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Abstract
An old idea in optimization theory says that
since the gradient is a dual vector it may not be
subtracted from the weights without first being
mapped to the primal space where the weights
reside. We take this idea seriously in this paper
and construct such a duality map for general neu-
ral networks. Our map, which we call modular
dualization, forms a unifying theoretical basis for
training algorithms that are a) fast and b) scalable.
Modular dualization involves first assigning op-
erator norms to layers based on the semantics of
each layer, and then using these layerwise norms
to recursively induce a duality map on the weight
space of the full neural architecture. We derive
GPU-friendly algorithms for dualizing Embed,
Linear and Conv2D layers—the latter two meth-
ods are based on a Newton-Schulz iteration. We
conclude with small experiments demonstrating
the speed, scalability and novel numerical prop-
erties of duality-based optimizers. Our methods
were used in the Muon optimizer, which recently
set speed records for training NanoGPT and was
scaled up to a 1.5 billion parameter transformer.

1 Introduction
This paper pursues a rigorous and first-principles theoretical
framework for designing neural network training algorithms.
We hope that such a framework will facilitate the design of
a next generation of fast and scalable optimizers that are
automatically tailored to different neural architectures.

While gradient descent is the workhorse of modern machine
learning, the most vanilla form of the algorithm does not,
in our view, pass a basic type check. For a gradient update
to type check, we insist that the gradient must be passed
through a duality map before being multiplied by a learning
rate and applied to the weights:
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weight ´ LR ˚ weight.grad type error!
weight ´ LR ˚ dualizepweight.gradq all good!

Why? The reason is that the loss function may not be equally
smooth in all directions in weight space, and there is no rea-
son for the sizes of different components of the raw gradient
vector1 to respect this heterogeneity. In other words, the ge-
ometry of the loss function may be non-isotropic. Insisting
on a type check should force the user to become cognizant
of this issue and to find a suitable duality map. A good dual-
ity map should adjust the size and direction of the gradient
to respect the smoothness structure of the loss function.

Duality maps on vector spaces are commonplace in physics
and applied math. Examples include the musical isomor-
phism in differential geometry (Grosse, 2022), raising and
lowering indices in general relativity (Carroll, 2019) and the
bra-ket notation in quantum mechanics (Sakurai & Napoli-
tano, 2020). Duality maps are also central to several opti-
mization theories including mirror descent (Nemirovsky &
Yudin, 1983), natural gradient descent (Amari, 2016) and
steepest descent on a normed space (Boyd & Vandenberghe,
2004). Despite the efforts of some prescient papers (Carlson
et al., 2015b; Flynn, 2017), the latter kind of norm-based
duality map is yet to puncture the deep learning mainstream.

We believe that duality is a key theoretical concept that will
help in building performant large-scale machine learning
systems. To support this belief, we show in this paper that
two important and seemingly disparate methods in contem-
porary optimization research may be seen as approximations
to a single duality map. These methods are maximal update
parameterization (Yang & Hu, 2021, µP), which is aimed
at scalable training, and Shampoo (Shi et al., 2023), which
is targeted at fast training. We show in Section 4.1 that
both methods emerge as partial approximations to a single
duality map induced by the RMS–RMS operator norm.

1In this paper, we use the term “gradient” to mean the partial
derivative of the loss function. This is in accordance with the
terminology used in machine learning software libraries such as
PyTorch (Paszke et al., 2019) and JAX (Bradbury et al., 2018). We
chose this verbiage to help make the paper easily accessible to a
broad machine learning audience. However, it is worth noting that
this terminology is at odds with common mathematical parlance
(Blondel & Roulet, 2024) where a “gradient” is a primal vector
obtained by applying some form of duality map to the partial
derivative of the loss function.
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1.1 Summary of contributions

First contribution. We describe a procedure for construct-
ing duality maps for general neural architectures. The pro-
cedure, called modular dualization, works in three steps:

Step 1: Operator norms are assigned to individual layers
based on the input-output semantics of each layer;

Step 2: Based on these operator norms, duality maps are
constructed for individual layers;

Step 3: Given the layerwise duality maps and the struc-
ture of the neural architecture, a single duality
map is recursively induced on the full weight
space of the architecture.

Second contribution. We instantiate modular dualization
for a rich family of neural architectures—including convolu-
tional networks and transformers—by writing down duality
maps for Linear, Embed and Conv2D layers. We also pro-
vide GPU-friendly algorithms for computing these duality
maps efficiently. One of these methods has already been
applied in the Muon optimizer (Jordan et al., 2024b).

