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ABSTRACT

The Rectified Linear Unit (ReLU) is a widely used activation function in deep
neural networks, and several works are devoted to designing its variants to im-
prove performance. However, the output is unbounded for most of such functions,
which brings severe accuracy degeneration when the full-precision model is quan-
tized. To tackle the problem of unboundedness, Choi et al. (2019) introduce an
activation clipping parameter for the standard ReLU. In this paper, we propose a
Bilateral Clipping Parametric Rectified Linear Unit (BCPReLU) as a generalized
version of ReLU and some variants of ReLU. Specifically, the trainable slopes and
thresholds for both positive and negative input are introduced in BCPReLU. We
theoretically prove that BCPReLU has almost the same expressive ability as the
corresponding unbounded one, and establish its convergence in low-bit quantiza-
tion training. Numerical experiments on a range of popular models and datasets
verify its effectiveness, which outperforms the state-of-the-art methods.

1 INTRODUCTION

Deep Neural Networks (DNNs) have achieved great success in various computer vision tasks,
such as image classification (Simonyan & Zisserman, 2014; He et al., 2016), object detection
(Ren et al., 2015; Cai et al., 2016), and image segmentation (Yu et al., 2018; Takikawa et al.,
2019) etc. However, the high computational cost and large memory storage make DNNs difficult
to be deployed on resource-constrained devices. Thus, the compression methods by quantization
have gained attention, which map the full-precision floating-point values to low-bit fixed-point ones.

The non-saturated activation function plays an important role in both the full-precision and
quantized network, whose non-saturated feature settles the problem of exploding/vanishing
gradient, thereby accelerating the speed of model convergence. In all of these activation functions,
the most popular one is ReLU (Glorot et al., 2011), which outputs zero for the negative input, and
retains the same value for the positive input. To alleviate the problem of zero gradients in ReLU,
leaky ReLU (LReLU) (Maas et al., 2013) assigns a small and fixed slope for the negative input.
PReLU (He et al., 2015) introduces a trainable slope for the negative input rather than fixed one in
LReLU. The PReLU is a key factor for machine to surpass human-level classification performance
on the ImageNet 2012 dataset for the first time. To reduce overfitting, Xu et al. (2015) propose a
randomized version of LReLU, where the slope for the negative input during training is randomized
in a given range, and then fixed in the testing. Different from the above static activation functions,
SE (Hu et al., 2018) and DY-ReLU (Chen et al., 2020) adopt a trainable slope function of input. The
former is a special case of the latter, and the latter achieves solid improvement with only an extra
increase (5%) of computational cost. We illustrate the above functions in Figure 1 for comparisons.

Although different types of rectified activation functions have achieved huge success for float-point
network, the output of these activation functions is unbounded. This makes its quantization difficult
because of the high dynamic range. So far, the problem has been partially addressed by some
different clipping activation functions. Jacob et al. (2018) show that the quantization error can be
reduced by setting a fixed upper-bound on the output to limit the range of output. PACT (Choi et al.,
2019) places a learnable upper-bound on the output of standard ReLU. HWGQ (Cai et al., 2017)
exploits the statistics of activation and proposes a variant of ReLU which constrains the unbounded
value. As far as we know, these methods mainly focus on the standard ReLU, other ReLU variants
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Figure 1: ReLU, LReLU/PReLU, RReLU, and SE. For PReLU, k is learned and for LReLU k is
fixed. For RReLU, k is randomized during training in a given range. For SE, the slope is decided by
a trainable dynamic function.

have not been studied for quantization.

In this paper, we propose a Bilateral Clipping Parametric Rectified Linear Unit(BCPReLU)
as a generalization of ReLU and the existing variants. The learnable two sided thresholds for
activation value and trainable non-zero slopes for activation input are introduced in BCPReLU. we
prove that the expressive ability of BCPReLU is almost the same as corresponding unbounded one,
and establish the convergence property of the quantization error for BCPReLU. Experiments on a
set of popular models and datasets demonstrate the effectiveness of BCPReLU in both full-precision
and quantized network. Our contributions are summarized below:

• We propose a new clipping activation function as a generalized version of ReLU and it-
s variants. The trainable slopes and thresholds for both positive and negative input are
introduced in BCPReLU.

