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Abstract001

Inference-time scaling via repeated sampling002
has shown promise in reasoning tasks, but its ef-003
fectiveness in multilingual generation remains004
underexplored. We evaluate this approach us-005
ing perplexity- and reward-based verifiers on006
two multilingual benchmarks: the Aya Eval-007
uation Suite and m-ArenaHard. Our results008
show consistent quality improvements, with009
gains exceeding 35% in some cases. While010
perplexity-based scoring is effective for open-011
ended prompts, only reward-based verifiers im-012
prove performance on tasks requiring reasoning013
(e.g., math, code). Our results demonstrate the014
broader utility of repeated sampling for multi-015
lingual text generation and underscore the im-016
portance of selecting right verifiers for the task.017

1 Introduction018

Scaling the inference-time compute has signif-019

icantly improved LLM performance on coding,020

mathematics, and other reasoning tasks (e.g.,021

Madaan et al., 2023; Wu et al., 2024; Snell et al.,022

2024; Brown et al., 2024; Bansal et al., 2024;023

Muennighoff et al., 2025). There are two broad024

strategies for test-time scaling: (1) with lengthy025

chains of thought using an LLM trained to reason026

longer (Guo et al., 2025; Muennighoff et al., 2025),027

or (2) by repeated sampling, where a verifier or a028

scorer model selects a final answer from generated029

samples (Brown et al., 2024; Snell et al., 2024).030

Despite the success of test-time scaling in031

reasoning-heavy tasks, its effect on multilingual032

text generation remains largely unexplored. In this033

work, we investigate whether the repeated sam-034

pling strategy can improve multilingual genera-035

tion, even for benchmarks that do not explicitly036

focus on reasoning, code, or mathematics. We037

employ two approaches for selecting the final out-038

put: (a) perplexity-based scoring using an auto-039

regressive language model, and (b) reward scoring040
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Figure 1: Repeated sampling procedure using a verifier
to pick the final answer.

with pre-trained reward models. The perplexity- 041

based method considers only the generated re- 042

sponses, selecting the output with the lowest per- 043

plexity score as a proxy for fluency. In contrast, the 044

reward-based method evaluates both the prompt 045

and the generated response together, scoring each 046

prompt-response pair to determine the best output. 047

Figure 1 illustrates this procedure. 048

Repeated sampling may allow models to explore 049

a wider range of potential outputs. Consequently, 050

in the case of multilingual generation, especially 051

for low-resource languages, the likelihood of gen- 052

erating text that is both high quality and contex- 053

tually appropriate increases. When model confi- 054

dence is limited, e.g., for underrepresented lan- 055

guages, initial outputs may not be the best. By 056

selecting from multiple generated candidates using 057

criteria based on fluency (via perplexity) or prompt- 058

response alignment (via reward models), we aim 059

to identify outputs that are more consistent with 060

human judgments or benchmark standards. 061

We show empirically that repeated sampling 062

with verification improves multilingual text genera- 063

tion. Using two perplexity- and reward-based veri- 064

fiers each, we observe that output quality improves 065

with the number of samples. On the Aya Evaluation 066
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Suite (Singh et al., 2024), a multilingual benchmark067

