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Abstract

In this work, we study two-player zero-sum stochastic games and develop a vari-
ant of the smoothed best-response learning dynamics that combines independent
learning dynamics for matrix games with the minimax value iteration for stochastic
games. The resulting learning dynamics are payoff-based, convergent, rational,
and symmetric between the two players. Our theoretical results present to the best
of our knowledge the first last-iterate finite-sample analysis of such independent
learning dynamics. To establish the results, we develop a coupled Lyapunov drift
approach to capture the evolution of multiple sets of coupled and stochastic iterates,
which might be of independent interest.

1 Introduction

Recent years have seen remarkable successes in reinforcement learning (RL) in a variety of appli-
cations, such as board games [1], autonomous driving [2], robotics [3], and city navigation [4]. A
common feature of these applications is that there are multiple decision makers interacting with
each other in a common environment. Although empirical successes have shown the potential of
multi-agent reinforcement learning (MARL) [5, 6], the training of MARL agents is largely based on
heuristics and parameter tuning and, therefore, is not always reliable. In particular, many practical
MARL algorithms are directly extended from their single-agent counterparts and lack guarantees
because of the adaptive strategies of multiple agents.

A growing literature seeks to provide theoretical insights to substantiate the empirical success of
MARL and inform the design of efficient and provably convergent algorithms. Work along these lines
can be broadly categorized into work on cooperative MARL where agents seek to reach a common
goal [7–10], and work on competitive MARL where agents have individual (and possibly misaligned)
objectives [11–22]. While some earlier work focused on providing guarantees on the asymptotic
convergence, the more recent ones share an increasing interest in understanding the finite-time/sample
behavior. This follows from a line of recent advances in establishing finite-sample guarantees of
single-agent RL algorithms, see e.g., [23–26] and many others.

In this paper, we focus on the benchmark setting of two-player1 zero-sum stochastic games, and
develop best-response-type learning dynamics with provable finite-sample guarantees. Crucially,
our learning dynamics are independent (requiring no coordination between the agents in learning)
and rational (each agent will converge to the best response to the opponent if the opponent plays
an (asymptotically) stationary policy [27]), and therefore capture learning in settings with multiple
game-theoretic agents. Indeed, learning dynamics with self-interested agents should not enforce
information communication or coordination among agents. Furthermore, we focus on the more
challenging but practically relevant setting of payoff-based learning, where each agent can only

1Hereafter, we may use player and agent interchangeably.
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observe their realized payoff at each stage, without observing the policy or even the action taken by
the opponent. For learning dynamics with such properties, we establish to the best of our knowledge
the first last-iterate finite-sample guarantees. We detail our contributions as follows.

1.1 Contributions

We first consider zero-sum matrix games and provide the last-iterate finite-sample guarantees for
the smoothed best-response dynamics proposed in [28]. Then, we extend the algorithmic idea
to the setting of stochastic games and develop an algorithm called value iteration with smoothed
best-response dynamics (VI-SBR) that also enjoys last-iterate finite-sample convergence.

Two-Player Zero-Sum Matrix Games. We start with the smoothed best-response dynamics in
[28] and establish the last-iterate finite-sample bounds when using stepsizes of various decay rates.
The result implies a sample complexity of O(ϵ−1) in terms of the last iterate to find the Nash
distribution [29], which is also known as the quantal response equilibrium in the literature [30]. To
our knowledge, this is the first last-iterate finite-sample result for best-response learning dynamics
that are payoff-based, rational, and symmetric in zero-sum matrix games.

Two-Player Zero-Sum Stochastic Games. Building on the algorithmic ideas for matrix games,
we develop best-response-type learning dynamics for stochastic games called VI-SBR, which uses
a single trajectory of Markovian samples. Our learning dynamics consist of two loops and can be
viewed as a combination of the smoothed best-response dynamics for an induced auxiliary matrix
game (conducted in the inner loop) and an independent way of performing minimax value iteration
(conducted in the outer loop). In particular, in the inner loop, the iterate of the outer loop, i.e., the
value function, is fixed, and the players learn the approximate Nash equilibrium of an auxiliary matrix
game induced by the value function; then the outer loop is updated by approximating the minimax
value iteration updates for the stochastic game, with only local information.

We establish the last-iterate finite-sample bounds for VI-SBR when using both constant stepsizes
and diminishing stepsizes of O(1/k) decay rate. To the best of our knowledge, this appears to be the
first last-iterate finite-sample analysis of best-response-type independent learning dynamics that are
convergent and rational for stochastic games. Most existing MARL algorithms are either symmetric
across players, but not payoff-based, e.g., [31–35], or not symmetric and thus not rational, e.g.,
[14, 36–38], or do not have last-iterate finite-time/sample guarantees, e.g., [39, 15, 40].

1.2 Challenges & Techniques

The main challenge in analyzing our learning dynamics is that it maintains multiple sets of stochastic
iterates and updates them in a coupled manner. To overcome this challenge, we develop a novel
coupled Lyapunov drift approach. Specifically, we construct a Lyapunov function for each set of the
stochastic iterates and establish a Lyapunov drift inequality for each. We then carefully combine
the coupled Lyapunov drift inequalities to establish the finite-sample bounds. Although a more
detailed analysis is provided in the appendices, we briefly give an overview of the main challenges
in analyzing the payoff-based independent learning dynamics in stochastic games, as well as our
techniques to overcome them.

Time-Inhomogeneous Markovian Noise. The fact that our learning dynamics are payoff-based
presents major challenges in handling the stochastic errors in the update. In particular, due to the
best-response nature of the dynamics, the behavior policy for sampling becomes time-varying. In
fact, the sample trajectory used for learning forms a time-inhomogeneous Markov chain. This makes
it challenging to establish finite-sample guarantees, as time-inhomogeneity prevents us from directly
exploiting the uniqueness of stationary distributions and the fast mixing of Markov chains. Building
on existing work [23, 24, 41, 42], we overcome this challenge by tuning the algorithm parameters (in
particular, the stepsizes) and developing a refined conditioning argument.

Non-Zero-Sum Payoffs Due to Independent Learning. As illustrated in Section 1.1, the inner
loop of VI-SBR is designed to approximately learn the Nash equilibrium of an auxiliary matrix
game induced by the value functions for the two players, which we denote by v1t and v2t , where t
is the iteration index of the outer loop. Importantly, the value functions v1t and v2t are maintained
individually by players 1 and 2, and therefore do not necessarily satisfy v1t + v2t = 0 due to
independent learning. As a result, the auxiliary matrix game from the inner loop does not necessarily
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admit a zero-sum structure during learning. The error induced from such a non-zero-sum structure
appears in existing work [15, 43], and was handled by designing a novel truncated Lyapunov function.
However, the truncated Lyapunov function was sufficient to establish the asymptotic convergence,
but did not provide the explicit rate at which the induced error goes to zero. To enable finite-sample
analysis, we introduce ∥v1t + v2t ∥∞ as a Lyapunov function in our coupled Lyapunov framework,
which is customized to capture the behavior of the induced error from the non-zero-sum structure of
the inner-loop auxiliary matrix game.

Coupled Lyapunov Drift Inequalities. In the existing literature of stochastic iterative algorithms
[44, 24, 45, 46], when using a Lyapunov approach for finite-sample analysis, once the Lyapunov drift
inequality is established, the finite-sample bound follows straightforwardly by repeatedly invoking
the result. However, since our learning dynamics (for stochastic games) maintain multiple sets of
stochastic iterates and update them in a coupled manner, the Lyapunov drift inequalities we establish
are also highly coupled. Decoupling these Lyapunov inequalities is a major challenge. To overcome it,
we develop a systematic approach for decoupling, which crucially relies on a bootstrapping argument.
Specifically, we first use the Lyapunov inequalities in a direct way to establish a crude bound for each
Lyapunov function. Then, we substitute the crude bounds back into the Lyapunov drift inequalities to
obtain tighter bounds. See Appendix B.4 for a more detailed illustration of our decoupling procedure.

1.3 Related Work

Due to space constraints, here we only discuss related work in independent learning in matrix games
and stochastic games, and single-agent RL. See Appendix A for a more detailed literature review.

Independent Learning in Matrix Games. Independent learning has been well-studied in the
literature on learning in matrix games. Fictitious play (FP) [47] may be viewed as the earliest one
of this kind, and its convergence analysis for the zero-sum setting is provided in [48]. Smoothed
versions of FP have been developed [49, 50] to make the learning dynamics consistent [51, 52]. It was
shown that the behavior of smoothed FP is captured by an ODE known as the smoothed best-response
dynamics, which were also studied extensively in the literature [53]. Note that the Lyapunov function
used to study the smoothed best-response dynamics is the regularized Nash gap [54, 53, 29], a variant
of which is also used in our Lyapunov framework. To make the learning dynamics payoff-based,
[28] developed a two time-scale variant of the smoothed best-response dynamics and established
the asymptotic convergence. Moreover, no-regret learning algorithms, extensively studied in online
learning, can also be used as independent learning dynamics for matrix games [55]. It is known that
they are both convergent and rational by the definition in [27], and are usually implemented in a
symmetric way. See [55] for a detailed introduction to no-regret learning in games.

Independent Learning in Stochastic Games. For stochastic games, independent and symmetric
policy gradient methods have been developed in recent years, mostly for the case of Markov potential
games [18, 19, 56]. The zero-sum case is more challenging since there is no single Lyapunov function
to capture the learning dynamics (which is why we need to develop a coupled Lyapunov approach
with multiple Lyapunov functions), such as the potential function in Markov potential games. For
non-potential game settings, symmetric variants of policy gradient methods have been proposed,
but have only been studied under the full-information setting without finite-sample guarantees
[31, 32, 57, 33–35], with the exception of [58, 59]. However, the learning algorithm in [58] requires
some coordination between the players when sampling, and is thus not completely independent;
that in [59] is extragradient-based and needs some stage-based sampling process that also requires
coordination across players. Best-response-type independent learning for stochastic games has been
studied recently in [39, 15, 43, 60, 40, 61, 62], with [15, 43, 40, 61] tackling the zero-sum setting.
However, only asymptotic convergence was established in these works, which motivated this work.

Finite-Sample Analysis in Single-Agent RL. The most related works (in single-agent RL) to our
paper are those that perform finite-sample analysis for RL in infinite-horizon discounted Markov
decision processes following a single trajectory of Markovian samples. See [63, 23, 41, 24–26, 64–
67, 10] and the references therein. Among these works, [23, 24] established finite-sample bounds for
temporal difference (TD)-learning (with linear function approximation), and [25, 64, 65] established
finite-sample bounds for Q-learning. In both cases, the behavior policy for sampling is a stationary
policy. For non-stationary behavior policies as we consider, [41] established finite-sample bounds
for SARSA, an on-policy variant of Q-learning, and [10] provided finite-sample bounds for off-
policy actor-critic, which is established based on a general framework of contractive stochastic
approximation with time-inhomogeneous Markovian noise.
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2 Zero-Sum Matrix Games

We begin by considering zero-sum matrix games. This section introduces algorithmic and technical
ideas that are important for the setting of stochastic games. For i ∈ {1, 2}, let Ai be the finite action
space of player i, and let Ri ∈ R|Ai|×|A−i| (where −i denotes the index of player i’s opponent) be the
payoff matrix of player i. Note that in a zero-sum game we have R1+R⊤

2 = 0. Since there are finitely
many actions for each player, we assume without loss of generality that maxa1,a2 |R1(a

1, a2)| ≤ 1.
Furthermore, we denote Amax = max(|A1|, |A2|).
The decision variables here are the policies πi ∈ ∆(Ai), i ∈ {1, 2}, where ∆(Ai) denotes the
probability simplex supported on Ai. Given a joint policy (π1, π2), the expected reward received
by player i is EAi∼πi,A−i∼π−i [Ri(A

i, A−i)] = (πi)⊤Riπ
−i, where i ∈ {1, 2}. Both players aim

to maximize their rewards against their opponents. Unlike in the single-agent setting, since the
performance of player i’s policy depends on its opponent −i’s policy, there is, in general, no universal
optimal policy. Instead, we use the Nash gap and the regularized Nash gap as measurements of the
performance of the learning dynamics, as formally defined below.
Definition 2.1 (Nash Gap in Matrix Games). Given a joint policy π = (π1, π2), the Nash gap
NG(π1, π2) is defined as NG(π1, π2) =

∑
i=1,2 maxπ̂i∈∆(Ai)(π̂

i − πi)⊤Riπ
−i.

Note that NG(π1, π2) = 0 if and only if (π1, π2) is in a Nash equilibrium of the matrix game (which
may not be unique), in which no player has the incentive to change its policy.
Definition 2.2 (Regularized Nash Gap in Matrix Games). Given a joint policy π = (π1, π2) and
a constant τ > 0, the entropy-regularized Nash gap NGτ (π

1, π2) is defined as NGτ (π
1, π2) =∑

i=1,2

{
maxπ̂i∈∆(Ai)(π̂

i − πi)⊤Riπ
−i + τν(π̂i)− τν(πi)

}
, where ν(·) is the entropy function

defined as ν(πi) = −
∑

ai∈Ai πi(ai) log(πi(ai)) for i ∈ {1, 2}.

A joint policy (π1, π2) satisfying NGτ (π
1, π2) = 0 is called the Nash distribution [29] or the quantal

response equilibrium [30], which, unlike Nash equilibria, is unique in zero-sum matrix games. As τ
approaches 0, the corresponding Nash distribution approximates a Nash equilibrium [68].

2.1 The Learning Dynamics in Zero-Sum Matrix Games

We start by presenting in Algorithm 1 (from the perspective of player i, where i ∈ {1, 2}) the
independent learning dynamics for zero-sum matrix games, which was first proposed in [28]. Given
τ > 0, we use στ : R|Ai| 7→ R|Ai| for the softmax function with temperature τ , that is, [στ (q

i)](ai) =

exp(qi(ai)/τ)/
∑

ãi∈Ai exp(qi(ãi)/τ) for all ai ∈ Ai, qi ∈ R|Ai|, and i ∈ {1, 2}.

Algorithm 1 Independent Learning Dynamics in Zero-Sum Matrix Games

1: Input: Integer K, initializations qi0 = 0 ∈ R|Ai| and πi
0 = Unif(Ai).

2: for k = 0, 1, · · · ,K − 1 do
3: πi

k+1 = πi
k + βk(στ (q

i
k)− πi

k)

4: Play Ai
k ∼ πi

k+1(·) (against A−i
k ), and receive reward Ri(A

i
k, A

−i
k )

5: qik+1(a
i) = qik(a

i) + αk1{ai=Ai
k}
(
Ri(A

i
k, A

−i
k )− qik(A

i
k)
)

for all ai ∈ Ai

6: end for

To make this paper self-contained, we next provide a detailed interpretation of Algorithm 1, which
also motivates our algorithm for stochastic games in Section 3. At a high level, Algorithm 1 can
be viewed as a discrete and smoothed variant of the best-response dynamics, where each player
constructs an approximation of the best response to its opponent’s policy using the q-function. The
update for the q-function is in the spirit of the TD-learning algorithm in RL [69].

The Policy Update. To understand the update equation for the policies (cf. Algorithm 1 Line 3),
consider the discrete version of the smoothed best-response dynamics:

πi
k+1 = πi

k + βk(στ (Riπ
−i
k )− πi

k), i ∈ {1, 2}. (1)

In Eq. (1), each player updates its policy πi
k incrementally towards the smoothed best response to

its opponent’s current policy. While the dynamics in Eq. (1) provably converge for zero-sum matrix
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games, see e.g., [70], implementing it requires player i to compute στ (Riπ
−i
k ). Note that στ (Riπ

−i
k )

involves the exact knowledge of the opponent’s policy and the reward matrix, both of which cannot be
accessed in payoff-based independent learning. This leads to the update equation for the q-functions,
which estimate the quantity Riπ

−i
k that is needed for implementing Eq. (1).

The q-Function Update. Suppose for now that we are given a stationary joint policy π = (π1, π2).
Fix i ∈ {1, 2}, the problem of player i estimating Riπ

−i can be viewed as a policy evaluation
problem, which is usually solved with TD-learning in RL [69]. Specifically, the two players repeatedly
play the matrix game with the joint policy π = (π1, π2) and produce a sequence of joint actions
{(A1

k, A
2
k)}k≥0. Then, player i forms an estimate of Riπ

−i through the following iterative algorithm:

qik+1(a
i) = qik(a

i) + αk1{ai=Ai
k}(Ri(A

i
k, A

−i
k )− qik(A

i
k)), ∀ ai ∈ Ai, (2)

with an arbitrary initialization qi0 ∈ R|Ai|, where αk > 0 is the stepsize. To understand Eq. (2),
suppose that qik converges to some q̄i. Then Eq. (2) should be “stationary” at the limit point q̄i in
the sense that EAi∼πi(·),A−i∼π−i(·)[1{ai=Ai}(Ri(A

i, A−i) − q̄i(Ai))] = 0 for all ai ∈ Ai, which
implies q̄i = Riπ

−i, as desired. Although Eq. (2) is motivated by the case when the joint policy
(π1, π2) is stationary, the joint policy πk = (π1

k, π
2
k) from Eq. (1) is time-varying. A natural approach

to address this issue is to make sure that the policies evolve at a slower time-scale compared to that
of the q-functions, so that πk is close to being stationary from the perspectives of qik.
Remark. In [28], where Algorithm 1 was first proposed, the authors require βk = o(αk) to establish
the asymptotic convergence, making Algorithm 1 a two time-scale algorithm. In this work, for
finite-sample analysis and easier implementation, we update πi

k and qik on a single time scale with
only a multiplicative constant difference in their stepsizes, i.e., βk = cα,βαk for some cα,β ∈ (0, 1).

2.2 Finite-Sample Analysis

In this section, we present the finite-sample analysis of Algorithm 1 for the convergence to the Nash
distribution [29]. We consider using either constant stepsizes, i.e., αk ≡ α and βk ≡ β = cα,βα,
or diminishing stepsizes with O(1/k) decay rate, i.e., αk = α/(k + h) and βk = β/(k + h) =
cα,βα/(k+h). Let ℓτ = [(Amax−1) exp(2/τ)+1]−1 and Lτ = τ/ℓτ +A2

max/τ . The requirement
for choosing the stepsizes is stated in the following condition.

Condition 2.1. When using either constant or diminishing stepsizes, we choose τ ≤ 1, α0 < 2
ℓτ

,

β0 < min(2, τ
128A2

max
), and cα,β = βk/αk ≤ min

( τℓ3τ
32 , ℓττ

3

128A2
max

, 2
√
2

L
1/2
τ

)
.

We next state the finite-sample bounds of Algorithm 1. See Appendix C for the proof.

Theorem 2.1. Suppose that both players follow the learning dynamics presented in Algorithm 1,
and the stepsizes {αk} and {βk} are chosen such that Condition 2.1 is satisfied. Then we have the
following results.

(1) When using constant stepsizes, i.e., αk ≡ α and βk ≡ β, we have

E[NGτ (π
1
K , π2

K)] ≤ Bin

(
1− β

4

)K

+ 8Lτβ +
64α

cα,β
,

where Bin = 4 + 2τ log(Amax) + 2Amax.

(2) When using αk = α/(k + h) and βk = β/(k + h), by choosing β > 4, we have

E[NGτ (π
1
K , π2

K)] ≤ Bin

(
h

K + h

)β/4

+

(
64eLτβ +

512eα

cα,β

)
1

K + h
.

The convergence bounds in Theorem 2.1 are qualitatively consistent with the existing results on
the finite-sample analysis of general stochastic approximation algorithms [44, 46, 24, 65, 23, 42].
Specifically, when using constant stepsizes, the bound consists of a geometrically decaying term
(known as the optimization error) and two constant terms (known as the statistical error) that are
proportional to the stepsizes. When using diminishing stepsizes with suitable hyperparameters, both
the optimization error and the statistical error achieve an O(1/K) rate of convergence.

5



Although Theorem 2.1 is stated in terms of the expectation of the regularized Nash gap, it implies the
mean-square convergence of the policy iterates (π1

k, π
2
k). To see this, note that the regularized Nash

gap NGτ (π
1, π2) has a unique minimizer, i.e., the Nash distribution and is denoted by (π1

∗,τ , π
2
∗,τ ).

In addition, fixing π1 (respectively, π2), the function NGτ (π
1, ·) (respectively, NGτ (·, π2)) is a τ -

strongly convex function with respect to π2 (respectively, π1). See Lemma D.7 for a proof. Therefore,
by the quadratic growth property of strongly convex functions, we have

NGτ (π
1
k, π

2
k) = NGτ (π

1
k, π

2
k)− NGτ (π

1
∗,τ , π

2
k) + NGτ (π

1
∗,τ , π

2
k)− NGτ (π

1
∗,τ , π

2
∗,τ )

≥ τ

2
(∥π1

k − π1
∗,τ∥22 + ∥π2

k − π2
∗,τ∥22).

As a result, up to a multiplicative constant, the convergence bound for E[NGτ (π
1
k, π

2
k)] implies a

convergence bound of E[∥π1
k − π1

∗,τ∥22] + E[∥π2
k − π2

∗,τ∥22].
Based on Theorem 2.1, we next derive the sample complexity of Algorithm 1 in the following
corollary. See Appendix C.5 for the proof.

Corollary 2.1.1. Given ϵ > 0, to achieve E[NGτ (π
1
K , π2

K)] ≤ ϵ, the sample complexity is O(ϵ−1).

To the best of our knowledge, Theorem 2.1 and Corollary 2.1.1 present the first last-iterate finite-
sample analysis of Algorithm 1 [28]. Importantly, with only feedback in the form of realized payoffs,
we achieve a sample complexity of O(ϵ−1) to find the Nash distribution. In general, for smooth and
strongly monotone games, the lower bound for the sample complexity of payoff-based or zeroth-order
algorithms is O(ϵ−2) [71]. We have an improved O(ϵ−1) sample complexity due to the bilinear
structure of the game (up to a regularizer). In particular, with bandit feedback, the q-function is
constructed as an efficient estimator for the marginalized payoff Riπ

−i
k , which can also be interpreted

as the gradient. Therefore, Algorithm 1 enjoys the fast O(ϵ−1) sample complexity that is comparable
to the first-order method [72].

The Dependence on the Temperature τ . Although our finite-sample bound enjoys the O(1/K)
rate of convergence, the stepsize ratio cα,β appears as c−1

α,β in the bound. Since cα,β = o(ℓτ ) (cf.
Condition 2.1) and ℓτ is exponentially small in τ , the finite-sample bound is actually exponentially
large in τ−1. To illustrate this phenomenon, consider the update equation for the q-functions (cf.
Algorithm 1 Line 5). Observe that the q-functions are updated asynchronously because only one
component (which corresponds to the action taken at time step k) of the vector-valued qik is updated
in the k-th iteration. Suppose that an action ai is never taken in the algorithm trajectory, which means
that qik(a

i) is never updated during learning. Then, in general, we cannot expect the convergence of
qik or πi

k. Similarly, suppose that an action is rarely taken in the learning dynamics, we would expect
the overall convergence rate to be slow. Therefore, the finite-sample bound should depend on the
quantity mini∈{1,2} min0≤k≤K minai πi

k(a
i), which captures the exploration abilities of Algorithm

1. Due to the exponential nature of softmax functions, the parameter ℓτ , which we establish in Lemma
C.2 as a lower bound of mini∈{1,2} min0≤k≤K minai πi

k(a
i), is also exponentially small in τ . This

eventually leads to the exponential dependence in τ−1 in the finite-sample bound.

A consequence of having such an exponential factor of τ−1 in the sample complexity bound is that,
if we want to have convergence to a Nash equilibrium rather than to the Nash distribution, the sample
complexity can be exponentially large. To see this, note that the following bound holds regarding the
Nash gap and the regularized Nash gap:

NG(π1, π2) ≤ NGτ (π
1, π2) + 2τ log(Amax), ∀ (π1, π2), (3)

which, after combining with Theorem 2.1, gives the following corollary. For simplicity of presentation,
we only state the result for using constant stepsizes.

Corollary 2.1.2. Under the same conditions stated in Theorem 2.1 (1), we have

E[NG(π1
K , π2

K)] ≤ Bin

(
1− β

4

)K

+ 8Lτβ +
64α

cα,β
+ 2τ log(Amax). (4)

The last term on the RHS of Eq. (4) can be viewed as the bias due to using smoothed best-response.
In view of Eq. (4), to achieve E[NG(π1

K , π2
K)] ≤ ϵ, we need τ = O(ϵ). Since cα,β appears in the

denominator of our finite-sample bound and is exponentially small in τ , the overall sample complexity
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for the convergence to a Nash equilibrium can be exponentially large in ϵ−1. In Appendix F, we
conduct numerical experiments to investigate the impact of τ on this smoothing bias.

In light of the discussion before Corollary 2.1.2, the reason for such an exponentially large sample
complexity for finding a Nash equilibrium is due to the limitation of using the softmax policies in
smoothed best-response for exploration. We kept the softmax policy without further modification
to preserve the “naturalness” of the learning dynamics, which is part of the motivation for studying
independent learning in games [73]. A future direction of this work is to remove such an exponential
dependence on τ by designing an improved exploration strategy.

