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Abstract

Benchmarks are critical for measuring Large Language Model (LLM) reasoning capabilities.
Some benchmarks have even become the de facto indicator of such capabilities. However, as
LLM reasoning capabilities improve, existing widely-used benchmarks such as GSM8K marginally
encapsulate model reasoning differentials - most state-of-the-art models achieve over 94% accuracy
on the GSM8K dataset (paperswithcode, [2024)). Construction of harder benchmarks is often manual,
expensive, and unscalable. As such, we present Scheherazade, an automated scalable approach to
produce challenging mathematical reasoning benchmarks by logically chaining a small starting set
of problems. We propose two different chaining methods, forward chaining and backward chaining,
which include randomized branching techniques to generate complex reasoning problems. We
apply Scheherazade on GSM8K to create GSM8K-Scheherazade and evaluate 3 frontier LLMs and
OpenAl’s ol-preview on it. We show that while other frontier models’ performance declines
precipitously at only a few questions chained, our evaluation suggests o1 -preview’s performance
persists, with the flagship OpenAlI model the only one to perform better at backward reasoning. We
further developed an error taxonomy for GSM8K-Scheherazade, revealing error categories distinct
from those observed in the original GSM8K. Our technique allows for the generation of a large
number of synthetic examples given a small starting set, providing a potential training resource of
reasoning tasks with diverse complexities for enhancing large language model reasoning. Our data
and code will be publicly available at https://github.com/YoshikiTakashima/scheherazade-code-data,

1 Introduction

Benchmarks serve as a critical tool for evaluating the reasoning abilities of competing LLMs,
providing a standardized framework to compare their performance. These benchmarks span a
wide range of difficulties, from simple grade-school math problems to challenging math olympiads.
By allowing for consistent evaluation across models that are often opaque, proprietary, or both,
benchmarks establish a common ground for comparison. Moreover, they play a pivotal role in
quantifying LLM development and claims about their reasoning capabilities, allowing researchers
and developers to identify strengths, limitations, and areas for improvement (OpenAl et al., [2024;
Dubey et al., [2024} [Team et al., 2024).

The reasoning capabilities of LLMs have advanced to the point where performance on many existing
mathematical benchmarks has converged to near-perfection (OpenAl, 2024b; OpenAl et al., [2024;
Dubey et al.|2024; Team et al.|2024). This convergence undermines one of the primary purposes
of such benchmarks - to differentiate the reasoning abilities of various models. Additionally, the
widespread use of existing benchmarks for training and fine-tuning has led to significant data-
contamination issues (Zhang et al.| 20244 Matton et al.| 2024). GSM8K in particular has been
rendered less insightful as multiple advanced LLMs have exceeded 94% accuracy and competitive
performance has been widely achieved (OpenAll 2024b; |OpenAl et al., 2024; |Dubey et al., [2024;
Team et al., 2024} |Cobbe et al., [2021; Hendrycks et al., 2021). Despite the rapid consumption
and depreciation of benchmarks, novel, high-quality benchmark sets are limited, and generating
new data often involves costly manual labeling. Synthetic benchmark creation methods have been
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proposed, but their scope is limited. Existing approaches shuffle sentences (Chen et al., [2024]),
leverage templates (Zhang et al., |2024b; L1 et al., |2024) and mutate constants (Gao et al.| [2023)),
limiting the complexity and diversity of the generated benchmarks.

We introduce Scheherazade, a technique for logically chaining multiple existing benchmarks together
to create larger, more complex benchmark problems. These problems are designed to test mathemat-
ical and logical Chain-of-Thought (CoT) reasoning abilities of models. To illustrate, consider the
statement, "If it rains, I will wear a raincoat." Now, if we modify the statement, for example, to "If
2+3 =5 and it rains, [ will wear a raincoat," we, as humans, can immediately see that this statement
is equivalent to the previous one, but the very process of parsing and discarding irrelevant statements
requires reasoning. We can add more statements to create a chain of expressions, and find that LLMs
struggle to discern meaning as these chains grow. In this paper, we show that such chains are a great
way to evaluate LLM reasoning capacity.

Our approach connects benchmarks together using conditional branching. We call this process
"chaining benchmarks together" or "benchmark chaining". We chain benchmarks in such a way that
the necessary information to solve each question in the chain is derived by solving other questions
in the chain. We propose two methods of chaining, forward chaining and backward chaining. In
forward chaining, problems are linked using implication such that the resulting chained problem
can be solved sequentially in the order it is written. In contrast, with backward chaining, problems
earlier in the chain require contextual information from statements /ater in the chain. While both
methods are logically equivalent, backward chaining introduces an added complexity, as it forces the
model to reason in reverse at each step. This unique challenge is analyzed further in the paper, and
makes a significant impact on model evaluation results. Our tool leverages conditional branches and
randomness to ensure the LLM cannot simply memorize the format. Both chaining techniques are
flexible, generalizing to chains of any length and ordering of their component problems.

