Test-Time Scaling with Repeated Sampling Improves
Multilingual Text Generation

Anonymous ACL submission

Abstract

Inference-time scaling via repeated sampling
has shown promise in reasoning tasks, but its ef-
fectiveness in multilingual generation remains
underexplored. We evaluate this approach us-
ing perplexity- and reward-based verifiers on
two multilingual benchmarks: the Aya Eval-
uation Suite and m-ArenaHard. Our results
show consistent quality improvements, with
gains exceeding 35% in some cases. While
perplexity-based scoring is effective for open-
ended prompts, only reward-based verifiers im-
prove performance on tasks requiring reasoning
(e.g., math, code). Our results demonstrate the
broader utility of repeated sampling for multi-
lingual text generation and underscore the im-
portance of selecting right verifiers for the task.

1 Introduction

Scaling the inference-time compute has signif-
icantly improved LLM performance on coding,
mathematics, and other reasoning tasks (e.g.,
Madaan et al., 2023; Wu et al., 2024; Snell et al.,
2024; Brown et al., 2024; Bansal et al., 2024;
Muennighoff et al., 2025). There are two broad
strategies for test-time scaling: (1) with lengthy
chains of thought using an LLM trained to reason
longer (Guo et al., 2025; Muennighoff et al., 2025),
or (2) by repeated sampling, where a verifier or a
scorer model selects a final answer from generated
samples (Brown et al., 2024; Snell et al., 2024).
Despite the success of test-time scaling in
reasoning-heavy tasks, its effect on multilingual
text generation remains largely unexplored. In this
work, we investigate whether the repeated sam-
pling strategy can improve multilingual genera-
tion, even for benchmarks that do not explicitly
focus on reasoning, code, or mathematics. We
employ two approaches for selecting the final out-
put: (a) perplexity-based scoring using an auto-
regressive language model, and (b) reward scoring

\ {9 TF wEIeSe AR
az ifSeeh el §......
T @ & 5 aF -
1 §7 LLM N=2 (A9 us Tareegats
P ——— N EHIMESE......
| Translation: Whatare 5 | N
I_ waysto eatan apple? _j & :
9 TF AT IR
Final Output Best Score__——— »>| 9YF BA § ...
RT3) e ¢ d
a WW ¥ B (PPLor Reward) Step 1: Repeated sampling

to generate many
candidates

_

Step 2: Verifier selects the
sample with the best score

o

Verifier|Q,

Language Model
(Perplexity)
OR

Reward Model (Reward)

Figure 1: Repeated sampling procedure using a verifier
to pick the final answer.

with pre-trained reward models. The perplexity-
based method considers only the generated re-
sponses, selecting the output with the lowest per-
plexity score as a proxy for fluency. In contrast, the
reward-based method evaluates both the prompt
and the generated response together, scoring each
prompt-response pair to determine the best output.
Figure 1 illustrates this procedure.

Repeated sampling may allow models to explore
a wider range of potential outputs. Consequently,
in the case of multilingual generation, especially
for low-resource languages, the likelihood of gen-
erating text that is both high quality and contex-
tually appropriate increases. When model confi-
dence is limited, e.g., for underrepresented lan-
guages, initial outputs may not be the best. By
selecting from multiple generated candidates using
criteria based on fluency (via perplexity) or prompt-
response alignment (via reward models), we aim
to identify outputs that are more consistent with
human judgments or benchmark standards.

We show empirically that repeated sampling
with verification improves multilingual text genera-
tion. Using two perplexity- and reward-based veri-
fiers each, we observe that output quality improves
with the number of samples. On the Aya Evaluation

Suite (Singh et al., 2024), a multilingual benchmark
for open-ended generation, both verifier types yield
substantial gains; a 2B-parameter Gemma-based
reward model achieves up to 35% increase in win
rates. However, for m-ArenaHard (Dang et al.,
2024), a benchmark focused on programming and
mathematics, only reward-based verifiers lead to
measurable improvements.

Our contributions are twofold. (1) Ours is the
first work to demonstrate that multilingual gen-
eration benefits from test-time scaling, highlight-
ing the broader applicability of repeated sampling
beyond traditional English-based reasoning tasks.
(2) We show that verifier choice is critical: both
perplexity- and reward-based scoring helps gen-
eral multilingual generation, but only reward-based
verifiers are effective for tasks requiring reasoning.