Third contribution. We run two experiments. In the first,
we find that duality-based optimizers are fast and scalable
across width—see Figure 1. In the second, we see that
duality-based training exhibits novel numerical properties:
the weights move substantially further from their initial
values than for non-dualized training—see Figure 2.

2 Related Work
This paper constructs a duality map for general neural ar-
chitectures. Our approach is based on assigning operator
norms to individual network layers and using these layer-
wise norms to recursively induce a duality map on the full
neural architecture. The most closely related prior work is a
series of papers on spectral descent (Carlson et al., 2015a;b;
2016) and a paper on duality structure gradient descent
(Flynn, 2017).

Spectral descent has been applied to restricted Boltzmann
machines (Carlson et al., 2015a) and discrete graphical mod-
els (Carlson et al., 2016), but let us focus on the more closely
related paper on spectral descent for deep learning (Carlson
et al., 2015b). In that paper, the authors propose assigning
the Schatten-8 norm (a.k.a. spectral norm) to individual
linear layers. This assignment is based on the observation
that neural networks admit natural majorization bounds in
the Schatten-8 norm. The authors call the correspond-
ing duality map for linear layers the “#-operator”—a name
presumably inspired by the musical isomorphism (Grosse,
2022). The authors propose a cheap approximation to the
#-operator based on sketching (Martinsson & Tropp, 2020),

and they also propose a way to mix RMSprop-style pre-
conditioning information (Tieleman & Hinton, 2012) into
the weight updates. In contrast to our work, the authors only
derive duality maps for single linear layers, and these maps
are then heuristically extended to all-layer updates. Nonethe-
less, the authors achieve substantial wall clock speedups
using variants of spectral descent to train small networks.

Now, let us turn our attention to duality structure gradient
descent (Flynn, 2017), which constructs a duality map on
the full weight space of the neural architecture based on
identifying a Finsler structure (Deimling, 1985) inherent
to neural networks. Similar to modular dualization, Flynn
(2017)’s duality map works by assigning duality maps to
each layer and then inducing a duality map on the full weight
space. The substantial difference to our approach is that
Flynn (2017) leverages a weighted sum (L1 combination)
of layerwise norms to construct his full duality map. This
leads to optimization methods that only update a single layer
at each iteration, and the methods need to be heuristically
extended to achieve all-layer updates. In contrast, we lever-
age the modular norm (Large et al., 2024), which takes a
weighted max (L8 combination) of layerwise norms. In
turn, our duality map leads directly to more conventional
all-layer optimizers.

Another important difference between our work on mod-
ular duality and prior work on duality structure gradient
descent is that we fully “modularize” our theory—meaning
that our construction is explicitly recursive—and as such
it is easy to code up into a software package. In this re-
gard, we are inspired by a line of work that attempts to
build optimization algorithms that automatically adapt to
the structure of general computation graphs. The earliest
work we know of in this category is the PhD thesis of Grant
(2004) on disciplined convex programming, which aims to
infer the convexity properties of general functions by break-
ing them up into subexpressions and applying composition
theorems from convex analysis. More recent progress in this
vein includes work on universal majorization-minimization
algorithms (Streeter & Dillon, 2022; Streeter, 2023) and
related papers on automatic majorization (Tran et al., 2015;
Bernstein et al., 2023).

3 Theoretical Preliminaries
In this section, we introduce duality maps, a means of con-
structing duality maps based on norms, and finally a norm
called the modular norm that is well-suited to describe the
geometry of general neural architectures.

3.1 Duality Maps

Given a vector space V , we say that a function f : V Ñ R
is a linear functional on V if f is linear. We define the
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dual space V˚ to be the set of linear functionals on V . The
dual space is itself a vector space provided that addition is
defined pointwise pf ` gqpxq :“ fpxq ` gpxq and scalar
multiplication is defined pointwise pαfqpxq :“ αfpxq for
any scalar α. By duality map we mean any function that
sends a member of the dual vector space V˚ to the primal
vector space V . The function need not be an involution.