We benchmark the mathematical reasoning abilities of four frontier models - OpenAl ol (OpenAl,
2024b), GPT-40(OpenAl, [2024a)), Meta Llama 3.1 70B(Dubey et al.,[2024), and Anthropic Claude
3.5 Sonnet (Anthropic| [2024) - using a benchmark set created by applying Scheherazade to GSM8K.
Running the models on our benchmark shows that, despite high reported scores on original GSM8K
problems, performance rapidly declines as the length of the chain increases. Additionally, our
analysis of OpenAl’s ol-preview showed it outperforms current frontier models with longer
chains, showing a much more gradual decline in accuracy as the chain length increases. Interestingly,
both GPT-40 and ol-preview show a gradual decline in accuracy chain length increases for
forward chaining. However, only o1 -preview follows a similar trend for backward chaining, its
accuracy gradually declining with chain length whereas GPT-40 has a steep fall off in accuracy as
backward chaining length increases, similar to the other models we evaluated.

2 Approach

Forward Chaining
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a1 = Janet’s ducks lay 16 eggs per day. 2 = .James decides to run 3 sprints 3 times a week.

Q1’, = Janet's ducks lay 20 eggs per day. 2° = James decides to run 2 sprints 3 times a

Q1F = Janet eats three eggs for breakfast [...] week.

Q1, = How much in dollars does Janet make every day atthe Q2 = James runs 60 meters each sprint.

farmers' market? Q2 = How many total meters does James run per

a1 .= Janet makes 18 dollars every day at the farmers’ market. week?
Q171 = Janet makes 16 dollars every day at the farmers’ market. Q2 = James runs 540 total meters per week.
Q2= James runs 490 total meters per week.

Figure 1: Forward chaining generalization and example.

We propose two approaches for constructing n-length chains of GSM8K problems, where n represents
the number of problems in the chain. These problems are chained together to form a single, composite



Table 1: Raw accuracy numbers up to length 10. Despite near-perfect performance by frontier models
at length 1 (original GSM8X problems), the performance rapidly declines for most models.

Length | 1 2 3 4 5 6 7 8 9 10

Forward
Claude 3.5 | 0986 0.280 0.302 0.274 0.240 0.236 0.197 0.177 0.173 0.156
gpt-4o | 0.971 0920 0.870 0.795 0.785 0.730 0.710 0.700 0.550 0.500
Llama3.1 70B | 0.971 0.268 0.187 0.124 0.067 0.044 0.015 0.011 0.007 0.005
ol-preview | 1.000 0960 0.970 0.935 0910 0.860 0.890 0.845 0.865 0.815

Backward
Claude 3.5 | 0986 0.879 0.599 0.319 0.179 0.102 0.074 0.056 0.045 0.032
gpt-4o | 0971 0970 0.720 0.550 0350 0.260 0.140 0.120 0.110 0.055
Llama3.1 70B | 0.971 0477 0265 0.113 0.064 0.035 0.015 0.014 0.002 0.001
ol-preview | 1.000 0980 0.965 0.960 0945 0935 0.920 0915 0945 0.925

problem. By introducing branching paths and integrating randomness, we ensure that models cannot
simply memorize a sequence of branches to follow, thereby requiring reasoning.

The first technique, forward chaining, links problems in a sequential manner, where each problem can
be solved in the order it appears. If a sub-problem in the chain is successfully solved, the information
necessary to solve the next question is derived. If the sub-problem is solved incorrectly, alternative
facts are derived (false implies false), throwing off the inference after one wrong answer. This
chaining ensures each question is correctly solved. To avoid answer memorization, we randomly pick
between 2 ways of deriving information for the next question. the positive case (“Janet makes 16
dollars”) and negative (“It is not true that Janet makes 18 dollars™).

The second technique, backward chaining, reverses the order of the problems while maintaining the
same logical structure as forward chaining. This dependency on future context makes backward
chaining uniquely challenging, as the evaluation results show. Both of these techniques can generalize
to any chain length, and support arbitrary ordering of their component problems, meaning that any
permutation of problems is allowed. A formal exposition is given in Appendix [A]

2.1 Generation Power

Besides generating more complex problems, our technique is scalable and allows for the generation
of a large number of problems given a small starting set. Starting with /N unchained benchmarks and
given chain length [, there are P(N,[) = % ways to order [ questions. This means that starting
with N benchmarks, there are Zf; (NL_'T), ways to select questions to be chained. Then, with
the randomness introduced between each subsequent question in the chain, and taking into account
there are two techniques, the total number of benchmark problems the Scheherazade technique can

generate given IV starting benchmark problems is:

N
2I=1. NI
2-) .
l; (N —1)!

For example, with just 50 benchmark problems to start with (N = 50), our technique can generate
approximately 5.64 - 107° different problems.