3 Zero-Sum Stochastic Games

Moving to the setting of stochastic games, we consider an infinite-horizon discounted two-player zero-
sum stochastic game M = (S,A1,A2, p, R1, R2, γ), where S is a finite state space, A1 (respectively,
A2) is a finite action space for player 1 (respectively, player 2), p represents the transition probabilities,
in particular, p(s′ | s, a1, a2) is the probability of transitioning to state s′ after player 1 taking action
a1 and player 2 taking action a2 simultaneously at state s, R1 : S × A1 × A2 7→ R (respectively,
R2 : S ×A2 ×A1 7→ R) is player 1’s (respectively, player 2’s) reward function, and γ ∈ (0, 1) is the
discount factor. Note that we have R1(s, a

1, a2) +R2(s, a
2, a1) = 0 for all (s, a1, a2). We assume

without loss of generality that maxs,a1,a2 |R1(s, a
1, a2)| ≤ 1, and denote Amax = max(|A1|, |A2|).

Given a joint policy π = (π1, π2), where πi : S 7→ ∆(Ai), i ∈ {1, 2}, we define the local q-
function qiπ ∈ R|S||Ai| of player i as qiπ(s, a

i) = Eπ

[∑∞
k=0 γ

kRi(Sk, A
i
k, A

−i
k )

∣∣ S0 = s,Ai
0 = ai

]
for all (s, ai), where we use the notation Eπ[ · ] to indicate that the actions are chosen according
to the joint policy π. In addition, we define the global value function viπ ∈ R|S| as viπ(s) =
EAi∼πi(·|s)[q

i
π(s,A

i)] for all s, and the expected value function U i(πi, π−i) ∈ R as U i(πi, π−i) =

ES∼po
[viπ(S)], where po ∈ ∆(S) is an arbitrary initial distribution on the states. The Nash gap in the

case of stochastic games is defined in the following.

Definition 3.1 (Nash Gap in Zero-Sum Stochastic Games). Given a joint policy π = (π1, π2), the
Nash gap NG(π1, π2) is defined as NG(π1, π2) =

∑
i=1,2

(
maxπ̂i U i(π̂i, π−i)− U i(πi, π−i)

)
.

Similar to the matrix-game setting, a joint policy π = (π1, π2) satisfying NG(π1, π2) = 0 is called a
Nash equilibrium, which may not be unique.

Additional Notation. In what follows, we will frequently work with the real vectors in R|S||Ai|,
R|S||A−i|, and R|S||Ai||A−i|, where i ∈ {1, 2}. To simplify the notation, for any x ∈ R|S||Ai||A−i|,
we use x(s) to denote the |Ai|× |A−i| matrix with the (ai, a−i)-th entry being x(s, ai, a−i). For any
y ∈ R|S||Ai|, we use y(s) to denote the |Ai|-dimensional vector with its ai-th entry being y(s, ai).

3.1 Value Iteration with Smoothed Best-Response Dynamics

Our learning dynamics for stochastic games (cf. Algorithm 2) build on the dynamics for matrix games
studied in Section 2.1, with the additional incorporation of minimax value iteration, a well-known
approach for solving zero-sum stochastic games [74].

Algorithmic Ideas. To motivate the learning dynamics, we first introduce the minimax value iteration.
For i ∈ {1, 2}, let T i : R|S| 7→ R|S||Ai||A−i| be an operator defined as

T i(v)(s, ai, a−i) = Ri(s, a
i, a−i) + γE

[
v(S1) | S0 = s,Ai

0 = ai, A−i
0 = a−i

]
for all (s, ai, a−i) and v ∈ R|S|. Given X ∈ R|Ai|×|A−i|, we define vali : R|Ai|×|A−i| 7→ R as

vali(X) = max
µi∈∆(Ai)

min
µ−i∈∆(A−i)

{(µi)⊤Xµ−i} = min
µ−i∈∆(A−i)

max
µi∈∆(Ai)

{(µi)⊤Xµ−i}.

Then, the minimax Bellman operator Bi : R|S| 7→ R|S| is defined as [Bi(v)](s) = vali(T i(v)(s))
for all s ∈ S, where T i(v)(s) is an |Ai| × |A−i| matrix according to our notation. It is known that
the operator Bi(·) is a γ – contraction mapping with respect to the ℓ∞-norm [74], hence it admits a
unique fixed point, which we denote by vi∗.
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A common approach for solving zero-sum stochastic games is to first implement the minimax value
iteration vit+1 = Bi(vit) until (approximate) convergence to vi∗ [75], and then solve the matrix
game maxµi∈∆(Ai) minµ−i∈∆(A−i)(µ

i)⊤T i(vi∗)(s)µ
−i for each state s to obtain an (approximate)

Nash equilibrium policy. However, implementing this algorithm requires complete knowledge of
the underlying transition probabilities. Moreover, since it is an off-policy algorithm, the output is
independent of the opponent’s policy. Thus, it is not rational by the definition in [27]. To develop a
model-free and rational learning dynamics, let us first rewrite the minimax value iteration:

vit+1 = v̂, where v̂(s) = max
µi∈∆(Ai)

min
µ−i∈∆(A−i)

(µi)⊤T i(vit)(s)µ
−i, ∀ s ∈ S, (5)

where v̂ ∈ R|S| is a dummy variable. In view of Eq. (5), we need to solve a matrix game with
payoff matrix T i(vit)(s) for each state s and then update the value of the game to vit+1(s). In light of
Algorithm 1, we already know how to solve matrix games with independent learning. Thus, what
remains to do is to combine Algorithm 1 with value iteration. This leads to Algorithm 2, which is
presented from player i’s perspective, where i ∈ {1, 2}.

Algorithm 2 Value Iteration with Smoothed Best-Response (VI-SBR) Dynamics

1: Input: Integers K and T , initializations vi0 = 0 ∈ R|S|, qi0,0 = 0 ∈ R|S||Ai|, and πi
0,0(·|s) =

Unif(Ai) for all s ∈ S.
2: for t = 0, 1, · · · , T − 1 do
3: for k = 0, 1, · · · ,K − 1 do
4: πi

t,k+1(s) = πi
t,k(s) + βk(στ (q

i
t,k(s))− πi

t,k(s)) for all s ∈ S
5: Play Ai

k ∼ πi
t,k+1(·|Sk) (against A−i

k ) and observe Sk+1 ∼ p(· | Sk, A
i
k, A

−i
k )

6: qit,k+1(s, a
i) = qit,k(s, a

i) + αk1{(s,ai)=(Sk,Ai
k)}(Ri(Sk, A

i
k, A

−i
k ) + γvit(Sk+1)−

qit,k(Sk, A
i
k)) for all (s, ai)

7: end for
8: vit+1(s) = πi

t,K(s)⊤qit,K(s) for all s ∈ S
9: S0 = SK , qit+1,0 = qit,K , and πi

t+1,0 = πi
t,K

10: end for

Algorithm Details. For each state s, the inner loop of Algorithm 2 is designed to solve a matrix game
with payoff matrices T 1(v1t )(s) and T 2(v2t )(s) for each state s ∈ S, which reduces to Algorithm 1
when (1) the stochastic game has only one state, and (2) v1t = v2t = 0. However, in general, since v1t
and v2t are independently maintained by players 1 and 2, the quantity

T 1(v1t )(s, a
1, a2) + T 2(v2t )(s, a

2, a1) = γ
∑
s′

p(s′ | s, a1, a2)(v1t (s′) + v2t (s
′))

is in general non-zero during learning. As a result, the auxiliary matrix game (with payoff matrices
T 1(v1t )(s) and T 2(v2t )(s)) at state s that the inner loop of Algorithm 2 is designed to solve is not
necessarily a zero-sum matrix game, which presents a major challenge in the finite-sample analysis,
as illustrated previously in Section 1.2.

The outer loop of Algorithm 2 is an “on-policy” variant of minimax value iteration. To see this,
note that, ideally, we would synchronize vit+1(s) with πi

t,K(s)⊤T i(vit)(s)π
−i
t,K(s), which is an

approximation of [Bi(v)](s) = vali(T i(vit)(s)) by design of our inner loop. However, player i has
no access to π−i

t,K in independent learning. Fortunately, the q-function qit,K is precisely constructed
as an estimate of T i(vit)(s)π

−i
t,K(s), as illustrated in Section 2.1, which leads to the outer loop of

Algorithm 2. In Algorithm 2 Line 8, we set S0 = SK to ensure that the initial state of the next
inner loop is the last state of the previous one; hence Algorithm 2 is driven by a single trajectory of
Markovian samples.

3.2 Finite-Sample Analysis

We now state our main results, which, to the best of our knowledge, provide the first last-iterate
finite-sample bound for best-response-type payoff-based independent learning dynamics in zero-sum
stochastic games. Our results are based on the following assumption.
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Assumption 3.1. There exists a joint policy πb = (π1
b , π

2
b ) such that the Markov chain {Sk}k≥0

induced by πb is irreducible and aperiodic.

One challenge in our finite-sample analysis is that the behavior policies used for taking the actions
are time-varying, due to the best-response nature of the dynamics. Most, if not all, existing finite-
sample guarantees of RL algorithms under time-varying behavior policies assume that the induced
Markov chain of any policy, or any policy encountered along the algorithm trajectory, is uniformly
geometrically ergodic [41, 76, 77, 59, 78–80]. Assumption 3.1 is weaker, since it assumes only the
existence of one policy that induces an irreducible and aperiodic Markov chain.

We consider using either constant stepsizes, i.e., αk ≡ α and βk ≡ β = cα,ββ, or diminishing
stepsizes of O(1/k) decay rate, i.e., αk = α/(k + h) and βk = β/(k + h) = cα,βα/(k + h), where
cα,β ∈ (0, 1) is the stepsize ratio. In the stochastic-game setting, we redefine ℓτ = [1 + (Amax −
1) exp(2/[(1− γ)τ ])]−1, which, analogous to the matrix-game setting, is a uniform lower bound on
the entries of the policies generated by Algorithm 2 (cf. Lemma D.1). We next state our requirement
for choosing the stepsizes.

Condition 3.1. When using either constant or diminishing stepsizes, we choose τ ≤ 1/(1− γ) and
the stepsize ratio cα,β to satisfy cα,β ≤ min

(
1

60Lp|S|Amax
, cττ(1−γ)2

34|S|A2
max

,
cτ ℓ

2
ττ

3(1−γ)2

144A2
max

)
, where cτ ∝ ℓτ

and Lp > 0 are defined in Appendix B.3. In addition, when using αk ≡ α and βk ≡ β, we require
α < 1/cτ and β < 1, and when using αk = α/(k + h) and βk = β/(k + h), we require2 β = 4,
α > 1/cτ , and h > 1 such that α0 < 1/cτ and β0 < 1.

We next state the finite-sample bound of Algorithm 2. For simplicity of presentation, we use a ≲ b to
mean that there exists an absolute constant c > 0 such that a ≤ bc.

Theorem 3.1. Suppose that both players follow Algorithm 2, Assumption 3.1 is satisfied, and the
stepsizes {αk} and {βk} satisfy Condition 3.1. Then, we have the following results.

(1) When using constant stepsizes, there exists zβ = O(log(1/β)) such that the following inequality
holds as long as K ≥ zβ:

E[NG(π1
T,K , π2

T,K)] ≲
A2

maxT

τ(1− γ)3

(
1 + γ

2

)T−1

︸ ︷︷ ︸
:=E1

+
A2

maxLin(K − zβ)
1/2

τ(1− γ)4

(
1− β

2

)K−zβ−1

2

︸ ︷︷ ︸
:=E2

+
|S|Amax

(1− γ)4cα,β
z2βα

1/2︸ ︷︷ ︸
:=E3

+
τ log(Amax)

(1− γ)2︸ ︷︷ ︸
:=E4

,

where Lin = 4
(1−γ) + 2τ log(Amax) +

8|S|Amax

(1−γ)2 .

(2) When using αk = α/(k + h) and βk = β/(k + h), there exists k0 > 0 such that the following
inequality holds as long as K ≥ k0:

E[NG(π1
T,K , π2

T,K)] ≲
A2

maxT

τ(1− γ)3

(
1 + γ

2

)T−1

+
Lin|S|Amaxz

2
Kα

1/2
K

(1− γ)4α
1/2
k0

cα,β
+

τ log(Amax)

(1− γ)2
,

where zK = O(log(K)).

Remark. Analogous to [29, 15], our learning dynamics are symmetric between the two players in the
sense that there is no time-scale separation between the two players, that is, they both implement the
algorithm with the same stepsizes.

A detailed proof sketch of Theorem 3.1 is provided in Appendix B and the complete proof is provided
in Appendix D. Next, we discuss the result in Theorem 3.1 (1). The bound in Theorem 3.1 (1)
involves a value iteration error term E1, an optimization error term E2, a statistical error term E3, and
a smoothing bias term E4 due to the use of smoothed best-response in the learning dynamics. Note
that E1 would be the only error term if we were able to perform minimax value iteration to solve

2The proof works as long as β > 2. We here use β = 4 to simplify the statement of the results.
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the game. Since minimax value iteration converges geometrically, the term E1 also goes to zero at a
geometric rate. Notably, the terms E2 and E3 are orderwise larger compared to their matrix-game
counterparts, see Corollary 2.1.2. Intuitively, the reason is that the induced auxiliary matrix game
(with payoff matrices T 1(v1t )(s) and T 2(v2t )(s)) that the inner loop of Algorithm 2 aims at solving
does not necessarily have a zero-sum structure (see the discussion in Section 3.1 after Algorithm 2).
Consequently, the error due to such a “non-zero-sum” structure propagates through the algorithm and
eventually undermines the convergence bound.

Recall that in the matrix game setting, we proved convergence to the Nash distribution (or the Nash
equilibrium of the entropy-regularized matrix game). In the stochastic-game setting, we do not have
convergence to the Nash equilibrium of the entropy-regularized stochastic game. The main reason
is that, in order to have such a convergence, our outer loop should be designed to approximate the
entropy-regularized minimax value iteration rather than the vanilla minimax value iteration as in
Algorithm 2 Line 8. However, in the payoff-based setting, since each player does not even observe
the actions of their opponent, it is unclear how to construct an estimator of the entropy function of the
opponent’s policy, which is an interesting future direction to investigate.

Although the transient terms in Theorem 3.1 enjoy a desirable rate of convergence (e.g., geometric in
T and Õ(1/K1/2) in K), the stepsize ratio cα,β (which is exponentially small in τ ) appears as c−1

α,β

in the bound; see Theorem 3.1. Therefore, due to the presence of the smoothing bias (i.e., the term
E4 on the RHS of the bound in Theorem 3.1 (1)), to achieve E[NG(π1

T,K , π2
T,K)] ≤ ϵ, the overall

sample complexity can also be exponentially large in ϵ−1. This is analogous to Corollary 2.1.2 for
zero-sum matrix games. As illustrated in detail in Section 2, the reason here is due to the exploration
limitation of using softmax as a means for smoothed best response, which we kept without further
modification to preserve the naturalness of the learning dynamics. Removing such exponential factors
by developing improved exploration strategies is an immediate future direction.

Finally, we consider the case where the opponent of player i (where i ∈ {1, 2}) plays the game with
a stationary policy and provide a finite-sample bound for player i to find the best response.
Corollary 3.1.1. [Rationality3] Given i ∈ {1, 2}, suppose that player i follows the learning dynamics
presented in Algorithm 2, but its opponent player −i follows a stationary policy, denoted by π−i.
Then, we have maxπ̂i U i(π̂i, π−i)− E[U i(πi

T,K , π−i)] ≤ Õ
(
ω1T

(
γ+1
2

)T
+ ω2

K1/2 + τ
)
, where ω1

and ω2 are constants that are exponential in τ−1, but polynpomial in |S|, Amax, and 1/(1− γ).

Intuitively, the reason that our algorithm is rational is that it performs an on-policy update in RL. In
contrast to an off-policy update, where the behavior policy can be arbitrarily different from the policy
being generated during learning (such as in Q-learning [81]), in the on-policy update for games, each
player is actually playing with the policy that is moving towards the best response to its opponent.
As a result, when the opponent’s policy is stationary, it reduces to a single-agent problem and the
player naturally finds the best response (also up to a smoothing bias). This is an advantage of using
symmetric and independent learning dynamics. One challenge of analyzing such on-policy learning
dynamics is that the behavior policy is time-varying.

4 Conclusion and Future Directions

In this work, we consider payoff-based independent learning for zero-sum matrix games and stochastic
games. In both settings, we establish the last-iterate finite-sample guarantees. Our approach, i.e., the
coupled Lyapunov drift argument, provides a number of tools that are likely to be of interest more
broadly for dealing with iterative algorithms with multiple sets of coupled and stochastic iterates.

Limitations and Future Directions. As mentioned before Corollary 2.1 and after Theorem 3.1, the
convergence bounds involve constants that are exponential in τ−1, which arise due to the use of the
smoothed best response to preserve the naturalness of the learning dynamics. An immediate future
direction of this work is to remove such exponential factors by designing better exploration strategies.
In the long term, we are interested to see if the algorithmic ideas and the analysis techniques developed
in this work can be used to study other classes of games beyond zero-sum stochastic games.

3According to the definition in [27], a dynamics being rational means that the player following this dynamics
will converge to the best response to its opponent when the opponent uses an asymptotically stationary policy.
Since we are performing finite-sample analysis, we assume the opponent’s policy is stationary, because otherwise,
the convergence rate (which may be arbitrary) of the opponent’s policy will also impact the bound.
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A Extended Related Work

Continued from Section 1.3, we here discuss several other existing works that are relevant.

Recently, there has been an increasing study of MARL with sample efficiency guarantees recently
[16, 82, 20, 17, 21, 83, 84, 22, 85]. Most of them focus on the finite-horizon episodic setting with
online exploration, and perform regret analysis, which differs from our last-iterate finite-sample
analysis under the stochastic approximation paradigm. Additionally, these algorithms are episodic
due to the finite-horizon nature of the setting and are not best-response-type independent learning
dynamics that are repeatedly run for infinitely long, which can be viewed as a non-equilibrating
adaptation process. In fact, the primary focus of this line of work is a self-play setting where all
the players can be controlled to perform centralized learning [86, 16, 82, 20, 17]. Beyond the
online setting, finite-sample efficiency has also been established for MARL using a generative model
[87, 88] or offline datasets [89–91, 67]. These algorithms tend to be centralized in nature and focus
on equilibrium computation, instead of performing independent learning.

Finite-sample complexity has also been established for policy gradient methods, a popular RL
approach when applied to solving zero-sum stochastic games [14, 36–38]. However, to ensure
convergence, these methods are asymmetric in that the players update their policies at different
timescales, e.g., one player updates faster than the other with larger stepsizes, or one player fixes
its policy while waiting for the other to update. Such asymmetric policy gradient methods are
not independent, as some implicit coordination is required to enable such a timescale separation
across agents. This style of implicit coordination is also required for the finite-sample analysis
of decentralized learning in certain general-sum stochastic games, e.g., [92], which improves the
asymptotic convergence in [7]. In contrast, our learning dynamics only require the update of each
player’s policy to be slower than the update of their q-functions, but crucially we do not assume a
time-scale separation between the two players, making our learning dynamics symmetric.

B Proof Sketch of Theorem 3.1

In this section, we present the key steps and technical ideas used to prove Theorem 3.1. The core
challenge here is that Algorithm 2 maintains 3 sets of iterates ({qit,k}, {πi

t,k}, and {vit}), which are
coupled. The coupling of their update equations means that it is not possible to separately analyze
them. Instead, we develop a coupled Lyapunov drift approach to establish the finite-sample bounds
of Algorithm 2. Specifically, we first show that the expected Nash gap can be upper bounded by a
sum of properly defined Lyapunov functions, one for each set of the iterates (i.e., the v-functions, the
policies, and the q-functions). Then, we establish a set of coupled Lyapunov drift inequalities – one
for each Lyapunov function. Finally, we decouple the Lyapunov drift inequalities to establish the
overall finite-sample bounds. We outline the key steps in the argument below.

To begin with, we show in Lemma D.1 that the q-functions {qit,k} and the v-functions {vit} generated
by Algorithm 2 are uniformly bounded from above in ℓ∞-norm by 1/(1− γ) and the entries of the
policies {πi

t,k} are uniformly bounded below by ℓτ > 0. This result will be frequently used in our
analysis. We next introduce the Lyapunov functions we use to analyze Algorithm 2. Specifically, for
any t, k ≥ 0, let q̄it,k ∈ R|S||Ai| be defined as q̄it,k(s) = T i(vit)(s)π

−i
t,k(s) for all s ∈ S. Let

Lsum(t) = ∥v1t + v2t ∥∞, Lv(t) =
∑
i=1,2

∥vit − vi∗∥∞,

Lq(t, k) =
∑
i=1,2

∑
s∈S

∥qit,k(s)− T i(vit)(s)π
−i
t,k(s)∥

2
2 =

∑
i=1,2

∥qit,k − q̄it,k∥22,

Lπ(t, k) = max
s∈S

∑
i=1,2

max
µi∈∆(Ai)

{
(µi − πi

t,k(s))
⊤T i(vit)(s)π

−i
t,k(s) + τν(µi)− τν(πi

t,k(s))
}
.

Note that Lsum(t) is introduced to deal with the fact that the induced matrix game the inner loop of
Algorithm 2 is designed to solve may not be a zero-sum game due to independent learning. See the
discussion in Section 1.2 and the paragraph after Algorithm 2. At the core of our argument is the
following inequality (cf. Lemma D.4):

NG(π1
T,K , π2

T,K) ≤ 4

1− γ
(2Lsum(T ) + Lv(T ) + Lπ(T,K) + 2τ log(Amax)) , (6)
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which motivates us to bound all the Lyapunov functions.

B.1 Analysis of the Outer Loop: v-Function Update

Motivated by Eq. (6), we need to bound Lsum(T ) and Lv(T ). To achieve that, we establish Lyapunov
drift inequalities for them. Specifically, we show in Lemmas D.5 and D.6 that

Lv(t+ 1) ≤ γLv(t)︸ ︷︷ ︸
Drift

+4Lsum(t) + 2L1/2
q (t,K) + 4Lπ(t,K) + 6τ log(Amax)︸ ︷︷ ︸

Additive Errors

, (7)

Lsum(t+ 1) ≤ γLsum(t)︸ ︷︷ ︸
Drift

+2Lq(t,K)1/2︸ ︷︷ ︸
Additive Errors

, ∀ t ≥ 0. (8)

Suppose that the Additive Errors in the previous two inequalities were only functions of v1t and v2t ,
then these two Lyapunov drift inequalities can be repeatedly used to obtain a convergence bound
for Lsum(T ) and Lv(T ). However, the coupled nature of Eqs. (7) and (8) requires us to analyze the
policies and the q-functions in the inner loop, and establish their Lyapunov drift inequalities.

B.2 Analysis of the Inner Loop: Policy Update

As illustrated in Section 2.1 and Section 3.1, for each state s, the update equation of the policies can
be viewed as a discrete and stochastic variant of the smoothed best-response dynamics for solving
matrix games [29]. Typically, the following Lyapunov function is used to study such dynamics [53]:

VX(µ1, µ2) =
∑
i=1,2

max
µ̂i∈∆(Ai)

{(µ̂i − µi)⊤Xiµ
−i + τν(µ̂i)− τν(µi)}, (9)

where X1 and X2 are the payoff matrices for player 1 and player 2, respectively, and ν(·) is the
entropy function. Specialized to our case, given a joint v-function v = (v1, v2) from the outer loop4

and a state s ∈ S, we would like to use

Vv,s(π
1(s), π2(s)) =

∑
i=1,2

max
µ̂i∈∆(Ai)

{(µ̂i − πi(s))⊤T i(vi)(s)π−i(s) + τν(µ̂i)− τν(πi(s))}

as our Lyapunov function. Note that maxs∈S Vvt,s(π
1
t,k(s), π

2
t,k(s)) = Lπ(t, k). A sequence of

properties (e.g., strong convexity, smoothness, etc.) regarding the Lyapunov function VX(·, ·) is
established in Lemma D.7. In the end, we show in Lemma D.8 that

Et [Lπ(t, k + 1)] ≤
(
1− 3βk

4

)
Et [Lπ(t, k)]︸ ︷︷ ︸

Drift

+ 2Lτβ
2
k +

32A2
maxβk

τ3ℓ2τ (1− γ)2
Et[Lq(t, k)] +

16A2
maxβk

τ
Lsum(t)

2︸ ︷︷ ︸
Additive Errors

, (10)

where Et[ · ] stands for conditional expectation conditioned on the history up to the beginning of
the t-th outer loop. To interpret the above, suppose that we were considering the continuous-time
smoothed best-response dynamics. Then, the additive error term would disappear in the sense that the
time-derivative of the Lyapunov function along the trajectory of the ODE is strictly negative. Thus,
the three terms in the Additive Errors can be interpreted as (1) the discretization error in the update
equation, (2) the stochastic error in the q-function estimate, and (3) the error due to the non-zero-sum
structure of the inner-loop auxiliary matrix game.