for open-ended generation, both verifier types yield068

substantial gains; a 2B-parameter Gemma-based069

reward model achieves up to 35% increase in win070

rates. However, for m-ArenaHard (Dang et al.,071

2024), a benchmark focused on programming and072

mathematics, only reward-based verifiers lead to073

measurable improvements.074

Our contributions are twofold. (1) Ours is the075

first work to demonstrate that multilingual gen-076

eration benefits from test-time scaling, highlight-077

ing the broader applicability of repeated sampling078

beyond traditional English-based reasoning tasks.079

(2) We show that verifier choice is critical: both080

perplexity- and reward-based scoring helps gen-081

eral multilingual generation, but only reward-based082

verifiers are effective for tasks requiring reasoning.083

2 Experimental Setup084

This section outlines our experimental setup, in-085

cluding details on the datasets, languages, LLMs,086

verifiers, and the evaluation protocol used.087

Dataset and Languages. We use two datasets088

for evaluation. First is the Aya Evaluation089

Suite (Singh et al., 2024), that contains open-ended090

conversation-style, culturally grounded prompts091

for evaluating multilingual LLM generation. We092

conduct evaluations on nine languages: Arabic, En-093

glish, Hindi, Punjabi, Portuguese, Russian, Telugu,094

Turkish, and Chinese.095

The second dataset is m-ArenaHard (Dang et al.,096

2024), the multilingual variant of ArenaHard-097

Auto (Li et al., 2024). This dataset contains098

the translated prompts from the ArenaHard-Auto099

benchmark. With this dataset, we perform evalu-100

ation in seven languages: Arabic, Czech, English,101

Hindi, Japanese, Portuguese, and Vietnamese.102

Verifiers. We employ two types of verifiers to103

score and select generations from repeated sam-104

pling. For perplexity-based verification, we select105

sample that has the lowest perplexity and use the106

pre-trained variants of LLaMA-3.1-8B (Grattafiori107

et al., 2024) and Gemma-2B models (Team, 2024).108

For reward-based scoring, we use two fine-tuned re-109

ward models that are based on the above pre-trained110

ones: URM-LLaMA-3.1-8B (Lou et al., 2024),111

and GRM-Gemma-2B-rewardmodel-ft (Yang et al.,112

2024b). Both reward models rank high on the Re-113

wardBench benchmark (Lambert et al., 2024) and114

are among the best models in their respective pa-115

rameter ranges. Note that while the underlying pre- 116

trained models are multilingual, the reward models 117

have only been trained on the English preference 118

data. Appendix A.2 elaborates on our verifiers. 119

LLMs Evaluated. We evaluate commonly used 120

open-weight multilingual LLMs at both their 121

large and small parameter scales. Specifically, 122

we use Qwen-2.5 (Yang et al., 2024a) at 14B, 123

72B parameter scales, Llama-3 at 8B and 70B 124

scales (Grattafiori et al., 2024), and aya-expanse at 125

8B and 32B (Dang et al., 2024). 126

Evaluation Protocol. We follow prior work and 127

adopt the LLM-as-a-Judge framework for evalu- 128

ating multilingual generation (Dang et al., 2024), 129

based on MT-Bench (Zheng et al., 2023). The core 130

evaluation metric is the win/loss rate — i.e., how 131

often a model’s response is judged better or worse 132

than a baseline. We report the difference (delta) 133

between win and loss rates, averaged across all lan- 134

guages. All evaluations use gemini-2.0-flash 135

as the judge, which we choose because of its cost 136

efficiency and strong multilingual performance. 137

Our baseline consists of single-sample genera- 138

tions without repeated sampling, using temperature- 139

based decoding. Due to its stochastic nature, the 140

baseline output may vary across runs, introduc- 141

ing randomness into the delta scores. Comparing 142

against multiple baseline samples is impractically 143

expensive. In a pilot study (fig. 5, appendix), we 144

found that the variance across runs is small (< 2 145

percentage points), indicating that our findings are 146

robust to baseline selection. 147

3 Results and Analysis 148

We plot the impact of number of samples (n) used 149

for repeated sampling vs the average delta score 150

achieved to show the scaling effect. We perform 151

this evaluation for n = 5, 10, 15, 20, 25 and then 152

scale it in steps of 25 after that (to n = 50, 75, 100). 153

Figure 2 shows the main scaling plots for the Aya 154

Evaluation Suite and fig. 3 for the m-ArenaHard. 155

For the latter, due to space constraints, we only 156

show the plots for the larger models of each model 157

family. Other plots are presented in appendix fig. 6. 158

1. Repeated sampling with verifiers improves 159

multilingual generation. For Aya Evaluation 160

Suite, across all model architectures, verifier types, 161

and scales, repeated sampling during inference 162

improves multilingual generation. This effect is 163

evident even with a modest number of samples; 164
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Figure 2: Test-time scaling with repeated sampling for Aya Evaluation Suite. The plots show the difference between
win and loss rates (delta). We see that all verifiers — both perplexity-based (PPL) and reward-based (RM) — can
improve generation quality.