3 Evaluation

We use Scheherazade to extend GSM8K and create GSM8K-Scheherazade. We evaluate each of
GPT-40 (Aug. 6th 2024), o1 -preview, Anthropic Claude 3.5 Sonnet, and Meta Llama 3.1 70BGP
on chains of length 2 through 10 with both forward chaining and backward chaining. For all models
except ol-preview, we evaluate on 1000 randomly generated forward and backward chaining
problems for each length, for a total of 18,000 benchmark cases per model (9000 forward, 9000
backward, at lengths 2-10). This amounts to a total of 54,000 benchmark cases across the three
models. ol-preview is evaluated on 200 problems per chain length per technique for a total of
3600 problems due to budget constraints.



=== False Negative === Semantic Understanding === \Wrong Path = Other

ol Forward ol Backward

40 Forward 40 Backward

Figure 2: Pie charts showing the error categorization of errors made by o1-preview and GPT-4o,
both for forward and backward chaining.

Raw Accuracy Table[T|presents the results of our evaluation, showing the raw accuracy (scaled
between 0 and 1) for each chain length. The results reveal a consistent decline in accuracy for all
models as chain length increases, for both forward chaining and backward chaining. This supports
the notion that logical question chaining creates more challenging reasoning problems, allowing us to
better differentiate the reasoning capabilities of the different models. At longer lengths, every model
except ol-preview fails at backward reasoning, unable to reason about almost every question
by chain length 10. Forward chaining presents similar results with the exception of GPT-40, which
declines more slowly, reaching a 0.5 raw correctness accuracy by length 10. It is interesting to
note that while Claude 3.5 performs marginally better than GPT-40 at a chain length of one, from
chain lengths of 2 onward, its backward reasoning results are worse, and its forward counterparts
are drastically worse. These observations raise questions about potential overfitting to prominent
benchmarks such as GSM8K. We also show accuracy normalized against the problem chain length in

Appendix [

In addition to overall accuracy results, we randomly sample 40 incorrect benchmark answers produced
by both GPT-40 and ol-preview: 20 forward chaining and 20 backward chaining errors. We
manually analyze these errors and find that we can categorize them into four categories: semantic
misunderstanding error, wrong path error, false negative, and other (including the infinite-loop error).
We present these findings in Fig. 2] These error categories differ from those in (2024)
as they were either no longer present or not suitably expressive here - there were for example no
instances of "calculation errors" in our findings as LLMs are now able to run computations, and
missing step errors are now encompassed in a broader wrong path error category. We show detailed
error analysis and examples in Appendix [C|

4 Conclusion

We introduce Scheherazade, a scalable framework for extending reasoning benchmark complexity
and generating large volumes of synthetic benchmarks from a small seed set. Using forward- and
backward-chaining techniques, we expand GSM8K into GSM8K-Scheherazade. Applying these
benchmarks to frontier models, we observe significant performance differences—revealing reasoning
capabilities that the original GSM8K no longer captured. Our analysis further sheds light on models’
contrasting strengths in forward versus backward reasoning and highlights distinct error patterns
in ol-preview and GPT-40. Beyond evaluation, our dataset also offers potential as a synthetic
training source for enhancing large language model reasoning.
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A Formal Definition of Scheherazade

To formally explain how we chain problems, we first introduce some notation. For a benchmark
problem P, let Q1 be the first logical premise of (). For example, suppose

@ ="Alice has 3 apples. Bob has 2 apples. Charlie
has 4 apples. How many apples do Alice, Bob,
and Charlie have in total?"

then Q1 = "Alice has 3 apples." (), denotes the remainder of the problem excluding the
question; in our example, (), = "Bob has 2 apples. Charlie has 4 apples”. We let @, de-
note the question statement asking for the solution to the problem. In our example, @}, =
"How many apples do Alice and Bob have in total?". (). denotes the conclusion of the problem,
written in natural language. For example, (). = "Alice and Bob have 3 apples in total." We addition-
ally use @/, and )} to refer to a wrong conclusion and an alternate first premise respectively. Each
question in the benchmark comes with a wrong conclusion and an alternate first premise to allow for
randomly selecting whether the if conditional statement should be true or false.