Let L : W Ñ R denote the loss of a differentiable machine
learning model with weight space W “ Rn. The Taylor
expansion of the loss at weight setting w P W is given by:

Lpw ` ∆wq “ Lpwq ` ∇wLpwqJ∆w ` ¨ ¨ ¨ . (1)

Observe that, in the first-order term, the gradient ∇wLpwq

is acting as a linear functional: it is pairing with the weight
vector ∆w P W in a linear way to produce a real number.
As such, we shall say that the gradient belongs to the dual
weight space: ∇wLpwq P W˚. We shall forbid ourselves
from directly subtracting a member of the dual weight space
W˚ from the weight space W . If we would like to conduct
a gradient descent update, then we had better find a duality
map to send the gradient back to the primal space W .

This restriction may seem absurd! After all, here the weight
space W and its dual W˚ are both just Rn. However, in-
sisting upon this type check serves to remind us that the
curvature of the loss function may be highly heterogeneous.
The next section will show one way to construct duality
maps to account for this.

3.2 Steepest Descent on a Normed Space

Suppose that we have found a norm }¨} : W Ñ R and a
sharpness parameter λ ą 0 that serve as a good model of
the higher-order terms in the Taylor expansion of the loss
function given in Equation (1):

Lpw ` ∆wq Æ Lpwq ` ∇wLpwqJ∆w `
λ

2
¨ }∆w}2.

(2)

In other words, the norm provides a good characterization of
the heterogeneity in curvature of the loss function. Then it
makes sense to solve for a weight update ∆w by minimizing
the right-hand side of Equation (2). We will show that the
minimizer can be expressed in terms of a dual norm and a
duality map:
Definition 1 (Dual norm). Given a norm }¨} : Rn Ñ R, the
dual norm }¨}: of a vector g P Rn is given by:

}g}: :“ max
tPRn:}t}“1

gJt.

Definition 2 (Duality map based on a norm). Given a norm
}¨} : Rn Ñ R, we consider the duality map:

dualize}¨} g :“ argmax
tPRn:}t}“1

gJt,

where, if the argmax is not unique, dualize}¨} returns any
maximizer.

Given these definitions, minimizing the expression in the
right-hand side of Equation (2) can be done using the follow-
ing standard proposition, for which Bernstein & Newhouse
(2024) provide a proof:

Proposition 1 (Steepest descent under a norm). For any
vector g P Rn thought of as “the gradient”, any λ ě 0
thought of as “the sharpness”, and any norm }¨} : Rn Ñ R
with dual norm }¨}: and duality map dualize}¨}:

argmin
∆wPRn

„

gJ∆w `
λ

2
}∆w}2

ȷ

“ ´
}g}:

λ
ˆ dualize}¨} g.

In words: to find the minimizer of a linear term penalized
by a squared norm, we need only evaluate the dual norm
and a duality map. In this paper, we focus on constructing a
duality map for the modular norm, which is a norm tailored
to the weight space of general neural architectures. But first,
we shall cover duality maps for more standard norms.

3.3 Basic Norms and Duality Maps

Many basic norms and duality maps are already covered
in prior work (Carlson et al., 2016; 2015a;b; Flynn, 2017).
For some warmup examples, the following duality maps for
vector norms are standard:

Example 1 (Duality map for the Euclidean norm). For a
nonzero vector g P Rd, we have dualize}¨}2 g “ g{}g}2.
For the zero vector, we take dualize}¨}2 0 “ 0.

Example 2 (Duality map for the infinity norm). For a vector
g P Rd, we have dualize}¨}8

g “ signpgq, where the sign
function is applied entrywise and we take signp0q “ 0.

In neural networks, the weight spaces of individual layers
tend to have matrix structure. And layers with the same
shape weight matrix may have semantically different input
and output spaces—think embedding versus linear layers
in a transformer. As such, we will need duality maps for
different induced operator norms:

Definition 3 (Induced operator norm). Given a matrix M P

Rdoutˆdin and two normed vector spaces pRdin , }¨}αq and
pRdout , }¨}βq, the “α to β” induced operator norm is:

}M}αÑβ “ max
xPRdin

}Mx}β

}x}α
.

For tensors, we define the duality map via

dualize}¨} G :“ argmax
}T }“1

flattenpGqJ flattenpT q.

For linear layers, we will need the duality map for the
RMS Ñ RMS induced operator norm. This ends up as
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a rescaled version of the spectral norm duality map from
prior work (Carlson et al., 2015b; Flynn, 2017).

Example 3 (Duality map for the RMS Ñ RMS operator
norm). For a vector v P Rd, we define the RMS norm to
be the normalized Euclidean norm: }v}RMS “ }v}2{

?
d.