we see significant performance gains as early as165

n = 5. While improvements continue with more166

samples, the marginal benefit begins to plateau167

around n = 25 for most models. An exception168

is the pairing of the URM-LLaMA-3.1-8B reward169

model with the Qwen-2.5 72B model, where gains170

are minimal. Yet, the consistent upward trend sup-171

ports the value of repeated sampling for improving172

generation quality in multilingual settings.173

Aya Evaluation Suite vs m-ArenaHard. For174

m-ArenaHard, only reward-based verifiers consis-175

tently improve performance. In fact, perplexity-176

based verification can even hurt generation quality177

with more samples (e.g., 70B-parameter Llama-3178

using Gemma verifier). This observation aligns179

with the nature of the tasks: open-ended textual180

prompts predominate the Aya Evaluation Suite,181

where fluency correlates strongly with quality. In182

contrast, m-ArenaHard prompts demand domain-183

specific reasoning in mathematics or programming,184

where surface-level fluency is insufficient. Reward185

models, trained extensively on reasoning-intensive186

math/coding datasets, are better at distinguishing187

high-quality responses in these settings. 188

2. Llama-based verifiers improve Llama-based 189

models. Interestingly, Llama-based verifiers can 190

help select higher quality texts from their post- 191

trained counterparts. This is unexpected, as post- 192

trained models are typically optimized to align with 193

either their own reward signals or their internal 194

fluency preferences, suggesting they might better 195

self-evaluate. Nonetheless, Llama verifiers appear 196

well-suited to identifying strong outputs from re- 197

lated model families. 198

3. Gemma-based reward model delivers the 199

highest gains. The reward model based on 200

Gemma-2 delivers the highest gains across both 201

benchmarks. At n = 100, all generation models 202

improve by over 20%, with Llama-8B and Llama- 203

70B achieving increases exceeding 35%. This is 204

particularly notable given that the Gemma verifier 205

has only 2B parameters. These results indicate that, 206

under repeated sampling, even a relatively small 207

reward model can substantially enhance the output 208

quality of much larger language models. Impor- 209
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Figure 3: Test-time scaling with repeated sampling for m-ArenaHard. The plots show the difference between win
and loss rates (delta). Only reward-model based verifiers improve generation quality.
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Figure 4: Training-time compute vs Test-time compute.

tantly, the verifier was trained exclusively on En-210

glish prompt-response data; further improvements211

may be possible with multilingual training.212

4. Verifier choice is critical. As observed on the213

m-ArenaHard benchmark, reward-based verifiers214

substantially enhance generation quality, whereas215

perplexity-based methods often degrade it. Thi216

highlights the importance of choosing the right217

verifier for the right task. Moreover, verifier per-218

formance can vary across languages, suggesting219

that language-specific factors influence effective-220

ness. See for instance the heatmaps provided in221

appendix fig. 7 and fig. 8.222

For example, while the Gemma-based perplexity223

verifier appears more effective for Qwen models224

on Hindi, a Llama-based verifier yields stronger225

results on Arabic. These variations suggest that no226

single verifier might be universally optimal, and227

future work could explore strategies for selecting228

verifiers based on language, model architecture, or229

task type, and training language-agnostic verifiers.230

Train-time Scaling vs Test-time Scaling. One 231

question we ask is whether test-time scaling can 232

compensate for the limitations of smaller models, 233

potentially narrowing the gap with larger models 234

trained using significantly more compute. To ex- 235

plore this, we compare the outputs of Llama-3 8B 236

with repeated sampling (test-time scaling) against 237

Llama-3 70B without sampling (train-time scal- 238

ing only). As shown by the negative delta values 239

in fig. 4, while repeated sampling does improve the 240

smaller model’s outputs, it does not match the qual- 241

ity achieved by the larger model, indicating that 242

test-time scaling alone cannot fully substitute for 243

increased training-time capacity. This suggests that 244

while test-time scaling can enhance performance, 245

especially for smaller models, it might not be a 246

replacement for the representational capacity and 247

capabilities gained through large-scale training. 248

4 Conclusion 249

This work establishes inference-time scaling via 250

repeated sampling as a practical and effective strat- 251

egy for improving multilingual text generation. Our 252

analysis reveals that performance gains are robust 253

across models, verifier types, and languages, with 254

notable improvements achievable even for small- 255

scale verifiers. Crucially, we find that verifier ef- 256

fectiveness can be task and language-dependent: 257

perplexity-based methods work well for open- 258

ended prompts but underperform on domains re- 259

quiring structured reasoning. These findings high- 260

light the importance of careful verifier selection and 261

open up promising directions for future work, in- 262

cluding adaptive strategies that tailor verifier choice 263

to the characteristics of the input and the model. 264

4



Limitations265

We identify two primary limitations in this work.266

First, the reward models employed are trained267

solely on English data. This choice reflects the268

limited availability of compact, high-performing269

multilingual reward models. Existing open-weight270

multilingual reward models, such as those in m-271

RewardBench, tend to be prohibitively large (e.g.,272

Gemma-2 at 27B), making them impractical as273

lightweight verifiers in repeated sampling setups.274

Future work could address this by developing275

smaller, more efficient multilingual reward models.276

Second, due to budget constraints, our evaluation277

uses a single baseline sample when computing win-278

rates, which may introduce variance in the results.279

Although our analysis shows that this variance is280

relatively small, its impact across different models281

and languages remains uncertain. Moreover, our282

use of LLM-as-a-Judge introduces an additional283

layer of potential bias, as the judgments reflect the284

preferences and limitations of the underlying judge285

model. While this approach is practical and widely286

adopted, it may not fully align with human eval-287

uations, particularly in multilingual or culturally288

nuanced contexts.289
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A Other Experimental Details384