We chain problems together in two ways, forward chaining and backward chaining. At any point in
the chain, to chain two problems together we create a branching "if then else" statement. Consider
forward chaining with n = 2 as an example, and let A and B be the two problems. Forward chaining
A and B results in one of the two following structures, selected at random:
(1) A1 —|—Ap + (Ac — B A _‘Ac — Bi)
+ B, + B,
(2) A1+ A, + (Al = BIA-A, = By)
+ B, + B,

Here, the + symbol is string concatenation, and A, = B; A -A. = Bj is the symbolic
equivalent of "If: [A.] is true, then: [ B;] is true, otherwise: [B/]is true." Importantly, for any question
Q, Q' has the property that Q) # Q., meaning if the wrong branch is taken, the corresponding
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premise resulting from that branch will lead to an incorrect conclusion. Figure[T]shows how forward
chaining generalizes, and provides two example problems. To show how the generalization shown in
Figure [T] will look in text form, assume we have a chain of length 2 and the problems Q1 and Q2
from Figure[I) are the component problems. Then, assume the top path is selected randomly at the
first (and in this case only) branching point. Then, the full question will look like the following:

"Janet’s ducks lay 16 eggs per day. Janet eats
three eggs for breakfast every morning and bakes
muffins for her friends every day with four eggs.
Janet sells the remaining eggs at the farmers’
market daily for $2 per fresh duck egg. If it is
true that Janet makes 16 dollars every day at

the farmers’ market, then James decides to run

3 sprints 3 times a week. Otherwise, James
decides to run 2 sprints 3 times a week. James
runs 60 meters each sprint. How many total
meters does James run per week?"

A.1 Backward Chaining

Backward chaining also branches similarly, but unlike forward chaining, requires information from
future problems to solve the current problem in the chain. For example, the result of backward
chaining problems A and B results in one of the following, selected at random:

(Be = AiAN-B, = A))+ A, +B1+ B, + A,

(B, = A\AN-B, = A))+A,+Bi+B,+A4,

Notice that to get the first premise of A, problem B must be solved. However, the premises of
problem B do not appear until after problem A. Importantly, notice that in backward chaining the
final question is A,, meaning all intermediate questions must be solved to solve the final question.
As with forward chaining, backward chaining can generalize to any length as follows:

T1+Q1P+T2+"'+Q1q.
Where

r € {(Q2. = Q11 N-Q2. = Q1)
Q2. = Q1) A-Q2., = Q1
Q3. = Q21 A-Q3. = Q2)
Q3. = Q2 A-Q3, = Q2

Where r;, 72, etc. are chosen at random, and ending with the question, Q1,.

This generalization shows that as chain length increases, the reasoning required to solve the problem
becomes increasingly nested. That is, information from @2 is required to resolve the first premise
of @1, with information from ()3 necessary to resolve ()2, and so on. Note that the final question
asked is Q1,, the first problem in the chain. This is because obtaining )1, requires solving every
problem from @2 to @Qn. In other words, the question asked always corresponds to the problem
with the longest preceding chain of reasoning required to solve it. We can use the same problems
Q1 and Q2 from before to illustrate an example of backward chaining. Assume that the choice
(Q2, = Q1] A —Q2, = Q1) was selected at random. Then, the example will look like that



following when chained backward:

"If it is true that James runs 490 total meters

per week, then Janet’s ducks lay 20 eggs per day.
Otherwise, Janet’s ducks lay 16 eggs per day.
Janet eats three eggs for breakfast every morning
and bakes muffins for her friends every day with
four eggs. Janet sells the remaining eggs at the
farmers’ market daily for $2 per fresh duck egg.
James decides to run 3 sprints 3 times a week.
James runs 60 meters each sprint. How much in
dollars does Janet make every day at the farmers’
market?"

Notice how in order to solve the backward chaining problem, which asks a question about the first
problem in the chain, the second problem in the chain needs to be solved. In this case, it has to be
determined whether or not James runs 490 total meters before being able to determine a piece of
information crucial to evaluating how much Janet makes every day at the farmers’ market.

B Related Work

B.1 Chain of Thought Prompting

Chain-of-Thought (CoT) prompting has emerged as a powerful technique to enhance the reasoning
capabilities of large language models (LLMs) by guiding them to generate intermediate reasoning
steps rather than producing direct answers. This approach has proven effective for tasks involving
arithmetic, commonsense, and logical reasoning. Recent follow-up work has further advanced CoT
prompting through various innovations. For instance, "Self-Consistency” (Wang et al.| 2023) improves
CoT by sampling multiple reasoning paths and selecting the most consistent outcome to enhance
robustness. Other methods, like "Tree-of-Thoughts" (Yao et al.,|2023) explore branching reasoning
trajectories to tackle more complex decision-making tasks. These developments illustrate the evolving
landscape of CoT prompting and highlight its potential to address increasingly sophisticated reasoning
challenges in LLMs.

B.2 Synthetic math reasoning benchmark creation

Evaluating mathematical reasoning capabilities in large language models (LLMs) has become increas-
ingly critical as model performance approaches saturation on existing benchmarks. One widely used
benchmark, GSM8K, has seen models achieve over 94% accuracy, undermining its ability to differen-
tiate between advanced LLMs (OpenAl et al., [2024; |[Dubey et al.,2024). To address this, alternative
benchmarks have been proposed to better assess model reasoning, such as the MATH dataset, which
presents higher-level competition math problems (Hendrycks et al.l 2021)). However, these datasets
often require costly manual curation, making large-scale, automated benchmark generation essential.