Given a matrix W P Rdoutˆdin , the RMS Ñ RMS
induced operator norm resolves to a rescaled spectral
norm: }W }RMSÑRMS “

a

din{dout ˆ }W }˚, where
}¨}˚ denotes the standard spectral norm. For a matrix
G P Rdoutˆdin with reduced singular value decomposition
G “ UΣV J, the corresponding duality map is given by
dualize}¨}RMSÑRMS

G “
a

dout{din ˆ UV J.

And for embedding layers, we will need the duality map for
the ℓ1 Ñ RMS operator norm:

Example 4 (Duality map for the ℓ1 Ñ RMS operator
norm). Given a matrix W P Rdoutˆdin , the ℓ1 Ñ RMS
induced operator norm resolves to the max RMS norm of
the columns: }W }ℓ1ÑRMS “ maxi }colipW q}RMS. For
a matrix G P Rdoutˆdin , the corresponding duality map
dualize}¨}ℓ1ÑRMS

G simply normalizes each column of G to
have unit RMS norm: colipGq ÞÑ colipGq{}colipGq}RMS

for each i “ 1, ..., din.

3.4 The Modular Norm

The modular norm (Large et al., 2024) is intended to help
characterize the heterogeneous curvature of general neu-
ral architectures. The construction first defines an abstract
module type along with a notion of what is a good, or well-
normed, module. Then combination rules are given for con-
structing new well-normed modules from a library of exist-
ing well-normed modules. So modules are a special case of
combinator pattern from functional programming (Haskell
Wiki Contributors, 2007) and are related to a monoidal cate-
gory from category theory (Fong & Spivak, 2019). Large
et al. (2024) begin by defining an abstract module:

Definition 4 (Module). Given input vector space X , output
vector space Y and weight vector space W , a module M is
an object with the following four attributes:

(a) a function, M.forward : W ˆ X Ñ Y , which maps an
input and a weight vector to an output;

(b) a number, M.mass ě 0, which is used to set the pro-
portion of feature learning that this module contributes
to any supermodule;

(c) a number, M.sensitivity ě 0, which estimates the mod-
ule’s sensitivity to input perturbations;

(d) a norm over the weight space, M.norm : W Ñ Rě0,
sometimes abbreviated to just }¨}M.

We shall care most about modules that are well-normed
(Large et al., 2024), which amounts to requiring that the

forward function is Lipschitz-continuous in the weights with
constant 1 and in the inputs with constant M.sensitivity:

Definition 5 (Well-normed module). Let M be a module on
pX ,Y,Wq, where the input and output spaces have respec-
tive norms }¨}X and }¨}Y . M is well-normed if for all inputs
x P X , weights w P W , weight perturbations ∆w P W
and input perturbations ∆x P X , we have both:

}∇wM.forwardpw,xq ˛ ∆w}Y ď M.normp∆wq;

}∇xM.forwardpw,xq ˛ ∆x}Y ď M.sensitivity ˆ }∆x}X .

The ˛ operator denotes summation over any shared tensor
indices2. This definition of well-normed-ness can be used
as a guiding principle in the design of a library of atomic
(i.e. handwritten) modules. First, norms should be assigned
to the input and output space of each module based on
the semantics of M.forward. Then a norm M.norm should
be assigned to the module’s weight space and a number
M.sensitivity should be chosen to make the module well-
normed. Examples are given in Section 4.1.

Given such a library of well-normed atomic modules, a
compound module built through any arbitrary sequence of
module compositions and module concatenations is automat-
ically well-normed (Large et al., 2024). And if the atomic
modules are not only well-normed but are also smooth
(Large et al., 2024, Definition 5), then there is an auto-
matic procedure for computing sharpness coefficients for
any compound module built from the library (Large et al.,
2024, Appendix C). The relevant definition of module com-
position is as follows:

Definition 6 (Module composition). Consider module M1

with input, output and weight space pX1,Y1,W1q and mod-
ule M2 with input, output and weight space pX2,Y2,W2q.
M1 and M2 are composable if X2 “ Y1. Their composite
module M “ M2 ˝ M1 has input, output and weight space
pX1,Y2,W1 ˆ W2q and attributes:

(a) M.forwardppw1,w2q,xqq

“ M2.forwardpw2,M1.forwardpw1,xqq;

(b) M.mass “ M1.mass ` M2.mass;

(c) M.sensitivity “ M1.sensitivity ˆ M2.sensitivity;

(d) M.normppw1,w2qq “ maxpα, βq, where:

1) α “ M2.sensitivity ˆ M.mass
M1.mass ˆ M1.normpw1q

2) β “ M.mass
M2.mass ˆ M2.normpw2q

and if M1.mass or M2.mass is zero, the corresponding
term in the max is set to zero.