2 Experimental Setup

This section outlines our experimental setup, in-
cluding details on the datasets, languages, LLMs,
verifiers, and the evaluation protocol used.

Dataset and Languages. We use two datasets
for evaluation. First is the Aya Evaluation
Suite (Singh et al., 2024), that contains open-ended
conversation-style, culturally grounded prompts
for evaluating multilingual LLM generation. We
conduct evaluations on nine languages: Arabic, En-
glish, Hindi, Punjabi, Portuguese, Russian, Telugu,
Turkish, and Chinese.

The second dataset is m-ArenaHard (Dang et al.,
2024), the multilingual variant of ArenaHard-
Auto (Li et al., 2024). This dataset contains
the translated prompts from the ArenaHard-Auto
benchmark. With this dataset, we perform evalu-
ation in seven languages: Arabic, Czech, English,
Hindi, Japanese, Portuguese, and Vietnamese.

Verifiers. We employ two types of verifiers to
score and select generations from repeated sam-
pling. For perplexity-based verification, we select
sample that has the lowest perplexity and use the
pre-trained variants of LLaMA-3. 1-8B (Grattafiori
et al., 2024) and Gemma-2B models (Team, 2024).
For reward-based scoring, we use two fine-tuned re-
ward models that are based on the above pre-trained
ones: URM-LLaMA-3.1-8B (Lou et al., 2024),
and GRM-Gemma-2B-rewardmodel-ft (Yang et al.,
2024b). Both reward models rank high on the Re-
wardBench benchmark (Lambert et al., 2024) and
are among the best models in their respective pa-

rameter ranges. Note that while the underlying pre-
trained models are multilingual, the reward models
have only been trained on the English preference
data. Appendix A.2 elaborates on our verifiers.

LLMs Evaluated. We evaluate commonly used
open-weight multilingual LLMs at both their
large and small parameter scales. Specifically,
we use Qwen-2.5 (Yang et al., 2024a) at 14B,
72B parameter scales, Llama-3 at 8B and 70B
scales (Grattafiori et al., 2024), and aya-expanse at
8B and 32B (Dang et al., 2024).

Evaluation Protocol. We follow prior work and
adopt the LL.M-as-a-Judge framework for evalu-
ating multilingual generation (Dang et al., 2024),
based on MT-Bench (Zheng et al., 2023). The core
evaluation metric is the win/loss rate —i.e., how
often a model’s response is judged better or worse
than a baseline. We report the difference (delta)
between win and loss rates, averaged across all lan-
guages. All evaluations use gemini-2.0-flash
as the judge, which we choose because of its cost
efficiency and strong multilingual performance.

Our baseline consists of single-sample genera-
tions without repeated sampling, using temperature-
based decoding. Due to its stochastic nature, the
baseline output may vary across runs, introduc-
ing randomness into the delta scores. Comparing
against multiple baseline samples is impractically
expensive. In a pilot study (fig. 5, appendix), we
found that the variance across runs is small (< 2
percentage points), indicating that our findings are
robust to baseline selection.

3 Results and Analysis

We plot the impact of number of samples (n) used
for repeated sampling vs the average delta score
achieved to show the scaling effect. We perform
this evaluation for n = 5,10, 15, 20, 25 and then
scale it in steps of 25 after that (to n = 50, 75, 100).

Figure 2 shows the main scaling plots for the Aya
Evaluation Suite and fig. 3 for the m-ArenaHard.
For the latter, due to space constraints, we only
show the plots for the larger models of each model
family. Other plots are presented in appendix fig. 6.

1. Repeated sampling with verifiers improves
multilingual generation. For Aya Evaluation
Suite, across all model architectures, verifier types,
and scales, repeated sampling during inference
improves multilingual generation. This effect is
evident even with a modest number of samples;

—e— PPL: Llama-3.1-8B

Llama-3.1 8B

Verifier Model
—e— PPL: Gemma-2-2B

Llama-3.3 70B

—— RM: Gemma-2-2B

—— RM: LLaMa-3.1-8B

Qwen-2.5 14B

30

N
o

Average Delta
N N
o ()] o (6]
\ \\
\ \
\\ \‘ \\
\ v\
1 b
1 I
1 1
1 1
1 1
[2 b
1
1 !
I 1
i 1
)
» deo
Average Delta
—_ —_ N
o [6)] o [6)] o
1
1
1