Multiple synthetic math reasoning benchmark creation methods have been recently proposed. GSM-
Infinite Zhou et al.[(2025) proposes to use computational graphs to amplify a single benchmark into
another benchmark that requires arbitrary number of computation steps to solve. In contrast with
Scheherazade, their technique operates within a single math benchmark, adding operations inside
it. Scheherazade operates over multiple benchmarks, making connections between them to produce
new benchmarks. GSM-Infinite also has a notion of forward and backward derivation, depending on
whether the answer appears as a value of an expression or is back-computed from assumptions about
the value of an expression that uses the answer in the expression. These definitions are orthogonal to
Scheherazade’s definitions.

Chen et al.|(2024) shuffles the order of premises in questions of GSM8k, underscoring the need for
more sophisticated problem constructions. Zhang et al.| (2024b)); [Li et al.| (2024) leverage synthetic
templates to create. [Shi et al.| (2023)); /Anonymous|(2024) add irrelevant context to GSM8k questions
and show that it can greatly distract LLMs from the correct reasoning path. (Gao et al., [2023)



replace each number in GSM8k questions with a random integer of up to 7 digits and cause chain-
of-thought prompting to fail catastrophically. Despite the effectiveness of these methods in testing
LLM reasoning capabilities in adversarial scenarios, the complexity and diversity of the generated
benchmarks are inherently limited.

The Scheherazade framework builds on these efforts by introducing problem chaining techniques,
specifically forward and backward chaining. Unlike previous methods that rely on isolated problem
mutations, chaining creates nested dependencies between problems, significantly increasing the
reasoning complexity. [Hosseini et al.|(2024)) also evaluates LLM reasoning capabilities by chaining
math reasoning problems, but they only explore forward chaininig of two problems while we create
a more diverse and complex setting. Scheherazade’s automated benchmark generation aligns with
broader trends in synthetic data augmentation and scalable evaluation methods (Ye et al., |2024;
Havrilla et al., 2024} [Liu et al.| 2024). By chaining problems, it offers a novel way to evaluate logical
reasoning in LLMs, contributing to the ongoing effort to develop robust benchmarks that can keep
pace with rapidly advancing model capabilities.

C Error Analysis

Semantic Understanding Errors Semantic understanding errors, which make up the largest portion
of errors, occur when the model produces an answer indicating a misunderstanding of the question
asked. This can be any semantic understanding problem, including, for example, not understanding
something within an individual problem or a misunderstanding of the condition statements. An
example of the former can be found in a benchmark asking for Stephen’s total grocery costs - here,
it interprets a 25% tip on the 40 dollar bill as stating the original bill was 40/1.25, as opposed to
40 x 1.25. The latter is a more generalizable error - here the LLM often starts by assuming the
question statement and works backwards. For example, in a question about the number of ripe
oranges, the conditional chain constructed by Scheherazade is "If it is true there are 17 ripe oranges,
then suppose ..." - both ol-preview and GPT-40 occasionally run into the error of assuming
there are 17 ripe oranges, and working backward to fit the premises to the conclusion, showing
a fundamental misunderstanding of the question. This latter semantic understanding error type is
particularly interesting, as it highlights a fundamental flaw in a model’s ability to reason about logical
control flows. In trying to over-fit to the numbers present in the question, the models are not able to
semantically parse what the question is asking.

Wrong Path Errors The second kind of errors are wrong path errors. Here, one of three things
happens: either the LLM solved an intermediate problem correctly and then followed the wrong
conditional branch, the LLM skipped a step entirely, or the LLM hallucinated a new alternative path
that did not exist in the question. These hallucinations refer to instances where the model was able to
reason through a question in the chain correctly, but then in trying to fit to the presented number in
the conditional chain, presents what it calls an Alternative Exploration, where the model
tweaks some numbers in its proof to fit what it has calculated is the desired answer.

False Negatives A false negative occurs when our evaluation system fails to properly extract the
answers from the LLM’s output, despite the LLM answering correctly. This appears, for example,
when the LLM proves that the conditional branch is false instead of finding the correct answer to the
question and using that to refute the conditional branch. This is because our extraction system looks
for the answers to each intermediate question, and by refuting the conditional statement the correct
answer to the question sometimes is not explicitly stated. Finally, "other", the red pieces of the pie
charts, captured errors that did not fit into the other error categories. The number of these errors was
relatively small, so we believe our error categories effectively captured the errors.

Infinite Loops Although it was not in our random sample of errors, we noticed one interesting
behavior that only GPT-40 exhibited. On some questions, GPT-40 would end up in the equivalent of
an infinite loop. The model would perform an incorrect calculation, and instead of trying something
else, it just repeated the calculation over and over until hitting the output limit and throwing an error
back to our local machine. We know this only occurred with GPT-40 because only GPT-40 produced
outputs that were occasionally significantly longer than all other outputs (around 100,000 characters
long).