2The expressions inside the norms on the left-hand side are
examples of “Jacobian vector products”, or JVPs for short (Blondel
& Roulet, 2024).
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So the composite norm is taken to be a weighted max over
the norms of the two sub-modules, where the weight space
of the first module is coupled to the input sensitivity of the
second module. The module masses provide freedom to
tune the importance of each sub-module in the norm, and
Large et al. (2024) prove that module mass provides precise
control over the amount of feature learning that can happen
in each sub-module.

Concatenation is defined in a similar way to composition:

Definition 7 (Module concatenation). Consider module M1

with input, output and weight space pX1,Y1,W1q and mod-
ule M2 with input, output and weight space pX2,Y2,W2q.
We say that M1 and M2 are concatenatable if their input
spaces match: X1 “ X2. The tuple module M “ pM1,M2q

has input, output and weight space pX1,Y1ˆY2,W1ˆW2q

and the following list of attributes:

(a) M.forwardppw1,w2q,xqq

“ pM1.forwardpw1,xq,M2.forwardpw2,xqq;

(b) M.mass “ M1.mass ` M2.mass;

(c) M.sensitivity “ M1.sensitivity ` M2.sensitivity;

(d) M.normppw1,w2qq “ maxpα, βq, where:

1) α “ M.mass
M1.mass ˆ M1.normpw1q

2) β “ M.mass
M2.mass ˆ M2.normpw2q

and if M1.mass or M2.mass is zero, the corresponding
term in the max is set to zero.

A shortcoming of the paper by Large et al. (2024) is that
the power of the modular norm is not fully leveraged. In
particular, the authors do modular normalization of training,
where weight updates to certain modules are naïvely divided
by their norm. This paper makes fuller use of the geometry
of the modular norm by constructing the corresponding
duality map, which we call modular dualization.

4 Modular Dualization
In this section, we construct a duality map for general neu-
ral architectures. Our strategy is to first write down duality
maps for atomic modules, i.e. individual layers. We then
extend to arbitrary compound modules, i.e. full neural net-
works, by showing how duality maps should pass through
composition and concatenation.

4.1 Duality Maps for Atomic Modules

To construct a duality map for an atomic module A, the
idea is to first fix norms on the input and output spaces
that respect the semantics of A.forward. We should select
norms that describe both how large we would like the inputs
and outputs to be, and in what geometry we would like the

outputs to evolve. Then we place a norm on the weight space
such that A is well-normed: this is typically the operator
norm (Definition 3) induced by the input and output norms.
Finally we are in position to solve for the duality map, which
we shall call A.dualize. We now give some examples of this
procedure for the basic layer types of Linear, Embed and
Conv2D. The results are summarized in Table 1.

We start with the canonical example of an atomic module:
Example 5 (The Linear module). The Linear module sends
inputs from X “ Rdin to outputs in Y “ Rdout . The weight
space is given by the matrix space W “ Rdoutˆdin . We
endow the Linear module with attributes:

1. Linear.forwardpW,xq “ Wx, matrix-vector product;

2. Linear.sensitivity “ 1;

3. Linear.mass “ µ, where µ ě 0 is a hyperparameter;

4. Linear.normpW q “ }W }RMSÑRMS, the RMS Ñ

RMS induced operator norm.

Since the Linear module is intended to map to and from vec-
tors of roughly unit RMS norm, we place the RMS norm
on both the input and output space: }¨}X “ }¨}RMS and
}¨}Y “ }¨}RMS. Then Linear is well-normed if the inputs
and weights belong to the unit balls

␣

x P Rdin : }x}X ď 1
(

and
␣

W P Rdoutˆdin : Linear.normpW q ď 1
(

. Referring
back to Section 3.3, the duality map corresponding to
Linear.norm is then given by:

5. Linear.dualizepGq “

b

dout

din
ˆUV J, where the gradi-

ent G P Rdoutˆdin has reduced SVD G “ UΣV J.