0 25 50 75
Number of Samples

100 0 25

Average Delta
= N w
o o o o
\ \
\ \
\ \
\ \
\
oo 3
o
Vo
[,'
e x
\
\
\
\
e o >
Average Delta
=N N
o o o
\\
1 1]
1 1 1
» L 2 L 3
1]
1 1
1 1
1 1
1 1
9 »
1/ e
Ly ;
1 s/
/
P
Average Delta
= N
o o o
m
\\\ :
\ 1
\ 1
[
1
[}
[}
1 n
P
)
[T}
[T}
[
L |
[
> @

Aya Expanse 8B

50 75
Number of Samples

Aya Expanse 32B

100

o

25 50 75
Number of Samples

100

Figure 2: Test-time scaling with repeated sampling for Aya Evaluation Suite. The plots show the difference between
win and loss rates (delta). We see that all verifiers — both perplexity-based (PPL) and reward-based (RM) —can

improve generation quality.

we see significant performance gains as early as
n = 5. While improvements continue with more
samples, the marginal benefit begins to plateau
around n = 25 for most models. An exception
is the pairing of the URM-LLaMA-3.1-8B reward
model with the Qwen-2.5 72B model, where gains
are minimal. Yet, the consistent upward trend sup-
ports the value of repeated sampling for improving
generation quality in multilingual settings.

Aya Evaluation Suite vs m-ArenaHard. For
m-ArenaHard, only reward-based verifiers consis-
tently improve performance. In fact, perplexity-
based verification can even hurt generation quality
with more samples (e.g., 70B-parameter Llama-3
using Gemma verifier). This observation aligns
with the nature of the tasks: open-ended textual
prompts predominate the Aya Evaluation Suite,
where fluency correlates strongly with quality. In
contrast, m-ArenaHard prompts demand domain-
specific reasoning in mathematics or programming,
where surface-level fluency is insufficient. Reward
models, trained extensively on reasoning-intensive
math/coding datasets, are better at distinguishing

high-quality responses in these settings.

2. Llama-based verifiers improve Llama-based
models. Interestingly, Llama-based verifiers can
help select higher quality texts from their post-
trained counterparts. This is unexpected, as post-
trained models are typically optimized to align with
either their own reward signals or their internal
fluency preferences, suggesting they might better
self-evaluate. Nonetheless, Llama verifiers appear
well-suited to identifying strong outputs from re-
lated model families.

3. Gemma-based reward model delivers the
highest gains. The reward model based on
Gemma-2 delivers the highest gains across both
benchmarks. Atn = 100, all generation models
improve by over 20%, with Llama-8B and Llama-
70B achieving increases exceeding 35%. This is
particularly notable given that the Gemma verifier
has only 2B parameters. These results indicate that,
under repeated sampling, even a relatively small
reward model can substantially enhance the output
quality of much larger language models. Impor-

Verifier Model

—e— PPL: Llama-3.1-8B

—e— PPL: Gemma-2-2B

—+— RM: Gemma-2-2B —4+— RM: LLaMa-3.1-8B

Llama-3.3 70B Qwen-2.572B Aya Expanse 32B
30 et LSS e P e
'''''' 1 ° T 15 e]
g s Jy S— e A ’
3 2" - 3
) 10 o 1 %10
I F e WGy - o 8 5 b TN Semeer)
g o 8 T g
< Se < < 5 e 8T
0 . - | AT 4
-10 S || | 7= -7 S “e
D TEET - .
e -5 “e 0
0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

Number of Samples

Number of Samples

Number of Samples

Figure 3: Test-time scaling with repeated sampling for m-ArenaHard. The plots show the difference between win
and loss rates (delta). Only reward-model based verifiers improve generation quality.

Llama-3.1 8B with Verifier vs Llama-3.3 70B without Verifier
0

-5

N
o

Verifier Model
—&— RM: Gemma-2-2B
RM: Llama-3.1-8B

Average Delta
| | I
N N -
a S o

o

25 50 75 100
Number of Samples

Figure 4: Training-time compute vs Test-time compute.

tantly, the verifier was trained exclusively on En-
glish prompt-response data; further improvements
may be possible with multilingual training.