Although Fig. 2] only displays a randomized subset of the total errors made by the models, we find
that interesting trends appear. Our error analysis only highlights semantic understanding errors
for GPT-40, while showing a wider array of errors for ol-preview. One hypothesis for this is
that ol-preview is more capable of understanding logically complex questions. If a semantic
error occurs, GPT-40 may not even get to generate content that contains other types of errors. In
contrast, because ol-preview was able to avoid many semantic errors, other error types were
allowed to emerge. More work is needed to determine if this is indeed the case. Nevertheless, we
believe the error analysis and evaluation performed offer valuable insight into these models’ reasoning
capabilities.

D Future Work

The results of running GSM8K-Scheherazade on frontier models suggests several avenues for future
work. First, applying Scheherazade to math reasoning benchmarks other than GSM8K such as MATH
(Mathematical Problem Solving Dataset) would aid in slowing their depreciation. Second, statements
combining logical processes other than if-then-else should be explored. Combining problems with
conjunctions or disjunctions in addition to implications may further nuance our understanding of
model reasoning patterns. With numerical benchmarks, numerical operators such as taking sums of
solutions would also be relevant. Third, combining Scheherazade with more fine-grained re-orderings
of the questions remains an interesting avenue to explore. While we presented purely backward
and forward chaining, hybrid combinations may allow us to figure out the scope of, in particular,
ol-preview’s reasoning abilities, which maintains strong reasoning results. More fine-grained
mutations within questions rather than at the entire question level could also prove interesting.
The combination of within-question mutations with our chaining techniques could serve to expand
Scheherazade’s benchmark generation abilities and allow for further increases in difficulty as-needed.

E Limitations

While our Scheherazade framework offers a novel approach to evaluating LLM reasoning capabilities,
it is not without its limitations. One notable challenge lies in the method used to extract answers from
the model outputs. This approach occasionally produces false negatives, as the model’s response
may be correct but formatted in an unexpected way. In our error analysis, we found that 3.75% of
the errors were due to such false negatives, potentially underestimating model performance in some
cases.

Another limitation pertains to the requirements for the base set of benchmarks used in chaining.
Although the Scheherazade technique can create a large number of benchmarks from a small starting
set, for the starting set of benchmarks to be suitable, they must adhere to specific constraints. They
cannot use pronouns, and the names of people and variables across benchmarks must be unique
to avoid ambiguity. Additionally, an incorrect conclusion must be created for each problem in
the starting set of benchmarks to enable the random selection of conditional branches within our
techniques. While some aspects of this preprocessing can be automated, certain datasets may require
some amount of manual cleanup to meet these requirements. This additional step, though manageable,
introduces some overhead when applying Scheherazade.

F Normalized Accuracy

Fig.[3displays the performance normalized to accuracy on problems of length 1 (standard GSM8K
problems). The horizontal axis denotes the number of chained questions, while the vertical axis
represents normalized accuracy. Normalized to original GSM8K performance as per Fig. 3| we see
sharp accuracy declines exhibited by every model except o1l -preview for backward chaining. By
chains of length 2-3, normalized backward chaining accuracy plummets for every model other than
ol-preview, which maintains relatively strong accuracy over longer chain lengths. Normalized
accuracy also declines significantly for forward chaining for every model except o1l -preview and
GPT-40, with the former exhibiting similar results across chain lengths and the latter’s accuracy
declining more gradually than its counterparts. It is noteworthy that GPT-40 has the highest disparity
between forward chaining accuracy and backward chaining accuracy - the former remains relatively
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Model Performance over Chain Length
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Figure 3: Accuracy of LLMs declines when the chains become longer. With the exception of
ol-preview, LLMs find backward chains harder than forward chains at longer lengths.

high across all lengths, while the latter sharply declines in a similar, though slightly more gradual,
manner to other models.

Notably, for shorter lengths, all models present better backward reasoning numbers with shorter
questions than forward counterparts, but exhibit a sharper accuracy decline - by length 6, the latter
generally overtakes the former. ol-preview remains an outlier here, with backward chaining
maintaining higher accuracy than forward chaining. These findings spark an interesting conversation
in model reasoning patterns. If we consider the fundamental nature of large language models as
agents that predict the next token, it makes sense that models perform better at forward reasoning,
as they are sequentially selecting next tokens after scanning the input problem. It’s interesting then,
that ol -preview, the newest model, is able to overcome this limitation and exhibit even higher
accuracy on backward reasoning than it does on forward reasoning. Though the reasons for this
cannot be entirely known due to the opaque, proprietary nature of o1-preview and other OpenAl
models, these results could spark an interesting discussion about what could have changed to elicit
such drastically different behavior on backward reasoning. This topic warrants further investigationn,
and more experiments need to be done to narrow down the difference between o1l -preview and its
predecessors as it related to backwards reasoning.