• We theoretically prove that BCPReLU has almost the same expressive ability as the corre-
sponding unbounded function in full-precision network, and establish the convergence of
BCPReLU in quantized network.

• Extensive experiments on CIFAR-10 and SVHN datasets demonstrate the effectiveness of
BCPReLU.

The rest of the paper is organized as follows: Section 2 provides a summary of prior works on
quantization. Section 3 proposes a novel clipping activation function, of which the expressive ability
in full-precision network is analyzed, and the convergence in quantized network is established. In
Section 4, we demonstrate the effectiveness of our quantization schemes by experiments.

2 RELATED WORK

Currently, quantization has become an efficient way to compress model with limited accuracy degen-
eration. Approaches for quantizing full-precision network into low-bit one can be roughly divided
into two categories: weight quantization and activation quantization, the former reduces computa-
tional cost, and the latter saves memory storage. Early quantization works (Li et al., 2016; Zhu
et al., 2016; Rastegari et al., 2016) are mainly concerned with weight quantization, which quantize
weight to 1-bit (binary) or 2-bits (ternary). However, the quality of activation quantization is also
a key factor affecting the low-bit network performance. Thus, activation quantization has gained
much attention. Recently, several works design new activation quantization schemes according to
the activation distribution or the range of activation output. Sung et al. (2015) examine post-training
quantization for DNNs. They adopt a clip threshold that minimizes the L2-norm of the quantization
error. In the work of Jacob et al. (2018), quantization is performed by applying point-wise the quan-
tization function during training, in which the quantization factor is parameterized by quantization
level and clamping range. Besides, ACIQ (Banner et al., 2019) proposes a 4-bit post training quan-
tization approach, in which the fixed-point values are obtained by rounding the full-precision ones
to the midpoint of every quantization region. These works show that a bounded range is beneficial
to improve the quantization performance. However, the fixed bounded range on the output is sub-
optimal due to layers/channels difference. PACT (Choi et al., 2019) places learnable threshold α on
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Figure 2: BCPReLU: the k1 and k2 control the slopes of the negative input and the positive input,
respectively. The −k1µ and k2α control the lower bound and upper bound of output, respectively.
The k1, k2, µ, α are adaptively learnedn in training, and then fixed in the testing.

the output of ReLU to find the optimal range of output, and then the values in the optimized range
are linearly quantized to M bits.

3 BCPRELU AND QUANTIZATION ANALYSIS

In this section, we first propose a new clipping activation function, then prove that the proposed
activation function has almost the same representation ability as the corresponding unbounded one
in the full-precision network. According to the reasonable assumption of activation distribution, we
finally establish the convergence of the quantization error.

3.1 BCPRELU: BILATERAL CLIPPING PARAMETRIC RECTIFIED LINEAR UNIT

As stated in the previous section, we propose a new clipping trainable activation function (BCPRe-
LU):

y = f(x;µ, k1, α, k2) =


−k1µ, x ∈ (−∞,−µ)
k1x, x ∈ [−µ, 0)
k2x, x ∈ [0, α)
k2α, x ∈ [α,+∞)

(1)

Here x is the input of the nonlinear activation y, the parameters k1 and k2 are trainable and control
the slopes of the negative input and the positive input, respectively. The parameters −µ and α are
the clipping values of the negative input and the positive input, respectively. When k1 = 0 and
k2 = 1, the clipping activation function becomes PACT (the trainable clipping ReLU); when k1 is a
small and fixed value and k2 = 1, it becomes a clipping form of LReLU; and when k1 is a trainable
variable and k2 = 1, it becomes a clipping form of PReLU.

As shown in Figure 2, when −µ → −∞ and α → +∞, the output of BCPReLU is un-
bounded, which incurs large quantization error. To limit the range of output, it is necessary to
place reasonable clipping values. The clipping values −k1µ and k2α in BCPReLU limit the range
of output, k1 and µ also enhance the expressive power in negative input to avoid the case of dead
neurons.