4. Verifier choice is critical. As observed on the
m-ArenaHard benchmark, reward-based verifiers
substantially enhance generation quality, whereas
perplexity-based methods often degrade it. Thi
highlights the importance of choosing the right
verifier for the right task. Moreover, verifier per-
formance can vary across languages, suggesting
that language-specific factors influence effective-
ness. See for instance the heatmaps provided in
appendix fig. 7 and fig. 8.

For example, while the Gemma-based perplexity
verifier appears more effective for Qwen models
on Hindi, a Llama-based verifier yields stronger
results on Arabic. These variations suggest that no
single verifier might be universally optimal, and
future work could explore strategies for selecting
verifiers based on language, model architecture, or
task type, and training language-agnostic verifiers.

Train-time Scaling vs Test-time Scaling. One
question we ask is whether test-time scaling can
compensate for the limitations of smaller models,
potentially narrowing the gap with larger models
trained using significantly more compute. To ex-
plore this, we compare the outputs of Llama-3 8B
with repeated sampling (test-time scaling) against
Llama-3 70B without sampling (train-time scal-
ing only). As shown by the negative delta values
in fig. 4, while repeated sampling does improve the
smaller model’s outputs, it does not match the qual-
ity achieved by the larger model, indicating that
test-time scaling alone cannot fully substitute for
increased training-time capacity. This suggests that
while test-time scaling can enhance performance,
especially for smaller models, it might not be a
replacement for the representational capacity and
capabilities gained through large-scale training.

4 Conclusion

This work establishes inference-time scaling via
repeated sampling as a practical and effective strat-
egy for improving multilingual text generation. Our
analysis reveals that performance gains are robust
across models, verifier types, and languages, with
notable improvements achievable even for small-
scale verifiers. Crucially, we find that verifier ef-
fectiveness can be task and language-dependent:
perplexity-based methods work well for open-
ended prompts but underperform on domains re-
quiring structured reasoning. These findings high-
light the importance of careful verifier selection and
open up promising directions for future work, in-
cluding adaptive strategies that tailor verifier choice
to the characteristics of the input and the model.

Limitations

We identify two primary limitations in this work.
First, the reward models employed are trained
solely on English data. This choice reflects the
limited availability of compact, high-performing
multilingual reward models. Existing open-weight
multilingual reward models, such as those in m-
RewardBench, tend to be prohibitively large (e.g.,
Gemma-2 at 27B), making them impractical as
lightweight verifiers in repeated sampling setups.
Future work could address this by developing
smaller, more efficient multilingual reward models.

Second, due to budget constraints, our evaluation
uses a single baseline sample when computing win-
rates, which may introduce variance in the results.
Although our analysis shows that this variance is
relatively small, its impact across different models
and languages remains uncertain. Moreover, our
use of LLM-as-a-Judge introduces an additional
layer of potential bias, as the judgments reflect the
preferences and limitations of the underlying judge
model. While this approach is practical and widely
adopted, it may not fully align with human eval-
uations, particularly in multilingual or culturally
nuanced contexts.

References

Hritik Bansal, Arian Hosseini, Rishabh Agarwal,
Vinh Q Tran, and Mehran Kazemi. 2024. Smaller,
weaker, yet better: Training Ilm reasoners
via compute-optimal sampling. arXiv preprint
arXiv:2408.16737.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald
Clark, Quoc V Le, Christopher Ré, and Azalia Mirho-
seini. 2024. Large language monkeys: Scaling infer-
ence compute with repeated sampling. arXiv preprint
arXiv:2407.21787.

John Dang, Shivalika Singh, Daniel D’souza, Arash
Ahmadian, Alejandro Salamanca, Madeline Smith,
Aidan Peppin, Sungjin Hong, Manoj Govindassamy,
Terrence Zhao, and 1 others. 2024. Aya expanse:
Combining research breakthroughs for a new multi-
lingual frontier. arXiv preprint arXiv:2412.04261.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, and 1 others. 2024. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao
Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shi-
rong Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025.
Deepseek-rl: Incentivizing reasoning capability in

Ilms via reinforcement learning.
arXiv:2501.12948.

arXiv preprint

Srishti Gureja, Lester James V Miranda, Shayekh Bin
Islam, Rishabh Maheshwary, Drishti Sharma, Gusti
Winata, Nathan Lambert, Sebastian Ruder, Sara
Hooker, and Marzieh Fadaee. 2024. M-rewardbench:
Evaluating reward models in multilingual settings.
arXiv preprint arXiv:2410.15522.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison,
LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi,
and 1 others. 2024. Rewardbench: Evaluating re-
ward models for language modeling. arXiv preprint
arXiv:2403.13787.