B.3 Analysis of the Inner Loop: q-Function Update

Our next focus is the q-function update. The q-function update equation is in the same spirit as
TD-learning in RL, and a necessary condition for the convergence of TD-learning is that the behavior

4Due to the nested-loop structure of Algorithm 2, conditioned on the history up to the beginning of the t-th
outer loop, the v-functions v1t and v2t are constants.
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policy (i.e., the policy used to collect samples) should enable the agent to sufficiently explore
the environment. To achieve this goal, since we show in Lemma D.1 that all joint policies from
the algorithm trajectory have uniformly lower-bounded entries (with lower bound ℓτ > 0), it is
enough to restrict our attention to a “soft” policy class Πτ := {π = (π1, π2) | mins,a1 π1(a1|s) ≥
ℓτ ,mins,a2 π2(a2|s) ≥ ℓτ}. The following lemma, which is an extension of [10, Lemma 4],
establishes a uniform exploration property under Assumption 3.1.

To present the result, we need the following notation. Under Assumption 3.1, the Markov chain
induced by the joint policy πb has a unique stationary distribution µb ∈ ∆(S) [93], the mini-
mum component of which is denoted by µb,min. In addition, there exists ρb ∈ (0, 1) such that
maxs∈S

∥∥P k
πb
(s, ·)− µb(·)

∥∥
TV ≤ 2ρkb for all k ≥ 0 [93], where Pπb

is the transition probability
matrix of the Markov chain {Sk} under πb. We also define the mixing time in the following. Given
a joint policy π = (π1, π2) and an accuracy level η > 0, the η – mixing time of the Markov chain
{Sk} induced by π is defined as

tπ,η = min

{
k ≥ 0 : max

s∈S
∥P k

π (s, ·)− µπ(·)∥TV ≤ η

}
, (11)

where Pπ is the π-induced transition probability matrix and µπ is the stationary distribution of {Sk}
under π, provided that it exists and is unique. When the induced Markov chain mixes at a geometric
rate, it is easy to see that tπ,η = O(log(1/η)).

Lemma B.1 (An Extension of Lemma 4 in [10]). Suppose that Assumption 3.1 is satisfied. Then we
have the following results.

(1) For any π = (π1, π2) ∈ Πτ , the Markov chain {Sk} induced by the joint policy π is irreducible
and aperiodic, hence admits a unique stationary distribution µπ ∈ ∆(S).

(2) It holds that supπ∈Πτ
maxs∈S ∥P k

π (s, ·) − µπ(·)∥TV ≤ 2ρkτ for any k ≥ 0, where ρτ =

ρ
ℓ
2rb
τ µb,min

b and rb := min{k ≥ 0 : P k
πb
(s, s′) > 0, ∀ (s, s′)}. As a result, we have

t(ℓτ , η) := sup
π∈Πτ

tπ,η ≤ tπb,η

ℓ2rbτ µb,min

, (12)

where we recall that tπb,η is the η – mixing time of the Markov chain {Sk} induced by πb.

(3) There exists Lp ≥ 1 (which was used in the statement of Theorem 3.1) such that

∥µπ − µπ̄∥1 ≤ Lp

(
max
s∈S

∥π1(s)− π2(s)∥1 +max
s∈S

∥π̄1(s)− π̄2(s)∥1
)

for all π = (π1, π2), π̄ = (π̄1, π̄2) ∈ Πτ .

(4) µmin := infπ∈Πτ mins∈S µπ(s) > 0.

Remark. Lemma B.1 (1), (3), and (4) were previous established in [10, Lemma 4]. Lemma B.1 (2)
enables us to see the explicit dependence of the “uniform mixing time” on the margin ℓτ and the
mixing time of the benchmark exploration policy πb.

In view of Lemma B.1 (2), we have fast mixing for all policies in Πτ if (i) the margin ℓτ is large,
and (ii) the Markov chain {Sk} induced by the benchmark exploration policy πb is well-behaved. By
“well-behaved” we mean the mixing time is small (i.e., small tπb,η) and the stationary distribution
is relatively well-balanced (i.e., large µb,min). Point (i) agrees with our intuition as a large margin
encourages more exploration. To make sense of point (ii), since π(a|s) ≥ ℓ2τπb(a|s) for all s and
a = (a1, a2), we can write π as a convex combination between πb and some residual policy π̃:
π(·|s) = ℓ2τπb(·|s) + (1− ℓ2τ )π̃(·|s) for all s ∈ S. Therefore, since any π ∈ Πτ has a portion of the
benchmark exploration policy πb in it, it makes intuitive sense that fast mixing of {Sk} under πb

implies, to some extent, fast mixing of {Sk} under π ∈ Πτ . Note that, as the margin ℓτ approaches
zero, the uniform mixing time in Lemma B.1 (2) goes to infinity. This is not avoidable in general, as
demonstrated by a simple MDP example constructed in Appendix E.

We define cτ = µminℓτ , which was used in the statement of Theorem 3.1. With Lemma B.1 in hand,
we are now able to analyze the behavior of the q-functions. We model the q-function update as a
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stochastic approximation algorithm driven by time-inhomogeneous Markovian noise, and use the
norm-square function ∑

i=1,2

∑
s

∥qi(s)− T i(vi)(s)π−i(s)∥22

as the Lyapunov function to study its behavior. Note that Lq(t, k) =
∑

i=1,2

∑
s ∥qit,k(s) −

T i(vit)(s)π
−i
t,k(s)∥22. The key challenge to establishing a Lyapunov drift inequality is to control

a difference of the form

E[F i(qi, Sk, A
i
k, A

−i
k , Sk+1)]− E[F i(qi, Ŝ, Âi, Â−i, Ŝ′)] (13)

for any qi ∈ R|S||Ai| and i ∈ {1, 2}, where F i(·) is some appropriately defined operator that cap-
tures the dynamics of the update equation; see Appendix D.5.2 for its definition. In the term
(13), the random tuple (Sk, A

i
k, A

−i
k , Sk+1) is the k-th sample from the time-inhomogeneous

Markov chain {(Sk, A
i
k, A

−i
k , Sk+1)}k≥0 generated by the time-varying joint policies {πk}k≥0,

and (Ŝ, Âi, Â−i, Ŝ′) is a random tuple such that S ∼ µk(·), Ai ∼ πi
k(·|S), A−i ∼ π−i

k (·|S), and
S′ ∼ p(·|S,Ai, A−i), where µk(·) denotes the unique stationary distribution of the Markov chain
{Sn}n≥0 induced by the joint policy πk. Lemma B.1 implies that µk exists and is unique.

In the existing literature, when {(Sk, A
i
k, A

−i
k , Sk+1)} is sampled either in an i.i.d. manner or

forms an ergodic time-homogeneous Markov chain, there are techniques that successfully bound the
term (13) [94, 24, 23]. To deal with time-inhomogeneous Markovian noise, building upon existing
conditioning results [23, 24, 41, 76] and also Lemma B.1, we develop a refined conditioning argument
to show that

(13) = O

(
zk

k−1∑
n=k−zk

αn

)
, (See Lemma D.11)

where zk = t(ℓτ , βk) is a uniform upper bound on the βk – the mixing time (i.e., the uniform
mixing time with accuracy βk, see Eq. (12)) of the Markov chain {Sn}n≥0 induced by an arbitrary
joint policy from the algorithm trajectory. Suppose that we are using diminishing stepsizes of
O(1/k) decay rate (similar results hold for using constant stepsizes). Then, the uniform mixing
property from Lemma B.1 (2) implies that zk = O(log(1/k)). As a result, we have limk→∞(13) ≤
limk→∞ zk

∑k−1
n=k−zk

αn = 0, which provides us a way to control the term in (13). After successfully
handling (13), we are able to establish a Lyapunov drift inequality of Lq(t, k):

Et[Lq(t, k + 1)] ≤ (1− αkcτ )Et[Lq(t, k)]︸ ︷︷ ︸
Drift

+C0zkαkαk−zk,k−1 +
βk

4
E[Lπ(t, k)]︸ ︷︷ ︸

Additive Errors

, (14)

where C0 is a (problem-dependent) constant, and we use the notation αk1,k2
:=
∑k2

k=k1
αk to

simplify the notation. See Lemma D.12 for more details. When k is large, it can be shown that
αk−zk,k−1 ≤ 2αkzk [65, Appendix 1.8].

B.4 Solving Coupled Lyapunov Drift Inequalities

Until this point, we have established the Lyapunov drift inequalities for the individual v-functions, the
sum of the v-functions, the policies, and the q-functions in Eqs. (7), (8), (10), and (14), respectively.
The last challenge is to find a way of using these coupled inequalities to derive the finite-sample
bound. To elaborate, we first restate all the Lyapunov drift inequalities in the following:

Lv(t+ 1) ≤ γLv(t) + 4Lsum(t) + 4Lπ(t,K) + 2L1/2
q (t,K) + 6τ log(Amax), (15)

Lsum(t+ 1) ≤ γLsum(t) + 2L1/2
q (t,K), (16)

Et[Lπ(t, k + 1)] ≤ (1− 3βk/4)Et[Lπ(t, k)] + C1(β
2
k + βkEt[Lq(t, k)] + βkL2

sum(t)), (17)

Et[Lq(t, k + 1)] ≤ (1− cταk)Et[Lq(t, k)] + βkEt[Lπ(t, k)]/4 + C3z
2
kα

2
k. (18)

To decouple the Lyapunov inequalities stated above, our high-level ideas are (1) using the Lyapunov
drift inequalities in a combined way instead of in a separate manner, and (2) a bootstrapping procedure
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where we first derive a crude bound and then substitute the crude bound back into the Lyapunov drift
inequalities to derive a tighter bound. We next present our approach.

For ease of presentation, for a scalar-valued quantity W that is a function of k and/or t, we say
W = ok(1) if limk→∞ W = 0 and W = ot(1) if limt→∞ W = 0. The explicit convergence rates of
the ok(1) term and the ot(1) term will be revealed in the complete proof in Appendix D.6, but is not
important for the illustration here.

Step 1. Adding up Eq. (17) and (18), using Condition 3.1, and then repeatedly using the resulting
inequality, we obtain:

Et[Lπ(t, k)] ≤ Et[Lπ(t, k) + Lq(t, k)] = ok(1) +O(1)L2
sum(t), ∀ t, k. (19)

Step 2. Substituting the bound for Et[Lπ(t, k)] in Eq. (19) into Eq. (18) and repeatedly using the
resulting inequality, and we obtain:

Et[Lq(t,K)] = oK(1) +O(cα,β)L2
sum(t), ∀ t,

which in turn implies (by first using Jensen’s inequality and then taking total expectation) that:

E[L1/2
q (t,K)] = oK(1) +O(c

1/2
α,β)E[Lsum(t)], ∀ t, (20)

where we recall that cα,β = βk/αk is the stepsize ratio. The fact that we are able to get a factor of
O(c

1/2
α,β) in front of E[Lsum(t)] is crucial for the decoupling procedure.

Step 3. Taking total expectation on both sides of Eq. (16) and then using the upper bound of
E[L1/2

q (t,K)] we obtained in Eq. (20), we obtain

E[Lsum(t+ 1)] ≤ (γ +O(c
1/2
α,β))E[Lsum(t)] + oK(1), ∀ t.

By choosing cα,β so that O(c
1/2
α,β) ≤ (1− γ)/2, the previous inequality implies

E[Lsum(t+ 1)] ≤
(
1− 1− γ

2

)
E[Lsum(t)] + oK(1), ∀ t, (21)

which can be repeatedly used to obtain
E[Lsum(t)] = ot(1) + oK(1). (22)

Substituting the previous bound on E[Lsum(t)] into Eq. (19), we have
max(E[Lπ(t,K)],E[Lq(t,K)]) = ot(1) + oK(1). (23)

Step 4. Substituting the bounds we obtained for E[Lπ(t,K)], E[Lq(t,K)], and E[Lsum(t)] in Eqs.
(22) and (23) into Eq. (15), and then repeatedly using the resulting inequality from t = 0 to t = T ,
we have

E[Lv(T )] = oT (1) + oK(1) +O(τ).

Now that we have obtained finite-sample bounds for E[Lv(T )], E[Lsum(T )], E[Lπ(T,K)], and
E[Lq(T,K)], using them in Eq. (6), we finally obtain the desired finite-sample bound for the
expected Nash gap.

Looking back at the decoupling procedure, Steps 2 and 3 are crucial. In fact, in Step 1 we already
obtain a bound on Et[Lq(t, k)], where the additive error is O(1)E[Lsum(t)]. However, directly using
this bound on Et[Lq(t, k)] in Eq. (16) would result in an expansive inequality for E[Lsum(t)]. By
performing Step 2, we are able to obtain a tighter bound for Et[Lq(t, k)], with the additive error
being O(c

1/2
α,β)E[Lsum(t)]. Furthermore, we can choose cα,β to be small enough so that after using the

bound from Eq. (20) in Eq. (16), the additive error O(c
1/2
α,β)E[Lsum(t)] is dominated by the negative

drift in Eq. (21).

C Proof of Theorem 2.1

The proof is divided into 4 steps. In Appendix C.1, we prove an important boundedness property
regarding the iterates generated by Algorithm 1. In Appendices C.2 and C.3, we analyze the evolution
of the policies and the q-functions by establishing the negative drift inequalities with respect to their
associated Lyapunov functions. In Appendix C.4, we solve the coupled Lyapunov drift inequalities to
prove Theorem 2.1. Moreover, we prove Corollary 2.1.1 in Appendix C.5. The statement and proof
of all supporting lemmas used in this section are presented in Appendix C.6.
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C.1 Boundedness of the Iterates

In this subsection, we show that the q-functions generated by Algorithm 1 are uniformly bounded
from above, and the entries of the policies are uniformly bounded from below. The following lemma
is needed to establish the result.
Lemma C.1. For any i ∈ {1, 2} and qi ∈ R|A|i , we have

min
ai∈Ai

[στ (q
i)](ai) ≥ 1

(Amax − 1) exp(2∥qi∥∞/τ) + 1
.

Proof of Lemma C.1. Given i ∈ {1, 2}, for any qi ∈ R|A|i and ai ∈ Ai, we have

[στ (q
i)](ai) =

exp(qi(ai)/τ)∑
āi∈Ai exp(qi(āi)/τ)

=
1∑

āi ̸=ai exp((qi(āi)− qi(ai))/τ) + 1

≥ 1

(|Ai| − 1) exp(2∥qi∥∞/τ) + 1

≥ 1

(Amax − 1) exp(2∥qi∥∞/τ) + 1
.

Since the RHS of the previous inequality does not depend on ai, we have the desired inequality.

We next derive the boundedness property in the following lemma.
Lemma C.2. It holds for all k ≥ 0 and i ∈ {1, 2} that ∥qik∥∞ ≤ 1 and minai∈Ai πi

k(a
i) ≥ ℓτ ,

where ℓτ = [(Amax − 1) exp(2/τ) + 1]−1.

Proof of Lemma C.2. We prove the results by induction. Since qi0 = 0 and πi
0 is initialized as a

uniform distribution on Ai, we have the base case. Now suppose that the results hold for some k ≥ 0.
Using the update equation for qik in Algorithm 1 Line 5, we have

|qik+1(a
i)| = |(1− αk1{ai=Ai

k})q
i
k(a

i) + αk1{ai=Ai
k}Ri(A

i
k, A

−i
k )|

≤ max(|qik(ai)|, (1− αk)|qik(ai)|+ αk|Ri(A
i
k, A

−i
k )|)

≤ 1

for any ai ∈ Ai, where the last line follows from the induction hypothesis ∥qik∥∞ ≤ 1 and
|Ri(a

i, a−i)| ≤ 1 for all (ai, a−i). As for πi
k+1, using the update equation for πi

k in Algorithm 1
Line 3, we have

πi
k+1(a

i) = (1− βk)π
i
k(a

i) + βk[στ (q
i
k)](a

i)

≥ (1− βk)ℓτ +
βk

(Amax − 1) exp(2∥qik∥∞/τ) + 1
(Lemma C.1)

≥ (1− βk)ℓτ + βkℓτ (∥qik∥∞ ≤ 1 by induction hypothesis)
= ℓτ .

The induction is complete.

C.2 Analysis of the Policies

Let VR : ∆(A1)×∆(A2) 7→ R be the regularized Nash gap defined as

VR(µ
1, µ2) =

∑
i=1,2

max
µ̂i∈∆(Ai)

{
(µ̂i − µi)⊤Riµ

−i + τν(µ̂i)− τν(µi)
}
,

where ν(·) is the entropy function. A sequence of properties regarding VR(·, ·) are provided in
Lemma C.7. For simplicity of notation, we use ∇1VR(·, ·) (respectively, ∇2VR(·, ·)) to represent the
gradient with respect to the first argument (respectively, the second argument).
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Lemma C.3. It holds for all k ≥ 0 that

E[VR(π
1
k+1, π

2
k+1)] ≤

(
1− βk

2

)
E[VR(π

1
k, π

2
k)] +

ℓταk

4

∑
i=1,2

E[∥qik −Riπ
−i
k ∥22] + 2Lτβ

2
k,

where we recall that Lτ = τ/ℓτ +A2
max/τ .

Proof of Lemma C.3. Using the smoothness property of VR(·, ·) (cf. Lemma C.7 (1)) and the update
equation in Algorithm 1 Line 3, we have for any k ≥ 0 that

VR(π
1
k+1, π

2
k+1) ≤ VR(π

1
k, π

2
k) + βk⟨∇2VR(π

1
k, π

2
k), στ (q

2
k)− π2

k⟩

+ βk⟨∇1VR(π
1
k, π

2
k), στ (q

1
k)− π1

k⟩+
Lτβ

2
k

2

∑
i=1,2

∥στ (q
i
k)− πi

k∥22

≤ VR(π
1
k, π

2
k) + βk⟨∇2VR(π

1
k, π

2
k), στ (R2π

1
k)− π2

k⟩
+ βk⟨∇1VR(π

1
k, π

2
k+1), στ (R1π

2
k)− π1

k⟩
+ βk⟨∇2VR(π

1
k, π

2
k), στ (q

2
k)− στ (R2π

1
k)⟩

+ βk⟨∇1VR(π
1
k, π

2
k+1), στ (q

1
k)− στ (R1π

2
k)⟩+ 2Lτβ

2
k

≤
(
1− βk

2

)
VR(π

1
k, π

2
k)+4βk

(
1

τℓ2τ
+
A2

max

τ3

) ∑
i=1,2

∥qik −Riπ
−i
k ∥22 + 2Lτβ

2
k,

where the last line follows from Lemma C.7 (2) and (3). Taking expectations on both sides of the
previous inequality and using the condition that cα,β = βk

αk
≤ min(

τℓ3τ
32 , ℓττ

3

32A2
max

) (cf. Condition 2.1),
we have

E[VR(π
1
k+1, π

2
k+1)] ≤

(
1− βk

2

)
E[VR(π

1
k, π

2
k)] +

ℓταk

4

∑
i=1,2

E[∥qik −Riπ
−i
k ∥22] + 2Lτβ

2
k.

The proof is complete.

C.3 Analysis of the q-Functions

We study the q-functions generated by Algorithm 1 through a stochastic approximation framework.
For i ∈ {1, 2}, let F i : R|Ai| ×Ai ×A−i 7→ R|Ai| be an operator defined as

[F i(qi, ai0, a
−i
0 )](ai) = 1{ai

0=ai}
(
Ri(a

i
0, a

−i
0 )− qi(ai0)

)
, ∀ (qi, ai0, a

−i
0 ) and ai.

Then, Algorithm 1 Line 5 can be compactly written as

qik+1 = qik + αkF
i(qik, A

i
k, A

−i
k ). (24)

Given a joint policy (π1, π2), let F̄ i
π : R|Ai| 7→ R|Ai| be defined as

F̄ i
π(q

i) := EAi∼πi(·),A−i∼π−i(·)[F
i(qi, Ai, A−i)] = diag(πi)(Riπ

−i − qi).

Then, Eq. (24) can be viewed as a stochastic approximation algorithm for solving the slowly
time-varying equation F̄ i

πk
(qi) = 0.

Lemma C.4. The following inequality holds for all k ≥ 0:∑
i=1,2

E[∥qik+1 −Riπ
−i
k+1∥

2
2] ≤

(
1− ℓταk

2

) ∑
i=1,2

E[∥qik −Riπ
−i
k ∥22] +

βk

4
E[VR(π

1
k, π

2
k)] + 16α2

k.

Proof of Lemma C.4. For any k ≥ 0 and i ∈ {1, 2}, we have

∥qik+1 −Riπ
−i
k+1∥

2
2

= ∥qik+1 − qik + qik −Riπ
−i
k +Riπ

−i
k −Riπ

−i
k+1∥

2
2

= ∥qik+1 − qik∥22 + ∥qik −Riπ
−i
k ∥22 + ∥Riπ

−i
k −Riπ

−i
k+1∥

2
2 + 2⟨qik+1 − qik, q

i
k −Riπ

−i
k ⟩
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+ 2⟨qik+1 − qik, Riπ
−i
k −Riπ

−i
k+1 + 2⟨Riπ

−i
k −Riπ

−i
k+1, q

i
k −Riπ

−i
k ⟩

= α2
k∥F i(qik, A

i
k, A

−i
k )∥22 + ∥qik −Riπ

−i
k ∥22 + β2

k∥Ri(στ (q
−i
k )− π−i

k )∥22
+ 2αk⟨F̄ i

πk
(qik), q

i
k −Riπ

−i
k ⟩+ 2αk⟨F i(qik, A

i
k, A

−i
k )− F̄ i

πk
(qik), q

i
k −Riπ

−i
k ⟩

− 2αkβk⟨F i(qik, A
i
k, A

−i
k ), Ri(στ (q

−i
k )− π−i

k )⟩ − 2βk⟨Ri(στ (q
−i
k )− π−i

k ), qik −Riπ
−i
k ⟩

(Algorithm 1 Lines 3 and 5)

≤ α2
k∥F i(qik, A

i
k, A

−i
k )∥22 + ∥qik −Riπ

−i
k ∥22 + β2

k∥Ri(στ (q
−i
k )− π−i

k )∥22
+ 2αk⟨F̄ i

πk
(qik), q

i
k −Riπ

−i
k ⟩+ 2αk⟨F i(qik, A

i
k, A

−i
k )− F̄ i

πk
(qik), q

i
k −Riπ

−i
k ⟩

+ 2αkβk∥F i(qik, A
i
k, A

−i
k )∥2∥Ri(στ (q

−i
k )− π−i

k )∥2
+ 2βk∥Ri(στ (q

−i
k )− π−i

k )∥2∥qik −Riπ
−i
k ∥2 (Cauchy–Schwarz inequality)

≤ α2
k∥F i(qik, A

i
k, A

−i
k )∥22 + ∥qik −Riπ

−i
k ∥22 + β2

k∥Ri(στ (q
−i
k )− π−i

k )∥22
+ 2αk⟨F̄ i

πk
(qik), q

i
k −Riπ

−i
k ⟩+ 2αk⟨F i(qik, A

i
k, A

−i
k )− F̄ i

πk
(qik), q

i
k −Riπ

−i
k ⟩

+
αkβk

c1
∥F i(qik, A

i
k, A

−i
k )∥22 + αkβkc1∥Ri(στ (q

−i
k )− π−i

k )∥22

+
βk

c2
∥Ri(στ (q

−i
k )− π−i

k )∥22 + c2βk∥qik −Riπ
−i
k ∥22

(This follows from the AM-GM inequality, where c1, c2 > 0 can be arbitrary.)

=

(
α2
k +

αkβk

c1

)
∥F i(qik, A

i
k, A

−i
k )∥22 + (1 + c2βk) ∥qik −Riπ

−i
k ∥22

+ 2αk⟨F̄ i
πk
(qik), q

i
k −Riπ

−i
k ⟩+ 2αk⟨F i(qik, A

i
k, A

−i
k )− F̄ i

πk
(qik), q

i
k −Riπ

−i
k ⟩

+

(
β2
k +

βk

c2
+ αkβkc1

)
∥Ri∥22∥στ (q

−i
k )− π−i

k ∥22.

Taking expectations on both sides of the previous inequality, we have

E[∥qik+1 −Riπ
−i
k+1∥

2
2]

≤
(
α2
k +

αkβk

c1

)
E[∥F i(qik, A

i
k, A

−i
k )∥22] + (1 + c2βk)E[∥qik −Riπ

−i
k ∥22]

+ 2αkE[⟨F̄ i
πk
(qik), q

i
k −Riπ

−i
k ⟩] +

(
β2
k +

βk

c2
+ αkβkc1

)
∥Ri∥22E[∥στ (q

−i
k )− π−i

k ∥22],

where the term E[⟨F i(qik, A
i
k, A

−i
k )− F̄ i

πk
(qik), q

i
k −Riπ

−i
k ⟩] vanishes due to the tower property of

conditional expectations. To proceed, observe

E[∥F i(qik, A
i
k, A

−i
k )∥22] = E

[ ∑
ai∈Ai

1{Ai
k=ai}

(
Ri(A

i
k, A

−i
k )− qik(A

i
k)
)2]

= E[(Ri(a
i, A−i

k )− qik(a
i))2]

≤ E[(|Ri(a
i, A−i

k )|+ |qik(ai)|)2]
≤ 4 (Lemma C.2)

and

E[⟨F̄ i
πk
(qik), q

i
k −Riπ

−i
k ⟩] = E[⟨diag(πi

k)(Riπ
−i
k − qik), q

i
k −Riπ

−i
k ⟩]

≤ − ℓτE[∥qik −Riπ
−i
k ∥22]. (Lemma C.2)

In addition, we have

E[∥στ (q
−i
k )− π−i

k ∥22] ≤ 2E[∥στ (q
−i
k )− στ (R−iπ

i
k)∥22] + 2E[∥στ (R−iπ

i
k)− π−i

k ∥22]
(a2 + b2 ≥ 2ab)

≤ 2

τ2
E[∥q−i

k −R−iπ
i
k∥22] +

4

τ
E[VR(π

1
k, π

2
k)],
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where the last line follows from Lemma C.6. Using the previous 4 inequalities all together, we obtain

E[∥qik+1 −Riπ
−i
k+1∥

2
2] ≤ 4

(
α2
k +

αkβk

c1

)
+ (1− 2ℓταk + c2βk)E[∥qik −Riπ

−i
k ∥22]

+
4A2

max

τ

(
β2
k +

βk

c2
+ αkβkc1

)
E[VR(π

1
k, π

2
k)]

+
2A2

max

τ2

(
β2
k +

βk

c2
+ αkβkc1

)
E[∥q−i

k −Riπ
−i
k ∥22].