3.2 BCPRELU HAS ALMOST THE SAME AS EXPRESSIVE ABILITY AS THE CORRESPONDING
UNBOUNDED ONE

In this subsection, we consider the effect of clipping values, and compare BCPReLU with the cor-
responding unbounded one in full-precision network. Following Choi et al. (2019), we summary as
follows:
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Theorem 1 Assume that x is a activation input, y = f(x; k1, µ, k2, α) represents corresponding
output. The network with BCPReLU can be trained to find the same output as the corresponding
unbounded function and converge faster than the corresponding unbounded function.

proof 1 Assume that y∗ is the corresponding label of x, the cost function is defined as following by
the mean-square-error (MSE) :

L(y) = 0.5 · (y − y∗)2.
We define the unbounded function corresponding to BCPReLU as g:

g = g(x; k1, k2) =

{
k1x, x ∈ (−∞, 0)
k2x, x ∈ [0,+∞)

(2)

If x ∈ [−µ, α], the network with BCPReLU (Eq. 1) behaves approximately the same as the network
with the unbounded function g (Eq. 2).

If x < −µ, then y = −k1µ, g = k1x, k2 and α are not updated due to
∂y

∂k2
=
∂y

∂α
= 0.

Updating k1 and µ :

knew1 = k1 − η
∂L

∂k1
= k1 − η

∂L

∂y
· ∂y
∂k1

= k1 + ηµ
∂L

∂y
,

µnew = µ− η ∂L
∂µ

= µ− η ∂L
∂y
· ∂y
∂µ

= µ+ ηk1
∂L

∂y
.

The update of k1 and u depend on ∂L
∂y , so we need consider the different cases of ∂L∂y = y − y∗ :

Case 1: If y∗ < k1x, then y∗ < y, ∂L∂y > 0, k1 increase, µ increase, thus y = −k1µ dcreases until
−µ < x, i.e., y = g. The network with BCPReLU (Eq. 1) behaves the same as the network with the
unbounded function g (Eq. 2) in this case.

Case 2: If k1x < y∗ < y, ∂L
∂y > 0, k1 increase, µ increase, thus y = −k1µ decrease and

converge to y∗.

Case 3: If y < y∗, ∂L
∂y < 0, k1 decrease, µ decrease, thus y = −k1µ increase and con-

verge to y∗.

Note that in case2 and case3, the output of BCPReLU converges to the same target y∗ faster
than the corresponding unbounded function g.

If x > α, then y = k2α, k1 and µ are not updated. The analysis way is similar as that when x < −µ.

This completes the proof of Theorem 1. Q.E.D.

From Theorem 1, we know that BCPReLU has almost the same expressive power with the corre-
sponding unbounded function.

3.3 QUANTIZATION METHOD AND THE CONVERGENCE OF QUANTIZATION ERROR

The BCPReLU limits the range of activation to [−k1µ, k2α]. According to the quantization method
from (Choi et al., 2018), the bounded range of output is linearly quantized to M bits as follows

yq = round(y · 2M − 1

k1µ+ k2α
) · k1µ+ k2α

2M − 1
.

During the training stage, k1, µ, k2, α, are trainable variables. The gradient with respect to the
involved parameters ∂yq

∂µ ,
∂yq
∂k1

,
∂yq
∂α and ∂yq

∂k2
can be computed by the Straight-Through Estimator

(STE) (Bengio et al., 2013). Thus,
∂yq
∂µ

=
∂yq
∂y
· ∂y
∂µ

=

{
−k1, x ∈ (−∞,−µ)

0, x ∈ [−µ,+∞),
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∂yq
∂k1

=
∂yq
∂y
· ∂y
∂k1

=

{ −µ, x ∈ (−∞,−µ)
x, x ∈ [−µ, 0)
0, x ∈ [0,+∞),

∂yq
∂k2

=
∂yq
∂y
· ∂y
∂k2

=

{
0, x ∈ (−∞, 0)
x, x ∈ [0, α)
α, x ∈ [α,+∞),

∂yq
∂α

=
∂yq
∂y
· ∂y
∂α

=

{
0, x ∈ (−∞, α)
k2, x ∈ [α,+∞).

Next, we consider the quantization error of BCPRLU. Under a reasonable activation distribution
assumption, the convergence of quantization error is established as follows:

Theorem 2 Assume that activation input x is a random variable, with a probability density function
f(x) = Laplace(0, b), the quantization error of BCPReLU converges to zero when bit-width M →
∞.

A proof of the Theorem 2 will be given in Appendix A. This theorem shows that our proposed
activation function using common quantization method satisfys the property of quantization error
i.e. the quantization error converges to zero when the bit-width M approaches infinity (→∞).