We provide some additional experimental details385

regarding the models and the hyperparameters used386

in our evaluation.387

A.1 Dataset and Languages.388

We use the Aya Evaluation Suite for conducting all389

our experiments (Singh et al., 2024).1 The dataset390

contains open-ended conversation-style, culturally391

grounded prompts for evaluating multilingual gen-392

eration in LLMs. We demonstrate our results on393

nine languages, namely, Arabic (ar), English (en),394

Hindi (hi), Punjabi (pa), Portuguese (pt), Russian395

(ru), Telugu (te), Turkish (tr), and Chinese (zh).396

To get the Punjabi subset, we translate Hindi exam-397

ples to Punjabi using Google Translate followed398

by manual post-editing. Second dataset is the m-399

ArenaHard dataset which is the multilingual variant400

of ArenaHard-Auto (Li et al., 2024). This dataset401

was released by Dang et al. (2024) and contains402

the translated prompts from the ArenaHard-Auto403

benchmark. With this dataset, we perform evalua-404

tion in seven languages: Arabic (ar), Czech (cs),405

English (en), Hindi (hi), Japanese (ja), Portuguese406

(po), and Vietnamese (vi). We sample the first 250407

prompts for each language for evaluation for each408

of the datasets.409

A.2 Verifiers410

We employ two types of verifiers to score gener-411

ations produced through repeated sampling. For412

perplexity-based verification, we use the LLaMA-413

3.1-8B and Gemma-2B models. These models414

are used in their pre-trained forms, as they serve415

solely to compute perplexity scores. For reward416

1https://huggingface.co/datasets/CohereLabs/
aya_evaluation_suite

model-based scoring, we incorporate two classi- 417

fier reward models that have been fine-tuned on 418

top of these pre-trained architectures. The first is 419

the URM-LLaMA-3.1-8B model 2, which achieves 420

the highest overall score among all models with 421

fewer than 8 billion parameters on the Reward- 422

Bench benchmark (Lambert et al., 2024).3 The 423

second is the GRM-Gemma-2B-rewardmodel-ft 4, 424

a reward model fine-tuned on the Gemma-2B back- 425

bone, and the leading performer in the sub-3B pa- 426

rameter category on RewardBench. Using reward 427

models that share the same backbone as the per- 428

plexity models helps reduce confounding factors 429

and allows for clearer interpretation of results in 430

our experimental comparisons. 431

It is important to note that both reward models 432

are trained exclusively on English-language data. 433

We deliberately choose not to explore multilingual 434

reward models for two main reasons. First, the 435

best-performing open-weight multilingual reward 436

models, such as Gemma-27B, are significantly 437

larger in scale, which limits their practicality in 438

repeated sampling scenarios. Second, the objective 439

of this work is to demonstrate that simple, readily 440

available verifiers can already yield meaningful im- 441

provements in multilingual generation. That said, 442

developing a smaller yet effective multilingual re- 443

ward model remains an interesting direction for 444

future research. As an aside, prior work has shown 445

that the English-only URM-LLaMA-3.1-8B model 446

can be effective across multiple languages (Gureja 447

et al., 2024). 448

A.3 Models and Hyperparameters. 449

We evaluate the most common multilingual, open- 450

weight LLMs at both their large and small param- 451

eter scales. Specifically, we use Qwen-2.5 (Yang 452

et al., 2024a) at 14B, 72B parameter scales, Llama- 453

3 at 8B and 70B scales (Grattafiori et al., 2024) 5, 454

and aya-expanse at 8B and 32B (Dang et al., 2024). 455

We abbreviate these names in figures to make them 456

more readable. 457

2https://huggingface.co/LxzGordon/URM-LLaMa-3.
1-8B

3https://huggingface.co/spaces/allenai/
reward-bench

4https://huggingface.co/Ray2333/
GRM-Gemma-2B-rewardmodel-ft

5We use Llama-3.1 for the 8B model, and Llama-3.3 for
the 70B model. Llama-3.3 does not have a corresponding 8B
model and is known to be much superior to the Llama-3.1 70B
model.
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Figure 5: Impact of baseline used for win rate calcu-
lation. We use gemini-2.0-flash as the judge model
and evaluate stability with a reward model as a verifier:
URM-LLaMa-3.1-8B