G Forward Chaining Example Problems

G.1 Length2

Emily has 4 kids named Amy, Jackson, Corey, and Jason. Amy is 5 years older than Jackson and 2
years younger than Corey. Jason is 10. Jason is 1 year younger than Corey. If it is true that Jackson
is exactly 5 years old, then the following is true: [ Joseph takes care of 12 dogs.] Otherwise, the
following is true: [Joseph takes care of 10 dogs.] Each dog that Joseph takes care of takes .5 hours a
day to walk and take care of their business. How many hours per week does Joseph spend taking care
of dogs?

solutions: [4, 35]

G.2 Length4

A raspberry bush has 6 clusters of 20 fruit each and 67 individual fruit scattered across the bush. If it
is true that There are exactly 177 raspberries on the raspberry bush in total, then the following is true:
[ Mishka bought 2 pairs of shorts, 3 pairs of pants, and 3 pairs of shoes.] Otherwise, the following is
true: [Mishka bought 3 pairs of shorts, 3 pairs of pants, and 3 pairs of shoes.] One pair of shorts that
Mishka bought costs $16.50. One pair of pants that Mishka bought costs $22.50 and one pair of
shoes costs $42. If it is true that Mishka spent exactly 247 dollars total on all of the clothing items
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combined, then the following is true: [ The great dragon, Perg, sat high atop mount Farbo, breathing
fire upon anything within a distance of 1150 feet.] Otherwise, the following is true: [The great
dragon, Perg, sat high atop mount Farbo, breathing fire upon anything within a distance of 1000
feet.] Polly could throw the gold javelin, the only known weapon that could sleigh the dragon, for a
distance of 400 feet, well within the reach of the dragon’s flames. But when Polly held the sapphire
gemstone, she could throw the javelin three times farther than when not holding the gemstone. Polly
is holding the gemstone. If it is true that Polly could stand at most 100 feet outside the reach of the
dragon’s flames and still hit the dragon with the gold javelin, then the following is true: [ Toulouse
has three times as many sheep as Charleston.] Otherwise, the following is true: [Toulouse has twice
as many sheep as Charleston.] Charleston has 4 times as many sheep as Seattle. Seattle has 20 sheep.
How many sheep do Toulouse, Charleston, and Seattle have together?

solutions: [187, 243, 200, 260]

G.3 Lengtho6

Jim spends 2 hours watching TV and then decides to go to bed and reads for half as long. Jim
watches TV and read 3 times a week. If it is true that Jim spends exactly 28 hours on TV and reading
in four weeks, then the following is true: [ Gloria is shoe shopping when she comes across a pair
of boots that fit her shoe budget. Gloria has to choose between the boots she came across and two
pairs of high heels that together cost seven dollars less than the boots.] Otherwise, the following is
true: [Gloria is shoe shopping when she comes across a pair of boots that fit her shoe budget. Gloria
has to choose between the boots she came across and two pairs of high heels that together cost five
dollars less than the boots.] One pair of heels Gloria is looking at costs $33. The other pair of heels
that Gloria is looking at costs twice as much as the $33 pair. If it is true that The boots that Gloria
came across are exactly 98 dollars, then the following is true: [ The great dragon, Perg, sat high
atop mount Farbo, breathing fire upon anything within a distance of 1150 feet.] Otherwise, the
following is true: [The great dragon, Perg, sat high atop mount Farbo, breathing fire upon anything
within a distance of 1000 feet.] Polly could throw the gold javelin, the only known weapon that
could sleigh the dragon, for a distance of 400 feet, well within the reach of the dragon’s flames. But
when Polly held the sapphire gemstone, she could throw the javelin three times farther than when not
holding the gemstone. Polly is holding the gemstone. If it is true that Polly could stand at most 200
feet outside the reach of the dragon’s flames and still hit the dragon with the gold javelin, then the
following is true: [Dan plants 3 rose bushes.] Otherwise, the following is true: [Dan plants 2 rose
bushes.] Each rose bush Dan plants has 25 roses. Each rose on Dan’s rose bushes has 8 thorns. If it
is true that There are exactly 600 thorns in total on all of Dan’s roses, then the following is true:
[Meredith is a freelance blogger who writes about health topics and submits to clients each day as her
permanent job. A blog article takes Meredith an average of 4 hours to research and write about.]
Otherwise, the following is true: [Meredith is a freelance blogger who writes about health topics
and submits to clients each day as her permanent job. A blog article takes Meredith an average of 5
hours to research and write about.] Last week, Meredith wrote 5 articles on Monday and 2/5 times
more articles on Tuesday than on Monday. On Wednesday, Meredith wrote twice the number of
articles she wrote on Tuesday. If it is true that Meredith spent exactly 106 hours writing articles
in three days, then the following is true: [ Joseph takes care of 12 dogs.] Otherwise, the following
is true: [Joseph takes care of 10 dogs.] Each dog that Joseph takes care of takes .5 hours a day to
walk and take care of their business. How many hours per week does Joseph spend taking care of dogs?