4 EXPERIMENTS

To demonstrate the effectiveness of BCPReLU, we evaluate it on several well-known models:
ResNet20/32 (He et al., 2016) for the CIFAR10 and SVHN datasets. CIFAR-10 dataset contains
10 different classes images, and each image is an RGB image in size 32 × 32. There are 50,000
training images and 10,000 test images. SVHN consists of a training set of size 76K examples and
a test set of size 26K, where each image is 32× 32 color images. In all experiments on SVHN, we
follow the same procedure used for the CIFAR-10 experiments.

4.1 THE EQUIVALENT FORM OF BCPRELU

With loss of generality, we consider the case where convolutions and BCPReLU are fused to derive
the equivalent form of BCPReLU. Considering a single-neuron network with BCPReLU, where
(b, y∗) is a sample of training data and w is weight, then x = wb,

y =


−k1µ, wb ∈ (−∞,−µ)
k1wb, wb ∈ [−µ, 0)
k2wb, wb ∈ [0,+α)
k2α, wb ∈ [α,+∞)

The k2w, k2µ and k2α are denoted by w∗, µ∗ and α∗, respectively.

y =


− k1k2µ

∗, w∗b ∈ (−∞,−µ∗)
k1
k2w

∗b, w∗b ∈ [−µ∗, 0)
w∗b, w∗b ∈ [0,+α∗)
α∗, w∗b ∈ [α∗,+∞)

So the slope k2 of the positive input can be integrated into the training of k1, µ, α and weight. The
proposed clipping activation function is equivalent to the bounded from of PReLU (BCPReLU) as
follow

y = f(x;µ, k, α) =


−kµ, x ∈ (−∞,−µ)
kx, x ∈ [−µ, 0)
x, x ∈ [0, α)
α, x ∈ [α,+∞)

(3)

Here k is a coefficient controlling the slope of the negative input, −kµ and α control the lower
bound and upper bound of y, respectively. Note that we use the equivalent function from Eq.3 in the
following experiments.
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Figure 3: The validation error of PReLU and BCPReLU on CIFAR10-ResNet20.

Figure 4: The validation error of different bit-width BCPReLU on CIFAR10-ResNet20.

4.2 COMPARISON OF PRELU AND BCPRELU IN FULL PRECISION NETWORK

For BCPReLU experiments, we only replace PReLU with BCPReLU but keep the other hyper-
parameters the same in full precision network. Figure 3 shows the validation error of PReLU and
BCPReLU on CIFAR10-ResNet20. The curves show that the BCPReLU has almost the same ex-
pressive ability as PReLU in full-precision network. The performance of BCPReLU is consistent
with the theoretical analysis from the Theorem 1.

4.3 QUANTIZATION PERFORMANCE FOR BCPRELU IN DIFFERENT BIT-WIDTH

In this subsection, we give the comparisons between the full-precision network and the low-bit (4,8-
bit) network. The curves of validation error with different bit-width are shown in Figure 4, we
observe that the validation error is gradually reduced as the bit-width increases. The result is in line
with the theoretical analysis in Theorem 2, i.e., when the bit-width M increases, the quantization
error of BCPReLU decreases.

4.4 COMPARISON OF QUANTIZATION ACCURACY WITH OTHER METHODS

To evaluate our method, we compare with PACT Choi et al. (2018) on several well-known CNNs:
ResNet20/32 (He et al., 2016) for the CIFAR10 and SVHN datasets. We used stochastic gradient
descent (SGD) with momentum of 0.9. The learning rate starts from 0.1 and scaled by 0.1 at epoch
60, 120. The mini-batch size of 128 is used, and the maximum number of epochs is 200. Table 1 and
Table 2 summarize quantization accuracy. As can be seen from Table 1 and 2, BCPReLU achieves
high accuracy consistently across the networks tested, and outperforms PACT for all the cases. This
is reasonable because the parameters of BCPReLU are more flexible to adapt to training than PACT.
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Table 1: The Comparison of top-1 accuracy between PACT and BCPReLU on CIFAR-10.

Network PACT BCPReLU
4-bit 8-bit 4-bit 8-bit

ResNet20 0.913 0.915 0.914 0.919
ResNet32 0.919 0.923 0.922 0.926

Table 2: The Comparison of top-1 accuracy between PACT and BCPReLU on SVHN.