Summing up the previous inequality for i ∈ {1, 2}, we have∑
i=1,2

E[∥qik+1 −Riπ
−i
k+1∥

2
2]

≤
(
1− 2ℓταk + c2βk +

2A2
max

τ2

(
β2
k +

βk

c2
+ αkβkc1

)) ∑
i=1,2

E[∥qik −Riπ
−i
k ∥22]

+
8A2

max

τ

(
β2
k +

βk

c2
+ αkβkc1

)
E[VR(π

1
k, π

2
k)] + 8

(
α2
k +

αkβk

c1

)
=

(
1− 3ℓταk

2
+

2A2
max

τ2

(
2β2

k +
2β2

k

ℓταk

)) ∑
i=1,2

E[∥qik −Riπ
−i
k ∥22]

+
8A2

max

τ

(
2β2

k +
2β2

k

ℓταk

)
E[VR(π

1
k, π

2
k)] + 16α2

k (Choosing c1 = βk

αk
and c2 = ℓταk

2βk
)

≤
(
1− ℓταk

2

) ∑
i=1,2

E[∥qik −Riπ
−i
k ∥22] +

βk

4
E[VR(π

1
k, π

2
k)] + 16α2

k,

where the last line follows from cα,β ≤ min( τ2ℓτ
8A2

max
, τℓτ
128A2

max
) and β0 ≤ τ

128A2
max

(cf. Condition 2.1).
The proof is complete.

C.4 Solving the Coupled Lyapunov Inequalities

For simplicity of notation, denote Lq(k) =
∑

i=1,2 E[∥qik −Riπ
−i
k ∥22] and Lπ(k) = E[VR(π

1
k, π

2
k)].

Then, Lemmas C.3 and C.4 state that

Lπ(k + 1) ≤
(
1− βk

2

)
Lπ(k) +

ℓταk

4
Lq(k) + 2Lτβ

2
k,

and

Lq(k + 1) ≤
(
1− ℓταk

2

)
Lq(k) +

βk

4
Lπ(k) + 16α2

k.

Adding up the previous two inequalities, we obtain

Lq(k + 1) + Lπ(k + 1) ≤
(
1− βk

4

)
Lπ(k) + 2Lτβ

2
k +

(
1− ℓταk

4

)
Lq(k) + 16α2

k

≤
(
1− βk

4

)
(Lπ(k) + Lq(k)) + 2Lτβ

2
k + 16α2

k, (25)

where the second inequality follows from cα,β ≤ ℓτ (cf. Condition 2.1).

Constant Stepsizes. When using constant stepsizes, i.e., αk ≡ α and βk ≡ β, repeatedly using Eq.
(25), we have for all k ≥ 0 that

Lq(k) + Lπ(k) ≤
(
1− β

4

)k

(Lπ(0) + Lq(0)) + 8Lτβ + 64α2/β

≤
(
1− β

4

)k

(4 + 2τ log(Amax) + 2Amax) + 8Lτβ + 64α2/β
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= Bin

(
1− β

4

)k

+ 8Lτβ +
64α

cα,β

where the second inequality follows from

Lπ(0) ≤ 4 + 2τ log(Amax), and Lq(0) ≤ 2Amax.

Theorem 2.1 (1) follows by observing that Lq(k) + Lπ(k) ≥ Lπ(k) = E[NGτ (π
1
k, π

2
k)].

Diminishing Stepsizes. Consider using αk = α
k+h and βk = β

k+h . Recursions of the form
presented in Eq. (25) have been well studied in the existing literature for the convergence rates of
iterative algorithms [44, 24, 65]. Since β > 4, using the same line of analysis as in [65, Appendix
A.2], we have

Lq(k) + Lπ(k) ≤ Bin

(
h

k + h

)β/4

+ (64eLτβ + 512eα/cα,β)
1

k + h
.

Theorem 2.1 (2) follows by observing that Lq(k) + Lπ(k) ≥ Lπ(k) = E[NGτ (π
1
k, π

2
k)].

C.5 Proof of Corollary 2.1.1

We use Theorem 2.1 (1) to derive the sample complexity, and choose β = cα,βα with cα,β satisfying
Condition 2.1. To achieve E[NGτ (π

1
K , π2

K)] ≤ ϵ, in view of Theorem 2.1 (1), it is sufficient that

Bine
−βK/4 ≤ ϵ

3
, 8Lτβ ≤ ϵ

3
, 64α/cα,β ≤ ϵ

3
,

which implies β = O(ϵ). It follows that K = O
(
ϵ−1
)
.

C.6 Supporting Lemmas

Lemma C.5. For any i ∈ {1, 2} and µi
1, µ

i
2 ∈ {µi ∈ ∆(Ai) | minai∈Ai µi(ai) ≥ ℓτ}, we have

∥∇ν(µi
1)−∇ν(µi

2)∥2 ≤ 1

ℓτ
∥µi

1 − µi
2∥2.

Proof of Lemma C.5. For any i ∈ {1, 2} and µi ∈ ∆(Ai) such that minai∈Ai µi(ai) ≥ ℓτ , the
Hessian of ν(·) satisfies

Hessianν(µi) = diag
(
µi
)−1 ≤

I|Ai|

minai∈Ai µi(ai)
≤

I|Ai|

ℓτ
.

Therefore, the gradient of the negative entropy function ∇ν(·) is 1
ℓτ

– Lipschitz continuous with
respect to ∥·∥2 on the set {µi ∈ ∆(Ai) | minai∈Ai µi(ai) ≥ ℓτ}, which implies the 1

ℓτ
– smoothness

of ν(·).

Lemma C.6. For i ∈ {1, 2}, we have for all µi ∈ ∆(Ai) and µ−i ∈ ∆(A−i) that

∥στ (Riµ
−i)− µi∥22 ≤ 2

τ
VR(µ

1, µ2).

Proof of Lemma C.6. Recall that the negative entropy ν(·) is 1-strongly concave with respect to ∥ ·∥2.
Therefore, given i ∈ {1, 2}, fix µ−i, the function

max
µ̂i∈∆(Ai)

{
(µ̂i − µi)⊤Riµ

−i + τν(µ̂i)− τν(µi)
}

is τ -strongly convex with respect to µi. As a result, by the quadratic growth property of strongly
convex functions, we have

∥στ (Riµ
−i)− µi∥22 ≤ 2

τ
max

µ̂i∈∆(Ai)

{
(µ̂i − µi)⊤Riµ

−i + τν(µ̂i)− τν(µi)
}
≤ 2

τ
VR(µ

1, µ2).
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Denote Πτ = {(π1, π2) ∈ ∆(A1)×∆(A2) | mina1∈A1 π1(a1) ≥ ℓτ ,mina2∈A2 π2(a2) ≥ ℓτ}.

Lemma C.7. The function VR(·, ·) has the following properties.

(1) The function VR(µ
1, µ2) is Lτ – smooth on Πτ , where Lτ = τ

ℓτ
+

A2
max

τ .

(2) It holds for any (µ1, µ2) ∈ Πτ that

⟨∇1VR(µ
1, µ2), στ (R1µ

2)− µ1⟩+ ⟨∇2VR(µ
1, µ2), στ (R2µ

1)− µ2⟩ ≤ −VR(µ
1, µ2).

(3) For any q1 ∈ R|A1| and q2 ∈ R|A2| , we have for all (µ1, µ2) ∈ Πτ that

⟨∇1VR(µ
1, µ2), στ (q

1)− στ (R1µ
2)⟩+ ⟨∇2VR(µ

1, µ2), στ (q
2)− στ (R2µ

1)⟩

≤ 1

2
VR(µ

i, µ−i) + 4

(
1

τℓ2τ
+

A2
max

τ3

) ∑
i=1,2

∥qi −Riµ
−i∥22.

Proof of Lemma C.7. Recall the definition of VR(·, ·) in the following:

VR(µ
1, µ2) =

∑
i=1,2

max
µ̂i∈∆(Ai)

{
(µ̂i − µi)⊤Riµ

−i + τν(µ̂i)− τν(µi)
}
.

By Danskin’s theorem [95], we have

∇1VR(µ
1, µ2) = − τ∇ν(µ1) + (R2)

⊤στ (R2µ
1),

∇2VR(µ
1, µ2) = − τ∇ν(µ2) + (R1)

⊤στ (R1µ
2),

both of which will be frequently used in our analysis.

(1) For any (µ1, µ2), (µ̄1, µ̄2) ∈ Πτ , we have

∥∇1VR(µ
1, µ2)−∇1VR(µ̄

1, µ̄2)∥2
= ∥τ∇ν(µ̄1)− τ∇ν(µ1) + (R2)

⊤στ (R2µ
1)− (R2)

⊤στ (R2µ̄
1)∥2

≤ τ∥∇ν(µ̄1)−∇ν(µ1)∥2 + ∥R2∥2∥στ (R2µ
1)− στ (R2µ̄

1)∥2

≤ τ

ℓτ
∥µ1 − µ̄1∥2 +

∥R2∥22
τ

∥µ1 − µ̄1∥2

≤
(

τ

ℓτ
+

A2
max

τ

)
∥µ1 − µ̄1∥2,

where the second last inequality follows from Lemma C.5 and στ (·) being 1
τ -Lipschitz continuous

with respect to ∥ · ∥2 [96], and the last inequality follows from ∥Ri∥2 ≤
√

|A1||A2| ≤ Amax for
i ∈ {1, 2}. Similarly, we also have

∥∇2VR(µ
1, µ2)−∇2VR(µ̄

1, µ̄2)∥22 ≤
(

τ

ℓτ
+

A2
max

τ

)
∥µ2 − µ̄2∥2.

It follows from the previous two inequalities that

∥∇VR(µ
1, µ2)−∇VR(µ̄

1, µ̄2)∥22
= ∥∇1VR(µ

1, µ2)−∇1VR(µ̄
1, µ̄2)∥22 + ∥∇2VR(µ

1, µ2)−∇2VR(µ̄
1, µ̄2)∥22

≤
(

τ

ℓτ
+

A2
max

τ

)2 ∑
i=1,2

∥µi − µ̄i∥22,

which implies that VR(·, ·) is an Lτ – smooth function on Πτ [97], where Lτ = τ
ℓτ

+
A2

max

τ .

(2) The result follows from Lemma D.7 by setting Xi = Ri, i ∈ {1, 2}, and by observing that
R1 + (R2)

⊤ = 0.

27



(3) Using the formula of the gradient of VR(·, ·) in the begining of the proof, we have

⟨∇1VR(µ
1, µ2), στ (q

1)− στ (R1µ
2)⟩

= ⟨−τ∇ν(µ1) + (R2)
⊤στ (R2µ

1), στ (q
1)− στ (R1µ

2)⟩
= τ⟨∇ν(στ (R1µ

2))−∇ν(µ1), στ (q
1)− στ (R1µ

2)⟩
+ (στ (R2µ

1)− µ2)⊤R2(στ (q
1)− στ (R1µ

2))
(This follows from the order optimality condition: R1µ

2 + τ∇ν(στ (R1µ
2)) = 0)

≤ τ

2c1
∥∇ν(στ (R1µ

2))−∇ν(µ1)∥22 +
τc1
2

∥στ (q
1)− στ (R1µ

2)∥22

+
1

2c2
∥στ (R2µ

1)− µ2)∥22 +
c2
2
∥R2(στ (q

1)− στ (R1µ
2))∥22

(This follows from AM-GM inequality, where c1, c2 > 0 can be arbitrary)

≤ τ

2c1ℓ2τ
∥στ (R1µ

2)− µ1∥22 +
c1
2τ

∥q1 −R1µ
2∥22

+
1

2c2
∥στ (R2µ

1)− µ2)∥22 +
c2∥R2∥22

2τ2
∥q1 −R1µ

2∥22 (Lemma C.5)

≤
(

1

c1ℓ2τ
+

1

τc2

)
VR(µ

1, µ2) +
c1
2τ

∥q1 −R1µ
2∥22 +

c2∥R2∥22
2τ2

∥q1 −R1µ
2∥22 (Lemma C.6)

≤ 1

4
VR(µ

1, µ2) +
4

τℓ2τ
∥q1 −R1µ

2∥22 +
4∥R2∥22

τ3
∥q1 −R1µ

2∥22,

where the last line follows by choosing c1 = 8
ℓ2τ

and c2 = 8
τ . Similarly, we also have

⟨∇2VR(µ
1, µ2), στ (q

2)− στ (R2µ
1)⟩ ≤ 1

4
VR(µ

1, µ2) +
4

τℓ2τ
∥q2 −R2µ

1∥22

+
4∥R1∥22

τ3
∥q2 −R2µ

1∥22.

Summing up the previous two inequalities, we obtain
⟨∇1VR(µ

1, µ2), στ (q
1)− στ (R1µ

2)⟩+ ⟨∇2VR(µ
1, µ2), στ (q

2)− στ (R2µ
1)⟩

≤ 1

2
VR(µ

i, µ−i) +

(
4

τℓ2τ
+

4A2
max

τ3

) ∑
i=1,2

∥qi −Riµ
−i∥22,

where we used ∥Ri∥2 ≤
√
Amax for i ∈ {1, 2}.

D Proof of Theorem 3.1

We begin by introducing a summary of notation in Appendix D.1. In Appendix D.2, we establish an
important boundedness property regarding the q-functions, value functions, and the policies generated
by Algorithm 2. In Appendix D.3, we bound the Nash gap in terms of the Lyapunov functions. In
Appendices D.4 and D.5, we analyze the outer loop and the inner loop of Algorithm 2 and establish
the Lyapunov drift inequalities. Finally, in Appendix D.6, we solve the coupled Lyapunov inequalities
to obtain the finite-sample bound. The proof of all supporting lemmas are provided in Appendix D.7,
and the proof of Corollary 3.1.1 is provided in Appendix D.8.

D.1 Notation

We begin with a summary of the notation that will be used in the proof.

(1) Given a pair of matrices {Xi ∈ R|Ai|×|A−i|}i∈{1,2} and a pair of distributions {µi ∈
∆(Ai)}i∈{1,2}, we define

VX(µ1, µ2) =
∑
i=1,2

max
µ̂i∈∆(Ai)

{
(µ̂i − µi)⊤Xiµ

−i + τν(µ̂i)− τν(µi)
}
, (26)
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where ν(·) is the entropy function. Note that VX(·, ·) is similar to VR(·, ·) defined in Appendix
C.2 in the setting of matrix games. However, we do not assume that X1 +X2 = 0.

(2) Given a pair of value functions (v1, v2) and a state s ∈ S , when Xi = T i(vi)(s), i ∈ {1, 2}, we
write Vv,s(·, ·) for VX(·, ·).

(3) For any joint policy (π1, π2) and state s, given i ∈ {1, 2}, we define vi∗,π−i(s) =

maxπ̂i viπ̂i,π−i(s), viπi,∗ = minπ̂−i viπi,π̂−i(s), v−i
π−i,∗(s) = minπ̂i v−i

π−i,π̂i(s), and v−i
∗,πi(s) =

maxπ̂−i v−i
π̂−i,π̂i(s). Note that we have v1∗,π2 + v2π2,∗ = 0 and v1π1,∗ + v2∗,π1 = 0 because of the

zero-sum structure.
(4) For i ∈ {1, 2}, denote vi∗ as the unique fixed point of the equation Bi(vi) = vi, where Bi(·) is

the minimax Bellman operator defined in Section 3. Note that we have v1∗ + v2∗ = 0.

(5) For any t, k ≥ 0 and i ∈ {1, 2}, let q̄it,k ∈ R|S||Ai| be defined as q̄it,k(s) = T i(vit)(s)π
−i
t,k(s) for

all s ∈ S. In addition, let

Lsum(t) = ∥v1t + v2t ∥∞, Lv(t) =
∑
i=1,2

∥vit − vi∗∥∞,

Lq(t, k) =
∑
i=1,2

∑
s∈S

∥qit,k(s)− T i(vit)(s)π
−i
t,k(s)∥

2
2 =

∑
i=1,2

∥qit,k − q̄it,k∥22,

Lπ(t, k) = max
s∈S

Vvt,s(π
1
t,k(s), π

2
t,k(s)),

which will be the Lyapunov functions we use in the analysis.

(6) Given k1 ≤ k2, we denote βk1,k2
=
∑k2

k=k1
βk and αk1,k2

=
∑k2

k=k1
αk.

(7) Recall that zk = t(ℓτ , βk) is the uniform mixing time defined in Lemma B.1 (2), where ℓτ is
the uniform lower bound of the policies. When using constant stepsizes, zk is not a function of
k, and is simply denoted by zβ . Observe that, due to the uniform geometric mixing property
established in Lemma B.1 (2), we have zk = O(log(k)) when using O(1/k) stepsizes and
zβ = O(log(1/β)) when using constant stepsizes. Let k0 = min k : k ≥ zk, which is well
defined because zk grows logarithmically with k.

D.2 Boundedness of the Iterates

We first show in the following lemma that the q-functions and the v-functions generated by Algorithm
2 are uniformly bounded from above, and the policies are uniformly bounded from below. In the
context of stochastic games, we redefine ℓτ = [1 + (Amax − 1) exp(2/[(1− γ)τ ])]−1.
Lemma D.1. For all t, k and i ∈ {1, 2}, we have (1) ∥vit∥∞ ≤ 1/(1− γ) and ∥qit,k∥∞ ≤ 1/(1− γ),
and (2) mins∈S,ai∈Ai πi

t,k(a
i | s) ≥ ℓτ .

Proof of Lemma D.1. The proof uses induction arguments. Let i ∈ {1, 2}.

(1) Given t ≥ 0, we first show by induction that, if ∥vit∥∞ ≤ 1
1−γ and ∥qit,0∥∞ ≤ 1

1−γ , we have
∥qit,k∥∞ ≤ 1

1−γ for all k ≥ 0. The base case ∥qit,0∥∞ ≤ 1
1−γ holds by our assumption. Suppose

that ∥qit,k∥∞ ≤ 1
1−γ for some k ≥ 0. Then, by Algorithm 2 Line 6, we have for all (s, ai) that

|qit,k+1(s, a
i)|

= |qit,k(s, ai) + αk1{(s,ai)=(Sk,Ai
k)}(Ri(Sk, A

i
k, A

−i
k ) + γvit(Sk+1)− qit,k(Sk, A

i
k))|

≤ (1− αk1{(s,ai)=(Sk,Ai
k)})|q

i
t,k(s, a

i)|

+ αk1{(s,ai)=(Sk,Ai
k)}|Ri(Sk, A

i
k, A

−i
k ) + γvit(Sk+1)|

≤ (1− αk1{(s,ai)=(Sk,Ai
k)})

1

1− γ
+ αk1{(s,ai)=(Sk,Ai

k)}

(
1 +

γ

1− γ

)
(27)

=
1

1− γ
,

29



where Eq. (27) follows from the induction hypothesis ∥qit,k∥∞ ≤ 1
1−γ , our assumption that

∥vit∥∞ ≤ 1
1−γ , and maxs,ai,a−i |Ri(s, a

i, a−i)| ≤ 1. The induction is now complete and we
have ∥qit,k∥∞ ≤ 1

1−γ for all k ≥ 0 whenever ∥vit∥∞ ≤ 1
1−γ and ∥qit,0∥∞ ≤ 1

1−γ .

We next again use induction to show that ∥vit∥∞ ≤ 1
1−γ and ∥qit,0∥∞ ≤ 1

1−γ for all t ≥ 0. Our
initialization ensures that ∥vi0∥∞ ≤ 1

1−γ and ∥qi0,0∥∞ ≤ 1
1−γ . Suppose that ∥vit∥∞ ≤ 1

1−γ and
∥qit,0∥∞ ≤ 1

1−γ for some t ≥ 0. Using the update equation for vit+1 (cf. Algorithm 2 Line 8)
and the fact that ∥qit,k∥∞ ≤ 1

1−γ for all k ≥ 0 (established in the previous paragraph), we have
for all s ∈ S that

|vit+1(s)| =

∣∣∣∣∣ ∑
ai∈Ai

πi
t,K(ai|s)qit,K(s, ai)

∣∣∣∣∣ ≤ ∑
ai∈Ai

πi
t,K(ai|s)∥qit,K∥∞ ≤ 1

1− γ
,

which implies ∥vit+1∥∞ ≤ 1
1−γ . Moreover, we have by Algorithm 2 Line 9 that ∥qit+1,0∥∞ =

∥qit,K∥∞ ≤ 1
1−γ . The induction is now complete and we have ∥vit∥∞ ≤ 1

1−γ and ∥qit,0∥∞ ≤
1

1−γ for all t ≥ 0.

(2) We first use induction to show that, given t ≥ 0, if mins,ai πi
t,0(a

i | s) ≥ ℓτ , then we have
mins,ai πi

t,k(a
i | s) ≥ ℓτ for all k ∈ {0, 1, · · · ,K}. Since mins,ai πi

t,0(a
i | s) ≥ ℓτ by our

assumption, we have the base case. Now suppose that mins∈S,ai∈Ai πi
t,k(a

i | s) ≥ ℓτ for some
k ≥ 0. Then we have by Algorithm 2 Line 4 that

πi
t,k+1(a

i | s) = (1− βk)π
i
t,k(a

i | s) + βkστ (q
i
t,k(s))(a

i)

≥ (1− βk)ℓτ + βkℓτ
= ℓτ ,

where the inequality follows from (1) the induction hypothesis, and (2) στ (q
i
t,k(s))(a

i) ≥ ℓτ ,
which follows from Lemma D.1 (1) and Lemma C.1. The induction is complete.

We next again use induction to show that mins,ai πi
t,0(a

i | s) ≥ ℓτ for all t ∈ {0, 1, · · · , T}.
Since mins,ai πi

0,0(a
i | s) is initialized as a uniform policy, we have the base case. Now suppose

that mins,ai πi
t,0(a

i | s) ≥ ℓτ for some t ≥ 0. Since this implies that mins,ai πi
t,k(a

i | s) ≥ ℓτ
for all k ∈ {0, 1, · · · ,K}, and in addition, πi

t+1,0 = πi
t,K according to Algorithm 2 Line 9, we

have mins,ai πi
t+1,0(a

i | s) ≥ ℓτ . The induction is complete.

D.3 Bounding the Nash Gap

Our ultimate goal is to bound the Nash gap

NG(π1
T,K , π2

T,K) =
∑
i=1,2

(
max
πi

U i(πi, π−i
T,K)− U i(πi

T,K , π−i
T,K)

)
. (28)

We first bound the Nash gap using the value functions of the output policies from Algorithm 2.

Lemma D.2. It holds that∑
i=1,2

(
max
πi

U i(πi, π−i
T,K)− U i(πi

T,K , π−i
T,K)

)
≤
∑
i=1,2

∥∥∥vi∗,π−i
T,K

− vi
πi
T,K ,π−i

T,K

∥∥∥
∞

. (29)

Proof of Lemma D.2. Using the definition of the expected value functions, we have∑
i=1,2

(
max
πi

U i(πi, π−i
T,K)− U i(πi

T,K , π−i
T,K)

)

30



=
∑
i=1,2

(
max
πi

ES∼po

[
vi
πi,π−i

T,K

(S)− vi
πi
T,K ,π−i

T,K

(S)
])

≤
∑
i=1,2

(
ES∼po

[
max
πi

vi
πi,π−i

T,K

(S)− vi
πi
T,K ,π−i

T,K

(S)

])
(Jensen’s inequality)

=
∑
i=1,2

(
ES∼po

[
vi∗,π−i

T,K

(S)− vi
πi
T,K ,π−i

T,K

(S)
])

≤
∑
i=1,2

∥∥∥vi∗,π−i
T,K

− vi
πi
T,K ,π−i

T,K

∥∥∥
∞

.

The next lemma bounds the RHS of Eq. (29) using the actual iterates generated by Algorithm 2.
Lemma D.3. It holds for i ∈ {1, 2} that∥∥∥vi∗,π−i

t,K

− vi
πi
t,K ,π−i

t,K

∥∥∥
∞

≤ 2

1− γ
(2Lsum(T ) + Lv(T ) + Lπ(T,K) + 2τ log(Amax)) .