This single duality map recovers essential features of both
maximal update parameterization (Yang & Hu, 2021, µP)
and Shampoo (Gupta et al., 2018). In particular, the fac-
tor of

a

dout{din in Linear.dualize recovers spectral update
scaling (Yang et al., 2023) that leads to µP. (Initializing such
that Linear.normpW q “ 1 also recovers µP initialization
scaling.) And the mapping G ÞÑ UV J is equivalent to
Shampoo without accumulation (Bernstein & Newhouse,
2024). As such, we believe duality maps may help reconcile
different strands of deep learning research and provide a
unifying basis for fast and scalable training algorithms.

The Embed module provides a useful counterpoint to the
Linear module. The difference between the two modules
stems from the fact that the input spaces of Embed and
Linear have different semantics.
Example 6 (The Embed module). The Embed module
sends inputs from X “ Rdin to outputs in Y “ Rdout . The
weight space is given by the matrix space W “ Rdoutˆdin .
We endow the Embed module with attributes:

1. Embed.forwardpW,xq“Wx, matrix-vector product;

2. Embed.sensitivity “ 1;
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Module Weight Space W Module.norm Module.dualize

Linear Rdoutˆdin W ÞÑ }W }RMSÑRMS G ÞÑ

b

dout

din
ˆ UV J

Embed Rdoutˆdin W ÞÑ }W }ℓ1ÑRMS coljpGq ÞÑ
coljpGq

}coljpGq}RMS

Conv2D Rdoutˆdinˆkˆk W ÞÑ k2 maxki,j“1 }W¨¨ij}RMSÑRMS G¨¨ij ÞÑ 1
k2

b

dout

din
ˆ UijV

J
ij

Table 1: Duality maps for three atomic modules: Linear, Embed, and Conv2D. These atomic modules are sufficient
to build CNNs and transformers. In Linear.dualize, UΣV J denotes the reduced SVD of the gradient matrix G. In
Conv2D.dualize, UijΣijV

J
ij denotes the reduced SVD of the slice of the gradient tensor G¨¨ij at kernel indices i, j.

Section 5 provides GPU-friendly algorithms for computing these duality maps using a family of Newton-Schulz iterations.

3. Embed.mass “ µ, where µ ě 0 is a hyperparameter;

4. Embed.normpW q “ }W }ℓ1ÑRMS, the ℓ1 Ñ RMS
induced operator norm.

Embed is intended to map from one-hot vectors to
vectors of roughly unit RMS norm, so we place the
ℓ1 norm on the input space and the RMS norm on
the output space: }¨}X “ }¨}ℓ1 , }¨}Y “ }¨}RMS.
Then Embed is well-normed if the inputs and weights
belong to the unit balls

␣

x P Rdin : }x}X ď 1
(

and
␣

W P Rdoutˆdin : Embed.normpW q ď 1
(

. Referring
back to Section 3.3, the duality map for Embed.norm is:

5. Embed.dualizepGq performs the mapping coljpGq ÞÑ
coljpGq

}coljpGq}RMS
for each column index j “ 1, ..., din.

Finally, we consider a Conv2D module with a k ˆ k kernel.
Conv2D has a more involved tensor structure than Linear
and Embed. The calculations work by slicing up the weight
tensor into a collection of k2 matrices.
Example 7 (The Conv2D module). The Conv2D module
sends inputs from X “ RWinˆHinˆdin to outputs in Y “

RWoutˆHoutˆdout . We think of this as mapping an input
image of width Win, height Hin and with din color channels
to an output image of width Wout, height Hout and with
dout color channels. The weight space is given by the tensor
space W “ Rdoutˆdinˆkˆk, where k is the kernel size. We
endow Conv2D with attributes:

1. Conv2D.forwardpW,xq “ W f x, where f denotes
2D convolution;

2. Conv2D.sensitivity “ 1;

3. Conv2D.mass “ µ, where µ ě 0 is a hyperparameter;

4. Conv2D.normpW q “ k2 maxki,j“1 }W¨¨ij}RMSÑRMS,
the max RMS Ñ RMS norm over kernel indices.

We would like pixel intensities in the inputs and outputs
to be order one and undergo order one change. We for-
malize this by taking the input and output norms to be
the spatial maximum of the RMS norms of all the color
channel vectors: }x}X “ maxWin

w“1 maxHin

h“1 }xwh¨}RMS

and }y}Y “ maxWout
w“1 maxHout

h“1 }ywh¨}RMS. Then
Conv2D is well-normed if the inputs and weights be-
long to the unit balls

␣

x P RWinˆHinˆdin : }x}X ď 1
(

and
␣

W P Rdoutˆdinˆkˆk : Conv2D.normpW q ď 1
(

. Since
the duality map for a max of norms decouples into one
duality map per sub-norm, the duality map corresponding
to Conv2D.norm is given by:

5. Conv2D.dualizepGq does G¨¨ij ÞÑ 1
k2

b

dout

din
ˆUijV

J
ij ,

where G¨¨ij has reduced SVD UijΣijV
J
ij .