solutions: [36, 104, 200, 600, 104, 35]

H Backward Chaining Example Problems

H.1 Length?2

If it is true that Christina will spend exactly 22 dollars on gift bags, then the following is true: [Jan
has four times the number of pets as Marcia.] Otherwise, the following is true: [Jan has three times
the number of pets as Marcia.] Marcia has two more pets than Cindy. Cindy has four pets. Christina
is planning a birthday party and needs .75 gift bags per invited guest, because 1/4 of attendees don’t
show up. Christina invited 16 friends. Gift bags cost $2 each. How many total pets do Jan, Marcia,
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and Cindy have total?

solutions: [24, 28]

H.2 Length4

If it is true that There were exactly 615 gems in the buried treasure chest, then the following is true:
[James decides to run 2 sprints 3 times a week.] Otherwise, the following is true: [James decides to
run 3 sprints 3 times a week.] James runs 60 meters each sprint. If it is true that Billy sold exactly 9
DVDs on Tuesday, then the following is true: [A treasure hunter found a buried treasure chest filled
with gems. There were 200 diamonds, 35 fewer rubies than diamonds, and twice the number of
emeralds than the rubies in the buried treasure chest.] Otherwise, the following is true: [A treasure
hunter found a buried treasure chest filled with gems. There were 175 diamonds, 35 fewer rubies
than diamonds, and twice the number of emeralds than the rubies in the buried treasure chest.] If it is
true that Joshua still has exactly 3 lego sets, then the following is true: [Billy sells DVDs. He has 8
customers on Tuesday. Billy first 3 customers buy two DVDs each.] Otherwise, the following is true:
[Billy sells DVDs. Billy has 8 customers on Tuesday. Billy’s first 3 customers buy one DVD each.]
Billy’s next 2 customers buy 2 DVDs each. Billy’s last 3 customers don’t buy any DVDs. Joshua
plans to sell all his toys and use the money to buy video games. Joshua has 13 lego sets and he sells
them for $15 each. Joshua ends up buying 8 video games for $20 each and has $5 left. How many
total meters does James run per week?

solutions: [2, 7, 595, 540]

H.3 Length 6

If it is true that There are exactly 187 raspberries on the raspberry bush in total, then the following is
true: [Lloyd has an egg farm. Lloyd’s chickens produce 252 eggs per day and he sells them for $2
per dozen.] Otherwise, the following is true: [Lloyd has an egg farm. Lloyd’s chickens produce
273 eggs per day and he sells them for $2 per dozen.] If it is true that The average square footage
of a level of Luke’s sandcastle is exactly 80 square feet, then the following is true: [A raspberry
bush has 5 clusters of 20 fruit each and 67 individual fruit scattered across the bush.] Otherwise, the
following is true: [A raspberry bush has 6 clusters of 20 fruit each and 67 individual fruit scattered
across the bush.] If it is true that There were exactly 615 gems in the buried treasure chest, then
the following is true: [Luke is spending time at the beach building sandcastles. Luke eventually
notices that each level of a sandcastle will have double the square footage as the level below it.]
Otherwise, the following is true: [Luke is spending time at the beach building sandcastles. Luke
eventually notices that each level of a sandcastle will have half the square footage as the level
below it.] Luke makes a 4 leveled sandcastle. The top level of the sandcastle that Luke makes has
a square footage of 16. If it is true that Christina will spend exactly 24 dollars on gift bags, then
the following is true: [A treasure hunter found a buried treasure chest filled with gems. There were
175 diamonds, 35 fewer rubies than diamonds, and twice the number of emeralds than the rubies
in the buried treasure chest.] Otherwise, the following is true: [A treasure hunter found a buried
treasure chest filled with gems. There were 200 diamonds, 35 fewer rubies than diamonds, and twice
the number of emeralds than the rubies in the buried treasure chest.] If it is true that Wendi needs
to give her chickens exactly 20 cups of feed in the final meal of the day, then the following is true:
[Christina is planning a birthday party and needs .75 gift bags per invited guest, because 1/4 of
attendees don’t show up. Christina invited 16 friends.] Otherwise, the following is true: [Christina is
planning a birthday party and needs .75 gift bags per invited guest, because 1/4 of attendees don’t
show up. Christina invited 20 friends.] Gift bags cost $2 each. Every day, Wendi feeds each of her
chickens three cups of mixed chicken feed, containing seeds, mealworms and vegetables to help keep
them healthy. Wendi gives her chickens their feed in three separate meals. In the morning, Wendi
gives her flock of chickens 15 cups of feed. In the afternoon, Wendi gives her chickens another 25
cups of feed. The size of Wendi’s flock is 20 chickens. How much does Lloyd make on eggs per week?

solutions: [20, 24, 595, 60, 187, 294]
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