uniform
distribution with parameters min = -1 and max = 1, except in Case 4, where the noise follows a Gaussian distribution
N (0, 1), as in Example 2. All constant coefficients in the model generation process are randomly selected from a uniform
distribution between [-1.5, -0.5] ∪ [0.5, 1.5].

Here, we consider three different scenarios based on the aforementioned structure: a linear model, a nonlinear model, and a
model with covariates. Note that, since Case 4 is a specific example, its data generation mechanism is only detailed in the
nonlinear model scenario. The specific data generation settings are as follows:

a) The linear model setups are as follows:

• Case 1: U = εU , Z1 = εZ1 , Z2 = εZ2 , Z3 = εZ3 , Z4 = εZ4 , Z5 = bZ4 + εZ5 , X = γ1Z1 + γ2Z2 + γ3Z3 + γ4Z4 +
γ5Z5 + cU + εX , Y = βX + dU + f3Z3 + 1.5 · f4Z4 + f5Z5 + εY .
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UZ1

Z4Z3

Z2

Z5 X

Y

(a) Case 1: {Z3, Z4, Z5} violates exclusion restriction condition.

U

Z1 Z2 Z3

Z4

Z5 X Y

(b) Case 2: {Z3, Z4, Z5} violates exogeneity condition.

U

Z1 Z2

Z4

Z3

Z5

X Y

(c) Case 3: {Z3, Z4, Z5} violates either exclusion restriction or
exogeneity condition.

U

Z1 Z2

Z3Z4 X Y

(d) Case 4: {Z3, Z4} violates exogeneity condition.

UZ1

Z3

Z2

Z4 X

Y

(e) Case 5: {Z3, Z4} solely violates exclusion restriction condition.

Figure 6. The causal diagram used in our simulation studies illustrates the candidate IV sets under various violation conditions. The
candidate IV set is denoted as Z, where {Z1, Z2} represents a valid IV set, and the remaining IVs are considered invalid.

• Case 2: U = εU , Z1 = εZ1 , Z2 = εZ2 , Z3 = α3U + εZ3 , Z4 = α4U + εZ4 , Z5 = 1.2 · α5U + εZ5 , X =
γ1Z1 + γ2Z2 + γ3Z3 + γ4Z4 + γ5Z5 + cU + εX , Y = βX + dU + εY .

• Case 3: U = εU , Z1 = εZ1 , Z2 = εZ2 , Z3 = eZ5 + εZ3 , Z4 = α4U + εZ4 , Z5 = α5U + εZ5 , X = γ1Z1 + γ2Z2 +
2 · γ3Z3 + γ4Z4 + γ5Z5 + cU + εX , Y = βX + dU + 2 · f3Z3 + f4Z4 + εY .

b) The nonlinear model setups are as follows:

• Case 1: U = εU , Z1 = εZ1
, Z2 = εZ2

, Z3 = εZ3
, Z4 = εZ4

, Z5 = Z4
3 + εZ5

, X = Z1
3 + Z2

3 + Z3
3 + Z4

3 +
Z5

3 + (Z1 · Z4 · Z5)
3 + U3 + εX , Y = βX + U3 + Z3

3 + 1.5 · Z4
3 + Z5

3 + εY .

• Case 2: U = εU , Z1 = εZ1 , Z2 = εZ2 , Z3 = U3 + εZ3 , Z4 = U3 + εZ4 , Z5 = U3 + εZ5 , X = Z1
3 + log(Z2) +

Z3
3 + (Z3 · Z4)

3 + 1.2 · Z4
3 + Z5

2 + U3 + εX , Y = βX + U3 + εY .

• Case 3: U = εU , Z1 = εZ1 , Z2 = εZ2 , Z3 = Z5
2 + εZ3 , Z4 = U2 + εZ4 , Z5 = U2 + εZ5 , X = Z1

3 + Z2
3 + 1.5 ·

Z3
3 · log(Z4) + 2 · Z3

3 · (log3(Z4) + Z5
3)2 + U3 + εX , Y = βX + U3 + 2 · Z3

3 + Z4
3 + εY .

• Case 4: U = εU , Z1 = εZ1
, Z2 = εZ2

, Z3 = 0.5 · U2 + εZ3
, Z4 = 0.5 · U2 + εZ4

, X = Z1
3 + Z2

3 + 0.1 · (Z1 ·
Z2)

3 + 2 · Z3 + 2 · Z4 + αU + εX , Y = βX + U2 + εY , where all noise terms follow Gaussian distribution N (0, 1)
(consistent with Example 2).
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• Case 5: U = εU , Z1 = εZ1
, Z2 = εZ2

, Z3 = εZ3
, Z4 = εZ4

, X = sin(Z1) + sin(Z2) + 0.3 · sin(Z1) · sin(Z2) +
sin(Z3) + Z4

3 + sin(U) + εX , Y = βX + 1.5 · sin(Z3) + 1.5 · Z4
3 + sin(U) + εY , consistent with Example 1.

c) The nonlinear model setups with covariates W are as follows: we consider two covariates, {W1,W2}, which influence
the treatment, the outcome, and all candidate instrumental variables across the first three cases in the ANICE model.