Hyperparameters. During our preliminary ex-458

periments, we found that temperature and other459

sampling parameters like top-p did not degrade the460

generation quality. We therefore fixed the tempera-461

ture to 0.8, and top-p to 0.95.462

GPT-4o vs Gemini for Judge. We used Gem-463

ini’s 2.0 flash model for calculating win/loss rates.464

For a subset of our experiments on Aya Evaluation465

Suite with Llama-based verifiers, we found that on466

average the delta scores from GPT-4o and Gemini467

were within 3.0% of each other. Gemini model is468

25x cheaper than the GPT-4o model and therefore469

considering the scale of our evaluation, it made470

more sense to use the Gemini model.471

What baseline response to use? We need to472

compare the response chosen by the verifier with a473

baseline sampled response (i.e. when there is no re-474

peated sampling). Due to randomness in sampling,475

this comparison itself becomes non-deterministic.476

Of course, ideally, we want to perform the di-477

rect comparison with multiple different baseline478

responses. But this is not practical due to budget479

constraints.480

We find that this does not have a significant481

impact. See fig. 5 for a box plot that shows the482

variability of the delta scores when comparing it483

with different baseline responses. Although there484

is some variance, but as can be clearly seen, it is485

within a small range (around 2 % points).486

A.4 For Responsible NLP Checklist487

We briefly describe details regarding the questions488

present in the responsible NLP checklist.489

1. B2: Discuss The License For Artifacts and490

B3: Artifact Use Consistent With Intended491

Use: We have primarily used two dataset arti- 492

facts in this paper: Aya Evaluation Suite, and 493

m-ArenaHard dataset. The intended use of 494

both of these datasets was for evaluation and 495

benchmarking which completely aligns with 496

the goal of this paper. 497

Additionally, we have only used the open- 498

weight models that at the very least provide 499

a permissive license for research evaluations 500

we conduct. Usually, each model provider has 501

their own license (e.g. llama-3.1 license) but 502

all of them provide free and permissive use for 503

academic research under the conditions that 504

their work is properly cited. 505

2. C1 Model Size And Budget We mention 506

model sizes in the section 2 when introducing 507

the models we evaluate. We ran all evaluations 508

on our university machines. The evaluations 509

for smaller models were performed on a num- 510

ber of GPUs: A40, A6000, A100-40GB, and 511

for the larger models we relied more heavily 512

on A100-80 GB. We do not have an exact esti- 513

mate of the number of GPU hours as they were 514

spread across different clusters. But approxi- 515

mately, we used less than 2000GPU hours of 516

compute. 517

3. E1 Information About Use Of Ai Assistants 518

We primarily used GitHub Co-Pilot for cod- 519

ing assitance through the VS Code extension. 520

Occasionally, we also relied on ChatGPT for 521

code modifications through their web inter- 522

face. 523

A.5 On Manual or Alternate Evaluation 524

While alternative evaluation strategies such as man- 525

ual annotation or language-specific diagnostics can 526

provide valuable insights, they are difficult to op- 527

erationalize at scale, particularly in multilingual 528

settings. Manual evaluation requires access to 529

fluent speakers and calibrated annotators across 530

a wide range of low-resource languages, which 531

presents substantial logistical and methodological 532

challenges. Moreover, automatic heuristics like 533

language identification or lexical checks can often 534

fail to capture the nuanced dimensions of genera- 535

tion quality, such as coherence, cultural alignment, 536

or task relevance. Our use of the LLM-as-a-judge 537

framework is practical and widely adopted alterna- 538

tive, and prior work has shown strong correlations 539

between LLM judgments and human preferences 540

7



across multiple domains. Still, we acknowledge541

that relying on a single judge model introduces542

evaluation bias, especially when the model’s profi-543

ciency varies across languages. A promising direc-544

tion to mitigate this limitation is to aggregate judg-545

ments from multiple strong multilingual LLMs,546

leveraging inter-model agreement to increase eval-547

uation reliability.548

B Detailed Results and Plots549
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Figure 6: Inference time scaling with repeated sampling for multilingual generation. Results for the m-ArenaHard.
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Figure 7: For Aya Evaluation Suite. Heatmaps showing the language-specific results for each model and verifier.
The results are shown for n = 100.
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Figure 8: For m-ArenaHard. Heatmaps showing the language-specific results for each model and verifier. The
results are shown for n = 100.
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