Network PACT BCPReLU
4-bit 8-bit 4-bit 8-bit

ResNet20 0.956 0.961 0.962 0.965
ResNet32 0.96 0.963 0.964 0.967

5 CONCLUSION

In this paper, we propose a novel clipping activation function (BCPReLU) as a generalization of Re-
LU and its variants, which introduces trainable clipping values and learnable slopes for the output
of activation function. The theoretical analysis of the representation ability on the full-precision net-
work and the convergence of the low-bit network has also been established. Extensive experiments
on CIFAR10 and SVHN datasets show that the network with BCPReLU maintains almost the same
accuracy as corresponding unbounded activation function in full-precision network. In comparison
to PACT, the networks with BCPReLU achieve higher accuracy in the low-bit network.
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A APPENDIX

In the quantized network, we need notations as follows:

η1 = round(−k1µ
2M − 1

k1µ+ k2α
), η2 = round(k2α

2M − 1

k1µ+ k2α
), β =

k1µ+ k2α

2M − 1
.

Then yq = round(y. 1β )β.

Assume that the activation input x is a random variable, with a probability density function
f(x) = Laplace(0, b) = 1

2be
−|x|
b , then kx has a density function h(x) = Laplace(0, kb) = 1

2kbe
−|x|
kb .

Thus, the activation output y has the probability density function

h(y) =

{
1

2k1b
e

y
k1b , y ∈ (−∞, 0)

1
2k2b

e
−y
k2b , y ∈ [0,∞)
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The quantization error between the activation output y and its quantized version yq is denoted by
error(y), which can be written as follows:

error(y) =

∫ k2α

−k1µ
h(y)(y − yq)2dy

=

∫ (η1+0.5)β

−k1µ
h(y)(y − η1β)2dy +

∫ α

(η2−0.5)β

h(y)(y − η2β)2dy+

2M−2∑
i=1

∫ (η1+i+0.5)β

(η1+i−0.5)β

h(y)[y − (η1 + i)β]
2
dy

Because the probability density on the positive input is different from that of the negative in-
put, we need to consider the integral of different intervals when calculating the quantization error.
Obviously, yq = 0 when y = 0.Assume that η1+i∗ = 0, then 0 ∈ [(η1+i

∗−0.5)β, (η1+i∗+0.5)β].

Thus,

error(y) =

∫ (η1+0.5)β

−k1µ
h(y)(y − η1β)2dy +

i∗−1∑
i=1

∫ (η1+i+0.5)β

(η1+i−0.5)β

h(y)[y − (η1 + i)β]
2
dy+

∫ 0

−0.5β

h(y)y2dy +

∫ 0.5β

0

h(y)y2dy +

2M−2∑
i=i∗+1

∫ (η1+i+0.5)β

(η1+i−0.5)β

h(y)[y − (η1 + i)β]
2
dy

+

∫ α

(η2−0.5)β

h(y)(y − η2β)2dy

Defining

h1(y) =
1

2
e

y
k1b (y − η1β)2 − (k1b)e

y
k1b (y − η1β) + (k1b)

2
e

y
k1b

h2(y) = −
1

2
e
−y
k2b (y − η2β)2 − (k2b)e

−y
k2b (y − η2β)− (k2b)

2
e
−y
k2b

The quantization error is calculated by integration by parts as follows:

error(y) = h1(−k1µ) + (k1b)
2
+ (k2b)

2
+ h2(k2α)

−
i∗−1∑
i=1

(k1bβ)e
(η1+i−0.5)β

k1b −
2M−2∑
i=i∗+1

(k2bβ)e
−(η1+i−0.5)β

k2b

(4)

If M →∞, then

h1(−k1µ)→ −(k1b)2e
−k1µ
k1b , h2(k2α)→ −(k2b)2e−

k2α
k2b

i∗−1∑
i=1

(k1bβ)e
(η1+i−0.5)β

k1b → −(k1b)2(e
−k1µ
k1b − 1)

2M−2∑
i=i∗+1

(k2bβ)e
−(η1+i−0.5)β

k2b → (k2b)
2
e−

k2α
k2b

(5)

According to the Eq. (5), the quantization error error(y) converge to zero. The proof is completed.
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