Proof of Lemma D.3. For any s ∈ S and i ∈ {1, 2}, we have

0 ≤
∣∣∣vi∗,π−i

T,K

(s)− vi
πi
T,K ,π−i

T,K

(s)
∣∣∣

= vi∗,π−i
T,K

(s)− vi
πi
T,K ,π−i

T,K

(s)

≤ vi∗,π−i
T,K

(s)− viπi
T,K ,∗(s)

= − v−i

π−i
T,K ,∗(s)− viπi

T,K ,∗(s)

= vi∗(s)− v−i

π−i
T,K ,∗(s) + v−i

∗ (s)− viπi
T,K ,∗(s)

≤
∑
j=1,2

∥∥∥∥v−j
∗ − v−j

π−j
T,K ,∗

∥∥∥∥
∞

.

Since the RHS of the previous inequality does not depend on s, we have for i ∈ {1, 2} that∥∥∥vi∗,π−i
T,K

− vi
πi
T,K ,π−i

T,K

∥∥∥
∞

≤
∑
j=1,2

∥∥∥∥v−j
∗ − v−j

π−j
T,K ,∗

∥∥∥∥
∞

. (30)

It remains to bound the RHS of the previous inequality. Observe that for any s ∈ S and i ∈ {1, 2},
we have

0 ≤ v−i
∗ (s)− v−i

π−i
T,K ,∗(s)

= vi∗,π−i
T,K

(s)− vi∗(s)

= max
µi∈∆(Ai)

(µi)⊤T i(vi∗,π−i
T,K

)(s)π−i
T,K(s)− max

µi∈∆(Ai)
min

µ−i∈∆(A−i)
(µi)⊤T i(vi∗)(s)µ

−i

≤
∣∣∣∣ max
µi∈∆(Ai)

(µi)⊤T i(vi∗,π−i
T,K

)(s)π−i
T,K(s)− max

µi∈∆(Ai)
(µi)⊤T i(vi∗)(s)π

−i
T,K(s)

∣∣∣∣
+

∣∣∣∣ max
µi∈∆(Ai)

(µi)⊤T i(vi∗)(s)π
−i
T,K(s)− max

µi∈∆(Ai)
min

µ−i∈∆(A−i)
(µi)⊤T i(vi∗)(s)µ

−i

∣∣∣∣
≤ max

µi∈∆(Ai)

∣∣∣(µi)⊤(T i(vi∗,π−i
T,K

)(s)− T i(vi∗)(s))π
−i
T,K(s)

∣∣∣
+

∣∣∣∣ max
µi∈∆(Ai)

(µi)⊤T i(vi∗)(s)π
−i
T,K(s)− max

µi∈∆(Ai)
(µi)⊤T i(viT )(s)π

−i
T,K(s)

∣∣∣∣
+ max

µi∈∆(Ai)
(µi)⊤T i(viT )(s)π

−i
T,K(s)− max

µi∈∆(Ai)
min

µ−i∈∆(A−i)
(µi)⊤T i(viT )(s)µ

−i
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+

∣∣∣∣ max
µi∈∆(Ai)

min
µ−i∈∆(A−i)

(µi)⊤T i(viT )(s)µ
−i − max

µi∈∆(Ai)
min

µ−i∈∆(A−i)
(µi)⊤T i(vi∗)(s)µ

−i

∣∣∣∣ .
(31)

We next bound each term on the RHS of the previous inequality.

The 1st Term on the RHS of Eq. (31). Using the definition of T i(·), we have

max
µi∈∆(Ai)

∣∣∣(µi)⊤(T i(vi∗,π−i
T,K

)(s)− T i(vi∗)(s))π
−i
T,K(s)

∣∣∣
≤ max

s,ai,a−i

∣∣∣T i(vi∗,π−i
T,K

)(s, ai, a−i)− T i(vi∗)(s, a
i, a−i)

∣∣∣
= γ max

s,ai,a−i

∣∣∣E [vi∗(S1)− vi∗,π−i
T,K

(S1)
∣∣∣ S0 = s,Ai

0 = ai, A−i
0 = a−i

]∣∣∣
≤ γ max

s,ai,a−i
E
[∣∣∣vi∗(S1)− vi∗,π−i

T,K

(S1)
∣∣∣ ∣∣∣ S0 = s,Ai

0 = ai, A−i
0 = a−i

]
≤ γ

∥∥∥vi∗ − vi∗,π−i
T,K

∥∥∥
∞

.

The 2nd Term on the RHS of Eq. (31). Using the definition of T i(·), we have∣∣∣∣ max
µi∈∆(Ai)

(µi)⊤T i(vi∗)(s)π
−i
T,K(s)− max

µi∈∆(Ai)
(µi)⊤T i(viT )(s)π

−i
T,K(s)

∣∣∣∣
≤ max

µi∈∆(Ai)

∣∣∣(µi)⊤(T i(vi∗)(s)− T i(viT )(s))π
−i
T,K(s)

∣∣∣
≤ max

s,ai,a−i

∣∣T i(vi∗)(s, a
i, a−i)− T i(viT )(s, a

i, a−i)
∣∣

≤ γ
∥∥vi∗ − viT

∥∥
∞ .

The 3rd Term on the RHS of Eq. (31). Bounding the third term requires more effort. To begin with,
we decompose it in the following way:

max
µi∈∆(Ai)

(µi)⊤T i(viT )(s)π
−i
T,K(s)− max

µi∈∆(Ai)
min

µ−i∈∆(A−i)
(µi)⊤T i(viT )(s)µ

−i

≤
∣∣∣∣ max
µi∈∆(Ai)

(µi)⊤T i(viT )(s)π
−i
T,K(s)− min

µ−i∈∆(A−i)
πi
T,K(s)T i(viT )(s)µ

−i

∣∣∣∣
≤
∣∣∣∣ max
µ−i∈∆(A−i)

(µ−i)⊤T −i(v−i
T )(s)πi

T,K(s) + min
µ−i∈∆(A−i)

(µ−i)⊤T i(viT )(s)
⊤πi

T,K(s)

∣∣∣∣
+

∣∣∣∣∣∣
∑
i=1,2

max
µi∈∆(Ai)

(µi)⊤T i(viT )(s)π
−i
T,K(s)

∣∣∣∣∣∣ . (32)

We next bound each term on the RHS of the previous inequality. For the first term, we have by
definition of T i(·) that∣∣∣∣ max

µ−i∈∆(A−i)
(µ−i)⊤T −i(v−i

T )(s)πi
T,K(s) + min

µ−i∈∆(A−i)
(µ−i)⊤T i(viT )(s)

⊤πi
T,K(s)

∣∣∣∣
=

∣∣∣∣ max
µ−i∈∆(A−i)

(µ−i)⊤T −i(v−i
T )(s)πi

T,K(s)− max
µ−i∈∆(A−i)

(µ−i)⊤[−T i(viT )(s)]
⊤πi

T,K(s)

∣∣∣∣
≤ max

µ−i∈∆(A−i)

∣∣(µ−i)⊤(T −i(v−i
T )(s) + T i(viT )(s)

⊤)πi
T,K(s)

∣∣
≤ max

s,ai,a−i

∣∣T −i(v−i
T )(s, ai, a−i) + T i(viT )(s, a

i, a−i)
∣∣

= γ max
s,ai,a−i

∣∣E [v−i
T (S1) + viT (S1)

∣∣ S0 = s,Ai
0 = ai, A−i

0 = a−i
0

]∣∣
≤ γ

∥∥v−i
T + viT

∥∥
∞ .
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For the second term on the RHS of Eq. (32), using the Lyapunov function Vv,s(·, ·) (defined in
Appendix D.1), we have∣∣∣∣∣∣

∑
i=1,2

max
µi∈∆(Ai)

(µi)⊤T i(viT )(s)π
−i
T,K(s)

∣∣∣∣∣∣
=
∑
i=1,2

max
µi∈∆(Ai)

(µi − πi
T,K(s))⊤T i(viT )(s)π

−i
T,K(s) +

∣∣∣∣∣∣
∑
i=1,2

(πi
T,K(s))⊤T i(viT )(s)π

−i
T,K(s)

∣∣∣∣∣∣
≤
∑
i=1,2

max
µi∈∆(Ai)

{
(µi − πi

T,K(s))⊤T i(viT )(s)π
−i
T,K(s) + τν(µi)− τν(πi

T,K(s))
}

+ 2τ log(Amax) +

∣∣∣∣∣∣
∑
i=1,2

(πi
T,K(s))⊤T i(viT )(s)π

−i
T,K(s)

∣∣∣∣∣∣
≤ VvT ,s(π

i
T,K(s), π−i

T,K(s)) + 2τ log(Amax)

+ max
s,ai,a−i

∣∣T i(viT )(s, a
i, a−i) + T −i(v−i

T )(s, ai, a−i)
∣∣

≤ VvT ,s(π
i
T,K(s), π−i

T,K(s)) + 2τ log(Amax) + γ∥viT + v−i
T ∥∞.

Using the previous two inequalities together in Eq. (32), we obtain

max
µi∈∆(Ai)

(µi)⊤T i(viT )(s)π
−i
T,K(s)− max

µi∈∆(Ai)
min

µ−i∈∆(A−i)
(µi)⊤T i(viT )(s)µ

−i

≤ VvT ,s(π
i
T,K(s), π−i

T,K(s)) + 2γ∥viT + v−i
T ∥∞ + 2τ log(Amax). (33)

The 4th Term on the RHS of Eq. (31). Using the definition of T i(·), we have∣∣∣∣ max
µi∈∆(Ai)

min
µ−i∈∆(A−i)

(µi)⊤T i(viT )(s)µ
−i − max

µi∈∆(Ai)
min

µ−i∈∆(A−i)
(µi)⊤T i(vi∗)(s)µ

−i

∣∣∣∣
≤ max

µi∈∆(Ai)
min

µ−i∈∆(A−i)

∣∣(µi)⊤(T i(viT )(s)− T i(vi∗)(s))µ
−i
∣∣

≤ max
s,ai,a−i

∣∣T i(viT )(s, a
i, a−i)− T i(vi∗)(s, a

i, a−i)
∣∣

≤ γ∥viT − vi∗∥∞.

Finally, using the upper bounds we obtained for all the terms on the RHS of Eq. (31), we have∥∥∥∥v−i
∗ − v−i

π−i
T,K ,∗

∥∥∥∥
∞

≤ γ
∥∥∥vi∗,π−i

T,K

− vi∗

∥∥∥
∞

+ 2γ∥viT + v−i
T ∥∞ + 2γ∥viT − vi∗∥∞

+max
s∈S

VvT ,s(π
i
T,K(s), π−i

T,K(s)) + 2τ log(Amax)

≤ γ∥v−i
∗ − v−i

π−i
T,K ,∗∥∞ + 2∥viT + v−i

T ∥∞ + 2∥viT − vi∗∥∞

+max
s∈S

VvT ,s(π
i
T,K(s), π−i

T,K(s)) + 2τ log(Amax).

Rearranging terms and using Lsum(t) and Lπ(t, k) to simplify the notation, we obtain∥∥∥∥v−i
∗ − v−i

π−i
T,K ,∗

∥∥∥∥
∞

≤ 1

1− γ

(
2Lsum(T ) + 2∥viT − vi∗∥∞ + Lπ(T,K) + 2τ log(Amax)

)
.

Summing up both sides of the previous inequality for i ∈ {1, 2}, we have∑
i=1,2

∥∥∥∥v−i
∗ − v−i

π−i
T,K ,∗

∥∥∥∥
∞

≤ 2

1− γ
(2Lsum(T ) + Lv(T ) + Lπ(T,K) + 2τ log(Amax)) .

Using the previous inequality in Eq. (30), we have the desired result.
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Combining the results in Lemma D.2 and Lemma D.3 in Eq. (28), we have the following result,
which bounds the Nash gap in terms of the Lyapunov functions defined in Appendix D.1.
Lemma D.4. It holds that

NG(π1
T,K , π2

T,K) ≤ 4

1− γ
(2Lsum(T ) + Lv(T ) + Lπ(T,K) + 2τ log(Amax)) .

The next step is to bound the Lyapunov functions, which require us to analyze the outer loop and
inner loop of Algorithm 2.

D.4 Analysis of the Outer Loop: v-Function Update

We first consider Lv(t) and establish a one-step Lyapunov drift inequality for it.
Lemma D.5. It holds for all t ≥ 0 that

Lv(t+ 1) ≤ γLv(t) + 4Lsum(t) + 2L1/2
q (t,K) + 4Lπ(t,K) + 6τ log(Amax). (34)

Proof of Lemma D.5. For i ∈ {1, 2}, using the outer-loop update equation (cf. Algorithm 2 Line 8)
and the fact that Bi(vi∗) = vi∗, we have for any t ≥ 0 and s ∈ S that

vit+1(s)− vi∗(s) = πi
t,K(s)⊤qit,K(s)− vi∗(s)

= Bi(vit)(s)− Bi(vi∗)(s) + πi
t,K(s)⊤qit,K(s)− Bi(vit)(s).

Since the minimax Bellman operator Bi(·) is a γ-contraction mapping with respect to ∥ · ∥∞, we
have from the previous inequality that∣∣vit+1(s)− vi∗(s)

∣∣ ≤ ∣∣Bi(vit)(s)− Bi(vi∗)(s)
∣∣+ ∣∣πi

t,K(s)⊤qit,K(s)− Bi(vit)(s)
∣∣

≤
∥∥Bi(vit)− Bi(vi∗)

∥∥
∞ +

∣∣πi
t,K(s)⊤qit,K(s)− Bi(vit)(s)

∣∣
≤ γ

∥∥vit − vi∗
∥∥
∞ +

∣∣πi
t,K(s)⊤qit,K(s)− Bi(vit)(s)

∣∣ . (35)

It remains to bound the second term on the RHS of Eq. (35). Using the definition of Bi(·), we have∣∣πi
t,K(s)⊤qit,K(s)− Bi(vit)(s)

∣∣
=

∣∣∣∣πi
t,K(s)⊤qit,K(s)− max

µi∈∆(Ai)
min

µ−i∈∆(A−i)
(µi)⊤T i(vit)(s)µ

−i

∣∣∣∣
≤
∣∣∣∣ max
µi∈∆(Ai)

(µi)⊤T i(vit)(s)π
−i
t,K(s)− πi

t,K(s)⊤qit,K(s)

∣∣∣∣
+

∣∣∣∣ max
µi∈∆(Ai)

(µi)⊤T i(vit)(s)π
−i
t,K(s)− max

µi∈∆(Ai)
min

µ−i∈∆(A−i)
(µi)⊤T i(vit)(s)µ

−i

∣∣∣∣
≤ max

µi∈∆(Ai)
(µi − πi

t,K(s))⊤T i(vit)(s)π
−i
t,K(s)

+
∣∣∣(πi

t,K(s))⊤(T i(vit)(s)π
−i
t,K(s)− qit,K(s))

∣∣∣
+

∣∣∣∣ max
µi∈∆(Ai)

(µi)⊤T i(vit)(s)π
−i
t,K(s)− max

µi∈∆(Ai)
min

µ−i∈∆(A−i)
(µi)⊤T i(vit)(s)µ

−i

∣∣∣∣
≤
∥∥∥T i(vit)(s)π

−i
t,K(s)− qit,K(s)

∥∥∥
∞

+ 2Vvt,s(π
1
t,K(s), π2

t,K(s))

+ 2γ∥v1t + v2t ∥∞ + 3τ log(Amax),

where the last line follows from Eq. (33). Using the previous inequality in Eq. (35), we obtain∥∥vit+1 − vi∗
∥∥
∞ ≤ γ

∥∥vit − vi∗
∥∥
∞ +max

s∈S

∥∥∥T i(vit)(s)π
−i
t,K(s)− qit,K(s)

∥∥∥
∞

+ 2max
s∈S

Vvt,s(π
1
t,K(s), π2

t,K(s)) + 2γ∥v1t + v2t ∥∞ + 3τ log(Amax).

Summing up both sides of the previous inequality for i ∈ {1, 2}, we have

Lv(t+ 1) ≤ γLv(t) + 4Lsum(t) + 4Lπ(t,K) + 6τ log(Amax)
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+
∑
i=1,2

max
s∈S

∥∥∥T i(vit)(s)π
−i
t,K(s)− qit,K(s)

∥∥∥
∞

.

To bound the last term on the RHS of the previous inequality, observe that∑
i=1,2

max
s∈S

∥∥∥T i(vit)(s)π
−i
t,K(s)− qit,K(s)

∥∥∥
∞

=
∑
i=1,2

∥∥q̄ik − qit,K
∥∥
∞

≤
∑
i=1,2

∥∥q̄ik − qit,K
∥∥
2

≤
(
2
∑
i=1,2

∥∥q̄ik − qit,K
∥∥2
2

)1/2

(a2 + b2 ≥ 2ab)

≤ 2L1/2
q (t,K). (36)

Therefore, we have
Lv(t+ 1) ≤ γLv(t) + 4Lsum(t) + 2L1/2

q (t,K) + 4Lπ(t,K) + 6τ log(Amax).

The proof is complete.

We next establish a one-step Lyapunov drift inequality for Lsum(t) in the following lemma.

Lemma D.6. It holds for all t ≥ 0 that Lsum(t+ 1) ≤ γLsum(t) + 2L1/2
q (t,K).

Proof of Lemma D.6. Using the outer-loop update equation (cf. Algorithm 2 Line 8), we have for
any t ≥ 0 and s ∈ S that∣∣v1t+1(s) + v2t+1(s)

∣∣ =
∣∣∣∣∣∣
∑
i=1,2

πi
t,K(s)⊤qit,K(s)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
i=1,2

πi
t,K(s)⊤(qit,K(s)− T i(vit)(s)π

−i
t,K(s))

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
i=1,2

πi
t,K(s)T i(vit)(s)π

−i
t,K(s)

∣∣∣∣∣∣
≤
∑
i=1,2

max
s∈S

∥qit,K(s)− T i(vit)(s)π
−i
t,K(s)∥∞

+
∑
i=1,2

max
(s,ai,a−i)

∣∣T i(vit)(s, a
i, a−i) + T −i(v−i

t )(s, ai, a−i)
∣∣

≤
∑
i=1,2

max
s∈S

∥qit,K(s)− T i(vit)(s)π
−i
t,K(s)∥∞ + γ∥v1t + v2t ∥∞,

where the last line follows from the definition of T i(·). Since the RHS of the previous inequality
does not depend on s, we have

∥v1t+1 + v2t+1∥∞ ≤ γ∥v1t + v2t ∥∞ +
∑
i=1,2

max
s∈S

∥qit,K(s)− T i(vit)(s)π
−i
t,K(s)∥∞.

The result follows from using Eq. (36) to bound the last term on the RHS of the previous inequality
and then using Lsum(t) and Lq(t, k) to simplify the notation.

D.5 Analysis of the Inner Loop

In this section, we establish negative drift inequalities for the Lyapunov functions Lq(t, k) and
Lπ(t, k), which are defined in terms of the q-functions and the policies updated in the inner loop
of Algorithm 2. For ease of presentation, we write down only the inner loop of Algorithm 2 in
Algorithm 3, where we omit the subscript t, which is used as the index for the outer loop. Similarly,
we will write Lq(k) for Lq(t, k) and Lπ(k) for Lπ(t, k). All results derived for the q-functions and
policies of Algorithm 3 can be directly combined with the analysis of outer loop of Algorithm 2 using
a conditioning argument together with the Markov property.
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Algorithm 3 Inner Loop of Algorithm 2: from Player i’s Perspective
1: Input: Integer K, initializations qi0 and πi

0, and a v-function vi from the outer loop. Note that
we have ∥qi0∥∞ ≤ 1

1−γ , ∥vi∥∞ ≤ 1
1−γ , and mins,ai πi

0(a
i | s) ≥ ℓτ due to Lemma D.1.

2: for k = 0, 1, · · · ,K − 1 do
3: πi

k+1(s) = πi
k(s) + βk(στ (q

i
k(s))− πi

k(s)) for all s ∈ S
4: Sample Ai

k ∼ πi
k+1(· | Sk), and observe Sk+1 ∼ p(· | Sk, A

i
k, A

−i
k )

5: qik+1(s, a
i)=qik(s, a

i)+αk1{(Sk,Ai
k)=(s,ai)}

(
Ri(Sk, A

i
k, A

−i
k ) + γvi(Sk+1)− qik(Sk, A

i
k)
)

for all (s, ai) ∈ S ×Ai

6: end for
7: Output: qiK and πi

K

D.5.1 Analysis of the Policies

We consider {(π1
k, π

2
k)}k≥0 generated by Algorithm 3 and use VX(·, ·) defined in Appendix D.1

as the Lyapunov function to study them. For simplicity of notation, we use ∇1VX(·, ·) (respec-
tively, ∇2VX(·, ·)) to denote the gradient with respect to the first argument (respectively, the sec-
ond argument). Recall that Lemma D.1 implies that πk = (π1

k, π
2
k) ∈ Πτ for all k ≥ 0, where

Πτ = {(π1, π2) ∈ ∆(A1) × ∆(A2) | mina1∈A1 π1(a1) ≥ ℓτ ,mina2∈A2 π2(a2) ≥ ℓτ}. The
following lemma establishes the properties of VX(·, ·).
Lemma D.7. The function VX(·, ·) has the following properties.

(1) For i ∈ {1, 2}, fix µ−i ∈ ∆(A−i), the function VX(µi, µ−i) as a function of µi is τ – strongly
convex with respect to ∥ · ∥2.

(2) VX(·, ·) is L̃τ – smooth on Πτ , where L̃τ = 2
(

τ
ℓτ

+
max(∥X1∥2

2,∥X2∥2
2)

τ + ∥X1 +X⊤
2 ∥2

)
.

(3) It holds for any (µ1, µ2) ∈ ∆(A1)×∆(A2) that

⟨∇1VX(µ1, µ2), στ (X1µ
2)− µ1⟩+ ⟨∇2VX(µ1, µ2), στ (X2µ

1)− µ2⟩

≤ − 7

8
VX(µ1, µ2) +

16

τ
∥X1 +X⊤

2 ∥22.

(4) For any u1 ∈ R|A1| and u2 ∈ R|A2|, we have for all (µ1, µ2) ∈ Πτ that

⟨∇1VX(µ1, µ2), στ (u
1)− στ (X1µ

2)⟩+ ⟨∇2VX(µ1, µ2), στ (u
2)− στ (X2µ

1)⟩

≤ 1

8
VX(µ1, µ2) +

8

τ

(
1

ℓτ
+

max(∥X1∥2, ∥X2∥2)
τ

)2 ∑
i=1,2

∥ui −Xiµ
−i∥22.

Proof of Lemma D.7. To begin with, we have by Danskin’s theorem [95] that

∇1VX(µ1, µ2) = − (X1 +X⊤
2 )µ2 − τ∇ν(µ1) +X⊤

2 στ (X2µ
1). (37)

Similar result holds for ∇2VX(µ1, µ2).

(1) It is clear that the function VX(·, ·) is non-negative. The strong convexity follows from the
following two observations.

(i) The negative entropy −ν(·) is 1 – strongly convex with respect to ∥ · ∥2 [97, Example
5.27].

(ii) Given i ∈ {1, 2}, the function maxµ̂−i∈∆(A−i)

{
(µ̂−i)⊤X−iµ

i + τν(µ̂−i)
}

as a function
of µi is the maximum of linear functions in µi, and therefore is convex.

It follows that, for any i ∈ {1, 2}, the function VX(µ1, µ2) is τ – strongly convex in µi with
respect to ∥ · ∥2 uniformly for all µ−i.
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(2) For any (µ1, µ2), (µ̄1, µ̄2) ∈ Πτ , we have by Eq. (37) that∥∥∇1VX(µ1, µ2)−∇1VX(µ̄1, µ̄2)
∥∥
2

=
∥∥(X1 +X⊤

2 )(µ2 − µ̄2) + τ(∇ν(µ1)−∇ν(µ̄1)) +X⊤
2 (στ (X2µ̄

1)− στ (X2µ
1))
∥∥
2

≤ ∥X1 +X⊤
2 ∥2∥µ2 − µ̄2∥2 +

(
τ

ℓτ
+

∥X2∥22
τ

)∥∥µ̄1 − µ1
∥∥
2

(38)

where Eq. (38) follows from Lemma C.5 and the Lipschitz continuity of στ (·) [96]. Similarly,
we also have ∥∥∇2VX(µ1, µ2)−∇2VX(µ̄1, µ̄2)

∥∥
2

≤ ∥X2 +X⊤
1 ∥2∥µ1 − µ̄1∥2 +

(
τ

ℓτ
+

∥X1∥22
τ

)∥∥µ̄2 − µ2
∥∥
2
.