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap,
Tianhao Wu, Banghua Zhu, Joseph E Gonzalez, and
ITon Stoica. 2024. From crowdsourced data to high-
quality benchmarks: Arena-hard and benchbuilder
pipeline. arXiv preprint arXiv:2406.11939.

Xingzhou Lou, Dong Yan, Wei Shen, Yuzi Yan, Jian Xie,
and Junge Zhang. 2024. Uncertainty-aware reward
model: Teaching reward models to know what is
unknown. arXiv preprint arXiv:2410.00847.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
and 1 others. 2023. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information
Processing Systems, 36:46534-46594.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and
Tatsunori Hashimoto. 2025. sl: Simple test-time
scaling. arXiv preprint arXiv:2501.19393.

Shivalika Singh, Freddie Vargus, Daniel Dsouza,
Borje F. Karlsson, Abinaya Mahendiran, Wei-Yin
Ko, Herumb Shandilya, Jay Patel, Deividas Mat-
aciunas, Laura OMahony, Mike Zhang, Ramith
Hettiarachchi, Joseph Wilson, Marina Machado,
Luisa Souza Moura, Dominik Krzeminski, Hakimeh
Fadaei, Irem Ergiin, Ifeoma Okoh, and 14 oth-
ers. 2024. Aya dataset: An open-access collec-
tion for multilingual instruction tuning. Preprint,
arXiv:2402.06619.

Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2024. Scaling llm test-time compute optimally
can be more effective than scaling model parameters.
arXiv preprint arXiv:2408.03314.

Gemma Team. 2024. Gemma.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck,
and Yiming Yang. 2024. Inference scaling laws:
An empirical analysis of compute-optimal inference
for problem-solving with language models. arXiv
preprint arXiv:2408.00724.

https://arxiv.org/abs/2402.06619
https://arxiv.org/abs/2402.06619
https://arxiv.org/abs/2402.06619
https://doi.org/10.34740/KAGGLE/M/3301

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, and 1 others. 2024a. Qwen?2.
5 technical report. arXiv preprint arXiv:2412.15115.

Rui Yang, Ruomeng Ding, Yong Lin, Huan Zhang, and
Tong Zhang. 2024b. Regularizing hidden states en-
ables learning generalizable reward model for llms.
arXiv preprint arXiv:2406.10216.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, and 1 others.
2023. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Pro-
cessing Systems, 36:46595-46623.

A Other Experimental Details

We provide some additional experimental details
regarding the models and the hyperparameters used
in our evaluation.

A.1 Dataset and Languages.

We use the Aya Evaluation Suite for conducting all
our experiments (Singh et al., 2024).! The dataset
contains open-ended conversation-style, culturally
grounded prompts for evaluating multilingual gen-
eration in LLMs. We demonstrate our results on
nine languages, namely, Arabic (ar), English (en),
Hindi (hi), Punjabi (pa), Portuguese (pt), Russian
(ru), Telugu (te), Turkish (tr), and Chinese (zh).
To get the Punjabi subset, we translate Hindi exam-
ples to Punjabi using Google Translate followed
by manual post-editing. Second dataset is the m-
ArenaHard dataset which is the multilingual variant
of ArenaHard-Auto (Li et al., 2024). This dataset
was released by Dang et al. (2024) and contains
the translated prompts from the ArenaHard-Auto
benchmark. With this dataset, we perform evalua-
tion in seven languages: Arabic (ar), Czech (cs),
English (en), Hindi (hi), Japanese (ja), Portuguese
(po), and Vietnamese (vi). We sample the first 250
prompts for each language for evaluation for each
of the datasets.