• Case 1: U = εU , W1 = εW1 , W2 = εW2 , Z1 = 0.5 ·α1W1 +0.8 · ρ1W2 + εZ1 , Z2 = 0.5 ·α2W1 +0.8 · ρ2W2 + εZ2 ,
Z3 = α3W1+ρ3W2+U3+ εZ3

, Z4 = 0.5 ·α4W1+ρ4W2+U3+ εZ4
, Z5 = 0.5 ·α5W1+ρ5W2+U3+ εZ5

, X =
0.5·b1W1+0.5·b2W2+Z1

3+Z2
3+Z1

3 ·Z3
3+Z4

3+Z5
3+1.5·U6+εX , Y = βX+0.3·b3W1+0.2·b4W2+U3+εY .

• Case 2: U = εU , W1 = εW1 , W2 = εW2 , Z1 = 0.5 ·α1W1 +0.8 · ρ1W2 + εZ1 , Z2 = 0.5 ·α2W1 +0.8 · ρ2W2 + εZ2 ,
Z3 = α3W1 + 0.8 · ρ3W2 + εZ3

, Z4 = α4W1 + 0.8 · ρ4W2 + εZ4
, Z5 = α5W1 + 0.8 · ρ5W2 + Z4

3 + εZ5
,

X = Z1
3 + log(Z2) + Z3

3 + (Z3 · Z4)
3 + 1.2 · Z4

3 + Z5
2 + U3 + εX , Y = βX + U3 + εY .

• Case 3: W1 = εW1 , W2 = εW2 , Z1 = 0.5 · α1W1 + 0.8 · ρ1W2 + εZ1 , Z2 = 0.5 · α2W1 + 0.8 · ρ2W2 + εZ2 ,
Z4 = 0.5 · α4W1 + 0.8 · ρ4W2 + U2 + εZ4

, Z5 = 0.6 · α5W1 + 0.5 · ρ5W2 + U2 + εZ5
, Z3 = 0.6 · α3W1 +

0.5 · ρ3W2 + 1.2 · Z5
2 + εZ3

, X = 0.3 · b1W1 + 0.5 · b2W2 + Z1
2 + Z2

2 · Z3
2 · Z4

2 · Z5
2 + 0.5 · U2 + εX ,

Y = βX + 0.3 · b3W1 + 0.2 · b4W2 + Z3
2 + Z4

2 + 0.4 · U2 + εY .
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Figure 7. Performance of NAIVE, MR-Egger, TSHT, CIIV, sisVIVE, IV-tetrad, and CAT across three different cases in the linear model.
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Figure 8. Performance of NAIVE, MR-Egger, TSHT, CIIV, sisVIVE, IV-tetrad, and CAT across three different cases in the ANICE model
with covariates W.

Simulation Results: Below, we present additional experimental results about Cases 1 ∼ 3, including scenarios under
the linear model and non-linear model with covariates. The results are shown in Figures 7 and 8. Figure 7 illustrates the
causal effect estimates for each method in linear models. The proposed CAT-Condition algorithm performs comparably to
methods such as TSHT 3, CIIV 4, sisVIVE 5, and IV-tetrad 6. The results of the CAT condition outperform those of NAIVE

3For the TSHT algorithm, we used the implementation in the R RobustIV package, available at https://cran.r-project.
org/web/packages/RobustIV/.

4For the CIIV method, we used the implementation in the R package, available at https://github.com/xlbristol/CIIV/.
5For the sisVIVE algorithm, we used the implementation in the R package, available at https://cran.r-project.org/web/

packages/sisVIVE/.
6For the IV-tetrad method, we used the implementation in the R package, available at https://www.homepages.ucl.ac.uk/

˜ucgtrbd/code/iv_discovery/.
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and MR-Egger 7. Figure 8 shows the causal effect estimates for each method in ANICE models with covariates W. As
expected, our method demonstrates superior performance compared to the others. This is mainly due to the fact that the first
six methods assume a linear model, which leads to suboptimal performance when applied to the non-linear model.

D.2. More Details of Real-World Application in Section 6.2

In this section, we will provide more details of the real-world data as described in Section 6.2. The distance correlation
independence test of variables A and B has the following hypotheses Székely et al. (2007) —— H0: A is independent of B;
H1: A is not independent of B. Additionally, the significance level α of the distance correlation independence test is set to
10 divided by the sample size of the dataset.