Using the previous 2 inequalities, we have the following result for the full gradient of VX(·, ·):∥∥∇VX(µ1, µ2)−∇VX(µ̄1, µ̄2)
∥∥2
2

=
∥∥∇1VX(µ1, µ2)−∇1VX(µ̄1, µ̄2)

∥∥2
2
+
∥∥∇2VX(µ1, µ2)−∇2VX(µ̄1, µ̄2)

∥∥2
2

≤
∑
i=1,2

[
2

(
τ

ℓτ
+

∥X−i∥22
τ

)2 ∥∥µ̄i − µi
∥∥2
2
+ 2∥Xi +X⊤

−i∥22∥µ−i − µ̄−i∥22

]
((a+ b)2 ≤ 2a2 + 2b2)

≤ 2

[(
τ

ℓτ
+

max(∥X1∥22, ∥X2∥22)
τ

)2

+ ∥X1 +X⊤
2 ∥22

] ∑
i=1,2

∥µ̄i − µi∥22.

The previous inequality implies that VX(·, ·) is an L̃τ -smooth function on Πτ [97], where

L̃τ = 2

(
τ

ℓτ
+

max(∥X1∥22, ∥X2∥22)
τ

+ ∥X1 +X⊤
2 ∥2

)
.

(3) Using the formula for the gradient of VX(·, ·) in Eq. (37), we have

⟨∇1VX(µ1, µ2), στ (X1µ
2)− µ1⟩

= ⟨−(X1 +X⊤
2 )µ2 − τ∇ν(µ1) +X⊤

2 στ (X2µ
1), στ (X1µ

2)− µ1⟩
= ⟨−(X1 +X⊤

2 )µ2 − τ∇ν(µ1) +X⊤
2 στ (X2µ

1), στ (X1µ
2)− µ1⟩

+ ⟨X1µ
2 + τ∇ν(στ (X1µ

2)), στ (X1µ
2)− µ1⟩ (39)

= τ⟨∇ν(στ (X1µ
2))−∇ν(µ1), στ (X1µ

2)− µ1⟩
+ (στ (X2µ

1)− µ2)⊤X2(στ (X1µ
2)− µ1),

where Eq. (39) is due to the first order optimality condition X1µ
2+τ∇ν(στ (X1µ

2)) = 0. To pro-
ceed, observe that the concavity of ν(·) and the optimality condition X1µ

2+τ∇ν(στ (X1µ
2)) =

0 together imply that

⟨∇ν(στ (X1µ
2))−∇ν(µ1), στ (X1µ

2)− µ1⟩
= ⟨∇ν(µ1)−∇ν(στ (X1µ

2)), µ1 − στ (X1µ
2)⟩

= ⟨∇ν(µ1), µ1 − στ (X1µ
2)⟩ − ⟨∇ν(στ (X1µ

2)), µ1 − στ (X1µ
2)⟩

≤ ν(µ1)− ν(στ (X1µ
2))− ⟨∇ν(στ (X1µ

2)), µ1 − στ (X1µ
2)⟩ (Concavity of ν(·))

= ν(µ1)− ν(στ (X1µ
2)) +

1

τ
⟨X1µ

2, µ1 − στ (X1µ
2)⟩

=
1

τ

[
(µ1)⊤X1µ

2 + τν(µ1)− max
µ̂1∈∆(A1)

{
(µ̂1)⊤X1µ

2 + τν(µ̂1)
}]

.

Therefore, we have from the previous 2 inequalities that

⟨∇1VX(µ1, µ2), στ (X1µ
2)− µ1⟩
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≤ (µ1)⊤X1µ
2 + τν(µ1)− max

µ̂1∈∆(A1)

{
(µ̂1)⊤X1µ

2 + τν(µ̂1)
}

+ (στ (X2µ
1)− µ2)⊤X2(στ (Xiµ

2)− µ1).

Similarly, we also have

⟨∇2VX(µ1, µ2), στ (X2µ
1)− µ2⟩

≤ (µ2)⊤X2µ
1 + τν(µ2)− max

µ̂2∈∆(A2)

{
(µ̂2)⊤X2µ

1 + τν(µ̂2)
}

+ (στ (X1µ
2)− µ1)⊤X1(στ (X2µ

1)− µ2).

Adding up the previous 2 inequalities, we obtain

⟨∇1VX(µ1, µ2), στ (X1µ
2)− µ1⟩+ ⟨∇2VX(µ1, µ2), στ (X2µ

1)− µ2⟩
≤ − VX(µ1, µ2) + (στ (X1µ

2)− µ1)⊤(X1 +X⊤
2 )(στ (X2µ

1)− µ2)

≤ − VX(µ1, µ2) + ∥στ (X1µ
2)− µ1∥2∥X1 +X⊤

2 ∥2∥στ (X2µ
1)− µ2∥2

≤ − VX(µ1, µ2) + 2∥στ (X1µ
2)− µ1∥2∥X1 +X⊤

2 ∥2, (40)

where the last line follows from ∥στ (X2µ
1) − µ2∥2 ≤ ∥στ (X2µ

1)∥1 + ∥µ2∥1 ≤ 2. Using
Lemma D.7 (1) together with the quadratic growth property of strongly convex functions, we
have

∥στ (X1µ
2)− µ1∥2 ≤

√
2√
τ
VX(µ1, µ2)1/2.

It follows that

⟨∇1VX(µ1, µ2), στ (X1µ
2)− µ1⟩+ ⟨∇2VX(µ1, µ2), στ (X2µ

1)− µ2⟩
≤ − VX(µ1, µ2) + 2∥στ (X1µ

2)− µ1)∥2∥X1 +X⊤
2 ∥2

≤ − VX(µ1, µ2) +
2
√
2√
τ
VX(µ1, µ2)1/2∥X1 +X⊤

2 ∥2

≤ − 7

8
VX(µ1, µ2) +

16

τ
∥X1 +X⊤

2 ∥22,

where the last line follows from a2 + b2 ≥ 2ab.

(4) For any u1 ∈ R|A1|, using the formula of the gradient of VX(·, ·) from Eq. (37), we have

⟨∇1VX(µ1, µ2), στ (u
1)− στ (X1µ

2)⟩
= ⟨−(X1 +X⊤

2 )µ2 − τ∇ν(µ1) +X⊤
2 στ (X2µ

1), στ (u
1)− στ (X1µ

2)⟩
= ⟨−(X1 +X⊤

2 )µ2 − τ∇ν(µ1) +X⊤
2 στ (X2µ

1), στ (u
1)− στ (X1µ

2)⟩
+ ⟨X1µ

2 + τ∇ν(στ (X1µ
2)), στ (u

1)− στ (X1µ
2)⟩ (First order optimality condition)

= τ⟨∇ν(στ (X1µ
2))−∇ν(µ1), στ (u

1)− στ (X1µ
2)⟩

+ (στ (X2µ
1)− µ2)⊤X2(στ (u

1)− στ (X1µ
2))

≤
(
τ∥∇ν(στ (X1µ

2))−∇ν(µ1)∥2 + ∥στ (X2µ
1)− µ2∥2∥X2∥2

)
∥στ (u

1)− στ (X1µ
2)∥2

≤
(

τ

ℓτ
∥στ (X1µ

2)− µ1∥2 + ∥στ (X2µ
1)− µ2∥2∥X2∥2

)
1

τ
∥u1 −X1µ

2∥2

≤
√
2√
τ

(
1

ℓτ
+

∥X2∥2
τ

)
VX(µ1, µ2)1/2∥u1 −X1µ

2∥2

≤ 1

16
VX(µ1, µ2) +

8

τ

(
1

ℓτ
+

∥X2∥2
τ

)2

∥u1 −X1µ
2∥22,

where the third last inequality follows from the 1
ℓτ

-smoothness of ν(·) on Πτ , the second last
inequality follows from Lemma D.7 (1) together with the quadratic growth property of strongly
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convex functions, and the last inequality follows from a2 + b2 ≥ 2ab. Similarly, we also have
for any u2 ∈ R|A2| that

⟨∇2VX(µ1, µ2), στ (u
2)− στ (X2µ

1)⟩

≤ 1

16
VX(µ1, µ2) +

8

τ

(
1

ℓτ
+

∥X1∥2
τ

)2

∥u2 −X2µ
1∥22.

Adding up the previous two inequalities, we obtain

⟨∇1VX(µ1, µ2), στ (u
1)− στ (X1µ

2)⟩+ ⟨∇2VX(µ1, µ2), στ (u
2)− στ (X2µ

1)⟩

≤ 1

8
VX(µ1, µ2) +

8

τ

(
1

ℓτ
+

max(∥X1∥2, ∥X2∥2)
τ

)2 ∑
i=1,2

∥ui −Xiµ
−i∥22.

The proof is complete.

With the properties of VX(·, ·) established in Lemma D.7, we now use it as a Lyapunov function to
study (π1

k, π
2
k) generated by Algorithm 3. Specifically, using the smoothness of VX(·, ·) (cf. Lemma

D.7 (2)), the update equation in Algorithm 3 Line 3, and Lemma D.7 (3) and (4), we have the desired
one-step Lyapunov drift inequality for Lπ(k), which is presented in the following.
Lemma D.8. The following inequality holds for all k ≥ 0:

Lπ(k + 1) ≤
(
1− 3βk

4

)
Lπ(k) +

16A2
maxβk

τ
∥v1 + v2∥2∞

+
32A2

maxβk

τ3ℓ2τ (1− γ)2
Lq(k) + 2Lτβ

2
k.

Proof of Lemma D.8. We will use Vv,s(·, ·) (see Lemma D.1) as the Lyapunov function to study the
evolution of (π1

k(s), π
2
k(s)). To begin with, we identify the smoothness parameter of Vv,s(·, ·). Using

Lemma D.7 (1) and the definition of Vv,s(·, ·), we have

L̃τ = 2

(
τ

ℓτ
+

max(∥X1∥22, ∥X2∥22)
τ

+ ∥X1 +X⊤
2 ∥2

)
= 2

(
τ

ℓτ
+

max(∥T 1(v1)(s)∥22, ∥T 2(v2)(s)∥22)
τ

+ ∥T 1(v1)(s) + T 2(v2)(s)⊤∥2
)

≤ 2

(
τ

ℓτ
+

A2
max

τ(1− γ)2
+

2Amax

1− γ

)
(This follows from |T i(vi)(s, ai, a−i)| ≤ 1

1−γ , ∀ (s, ai, a−i) and i ∈ {1, 2}.)

:= Lτ .

Therefore, Vv,s(·, ·) is an Lτ – smooth function on Πτ . Using the smoothness of Vv,s(·, ·), for any
s ∈ S, we have by the policy update equation (cf. Algorithm 3 Line 3) that

Vv,s(π
1
k+1(s), π

2
k+1(s))

≤ Vv,s(π
1
k(s), π

2
k(s)) + βk⟨∇2Vv,s(π

1
k(s), π

2
k(s)), στ (q

2
k(s))− π2

k(s)⟩

+ βk⟨∇1Vv,s(π
1
k(s), π

2
k(s)), στ (q

1
k(s))− π1

k(s)⟩+
Lτβ

2
k

2

∑
i=1,2

∥στ (q
1
k(s))− π1

k(s)∥22

≤ Vv,s(π
1
k(s), π

2
k(s)) + βk⟨∇2Vv,s(π

1
k(s), π

2
k(s)), στ (T 2(v2)(s)π1

k(s))− π2
k(s)⟩

+ βk⟨∇1Vv,s(π
1
k(s), π

2
k+1(s)), στ (T 1(v1)(s)π2

k(s))− π1
k(s)⟩

+ βk⟨∇2Vv,s(π
1
k(s), π

2
k(s)), στ (q

2
k(s))− στ (T 2(v2)(s)π1

k(s))⟩
+ βk⟨∇1Vv,s(π

1
k(s), π

2
k+1(s)), στ (q

1
k(s))− στ (T 1(v1)(s)π2

k(s))⟩+ 2Lτβ
2
k

≤
(
1− 3βk

4

)
Vv,s(π

1
k(s), π

2
k(s)) +

16βk

τ
∥T 1(v1)(s) + T 2(v2)(s)⊤∥22
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+
8βk

τ

(
1

ℓτ
+

maxi∈{1,2} ∥T i(vi)(s)∥2
τ

)2 ∑
i=1,2

∥qik(s)− T i(vi)(s)π2
k(s)∥22 + 2Lτβ

2
k.

where the last line follows from Lemma D.7 (3) and (4). Since maxi∈{1,2} ∥T i(vi)(s)∥2 ≤ Amax

1−γ

and

∥T 1(v1)(s) + T 2(v2)(s)⊤∥22 ≤ A2
max∥v1 + v2∥2∞,

we have

Vv,s(π
1
k+1(s), π

2
k+1(s))

≤
(
1− 3βk

4

)
Vv,s(π

1
k(s), π

2
k(s)) +

16βkA
2
max

τ
∥v1 + v2∥2∞

+
8βk

τ

(
1

ℓτ
+

Amax

τ(1− γ)

)2 ∑
i=1,2

∥qik(s)− T i(vi)(s)π2
k(s)∥22 + 2Lτβ

2
k

≤
(
1− 3βk

4

)
max
s∈S

Vv,s(π
1
k(s), π

2
k(s)) +

16βkA
2
max

τ
∥v1 + v2∥2∞

+
8βk

τ

(
1

ℓτ
+

Amax

τ(1− γ)

)2 ∑
i=1,2

∑
s∈S

∥qik(s)− T i(vi)(s)π2
k(s)∥22 + 2Lτβ

2
k

=

(
1− 3βk

4

)
Lπ(k) +

16βkA
2
max

τ
∥v1 + v2∥2∞ +

8βk

τ

(
1

ℓτ
+

Amax

τ(1− γ)

)2

Lq(k) + 2Lτβ
2
k.

Since the RHS of the previous inequality does not depend on s, we have

Lπ(k + 1) ≤
(
1− 3βk

4

)
Lπ(k) +

16βkA
2
max

τ
∥v1 + v2∥2∞

+
8βk

τ

(
1

ℓτ
+

Amax

τ(1− γ)

)2

Lq(k) + 2Lτβ
2
k

≤
(
1− 3βk

4

)
Lπ(k) +

16βkA
2
max

τ
∥v1 + v2∥2∞

+
32A2

maxβk

τ3ℓ2τ (1− γ)2
Lq(k) + 2Lτβ

2
k,

where the last line follows from τ ≤ 1/(1− γ).

D.5.2 Analysis of the q-Functions

In this section, we consider qik generated by Algorithm 3. We begin by reformulating the update
of the q-function as a stochastic approximation algorithm for estimating a time-varying target. For
i ∈ {1, 2}, fixing vi ∈ R|S|, let F i : R|S||Ai| × S ×Ai ×A−i × S 7→ R|S||Ai| be defined as

[F i(qi, s0, a
i
0, a

−i
0 , s1)](s, a

i) = 1{(s,ai)=(s0,ai
0)}
(
Ri(s0, a

i
0, a

−i
0 ) + γvi(s1)− qi(s0, a

i
0)
)

for all (qi, s0, ai0, a
−i
0 , s1) and (s, ai). Then Algorithm 3 Line 5 can be compactly written as

qik+1 = qik + αkF
i(qik, Sk, A

i
k, A

−i
k , Sk+1). (41)

Denote the stationary distribution of the Markov chain {Sk} induced by the joint policy πk = (π1
k, π

2
k)

by µk ∈ ∆(S), the existence and uniqueness of which is guaranteed by Lemma D.1 and Lemma B.1
(1). Let F̄ i

k : R|S||Ai| 7→ R|S||Ai| be defined as

F̄ i
k(q

i) = ES0∼µk(·),Ai
0∼πi

k(·|S0),A
−i
0 ∼π−i

k (·|S0),S1∼p(·|S0,Ai
0,A

−i
0 )

[
F i(qi, S0, A

i
0, A

−i
0 , S1)

]
for all qi ∈ R|S||Ai|. Then, Eq. (41) can be viewed as a stochastic approximation algorithm
for solving the (time-varying) equation F̄ i

k(q
i) = 0 with time-inhomogeneous Markovian noise

{(Sk, A
i
k, A

−i
k , Sk+1)}k≥0. We next establish the properties of the operators F i(·) and F̄ i

k(·) in the
following lemma.
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Lemma D.9. The following properties hold for i ∈ {1, 2}.

(1) It holds that ∥F i(qi1, s0, a
i
0, a

−i
0 , s1) − F i(qi2, s0, a

i
0, a

−i
0 , s1)∥2 ≤ ∥qi1 − qi2∥2 for any (qi1, q

i
2)

and (s0, a
i
0, a

−i
0 , s1).

(2) It holds that ∥F i(0, s0, a
i
0, a

−i
0 , s1)∥2 ≤ 1

1−γ for all (s0, ai0, a
−i
0 , s1).

(3) F̄ i
k(q

i) = 0 has a unique solution q̄ik, which is given as q̄ik(s) = T i(vi)(s)π−i
k (s) for all s.

(4) It holds that ⟨F̄ i
k(q

i
1)− F̄ i

k(q
i
2), q

i
1 − qi2⟩ ≤ −cτ∥qi1 − qi2∥22 for all (qi1, q

i
2), where cτ = µminℓτ .

See Lemma B.1 for the definition of µmin.

Proof of Lemma D.9. (1) For any (qi1, q
i
2) and (s0, a

i
0, a

−i
0 , s1), we have

∥F i(qi1, s0, a
i
0, a

−i
0 , s1)− F i(qi2, s0, a

i
0, a

−i
0 , s1)∥22

=
∑
(s,ai)

([F i(qi1, s0, a
i
0, a

−i
0 , s1)](s, a

i)− [F i(qi2, s0, a
i
0, a

−i
0 , s1)](s, a

i))2

=
(
qi1(s0, a

i
0)− qi2(s0, a

i
0)
)2

≤ ∥qi1 − qi2∥22.

(2) For any (s0, a
i
0, a

−i
0 , s1), we have

∥F i(0, s0, a
i
0, a

−i
0 , s1)∥22 =

∑
(s,ai)

([F i(0, s0, a
i
0, a

−i
0 , s1)](s, a

i))2

=
(
Ri(s0, a

i
0, a

−i
0 ) + γvi(s1)

)2
≤ 1

(1− γ)2
,

where the last line follows from ∥vi∥∞ ≤ 1/(1− γ) and |Ri(s0, a
i
0, a

−i
0 )| ≤ 1.

(3) We first write down the explicitly the operator F̄ i
k(·). Using the definition of T i(·), we have

F̄ i
k(q

i)(s) = µk(s)diag(πi
k(s))

(
T i(vi)(s)π−i

k (s)− qi(s)
)
, ∀ s ∈ S,

Since µk(s) ≥ µmin > 0 (cf. Lemma B.1 (4)) and diag(πi
k(s)) has strictly positive diagonal

entries (cf. Lemma D.1) for all s ∈ S and k ≥ 0 , the equation F̄ i
k(q

i) = 0 has a unique solution
q̄ik ∈ R|S||Ai|, which is given as

q̄ik(s) = T i(vi)(s)π−i
k (s), ∀ s ∈ S.

(4) Using the expression of F̄ i
k(·), we have for any qi1, q

i
2 ∈ R|S||Ai| that

(qi1 − qi2)
⊤(F̄ i

k(q
i
1)− F̄ i

k(q
i
2)) = −

∑
s,ai

µk(s)π
i
k(a

i|s)(qi1(s, ai)− qi2(s, a
i))2

≤ −min
s,ai

µk(s)π
i
k(a

i|s)∥qi1 − qi2∥22

≤ − µminℓτ∥qi1 − qi2∥22 (Lemma B.1 and Lemma D.1)

= − cτ∥qi1 − qi2∥22.

The proof is complete.

Next, we establish a negative drift inequality for Lq(k). Using ∥ · ∥22 as a Lyapunov function, we have
by Eq. (41) that

E[∥qik+1 − q̄ik+1∥22] = E[∥qik+1 − qik + qik − q̄ik + q̄ik − q̄ik+1∥22]

41



= E[∥qik − q̄ik∥22] + E[∥qik+1 − qik∥22] + E[∥q̄ik − q̄ik+1∥22]
+ 2αkE[(qik − q̄ik)

⊤F̄ i
k(q

i
k)]

+ 2αkE[(F i(qik, Sk, A
i
k, A

−i
k , Sk+1)− F̄ i

k(q
i
k))

⊤(qik − q̄ik)]

+ 2E[(q̄ik − q̄ik+1)
⊤(qik+1 − qik)]

+ 2E[(qik − q̄ik)
⊤(q̄ik − q̄ik+1)]

≤ (1− 2αkcτ )E[∥qik − q̄ik∥22] + E[∥qik+1 − qik∥22] + E[∥q̄ik − q̄ik+1∥22]
+ 2E[(q̄ik − q̄ik+1)

⊤(qik+1 − qik)]

+ 2E[(qik − q̄ik)
⊤(q̄ik − q̄ik+1)]

+ 2αkE[(F i(qik, Sk, A
i
k, A

−i
k , Sk+1)− F̄ i

k(q
i
k))

⊤(qik − q̄ik)] (42)

where the last line follows from Lemma D.9 (4). The terms E[∥qik+1 − qik∥22], E[∥q̄ik − q̄ik+1∥22],
E[(q̄ik − q̄ik+1)

⊤(qik+1 − qik)], E[(qik − q̄ik)
⊤(q̄ik − q̄ik+1)] on the RHS of Eq. (42) are bounded in the

following lemma.

Lemma D.10. The following inequalities hold for all k ≥ 0.

(1) E[∥qik+1 − qik∥22] ≤
4|S|Amaxα

2
k

(1−γ)2 .

(2) E[∥q̄ik − q̄ik+1∥22] ≤
4|S|Amaxβ

2
k

(1−γ)2 .

(3) E[⟨qik+1 − qik, q̄
i
k − q̄ik+1⟩] ≤

4|S|Amaxαkβk

(1−γ)2 .

(4) E[⟨qik − q̄ik, q̄
i
k − q̄ik+1⟩] ≤

17|S|A2
maxβk

τ(1−γ)2 E[∥qik − q̄ik∥22] +
βk

16E[Lπ(k)].

Proof of Lemma D.10. (1) For any k ≥ 0, using Eq. (41) and Lemma D.9 (1), we have

∥qik+1 − qik∥22 = α2
k∥F i(qik, Sk, A

i
k, A

−i
k , Sk+1)∥22

= α2
k∥F i(qik, Sk, A

i
k, A

−i
k , Sk+1)− F i(0, Sk, A

i
k, A

−i
k , Sk+1)

+ F i(0, Sk, A
i
k, A

−i
k , Sk+1)∥22

≤ α2
k

(
∥qik∥2 +

1

1− γ

)2

≤ α2
k

(√
|S|Amax

1− γ
+

1

1− γ

)2

(∥qik∥∞ ≤ 1
1−γ by Lemma D.1)

≤ 4|S|Amaxα
2
k

(1− γ)2
.

The result follows by taking expectation on both sides of the previous inequality.

(2) For any k ≥ 0, using the definition of q̄k in Appendix D.1, we have by Lemma D.9 that

∥q̄ik − q̄ik+1∥22 =
∑
s

∥T i(vi)(s)(π−i
k+1(s)− π−i

k (s))∥22

= β2
k

∑
s

∥T i(vi)(s)(στ (q
−i
k (s))− π−i

k (s))∥22

≤ β2
k

∑
s

(∥T i(vi)(s)στ (q
−i
k (s))∥2 + ∥T i(vi)(s)π−i

k (s)∥2)2

≤ 4|S|Amaxβ
2
k

(1− γ)2
.

The result follows by taking expectation on both sides of the previous inequality.
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(3) For any k ≥ 0, we have

⟨qik+1 − qik, q̄
i
k − q̄ik+1⟩ ≤ ∥qik+1 − qik∥2∥q̄ik − q̄ik+1∥2 ≤ 4|S|Amaxαkβk

(1− γ)2
,

where the last inequality follows from Part (1) and Part (2) of this lemma. The result follows by
taking expectation on both sides of the previous inequality.

(4) For any k ≥ 0, we have

⟨qik − q̄ik, q̄
i
k − q̄ik+1⟩

= βk

∑
s

⟨qik(s)− q̄ik(s), T i(vi)(s)(στ (q
−i
k (s))− π−i

k (s))⟩

≤ c1βk∥qik − q̄ik∥22
2

+
βk

∑
s ∥T i(vi)(s)(στ (q

−i
k (s))− π−i

k (s))∥22
2c1

, (43)

where c1 > 0 is an arbitrary positive real number. We next bound the second term on the RHS of
the previous inequality. For any s ∈ S, we have

∥T i(vi)(s)(στ (q
−i
k (s))− π−i

k (s))∥2
= ∥T i(vi)(s)(στ (q

−i
k (s))− στ (q̄

−i
k (s)) + στ (T −i(v−i)(s)πi

k(s))− π−i
k (s))∥2

≤ ∥T i(vi)(s)(στ (q
−i
k (s))− στ (q̄

−i
k (s)))∥2︸ ︷︷ ︸

B1

+ ∥T i(vi)(s)(στ (T −i(v−i)(s)πi
k(s))− π−i

k (s))∥2︸ ︷︷ ︸
B2

.

Since the softmax operator στ (·) is 1
τ – Lipschitz continuous with respect to ∥·∥2 [96, Proposition

4], we have

B1 ≤ ∥T i(vi)(s)∥2∥στ (q
−i
k (s))− στ (q̄

−i
k (s))∥2

≤ Amax

τ(1− γ)
∥q−i

k (s)− q̄−i
k (s)∥2.