A.2 Verifiers

We employ two types of verifiers to score gener-
ations produced through repeated sampling. For
perplexity-based verification, we use the LLaMA-
3.1-8B and Gemma-2B models. These models
are used in their pre-trained forms, as they serve
solely to compute perplexity scores. For reward

1h'ctps ://huggingface.co/datasets/CohereLabs/
aya_evaluation_suite

model-based scoring, we incorporate two classi-
fier reward models that have been fine-tuned on
top of these pre-trained architectures. The first is
the URM-LLaMA-3.1-8B model 2, which achieves
the highest overall score among all models with
fewer than 8 billion parameters on the Reward-
Bench benchmark (Lambert et al., 2024).> The
second is the GRM-Gemma-2B-rewardmodel-ft 4,
a reward model fine-tuned on the Gemma-2B back-
bone, and the leading performer in the sub-3B pa-
rameter category on RewardBench. Using reward
models that share the same backbone as the per-
plexity models helps reduce confounding factors
and allows for clearer interpretation of results in
our experimental comparisons.

It is important to note that both reward models
are trained exclusively on English-language data.
We deliberately choose not to explore multilingual
reward models for two main reasons. First, the
best-performing open-weight multilingual reward
models, such as Gemma-27B, are significantly
larger in scale, which limits their practicality in
repeated sampling scenarios. Second, the objective
of this work is to demonstrate that simple, readily
available verifiers can already yield meaningful im-
provements in multilingual generation. That said,
developing a smaller yet effective multilingual re-
ward model remains an interesting direction for
future research. As an aside, prior work has shown
that the English-only URM-LLaMA-3.1-8B model
can be effective across multiple languages (Gureja
et al., 2024).

A.3 Models and Hyperparameters.

We evaluate the most common multilingual, open-
weight LLMs at both their large and small param-
eter scales. Specifically, we use Qwen-2.5 (Yang
et al., 2024a) at 14B, 72B parameter scales, Llama-
3 at 8B and 70B scales (Grattafiori et al., 2024) 3,
and aya-expanse at 8B and 32B (Dang et al., 2024).
We abbreviate these names in figures to make them
more readable.

2https ://huggingface.co/LxzGordon/URM-LLaMa-3.
1-8B

Shttps://huggingface.co/spaces/allenai/
reward-bench

4https: //huggingface.co/Ray2333/
GRM-Gemma-2B-rewardmodel-ft

>We use Llama-3.1 for the 8B model, and Llama-3.3 for
the 70B model. Llama-3.3 does not have a corresponding 8B
model and is known to be much superior to the Llama-3.1 70B
model.

https://huggingface.co/datasets/CohereLabs/aya_evaluation_suite
https://huggingface.co/datasets/CohereLabs/aya_evaluation_suite
https://huggingface.co/LxzGordon/URM-LLaMa-3.1-8B
https://huggingface.co/LxzGordon/URM-LLaMa-3.1-8B
https://huggingface.co/spaces/allenai/reward-bench
https://huggingface.co/spaces/allenai/reward-bench
https://huggingface.co/Ray2333/GRM-Gemma-2B-rewardmodel-ft
https://huggingface.co/Ray2333/GRM-Gemma-2B-rewardmodel-ft

e

20 -
© —2;“ _-1.:_
© 15 . oS
o
o} -
© 10 o e
(]
z oL

5

. =S

® ®© NO 2© o a©
A A N A % 2
Ve3 \:5% Q’L‘(D 0‘7/6 W Sk

Figure 5: Impact of baseline used for win rate calcu-
lation. We use gemini-2.0@-flash as the judge model
and evaluate stability with a reward model as a verifier:
URM-LLaMa-3.1-8B

Hyperparameters. During our preliminary ex-
periments, we found that temperature and other
sampling parameters like top-p did not degrade the
generation quality. We therefore fixed the tempera-
ture to 0.8, and top-p to 0.95.

GPT-40 vs Gemini for Judge. We used Gem-
ini’s 2.0 flash model for calculating win/loss rates.
For a subset of our experiments on Aya Evaluation
Suite with Llama-based verifiers, we found that on
average the delta scores from GPT-40 and Gemini
were within 3.0% of each other. Gemini model is
25x cheaper than the GPT-40 model and therefore
considering the scale of our evaluation, it made
more sense to use the Gemini model.

What baseline response to use? We need to
compare the response chosen by the verifier with a
baseline sampled response (i.e. when there is no re-
peated sampling). Due to randomness in sampling,
this comparison itself becomes non-deterministic.
Of course, ideally, we want to perform the di-
rect comparison with multiple different baseline
responses. But this is not practical due to budget
constraints.