4.2 Duality Maps for Bond Modules

Large et al. (2024) define another class of basic modules:
bond modules. Bonds are handwritten modules without
weights. An example of a bond is the ReLU nonlinearity.
For a bond B, the weight space is the zero vector space
W “ t0u and the modular norm B.norm “ 0 ÞÑ 0. As such,
the corresponding duality map is also B.dualize “ 0 ÞÑ 0.
In a software package, one need not write norms or duality
maps for bond modules.

4.3 Duality Maps for Compound Modules

Given two composable modules M1 and M2, the duality
map for the composite M “ M2 ˝ M1 is given by:

M.dualizepg1, g2q“

ˆ

M1.mass

M.mass
ˆ
M1.dualizepg1q

M2.sensitivity
,
M2.mass

M.mass
ˆM2.dualizepg2q

˙

.

Given two concatenatable modules M1 and M2, the duality
map for the tuple M “ pM1,M2q is:

M.dualizepg1, g2q“

ˆ

M1.mass

M.mass
ˆM1.dualizepg1q,

M2.mass

M.mass
ˆM2.dualizepg2q

˙

.

The proofs of Section 4.3 follow in a straightforward manner
from Definitions 6 and 7.

5 Fast Duality Maps
For modular dualization to be practically feasible, we need
ways of computing duality maps quickly. Inspecting the
duality maps listed in Table 1, we see that Embed.dualize is

6
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easy to implement since it just involves computing vec-
tor norms of matrix columns. But Linear.dualize and
Conv2D.dualize involve the projection:

G “ UΣV J ÞÑ UV J, (3)

where UΣV J is the reduced SVD of the matrix G. Since
computing SVDs can be slow (Carlson et al., 2015b; Flynn,
2017), we discuss three approximations to this map via
sketching, iterations for inverse matrix roots, and a family
of rectangular Newton-Schulz iterations.

5.1 Sketching

Sketching is a randomized method (Martinsson & Tropp,
2020) that can be used to build low-rank approximations
to the SVD. Carlson et al. (2015b) used sketching to pro-
vide a fast approximation to their #-operator. More recent
papers have experimented with sketching in the context of
Shampoo-type algorithms (Feinberg et al., 2023). A poten-
tial downside of approximating Equation (3) via sketching
is that randomized SVD methods usually try to accurately
approximate the largest singular values of a matrix (Mar-
tinsson & Tropp, 2020, Section 11.2) while the value of
Equation (3) may lie in its action on small singular values.

5.2 Iterations for Inverse Matrix Roots

If G is a full rank matrix with reduced SVD UΣV J, then:

UV J “ pGGJq´1{4 G pGJGq´1{4

“ pGGJq´1{2 G “ G pGJGq´1{2.

This equation provides a route to approximating the map
UΣV J ÞÑ UV J since one can compute inverse ma-
trix roots such as pGGJq´1{2 via Newton iteration (Lakić,
1998). This is discussed in Chapter 7 of Higham (2008)’s
book and also see Anil et al. (2020)’s paper. Care must be
taken with inverses when the matrix G is ill-conditioned.

5.3 Rectangular Newton-Schulz Iteration

We developed a “rectangular Newton-Schulz iteration” for
computing UV J by adapting Equation 5.22 in Higham
(2008)’s book for computing the “matrix sign function”. We
later discovered this iteration has a long history (Kovarik,
1970; Björck & Bowie, 1971). The method works by first
normalizing the matrix G according to X0 “ G{}G}ℓ2Ñℓ2

(or alternatively X0 “ G{}G}F ) and then iterating:

Xt`1 “
3

2
Xt ´

1

2
XtX

J
t Xt,

then as t Ñ 8, the sequence Xt Ñ UV J. To see this, one
can plot the univariate cubic function fpxq :“ 3

2x ´ 1
2x

3

and see that, for 0 ă x ă
?
3, iterating this cubic will push

x closer and closer to `1. The final step is to realize that
the effect of the matrix iteration is to apply this cubic fpxq

to each singular value of Xt. This shows that the spectral
normalization X0 “ G{}G}ℓ2Ñℓ2 is stronger than what is
required: we need only ensure that X0 has singular values
no greater than

?
3 for the iteration to converge.