We next analyze the term B2. Using Lemma D.7 (1) and the quadratic growth property of strongly
convex functions, we have

B2 = ∥T i(vi)(s)(στ (T −i(v−i)(s)πi
k(s))− π−i

k (s))∥2
≤ ∥T i(vi)(s)∥2∥στ (T −i(v−i)(s)πi

k(s))− π−i
k (s)∥2

≤
√
2Amax√
τ(1− γ)

Vv,s(π
1
k(s), π

2
k(s))

1/2.

Combine the upper bounds we obtained for the terms B1 and B2, we obtain∑
s

∥T i(vi)(s)(στ (q
−i
k (s))− π−i

k (s))∥22

≤
∑
s

(B1 +B2)
2

≤ 2
∑
s

(B2
1 +B2

2)

≤ 2
∑
s

(
A2

max

τ2(1− γ)2
∥q−i

k (s))− q̄−i
k (s)∥22 +

2A2
max

τ(1− γ)2
Vv,s(π

1
k(s), π

2
k(s))

)
≤ 2A2

max

τ2(1− γ)2
∥q−i

k − q̄−i
k ∥22 +

4|S|A2
max

τ(1− γ)2
Lπ(k).

Coming back to Eq. (43), using the previous inequality, we have

⟨qik − q̄ik, q̄
i
k − q̄ik+1⟩
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≤ c1βk∥qik − q̄ik∥22
2

+
βk

∑
s ∥T i(vi)(s)(στ (q

−i
k (s))− π−i

k (s))∥22
2c1

≤ c1βk∥qik − q̄ik∥22
2

+
A2

maxβk

c1τ2(1− γ)2
∥q−i

k − q̄−i
k ∥22 +

2|S|A2
maxβk

c1τ(1− γ)2
Lπ(k).

Choosing c1 =
32|S|A2

max

τ(1−γ)2 in the previous inequality and then taking expectation on both sides,
we obtain

E[⟨qik − q̄ik, q̄
i
k − q̄ik+1⟩] ≤

17|S|A2
maxβk

τ(1− γ)2
E[∥qik − q̄ik∥22] +

βk

16
E[Lπ(k)].

The proof is complete.

We next consider the last term on the RHS of Eq. (42), which involves the difference between
the operator F i(qik, Sk, A

i
k, A

−i
k , Sk+1) and its expected version F̄ i

k(q
i
k), and hence can be viewed

as the stochastic error due to sampling. The fact that the Markov chain {(Sk, A
i
k, A

−i
k , Sk+1)} is

time-inhomogeneous presents a challenge in our analysis. To overcome this challenge, observe that:
(1) the policy (hence the transition probability matrix of the induced Markov chain) is changing
slowly compared to the q-function; see Algorithm 3 Line 3, and (2) the stationary distribution as
a function of the policy is Lipschitz (cf. Lemma B.1 (3)). These two observations together enable
us to develop a refined conditioning argument to handle the time-inhomogeneous Markovian noise.
The result is presented in following. Similar ideas were previous used in [23, 24, 65, 41, 76] for
finite-sample analysis of single-agent RL algorithms. Recall that we use αk1,k2

=
∑k2

k=k1
αk to

simplify the notation.

Lemma D.11 (Proof in Appendix D.7.2). The following inequality holds for all k ≥ zk :

E[(F i(qik, Sk, A
i
k, A

−i
k , Sk+1)− F̄ i

k(q
i
k))

⊤(qik − q̄ik)] ≤
17zkαk−zk,k−1

(1− γ)2
,

where zk is the mixing time of the Markov chain {Sn}n≥0 induced by the joint policy πk = (π1
k, π

2
k)

with accuracy βk; see Eq. (11).

When using constant stepsize, we have zkαk−zk,k−1 = z2βα = O(α log2(1/β)). Since the two
stepsizes α and β differ only by a multiplicative constant cα,β , we have limα→0 z

2
βα = 0. Similarly,

we also have limk→∞ zkαk−zk,k−1 = 0 when using diminishing stepsizes.

Using the upper bounds we obtained for all the terms on the RHS of Eq. (42), we have the one-step
Lyapunov drift inequality for qik. Following the same line of analysis, we also obtain the one-step
inequality for q−i

k . Adding up the two Lyapunov drift inequalities, we arrive at the following lemma.

Lemma D.12. The following inequality holds for all k ≥ zk and i ∈ {1, 2}:

E[Lq(k + 1)] ≤ (1− αkcτ )E[Lq(k)] +
βk

4
E[Lπ(k)] +

100|S|Amax

(1− γ)2
zkαkαk−zk,k−1.

Proof of Lemma D.12. For i ∈ {1, 2}, we have from Eq. (42), Lemma D.10, and Lemma D.11 that

E[∥qik+1 − q̄ik+1∥22] ≤ (1− 2αkcτ )E[∥qik − q̄ik∥22] +
4|S|Amax

(1− γ)2
(α2

k + 2αkβk + β2
k)

+
34|S|A2

maxβk

τ(1− γ)2
E[∥qik − q̄ik∥22] +

βk

8
E[Lπ(k)] +

34zkαkαk−zk,k−1

(1− γ)2

≤
(
1− 2αkcτ +

34|S|A2
maxβk

τ(1− γ)2

)
E[∥qik − q̄ik∥22] +

βk

8
E[Lπ(k)]

+
50|S|Amax

(1− γ)2
zkαkαk−zk,k−1,
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where the second inequality follows from βk = cα,βαk with cα,β ≤ 1. Since

cα,β ≤ cττ(1− γ)2

34|S|A2
max

, (Condition 3.1)

we have

E[∥qik+1 − q̄ik+1∥22] ≤ (1− αkcτ )E[∥qik − q̄ik∥22] +
βk

8
E[Lπ(k)] +

50|S|Amax

(1− γ)2
zkαkαk−zk,k−1.

Summing up the previous inequality for i = 1, 2, we have

E[Lq(k + 1)] ≤ (1− αkcτ )E[Lq(k)] +
βk

4
E[Lπ(k)] +

100|S|Amax

(1− γ)2
zkαkαk−zk,k−1.

D.6 Solving Coupled Lyapunov Drift Inequalities

We first restate the Lyapunov drift inequalities from previous sections. Recall our notation Lq(t, k) =∑
i=1,2 ∥qit,k − q̄it,k∥22, Lπ(t, k) = maxs∈S Vvt,s(π

1
t,k(s), π

2
t,k(s)), Lsum(t) = ∥v1t + v2t ∥∞, and

Lv(t) =
∑

i=1,2 ∥vit − vi∗∥∞. Let Ft be the history of Algorithm 2 right before the t-th outer-loop
iteration. Note that v1t and v2t are both measurable with respect to Ft. In what follows, for ease of
presentation, we write Et[ · ] for E[ · | Ft].

• Lemma D.5: It holds for all t ≥ 0 that

Lv(t+ 1) ≤ γLv(t) + 4Lsum(t) + 2L1/2
q (t,K) + 4Lπ(t,K) + 6τ log(Amax). (44)

• Lemma D.6: It holds for all t ≥ 0 that

Lsum(t+ 1) ≤ γLsum(t) + 2L1/2
q (t,K). (45)

• Lemma D.8: It holds for all t, k ≥ 0 that

Et[Lπ(t, k + 1)] ≤
(
1− 3βk

4

)
Et[Lπ(t, k)] +

16A2
maxβk

τ
Lsum(t)

2

+
32A2

maxβk

τ3ℓ2τ (1− γ)2
Lq(k) + 2Lτβ

2
k. (46)

• Lemma D.12: It holds for all t ≥ 0 and k ≥ zk that

Et[Lq(t, k + 1)] ≤ (1− αkcτ )Et[Lq(t, k)] +
βk

4
Et[Lπ(t, k)] +

100|S|Amax

(1− γ)2
zkαkαk−zk,k−1.

(47)

Adding up Eqs. (46) and (47), we have by cα,β ≤ min( 1

L
1/2
τ

,
cττ

3ℓ2τ (1−γ)2

128A2
max

, cτ ) (cf. Condition 3.1)
that

Et[Lπ(t, k + 1) + Lq(t, k + 1)] ≤
(
1− βk

2

)
Et[Lπ(t, k) + Lq(t, k)]

16A2
maxβk

τ
Lsum(t)

2 +
102|S|Amax

(1− γ)2
zkαkαk−zk,k−1. (48)

D.6.1 Constant Stepsize

When using constant stepsizes, i.e., αk ≡ α, βk ≡ β = cα,βα, repeatedly using Eq. (48) from zβ to
k, we have

Et[Lπ(t, k) + Lq(t, k)] ≤
(
1− β

2

)k−zβ

(Lπ(t, 0) + Lq(t, 0))
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+
16A2

max

τ
Lsum(t)

2 +
204|S|Amax

(1− γ)2cα,β
z2βα. (49)

We next bound Lπ(t, 0) + Lq(t, 0). For i ∈ {1, 2}, we have

Lπ(t, 0) = max
s

Vvt,s(π
1
t,0(s), π

2
t,0(s))

= max
s

∑
i=1,2

max
µi

{(µi − πi
t,0(s))

⊤T i(vit)(s)π
−i
t,0(s) + τν(µi)− τν(πi

t,0(s))}

≤ 2
∑
i=1,2

max
s,ai,a−i

|T i(vit)(s, a
i, a−i)|+ 2τ log(Amax)

≤ 4

(1− γ)
+ 2τ log(Amax),

and

Lq(t, 0) =
∑
i=1,2

∥qit,0 − q̄it,0∥22 ≤ 8|S|Amax

(1− γ)2
. (Lemma D.1)

It follows that

Lπ(t, 0) + Lq(t, 0) ≤
4

(1− γ)
+ 2τ log(Amax) +

8|S|Amax

(1− γ)2
= Lin.

Using the previous inequality in Eq. (49), we have

Et[Lπ(t, k) + Lq(t, k)] ≤ Lin

(
1− β

2

)k−zβ

+
16A2

max

τ
Lsum(t)

2 +
204|S|Amax

(1− γ)2cα,β
z2βα, (50)

which implies

Et[Lπ(t, k)] ≤ Lin

(
1− β

2

)k−zβ

+
16A2

max

τ
Lsum(t)

2 +
204|S|Amax

(1− γ)2cα,β
z2βα.

Substituting the previous inequality on Et[Lπ(t, k)] into Eq. (47), we have

Et[Lq(t, k + 1)] ≤ (1− αcτ )Et[Lq(t, k)] +
151|S|Amax

(1− γ)2
z2βα

2 +
βLin

4

(
1− β

2

)k−zβ

+
4A2

maxβ

τ
Lsum(t)

2.

Repeatedly using the previous inequality, since cα,β ≤ cτ (cf. Condition 3.1), we have

Et[Lq(t, k)] ≤ Lin (1− cτα)
k−zβ +

βLin(k − zβ)

4

(
1− β

2

)k−zβ−1

+
4A2

maxcα,β
cττ

Lsum(t)
2 +

151|S|Amax

(1− γ)2cτ
z2βα,

which implies (by using Jensen’s inequality) that

Et[Lq(t, k)
1/2] ≤ L

1/2
in (1− cτα)

k−zβ
2 +

β1/2L
1/2
in (k − zβ)

1/2

2

(
1− β

2

) k−zβ−1

2

+
2Amaxc

1/2
α,β

c
1/2
τ τ1/2

Lsum(t) +
13|S|1/2A1/2

max

(1− γ)c
1/2
τ

zβα
1/2.

Substituting the previous bound on Et[Lq(t, k)
1/2] into Eq. (45) and then taking total expectation,

we have

E[Lsum(t+ 1)] ≤ γLsum(t) + 2L
1/2
in (1− cτα)

K−zβ
2 + β1/2L

1/2
in (K − zβ)

1/2

(
1− β

2

)K−zβ−1

2

46



+
4Amaxc

1/2
α,β

c
1/2
τ τ1/2

Lsum(t) +
26|S|1/2A1/2

max

(1− γ)c
1/2
τ

zβα
1/2

≤
(
1 + γ

2

)
Lsum(t) + 2L

1/2
in (1− cτα)

K−zβ
2

+ β1/2L
1/2
in (K − zβ)

1/2

(
1− β

2

)K−zβ−1

2

+
26|S|1/2A1/2

max

(1− γ)c
1/2
τ

zβα
1/2,

where the last line follows from cα,β ≤ cττ(1−γ)2

64A2
max

(cf. Condition 3.1). Since ∥v10 + v20∥∞ ≤ 2
1−γ ,

repeatedly using the previous inequality, we have for all k ≥ 0 that

E[Lsum(t)] ≤
2

1− γ

(
1 + γ

2

)t

+
4L

1/2
in (1− cτα)

K−zβ
2

1− γ

+
2β1/2L

1/2
in (K − zβ)

1/2

1− γ

(
1− β

2

)K−zβ−1

2

+
52|S|1/2A1/2

max

(1− γ)2c
1/2
τ

zβα
1/2

≤ 2

1− γ

(
1 + γ

2

)t

+
6L

1/2
in (K − zβ)

1/2

1− γ

(
1− β

2

)K−zβ−1

2

+
52|S|1/2A1/2

max

(1− γ)2c
1/2
τ

zβα
1/2. (51)

Now we have obtained finite-sample bounds for Lq(t, k), Lπ(t, k), and Lsum(t). The next step is to
use them in Eq. (44) to obtain finite-sample bounds for Lv(t). Specifically, using Eq. (44), Eq. (50),
and Eq. (51), we have

E[Lv(t+ 1)] ≤ γE[Lv(t)] + 4E[Lsum(t)] + 2E[L1/2
q (t,K)] + 4E[Lπ(t,K)] + 6τ log(Amax)

≤ γE[Lv(t)] + 2L
1/2
in (1− cτα)

K−zβ
2

+ β1/2L
1/2
in (K − zβ)

1/2

(
1− β

2

)K−zβ−1

2

+
26|S|1/2A1/2

max

(1− γ)c
1/2
τ

zβα
1/2

+ 4Lin

(
1− β

2

)K−zβ

+
816|S|Amax

(1− γ)2cα,β
z2βα+ 6τ log(Amax)

+
266A2

max

τ(1− γ)2

(
1 + γ

2

)t

+
798A2

maxL
1/2
in (K − zβ)

1/2

(1− γ)2τ

(
1− β

2

)K−zβ−1

2

+
6916|S|1/2A5/2

max

(1− γ)3τc
1/2
τ

zβα
1/2

≤ γE[Lv(t)] +
1223|S|Amax

(1− γ)2cα,β
z2βα

1/2 + 6τ log(Amax)

+
266A2

max

τ(1− γ)2

(
1 + γ

2

)t

+
805A2

maxLin(K − zβ)
1/2

(1− γ)2τ

(
1− β

2

)K−zβ−1

2

.

Repeatedly using the previous inequality from 0 to T − 1 and then using Lv(0) ≤ 4
1−γ , we have

Lv(T ) ≤
270A2

maxT

τ(1− γ)2

(
1 + γ

2

)T−1

+
805A2

maxLin(K − zβ)
1/2

τ(1− γ)3

(
1− β

2

)K−zβ−1

2

+
1223|S|Amax

(1− γ)3cα,β
z2βα

1/2 +
6τ log(Amax)

1− γ
.

47



Our next step is to use the bounds we obtained for Lq(t, k), Lπ(t, k), Lv(t), and Lsum(t) in Lemma
D.4. For simplicity of presentation, we use a ≲ b to mean that there exists a numerical constant c
such that a ≤ cb. Using the previous inequality, Eq. (50), and Eq. (51), we have

E[NG(π1
T,K , π2

T,K)] ≤ 8

1− γ
Lsum(T ) +

4

1− γ
Lv(T ) +

4

1− γ
Lπ(T,K) +

8τ log(Amax)

1− γ

≲
A2

maxT

τ(1− γ)3

(
1 + γ

2

)T−1

+
A2

maxLin(K − zβ)
1/2

τ(1− γ)4

(
1− β

2

)K−zβ−1

2

+
|S|Amax

(1− γ)4cα,β
z2βα

1/2 +
τ log(Amax)

(1− γ)2
.

The proof of Theorem 3.1 (1) is complete.

D.6.2 Diminishing Stepsizes

Consider using linearly diminishing stepsizes, i.e., αk = α
k+h , βk = β

k+h , and β = cα,βα. Repeat-
edly using Eq. (48), we have for all k ≥ k0 := min{k′ | k′ ≥ zk′} that

Et[Lπ(t, k) + Lq(t, k)] ≤ Lin

k−1∏
m=k0

(
1− βm

2

)
︸ ︷︷ ︸

Ê1

+
204|S|Amax

(1− γ)2

k−1∑
n=k0

z2nα
2
n

k−1∏
m=n+1

(
1− βm

2

)
︸ ︷︷ ︸

Ê2

+
16A2

max

τ
Lsum(t)

2
k−1∑
n=k0

βn

k−1∏
m=n+1

(
1− βm

2

)
︸ ︷︷ ︸

Ê3

.

Next, we evaluate the terms {Êj}1≤j≤3. Terms like {Êj}1≤j≤3 have been well studied in the existing
literature [24, 44, 65]. Specifically, we have from [65, Appendix A.2.] and β = 4 that

Ê1 ≤ k0 + h

k + h
, Ê2 ≤ 64ez2k

(k + h)c2α,β
, and Ê3 ≤ 2.

It follows that

Et[Lπ(t, k) + Lq(t, k)] ≤ Lin
k0 + h

k + h
+

3264e|S|Amax

(1− γ)2cα,β
z2kαk +

32A2
max

τ
Lsum(t)

2,

which implies

Et[Lπ(t, k)] ≤ Lin
k0 + h

k + h
+

3264e|S|Amax

(1− γ)2cα,β
z2kαk +

32A2
max

τ
Lsum(t)

2. (52)

Using the previous inequality on Et[Lπ(t, k)] in Eq. (47), we have

Et[Lq(t, k + 1)] ≤ (1− αkcτ )Et[Lq(t, k)] +
100|S|Amax

(1− γ)2
zkαkαk−zk,k−1

+
Lincα,βα

2
k

4αk0

+
816e|S|Amax

(1− γ)2
z2kα

2
k +

8A2
maxβk

τ
Lsum(t)

2

≤ (1− αkcτ )Et[Lq(t, k)] +
1017eLin|S|Amax

(1− γ)2αk0

z2kα
2
k

+
8A2

maxβk

τ
Lsum(t)

2.

Repeatedly using the previous inequality starting from k0, since αcτ ≥ 1 (cf. Condition 3.1), we
have

Et[Lq(t, k)] ≤ Lin
k0 + h

k + h
+

4068e2Lin|S|Amax

(1− γ)2cταk0

z2kαk +
8A2

maxcα,β
cττ

Lsum(t)
2,
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which implies (by using Jensen’s inequality) that

Et[Lq(t, k)
1/2] ≤ L

1/2
in

(
k0 + h

k + h

)1/2

+
64eL

1/2
in |S|1/2A1/2

max

(1− γ)c
1/2
τ α

1/2
k0

zkα
1/2
k +

3Amaxc
1/2
α,β

c
1/2
τ τ1/2

Lsum(t). (53)

Taking total expectation on both sides of the previous inequality and then using the result in Eq. (45),
we have

E[Lsum(t+ 1)] ≤ γE[Lsum(t)] + 2L
1/2
in

(
k0 + h

K + h

)1/2

+
128e|S|1/2A1/2

max

(1− γ)c
1/2
τ α

1/2
k0

zKα
1/2
K

+
6Amaxc

1/2
α,β

c
1/2
τ τ1/2

Lsum(t)

≤
(
γ + 1

2

)
E[Lsum(t)] +

130eL
1/2
in |S|1/2A1/2

max

(1− γ)c
1/2
τ α

1/2
k0

zKα
1/2
K ,

where the last line follows from cα,β ≤ cττ(1−γ)2

144A2
max

(cf. Condition 3.1). Repeatedly using the previous
inequality starting from 0, we have

E[Lsum(t)] ≤
2

1− γ

(
1 + γ

2

)t

+
260eL

1/2
in |S|1/2A1/2

max

(1− γ)2c
1/2
τ α

1/2
k0

zKα
1/2
K . (54)

The next step is to bound Lv(t). Recall from Eq. (44) that

Et[Lv(t+ 1)] ≤ γLv(t) + 4Lsum(t) + 2Et[L1/2
q (t,K)] + 4Et[Lπ(t,K)] + 6τ log(Amax).

Using Eqs. (52), (53), and (54) in the previous inequality, we have

E[Lv(t+ 1)] ≤ γE[Lv(t)] + 4E[Lsum(t)] + 2E[L1/2
q (t,K)] + 4E[Lπ(t,K)] + 6τ log(Amax)

≤ γE[Lv(t)] +
130eL

1/2
in |S|1/2A1/2

max

(1− γ)c
1/2
τ α

1/2
k0

zKα
1/2
K

+
4LinαK

αk0

+
13056e|S|Amax

(1− γ)2cα,β
z2KαK + 6τ log(Amax)

+
522A2

max

τ(1− γ)2

(
1 + γ

2

)t

+
67860eL

1/2
in |S|1/2A5/2

max

(1− γ)3τc
1/2
τ α

1/2
k0

zKα
1/2
K

≤ γE[Lv(t)] +
522A2

max

τ(1− γ)2

(
1 + γ

2

)t

+
15056eLin|S|Amax

(1− γ)2α
1/2
k0

cα,β
z2Kα

1/2
K

+ 6τ log(Amax).

Repeatedly using the previous inequality starting from 0 to T − 1, we have

Lv(T ) ≤
526A2

maxT

τ(1− γ)2

(
1 + γ

2

)T−1

+
15056eLin|S|Amax

(1− γ)3α
1/2
k0

cα,β
z2Kα

1/2
K +

6τ log(Amax)

1− γ

Finally, using the previous inequality, Eq. (52), and Eq. (54) in Lemma D.4, we obtain

E[NG(π1
T,K , π2

T,K)] ≲
A2

maxT

τ(1− γ)3

(
1 + γ

2

)T−1

+
Lin|S|Amax

(1− γ)4α
1/2
k0

cα,β
z2Kα

1/2
K +

τ log(Amax)

(1− γ)2
.

The proof of Theorem 3.1 (2) is complete.

D.7 Proof of All Supporting Lemmas

D.7.1 Proof of Lemma B.1

Lemma B.1 (1), (3), and (4) are identical to [10, Proposition 3]. We here only prove Lemma B.1 (2).
Consider the Markov chain {Sk} induced by πb. Since {Sk} is irreducible and aperiodic, there exists
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a positive integer rb such that P rb
πb

has strictly positive entries [93, Proposition 1.7]. Therefore, there
exists δb ∈ (0, 1) such that

P rb
πb
(s, s′) ≥ δbµb(s

′)

for all (s, s′). In addition, the constant ρb introduced after Assumption 3.1 is explicitly given as
ρb = exp(−δb/rb). The previous two equations are from the proof of the Markov chain convergence
theorem presented in [93, Section 4.3]. Next, we consider the Markov chain {Sk} induced by an
arbitrary π ∈ Πτ . Since

πb(a|s)
π(a|s)

=
πi
b(a

i|s)π−i
b (ai|s)

πi(ai|s)π−i(ai|s)
≤ 1

ℓ2τ
, ∀ a = (ai, a−i) and s,

we have for any s, s′ ∈ S and k ≥ 1 that

P k
πb
(s, s′) =

∑
s0

P k−1
πb

(s, s0)Pπb
(s0, s

′)

=
∑
s0

P k−1
πb

(s, s0)
∑
a∈A

πb(a|s0)Pa(s0, s
′)

=
∑
s0

P k−1
πb

(s, s0)
∑
a∈A

πb(a|s0)
π(a|s0)

π(a|s0)Pa(s0, s
′)

≤ 1

ℓ2τ

∑
s0

P k−1
πb

(s, s0)
∑
a∈A

π(a|s0)Pa(s0, s
′)

≤ 1

ℓ2τ

∑
s0

P k−1
πb

(s, s0)Pπ(s0, s
′)

=
1

ℓ2τ
[P k−1

πb
Pπ](s, s

′).

Since the previous inequality holds for all s and s′, we in fact have ℓ2τP
k
πb

≤ P k−1
πb

Pπ (which is an
entry-wise inequality). Repeatedly using the previous inequality, we obtain

ℓ2kτ P k
πb

≤ P k
π ,

which implies
P rb
π (s, s′) ≥ ℓ2rbτ P rb

πb
(s, s′)

≥ δbℓ
2rb
τ µb(s

′)

≥ δbℓ
2rb
τ

µb(s
′)

µπ(s′)
µπ(s

′)

≥ δbℓ
2rb
τ µb,minµπ(s

′).

Following the proof of the Markov chain convergence theorem in [93, Section 4.3], we have

∥P k
π (s, ·)− µπ(·)∥TV ≤ (1− δbℓ

2rb
τ µb,min)

k/rb−1, ∀ s ∈ S, π ∈ Πτ . (55)

Since Amax ≥ 2 (otherwise there is no decision to make in this stochastic game), we have ℓ2τ ≤ 1
2 . It

follows that 1− δbℓ
2rb
τ µb,min > 1/2. Using the previous inequality in Eq. (55), we have

sup
π∈Πτ

max
s∈S

∥P k
π (s, ·)− µπ(·)∥TV ≤ 2(1− δbℓ

2rb
τ µb,min)

k/rb

≤ 2 exp
(
−δbℓ

2rb
τ µb,mink/rb

)
= 2ρ

ℓ
2rb
τ µb,mink
b (Recall that ρb = exp(−δb/rb))

= 2ρkτ .