We find that this does not have a significant
impact. See fig. 5 for a box plot that shows the
variability of the delta scores when comparing it
with different baseline responses. Although there
is some variance, but as can be clearly seen, it is
within a small range (around 2 % points).

A.4 For Responsible NLP Checklist

We briefly describe details regarding the questions
present in the responsible NLP checklist.

1. B2: Discuss The License For Artifacts and
B3: Artifact Use Consistent With Intended

Use: We have primarily used two dataset arti-
facts in this paper: Aya Evaluation Suite, and
m-ArenaHard dataset. The intended use of
both of these datasets was for evaluation and
benchmarking which completely aligns with
the goal of this paper.

Additionally, we have only used the open-
weight models that at the very least provide
a permissive license for research evaluations
we conduct. Usually, each model provider has
their own license (e.g. llama-3.1 license) but
all of them provide free and permissive use for
academic research under the conditions that
their work is properly cited.

2. C1 Model Size And Budget We mention
model sizes in the section 2 when introducing
the models we evaluate. We ran all evaluations
on our university machines. The evaluations
for smaller models were performed on a num-
ber of GPUs: A40, A6000, A100-40GB, and
for the larger models we relied more heavily
on A100-80 GB. We do not have an exact esti-
mate of the number of GPU hours as they were
spread across different clusters. But approxi-
mately, we used less than 2000GPU hours of
compute.

3. E1 Information About Use Of Ai Assistants
We primarily used GitHub Co-Pilot for cod-
ing assitance through the VS Code extension.
Occasionally, we also relied on ChatGPT for
code modifications through their web inter-
face.

A.5 On Manual or Alternate Evaluation

While alternative evaluation strategies such as man-
ual annotation or language-specific diagnostics can
provide valuable insights, they are difficult to op-
erationalize at scale, particularly in multilingual
settings. Manual evaluation requires access to
fluent speakers and calibrated annotators across
a wide range of low-resource languages, which
presents substantial logistical and methodological
challenges. Moreover, automatic heuristics like
language identification or lexical checks can often
fail to capture the nuanced dimensions of genera-
tion quality, such as coherence, cultural alignment,
or task relevance. Our use of the LLM-as-a-judge
framework is practical and widely adopted alterna-
tive, and prior work has shown strong correlations
between LLM judgments and human preferences

across multiple domains. Still, we acknowledge
that relying on a single judge model introduces
evaluation bias, especially when the model’s profi-
ciency varies across languages. A promising direc-
tion to mitigate this limitation is to aggregate judg-
ments from multiple strong multilingual LLMs,
leveraging inter-model agreement to increase eval-
uation reliability.

B Detailed Results and Plots

Verifier Model
—e— PPL: Llama-3.1-8B —o— PPL: Gemma-2-2B —4— RM: Gemma-2-2B —&— RM: LLaMa-3.1-8B

Llama-3.1 8B Llama-3.3 70B
30 eh————————p---=-zzzk% L _gemm——— A———————= A
O — == * I T T j— i
____________ Y i
20 20
L) i
© ©
o 10 o)
° o 10
> o R o
S St DG g o N
< i o < O ANy
®
10 e -10 e
~—-———---- o __ e -~
-20 Thel T *
Qwen-2.5 14B Qwen-2.5 72B
- A -
J— e A A O R A A7
30 //,4—- 1% "
g eAm—m 4
25 __—‘ ____________ h———————— A
g |/ T 810 e
220 3 -
o) o)
215 5 I oo __--- O
o |l _ea | _omm=" @ ————— o--—---—-- [J) L S —— -
Z10 - z
5 O & N __= 7S
-___. ______ \\\\
0 ------- e ————— o __ \\\\\
-5 B -5 »
Aya Expanse 8B Aya Expanse 32B
B R | g e
20 S P 175 B = 4
BEY Ll Y
———— 15.0 gt
s 15 T 125
3 3
° o 10.0
2 10 z
o e g 7.5
< S==so BICCrT D < ~< g ®
e e @ N\‘\ "_“'-—ﬂr—— S<
5 L Ry - S it el Y
2.5 \\‘
0 0.0
0 25 50 75 100 0 25 50 75 100
Number of Samples Number of Samples

Figure 6: Inference time scaling with repeated sampling for multilingual generation. Results for the m-ArenaHard.