D.2.1. COLONIAL ORIGINS DATA

Data Description : The Colonial Origins of Comparative Development dataset, derived from an empirical study on the
impact of colonial history on the economic development of various regions, is described in Acemoglu et al. (2001). The
dataset includes 5 key variables across 63 countries, after excluding samples with missing data. These variables are:
Mortality Mor, Euro1990 Euro, Latitude Lat, Institutions Ins, and Economic Development Ed. The hypothesized model
proposed by Acemoglu et al. (2001) is illustrated in Figure 9, and the hypothesized data generation mechanism is described
as follows:

Ins = γ + γ1Mor + γ2Euro + γ3Lat + δ,

Ed = β + β1Ins + β2Lat + ϵ,
(35)

where δ and ϵ are dependent.

Cultural
difference

MorEuro Lat

Ins Ed

Figure 9. Graphical illustration of an IV model for estimating the causal effect of institutions (Ins) on economic development (Ed)
(Acemoglu et al., 2001).

Results: Acemoglu et al. (2001) demonstrated that both Mor and Euor can serve as valid IVs, conditional on Lat, with
respect to Ins and Ed. To verify this, we test their validity using the CAT condition. Specifically, we first obtain the residuals
M̃or, Ẽuro, Ĩns, and Ẽd by regressing Mor, Euro, Ins, and Ed on the covariate Lat, respectively. Then, we conduct distance
correlation independence tests from Székely et al. (2007) between auxiliary variables and the candidate IV set {Mor, Euor}.
The cross test for A

M̃or
, Ẽuro yields a P -value of 0.21, and the test for AẼuro

, M̃or yields a P -value of 0.25. All the tests
pass the test, which means we cannot reject the hypothesis that {Mor, Euro} is a valid IV set. These results suggest that the
IV set {Mor, Euro} can be considered valid. Our findings are consistent with those of Acemoglu et al. (2001).

D.2.2. CHILDREN AND MOTHERS’ LABOR SUPPLY DATA

Data Description : The dataset used in this analysis is derived from an empirical study on the effect of childbearing on
mothers’ labor supply, as described in Angrist & Evans (1996). We focus on women aged 21-35 with two or more children,
excluding those whose second child is less than a year old, using data from the 1980 PUMS. After applying the filtering
criteria and excluding samples with missing data, the dataset includes 254,652 observations. Our analysis focuses on the
following 21 key variables: the outcome, Weeks Worked (weeksm1); the treatment, More than Two Children (morekids);
12 candidate instrumental variables (CandIVs), including {Two boys (boys2), Two girls (girls2), AGEQK, AGEQ2ND,

7For the MR-Egger algorithm, we used the implementation in the R package, available at https://academic.oup.com/ije/
article/44/2/512/754653/.
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KIDCOUNT , Y OBM , nonmomil, educm, hsormore, nonmomi, ageqm, agefstd}; and covariates W {Mother’
age at first birth (agem1), Father’ age at first birth (agefstm), Whether the first child is a boy (boy1st), Whether the second
child is a boy (boy2nd), black of mother indicator (blackm), Hispanic of mother indicator (hispm), another race of mother
indicator (othracem)}. In this dataset, we select weeksm1 as a measure to characterize mothers’ labor supply. The valid
IVs hypothesized model proposed by Angrist & Evans (1996) is illustrated in Figure 10, and the valid IVs hypothesized data
generation mechanism is described as follows:

morekids = γ0boys2 + γ1girls2 + γ2W + δ,

weeksm1 = β ·morekids+ β1(W \ boy2nd) + ϵ,
(36)

where δ and ϵ are dependent, W \ boy2nd represents the set of all elements in covariates W after removing the variable
boy2nd.

Unobserved
counfounder

girls2boys2
covariates

W

morekids weeksm1

Figure 10. Graphical illustration of a valid IV model for estimating the causal effect of childbearing (morekids) on mother’s labor supply
(weeksm1) (Angrist & Evans, 1996).

Results: Angrist & Evans (1996) showed that both boys2 and girls2 can serve as valid IVs, while controlling for the
covariates W, with respect to morekids and weeksm1. Due to the large sample size, distance correlation (dCor) could not
be computed directly, so we randomly selected 5% of the data and averaged the results over 10 repeated tests. To verify
the validity of these IVs, we tested the candidate IV set with K = 2 using the CAT method. The procedure proceeds as
follows: We applied the CAT algorithm and found that when K = 2, the IV set {boys2, girls2} had the smallest distance
correlation, with dCor = 0.022. At the same time, we also conduct distance correlation independence tests between the
auxiliary variables and the IV set {boys2, girls2}. The cross test for A

b̃oys2
, g̃irls2 yields a P -value of 0.32. Similarly, the

test for A
g̃irls2

, b̃oys2 yields a P -value of 0.34. All the above tests pass, these suggest that we cannot reject the hypothesis
that {boys2, girls2} is a valid IV set with respect to morekids→ weeksm1. These findings are consistent with those of
Angrist & Evans (1996), confirming that the IV set {boys2, girls2} is valid.
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