We next compute the mixing time. Using the previous inequality and the definition of the total
variation distance, we have

sup
π∈Πτ

max
s∈S

∥P k
π (s, ·)− µπ(·)∥TV ≤ η

as long as

k ≥ log(2/η)

log(1/ρδ)
=

1

ℓ2rbτ µb,min

log(2/η)

log(1/ρb)
≥ tπb,η

ℓ2rbτ µb,min

.
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D.7.2 Proof of Lemma D.11

For any k ≥ zk, we have

E[(F i(qik, Sk, A
i
k, A

−i
k , Sk+1)− F̄ i

k(q
i
k)

⊤(qik − q̄ik)]

= E[(F i(qik−zk
, Sk, A

i
k, A

−i
k , Sk+1)− F̄ i

k−zk
(qik−zk

))⊤(qik−zk
− q̄ik−zk

)]︸ ︷︷ ︸
N1

+ E[(F i(qik−zk
, Sk, A

i
k, A

−i
k , Sk+1)− F̄ i

k−zk
(qik−zk

))⊤(qik − qik−zk
)]︸ ︷︷ ︸

N2

+ E[(F i(qik−zk
, Sk, A

i
k, A

−i
k , Sk+1)− F̄ i

k−zk
(qik−zk

))⊤(q̄ik−zk
− q̄ik)]︸ ︷︷ ︸

N3

+ E[(F i(qik, Sk, A
i
k, A

−i
k , Sk+1)− F i(qik−zk

, Sk, A
i
k, A

−i
k , Sk+1))

⊤(qik − q̄ik)]︸ ︷︷ ︸
N4

+ E[(F̄ i
k−zk

(qik−zk
)− F̄ i

k(q
i
k))

⊤(qik − q̄ik)]︸ ︷︷ ︸
N5

. (56)

To bound the terms N1 to N5 on the RHS of the previous inequality, the following lemma is needed.

Lemma D.13. For any positive integers k1 ≤ k2, we have (1) ∥qik2
− qik1

∥∞ ≤ 2αk1,k2−1

1−γ , and (2)
maxs∈S ∥πi

k2
(s)− πi

k1
(s)∥1 ≤ 2βk1,k2−1.

Proof of Lemma D.13. For any k ∈ [k1, k2 − 1], we have by Eq. (41) that

∥qik+1 − qik∥∞ = αk∥F i(qik, Sk, A
i
k, A

−i
k , Sk+1)∥∞ ≤ 2αk

1− γ
.

It follows that ∥qik2
− qik1

∥∞ ≤ 2αk1,k2−1

1−γ . Similarly, for any k ∈ [k1, k2 − 1] and s ∈ S, we have

∥πi
k+1(s)− πi

k(s)∥1 = βk∥στ (q
i
k(s))− πi

k(s)∥1 ≤ 2βk,

which implies maxs∈S ∥πi
k2
(s)− πi

k1
(s)∥1 ≤ 2βk1,k2−1.

We next bound the terms N1 to N5. Let Fk be the σ-algebra generated the sequence of random
variables {S0, A

i
0, A

−i
0 , · · · , Sk−1, A

i
k−1, A

−i
k−1, Sk}.

The Term N1. Using the tower property of conditional expectations, we have

N1 = E[(F i(qik−zk
, Sk, A

i
k, A

−i
k , Sk+1)− F̄ i

k−zk
(qik−zk

))⊤(qik−zk
− q̄ik−zk

)]

= E[(E[F i(qik−zk
, Sk, A

i
k, A

−i
k , Sk+1) | Fk−zk ]− F̄ i

k−zk
(qik−zk

))⊤(qik−zk
−q̄ik−zk

)]

≤ E[∥E[F i(qik−zk
, Sk, A

i
k, A

−i
k , Sk+1) | Fk−zk ]− F̄ i

k−zk
(qik−zk

)∥1∥qik−zk
− q̄ik−zk

∥∞] (57)

≤ 2

1− γ
E[∥E[F i(qik−zk

, Sk, A
i
k, A

−i
k , Sk+1) | Fk−zk ]− F̄ i

k−zk
(qik−zk

)∥1] (Lemma D.1)

≤ 2

1− γ
E[∥F̄ i

k(q
i
k−zk

)− F̄ i
k−zk

(qik−zk
)∥1]

+
2

1− γ
E[∥E[F i(qik−zk

, Sk, A
i
k, A

−i
k , Sk+1) | Fk−zk ]− F̄ i

k(q
i
k−zk

)∥1]. (58)

We next bound the two terms on the RHS of the previous inequality. Observe that

∥F̄ i
k(q

i
k−zk

)− F̄ i
k−zk

(qik−zk
)∥1

=
∑
s,ai

|[F̄ i
k(q

i
k−zk

)](s, ai)− [F̄ i
k−zk

(qik−zk
)](s, ai)|

=
∑
s,ai

∣∣[Ek[F
i(qik−zk

, S,Ai, A−i, S′)](s, ai)− [Ek−zk [F
i(qik−zk

, S,Ai, A−i, S′)](s, ai)
∣∣ ,
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where we use Ek[ · ] to denote ES∼µk(·),Ai∼πi
k(·|S0),A−i∼π−i

k (·|S0),S′∼p(·|S0,Ai
0,A

−i
0 )[ · ] for ease of

presentation. To proceed, recall the following equivalent definition of total variation distance between
probability measures p1, p2:

∥p1 − p2∥TV =
1

2
sup

f :∥f∥∞≤1

|Ep1 [f ]− Ep2 [f ]| .

It follows that∣∣[Ek[F
i(qik−zk

, S,Ai, A−i, S′)](s, ai)− [Ek−zk [F
i(qik−zk

, S,Ai, A−i, S′)](s, ai)
∣∣

≤ max
s̄,āi,ā−i,s̄′

∣∣[F i(qik−zk
, s̄, āi, ā−i, s̄′)](s, ai)

∣∣
×

∑
s̃,ãi,ã−i

∣∣µk(s̃)π
i
k(ã

i|s̃)π−i
k (ã−i|s̃)− µk−zk(s̃)π

i
k−zk

(ãi|s̃)π−i
k−zk

(ã−i|s̃)
∣∣

≤ 1

1− γ

(
∥µk − µk−zk∥1 +max

s
∥πi

k(s)− πi
k−zk

(s)∥1 +max
s

∥π−i
k (s)− π−i

k−zk
(s)∥1

)
≤ 2Lp

1− γ

(
max

s
∥πi

k(s)− πi
k−zk

(s)∥1 +max
s

∥π−i
k (s)− π−i

k−zk
(s)∥1

)
(Lemma B.1)

≤ 8Lpβk−zk,k−1

1− γ
. (Lemma D.13)

Therefore, we have

∥F̄ i
k(q

i
k−zk

)− F̄ i
k−zk

(qik−zk
)∥1 =

∑
s,ai

|[F̄ i
k(q

i
k−zk

)](s, ai)− [F̄ i
k−zk

(qik−zk
)](s, ai)|

≤ 8|S|AmaxLpβk−zk,k−1

1− γ
. (59)

It remains to bound the second term on the RHS of Eq. (58). Recall that we denote Pπ ∈ R|S|×|S| as
the transition probability matrix of the Markov chain {Sk} induced by a joint policy π. Using the
definition of conditional expectations, we have

∥E[F i(qik−zk
, Sk, A

i
k, A

−i
k , Sk+1) | Fk−zk ]− F̄ i

k(q
i
k−zk

)∥1

=

∥∥∥∥∥∥
∑
s∈S

 k+zk∏
j=k+1

Pπj−zk

 (Sk−zk , s)− µk(s)

∑
ai

πi
k(a

i|s)
∑
a−i

π−i
k (a−i|s)

×
∑
s′

p(s′|s, ai, a−i)F i(qik−zk
, s, ai, a−i, s′)

∥∥∥∥∥
1

≤ 2

1− γ

∑
s∈S

∣∣∣∣∣∣
 k+zk∏

j=k+1

Pπj−zk

 (Sk−zk , s)− µk(s)

∣∣∣∣∣∣ (Lemma D.9)

≤ 2

1− γ

∑
s∈S

∣∣∣∣∣∣
 k+zk∏

j=k+1

Pπj−zk

 (Sk−zk , s)− P zk
πk

(Sk−zk , s)

∣∣∣∣∣∣
+
∑
s∈S

∣∣P zk
πk

(Sk−zk , s)− µk(s)
∣∣}

≤ 2

1− γ


∥∥∥∥∥∥

k+zk∏
j=k+1

Pπj−zk
− P zk

πk

∥∥∥∥∥∥
∞

+ 2ρzkτ

 , (60)

where the last line follows from Lemma B.1 (2). Observe that∥∥∥∥∥∥
k+zk∏
j=k+1

Pπj−zk
− P zk

πk

∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥
zk∑
ℓ=1

k−ℓ+1+zk∏
j=k+1

Pπj−zk
P ℓ−1
πk

−
k−ℓ+zk∏
j=k+1

Pπj−zk
P ℓ
πk

∥∥∥∥∥∥
∞
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=

∥∥∥∥∥∥
zk∑
ℓ=1

k−ℓ+zk∏
j=k+1

Pπj−zk
(Pπk−ℓ+1

− Pπk
)P ℓ−1

πk

∥∥∥∥∥∥
∞

≤
zk∑
ℓ=1

∥∥∥∥∥∥
k−ℓ+zk∏
j=k+1

Pπj−zk

∥∥∥∥∥∥
∞

∥Pπk−ℓ+1
− Pπk

∥∞∥P ℓ−1
πk

∥∞

≤
zk∑
ℓ=1

∥Pπk−ℓ+1
− Pπk

∥∞.

Since Pπ as a function of π is 1-Lipschitz continuous with respect to the ℓ∞-norm, we have∥∥∥∥∥∥
k+zk∏
j=k+1

Pπj−zk
− P zk

πk

∥∥∥∥∥∥
∞

≤
zk∑
ℓ=1

max
s∈S

∥πk−ℓ+1(s)− πk(s)∥1

=

zk∑
ℓ=1

max
s∈S

(
∥π−i

k−ℓ+1(s)− π−i
k (s)∥1 + ∥πi

k−ℓ+1(s)− πi
k(s)∥1

)
≤ 4zkβk−zk,k−1. (Lemma D.13)

Using the previous inequality in Eq. (60), we have

∥E[F i(qik−zk
, Sk, A

i
k, A

−i
k , Sk+1) | Fk−zk ]− F̄ i

k(q
i
k−zk

)∥1

≤ 2

1− γ
(4zkβk−zk,k−1 + 2ρzkτ )

≤ 2

1− γ
(4zkβk−zk,k−1 + βk) (Definition of zk)

≤ 10zkβk−zk,k−1

1− γ
. (zk ≥ 1)

Using the previous inequality and Eq. (59) together in Eq. (58), we obtain

N1 ≤ 16Lp|S|Amaxβk−zk,k−1

(1− γ)2
+

20zkβk−zk,k−1

(1− γ)2
≤ 36Lp|S|Amaxzkβk−zk,k−1

(1− γ)2
.

The Term N2. For any k ≥ zk, we have by Lemma D.13 that

N2 ≤ E[∥F i(qik−zk
, Sk, A

i
k, A

−i
k , Sk+1)− F̄ i

k−zk
(qik−zk

)∥1∥qik − qik−zk
∥∞]

≤ 2αk−zk,k−1

1− γ
E[∥F i(qik−zk

, Sk, A
i
k, A

−i
k , Sk+1)∥1 + ∥F̄ i

k−zk
(qik−zk

)∥1]. (61)

Using the definition of F i(·), we have

∥F i(qik−zk
, Sk, A

i
k, A

−i
k , Sk+1)∥1

=
∑
s,ai

1{(s,ai)=(Sk,Ai
k)}
∣∣Ri(Sk, A

i
k, A

−i
k ) + γvi(Sk+1)− qik(Sk, A

i
k)
∣∣

=
∣∣Ri(Sk, A

i
k, A

−i
k ) + γvi(Sk+1)− qik(Sk, A

i
k)
∣∣

≤ 1 +
γ

1− γ
+

1

1− γ

=
2

1− γ
. (62)

Moreover, we have by Jensen’s inequality that

∥F̄ i
k−zk

(qik−zk
)∥1 ≤ 2

1− γ
. (63)

Using Eqs. (62) and (63) together in Eq. (61), we have

N2 ≤ 8αk−zk,k−1

(1− γ)2
.
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The Term N3. For any k ≥ zk, we have

N3 ≤ E[∥F i(qik−zk
, Sk, A

i
k, A

−i
k , Sk+1)− F̄ i

k−zk
(qik−zk

)∥1∥q̄ik−zk
− q̄ik∥∞]

≤ E[(∥F i(qik−zk
, Sk, A

i
k, A

−i
k , Sk+1)∥1 + ∥F̄ i

k−zk
(qik−zk

)∥1)∥q̄ik−zk
− q̄ik∥∞]

≤ 4

1− γ
E[∥q̄ik−zk

− q̄ik∥∞]. (Eqs. (62) and (63))

Observe that

∥q̄ik−zk
− q̄ik∥∞ = max

s∈S
∥T i(vi)(s)(π−i

k (s)− π−i
k−zk

(s))∥∞

≤ max
s∈S

∥T i(vi)(s)∥1,∞∥π−i
k (s)− π−i

k−zk
(s)∥1

≤ 2βk−zk,k−1

1− γ
,

where the last line follows from Lemma D.13 and

∥T i(vi)(s)∥1,∞ ≤ max
s,ai,a−i

|T i(vi)(s, ai, a−i)| ≤ 1

1− γ
.

Therefore, we have

N3 ≤ 8βk−zk,k−1

(1− γ)2
.

The Term N4. For any k ≥ zk, we have

N4 ≤ E[∥F i(qik, Sk, A
i
k, A

−i
k , Sk+1)− F i(qik−zk

, Sk, A
i
k, A

−i
k , Sk+1)∥1∥qik − q̄ik∥∞]

≤ 2

1− γ
E[∥F i(qik, Sk, A

i
k, A

−i
k , Sk+1)− F i(qik−zk

, Sk, A
i
k, A

−i
k , Sk+1)∥1],

where the last line follows from Lemma D.1. Using the definition of F i(·), we have

∥F i(qik, Sk, A
i
k, A

−i
k , Sk+1)− F i(qik−zk

, Sk, A
i
k, A

−i
k , Sk+1)∥1

=
∑
s,ai

1{(s,ai)=(Sk,Ai
k)}
∣∣qik−zk

(Sk, A
i
k)− qik(Sk, A

i
k)
∣∣

=
∣∣qik−zk

(Sk, A
i
k)− qik(Sk, A

i
k)
∣∣

≤ ∥qik−zk
− qik∥∞

≤ 2αk−zk,k−1

1− γ
. (Lemma D.13)

It follows that

N4 ≤ 4αk−zk,k−1

(1− γ)2
.

The Term N5. For any k ≥ zk, we have

N5 ≤ E[∥F̄ i
k(q

i
k)− F̄ i

k−zk
(qik−zk

)∥1∥qik − q̄ik∥∞]

≤ 2

1− γ
E[∥F̄ i

k(q
i
k)− F̄ i

k−zk
(qik−zk

)∥1] (Lemma D.1)

≤ 2

1− γ
E[∥F̄ i

k(q
i
k)− F̄ i

k−zk
(qik)∥1 + ∥F̄ i

k−zk
(qik)− F̄ i

k−zk
(qik−zk

)∥1]

≤ 16Lp|S|Amaxβk−zk,k−1

(1− γ)2
+

2

1− γ
E[∥F̄ i

k−zk
(qik)− F̄ i

k−zk
(qik−zk

)∥1], (64)

where the last line follows from the same analysis as we obtain Eq. (59). As for the second term on
the RHS of Eq. (64), using the definition of F̄ i

k(·), we have

∥F̄ i
k−zk

(qik)− F̄ i
k−zk

(qik−zk
)∥1 =

∑
s∈S

µk−zk(s)
∑
ai

πi
k−zk

(ai | s)|qik(s, ai)− qik−zk
(s, ai)|

54



≤ ∥qik − qik−zk
∥∞

≤ 2αk−zk,k−1

1− γ
. (Lemma D.13)

Using the previous inequality in Eq. (64), we obtain

N5 ≤ 16Lp|S|Amaxβk−zk,k−1

(1− γ)2
+

4αk−zk,k−1

(1− γ)2
.

Combining the upper bounds we derived for the terms N1 to N5 in Eq. (56), we have

E[(F i(qik, Sk, A
i
k, A

−i
k , Sk+1)− F̄ i

k(q
i
k)

⊤(qik − q̄ik)]

≤ 36Lp|S|Amaxzkβk−zk,k−1

(1− γ)2
+

8αk−zk,k−1

(1− γ)2
+

8βk−zk,k−1

(1− γ)2
+

4αk−zk,k−1

(1− γ)2

+
16Lp|S|Amaxβk−zk,k−1

(1− γ)2
+

4αk−zk,k−1

(1− γ)2

≤ 60Lp|S|Amaxzkβk−zk,k−1

(1− γ)2
+

16αk−zk,k−1

(1− γ)2

≤ 17zkαk−zk,k−1

(1− γ)2
,

where the last line follows from βk/αk = cα,β ≤ 1
60Lp|S|Amax

(cf. Condition 3.1).

D.8 Proof of Corollary 3.1.1

The following proof idea was previous used in [15] to show the rationality of their decentralized
Q-learning algorithm.

Observe that Theorem 3.1 can be easily generalized to the case where the reward is corrupted by
noise. Specifically, suppose that player i takes action ai and player −i takes action a−i. Instead of
assuming player i receives a deterministic reward Ri(s, a

i, a−i), we assume that player i receives a
random reward ri(s, ai, a−i, ξ), where ξ ∈ Ξ (Ξ is a finite set) is a random variable with distribution
µξ(s), and is independent of everything else. The proof is identical as long as ri + r−i = 0, and
the reward is uniformly bounded, i.e., maxs,ai,a−i,ξ |ri(s, ai, a−i, ξ)| < ∞. Now consider the case
where player i’s opponent follows a stationary policy π−i. We incorporate the randomness of player
−i’s action into the model and introduce a fictitious opponent with only one action a∗. In particular,
let the random reward function be defined as r̂i(s, ai, a∗, A−i) = Ri(s, a

i, A−i) for all (s, ai), where
A−i ∼ π−i(·|s), and let p̂(s′ | s, ai, a∗) =

∑
π−i(a−i|s) p(s

′ | ai, a−i, s). Now the problem can be
reformulated as player i playing against the fictitious player with a single action a∗, with reward
function r̂i (i ∈ {1, 2}) and transition probabilities p̂. Using the same proof for Theorem 3.1, we
have the desired finite-sample bound.

E On the Mixing Time of MDPs with Almost Deterministic Policies

Consider an MDP with two states s1, s2 and two actions a1, a2. The transition probability matrix
P1 of taking action a1 is the identity matrix I2, and the transition probability matrix P2 of taking
action a2 is P2 = [0, 1; 1, 0]. Given α ∈ (1/2, 1), let πα be a policy such that π(a1|s) = α and
π(a2|s) = 1− α for any s ∈ {s1, s2}. Denote Pα as the transition probability matrix under πα. It is
easy to see that

Pα =

[
α 1− α

1− α α

]
.

Since Pα is a doubly stochastic matrix, and has strictly positive entries, it has a unique stationary
distribution µ = 1⊤/2.

We next compute a lower bound of the mixing time of the πα-induced Markov chain. Let e1 = [1, 0]⊤

be the initial distribution of the states, and denote [xk, 1− xk]
⊤ as the distribution of the states at

time step k. Then we have
xk+1 = xkα+ (1− xk)(1− α)
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= (2α− 1)xk + 1− α

= (2α− 1)k+1x0 +

k∑
i=0

(1− α)(2α− 1)k−i

=
1

2
+

(2α− 1)k+1

2
.

It follows that

tπα,η = min
k≥0

{
max
µ0∈∆2

∥∥µ⊤
0 P

k
α − 1⊤/2

∥∥
TV ≤ η

}
≥ min

k≥0

{∥∥e⊤1 P k
α − 1⊤/2

∥∥
TV ≤ η

}
= min

k≥0

{
(2α− 1)k ≤ 2η

}
≥ log(1/2η)

log(1/(2α− 1))
− 1,

which implies limα→1 tα,η = ∞. Therefore, as the policies become deterministic, the mixing time
of the associated Markov chain can approach infinity.

F Numerical Simulations

We first conduct numerical simulations to investigate the impact of choosing different τ , which is
used to define the softmax operator in Algorithms 1 and 2. Our theoretical results indicate that there
is an asymptotically non-vanishing bias due to using a positive τ . Intuitively, since a softmax policy
always has strictly positive entries while a Nash equilibrium policy can have zero entries, we cannot,
in general, expect the Nash gap to converge to zero.

To demonstrate this phenomenon, consider the following example of a zero-sum matrix game. Let

R1 =

[
N 1 −1
−1 0 1
1 −1 0

]

be the payoff matrix for player 1, and let R2 = −(R1)
⊤, where N > 0 is a tunable parameter. Note

that this matrix game has a unique Nash equilibrium, which goes to the joint policy π1 = (1/3, 2/3, 0),
π2 = (0, 2/3, 1/3) as N → ∞. In our simulations, we use constant stepsizes αk ≡ 0, 5 and
βk ≡ 0.01 and run Algorithm 1 for 100 trajectories (each has K = 2000 iterations). Then, we plot
the average Nash gap (averaged over the 100 trajectories) as a function of the number of iterations
k in Figure 1 for different temperatures τ . To enable a fair comparison, we use the normalized
q-function to compute the softmax, that is, instead of directly using στ (q

i
k) in Algorithm 1, we use

στ (q
i
k/∥qik∥2). As we can see in Figure 1, as τ increases, the asymptotic error also increases, which

is consistent with our theoretical results.

F.1 Comparison with the Optimistic Multiplicative-Weights Update

The Optimistic Multiplicative-Weights Update (OMWU) was recognized as a popular learning
algorithm for zero-sum matrix games [98]. Since OMWU in the payoff-based setting (or noisy-
feedback setting) may not have last-iterate convergence [99], to enable a fair comparison, we will
compare OMWU in the noiseless setting (which does enjoy last-iterate convergence [98]) with
smoothed-best response dynamics. We start by writting down the algorithm.

OMWU: With initializations π1
0 , π

1
1 (respectively, π2

0 , π2
1) that live in the interior of the probability

simplex ∆(A1) (respectively, ∆(A2)), OMWU updates (π1
k, π

2
k) iteratively according to

πi
k+1(a

i) =
πi
k(a

i) exp(2η[Riπ
−i
k ](ai)− η[Riπ

−i
k−1(a

i)])∑
ãi∈Ai πi

k(ã
i) exp(2η[Riπ

−i
k ](ãi)− η[Riπ

−i
k−1(ã

i)])
, ∀ ai ∈ Ai, i ∈ {1, 2},

where η ∈ (0, 1) is the stepsize.
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Figure 1: The Nash Gap for Different Temperatures τ

Figure 2: The Nash Gap as a Function of the Number of Iterations k

The Discrete Smoothed Best-Response Dynamics (DSBR): With arbitrary initializations π1
0 ∈

∆(A1) and π2
0 ∈ ∆(A2), the discrete smoothed best-response dynamics update (π1

k, π
2
k) iteratively

according to

πi
k+1 = (1− βk)π

i
k + βkστ (Riπ

−i
k ), ∀ i ∈ {1, 2},

where βk is the stepsize.

We perform two sets of numerical simulations to compare OMWU and DSBR. Our first experiment
is implemented on the rock-paper-scissor game, where the payoff matrix for player 1 is

R1 =

[
0 1 −1
−1 0 1
1 −1 0

]
,

and R2 = −(R1)
⊤. As we see in Figure 2, the convergence rates of OMWU and DSBR are

comparable. However, DSBR seems to be more stable compared with OMWU. Note that while we
use softmax policies in DSBR, since the rock-paper-scissor game has a unique Nash equilibrium,
which is also the unique Nash equilibrium of the entropy-regularized matrix game for any temperature
τ > 0, there is no smoothing bias and the Nash gap under DSBR does converge to zero.
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Figure 3: The Nash Gap as a Function of the Number of Iterations k

Figure 4: The Asymptotic Behavior of Figure 3

In our second numerical simulation, we set the payoff matrix of player 1 to be

R1 =

[
N 1 −1
−1 0 1
1 −1 0

]
,

and R2 = −(R1)
⊤, where we choose N = 100. Note that as N → ∞, the unique Nash equilibrium

goes to π1 = (1/3, 2/3, 0), π2 = (0, 2/3, 1/3). In this case, we also see from Figure 3 that DSBR
is more stable compared with OMWU. However, since in this case, the Nash equilibrium has zero
entries, due to the use of softmax policies, DSBR suffers from an asymptotically non-vanishing bias.
This is clear from Figure 4, which plots the asymptotic behavior of Figure 3. We see that OMWU
converges to zero while the Nash gap from DSBR converges to a positive real number.
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