Delta Heatmgﬁ\sat_)gellggel (Languages vs Verifiers) - Aya Evaluatﬁgns{g!gef

PPL: Gemma-2-2B- 1320 -9.64 -561 250 1694 17.09
PPL: Llama-3.1-8B - 14.46 4.00
8
£
RM: Gemma-2-2B - =55 9.60
RM: LLaMa-3.1-8B 3.60 17.59 7.66
i i '
ar en pa pt
Language
Qwen-2.5 14B
PPL: Gemma-2-2B 2.00 16.06
PPL: Llama-3.1-8B 11.50 17.60
8
<
RM: Gemma-2-2B 12.85
RM: LLaMa-3.1-8B - 12.00 16.00 4.90
ar en hi pa pt
Language
Aya Expanse 8B
PPL: Gemma-2-2B 9.60 3.00 553 [ELEEE 2,01
PPL: Llama-3.1-8B 1.50 5.05
ks
<
RM: Gemma-2-2B 8.54 13.57
RM: LLaMa-3.1-8B- -3.61 13.60 -2.01 13.00 3.61 13.50
' ' ' ' ' '
ar en hi pa pt ru
Language

370B

1.61 5.60
3.23
58.26 = 45.60 10.40
0.40
' '
en hi pa pt ru te tr
Language
Qwen-2.5 72B
16.00 -8.00 8.50
13.60
39.55 39.60 1400 7.20
-5.60 -7.60 8.50 -13.65 -5.50
' ' i . . ' . .
ar en hi pa pt ru te tr zh
Language
Aya Expanse 32B
0.80 -3.00 4.00
-3.20 0.00 4.50
11.60 1.50 16.00
10.00 14.06 -14.80 1.01 486 3.50
' ' ' ' ' '
te tr zh ar en hi pa pt ru
Language
20 30 40 50 60
Delta

Figure 7: For Aya Evaluation Suite. Heatmaps showing the language-specific results for each model and verifier.

The results are shown for n = 100.

10

rd

Delta Heatmaps_by Model (Languages vs Verifiers) - M-ArenaHa
CEma 3188 (Languag) [13Ma-3.3 708

: Gemma-2-2B - -10.20 -12.96 -12.76 -5.24 -13.65

PPL: Llama-3.1-8B- -8.10 -3.25 -5.60 -2.02 -5.26 3.21 3.23 1.63 -4.84 2.80 -7.26 -4.84 -7.66 -5.62
3
g

RM: Gemma-2-2B 11.60

RM: LLaMa-3.1-8B 12.40

i
ar cs en hi ja pt vi en hi ja pt vi
Language Language
Qwen-2.5 14B Qwen-2.5 72B
PPL: Gemma-2-2B - 5.46 -12.00 6.48 -2.00 -1.63 -9.24 -5.62 -7.20
PPL: Llama-3.1-8B b d 10.89 9.68 5.20 9.76 -0.40 -1.61 -4.40

Verifier

RM: Gemma-2-2B 13.36 10.04 11.29

RM: LLaMa-3.1-8B 13.71 8.47 4.44
ar cs en hi ja pt vi ja pt vi
Language Language
Aya Expanse 8B Aya Expanse 32B
PPL: Gemma-2-2B- 12.15 10.89 4.80 -0.40 8.40 1.61 6.02 -2.81 4.08 6.02 6.43 -5.60
PPL: Llama-3.1-8B - -3.70 10.89 8.84 6.50
ks
<
RM: Gemma-2-2B 13.88 12.85
RM: LLaMa-3.1-8B 11.69 . 9.35
i '
ar cs en hi ja pt Vi hi ja pt Vi
Language Language
-20 -10 0 10 20 30 40

Delta

Figure 8: For m-ArenaHard. Heatmaps showing the language-specific results for each model and verifier. The
results are shown for n = 100.

11

	Introduction
	Experimental Setup
	Results and Analysis
	Conclusion
	Other Experimental Details
	Dataset and Languages.
	Verifiers
	Models and Hyperparameters.
	For Responsible NLP Checklist
	On Manual or Alternate Evaluation

	Detailed Results and Plots