This iteration has the advantage over sketching that it always
works on all singular values, and since it does not compute
inverse matrix roots the iteration is well-behaved even on
low-rank matrices.

Finally, there are in fact a family of degree 2n ` 1 polyno-
mial iterations of the form

Xt`1 “ aXt ` bpXtX
J
t qXt ` ¨ ¨ ¨ ` zpXtX

J
t qnXt

for suitable a, b, . . . , z instead of a, b “ 3
2 ,´ 1

2 . One should
choose coefficients a, b, . . . , z so that the univariate poly-
nomial gpxq “ ax ` bx3 ` ¨ ¨ ¨ ` zx2n`1 is a suitable
approximation to signpxq. One may further accelerate the
iteration by “tuning” the coefficients a, b, . . . , z empirically.

6 Discussion
This paper develops the theory of modular duality and the
procedure of modular dualization as means to construct
duality maps for general neural architectures. Here, we
comment on implications and connections.

6.1 Neural Network Speedrunning

We believe that the ideas in this paper can help in the design
of faster training methods. In fact, based on our work, a new
NanoGPT training speed record was recently set using a
Newton-Schulz-based duality map, packaged into an open-
source optimizer called Muon (Jordan et al., 2024b).

6.2 A Type System for Deep Learning

Part of the inspiration for this work is to build a fully-fledged
type system for deep learning. We think that activation
spaces should be typed by their intended norm and the
intended size of activations in that norm. This informa-
tion would help to construct well-normed modules (see
Section 4.1). Modules should be typed according to Defi-
nition 4. And, as suggested in the introduction, gradients
should be explicitly typed as dual vectors. A duality map
should flip the type of a dual vector to a primal vector. We
plan to use the Modula deep learning package (Large et al.,
2024) as a testbed for these ideas.

6.3 Modular Duality: A Unifying Theoretical
Framework for Fast and Scalable Training

An important topic in contemporary optimization research
is the design of fast and scalable training methods for neural
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Figure 1: Learning rate transfer with dualization. To
test learning rate transfer across width, we train an MLP on
CIFAR-10 for 20 epochs at a range of widths and learning
rates. We plot the final training loss and mark the best
learning rate at each width with a red dot. Left: In standard
parameterization (SP), Adam’s optimal learning rate drifts to
the left. Middle: Maximal update parameterization (Yang
& Hu, 2021, µP) mostly corrects this drift. Right: Our
duality-based method has a fairly stable optimal learning
rate and also reaches much lower loss. More experimental
details are given in Appendix A.

networks. Two popular methods in this research space are
maximal update parameterization (Yang & Hu, 2021, µP),
which allows increasing network width without changing
the optimal learning rate, and Shampoo (Gupta et al., 2018),
a variant of which (Shi et al., 2023) won a speed challenge
at the AlgoPerf optimizer competition (Dahl et al., 2023).

We showed in Section 4.1 that essential features of both µP
and Shampoo are recovered from the single duality map
Linear.dualize. We think that, on a basic theoretical level,
µP and Shampoo should be viewed as partial approxima-
tions to this duality map. This observation helps put µP
and Shampoo on a consistent theoretical footing, orients the
methods with respect to overlooked prior work on spectral
descent (Carlson et al., 2015b) and duality structure gradient
descent (Flynn, 2017), and suggests new ways to generalize
these methods to arbitrary layer types and network architec-
tures via the modular norm and modular dualization.

Figure 1 shows that our duality-based optimizer is both
scalable and fast: it transfers learning rate across width like
µP, and it reaches lower loss in the same number of steps.

6.4 On the Alignment of Activations and Updates

Recent work (Yang et al., 2023; Everett et al., 2024; Large
et al., 2024) has singled out the following question as im-
portant to the design of scalable deep learning systems: to
what extent do gradient updates to neural network layers
align with incoming activation vectors? This question is im-
portant since it helps inform how large weight updates need
to be to induce a certain amount of change in layer outputs.
Duality maps such as Linear.dualize and Conv2D.dualize
may help simplify the answer to this question, since they
project gradients to scaled semi-orthogonal matrices for

Figure 2: Erasure of watermarked initial weights. It is
commonly held that the weights stay close to initialization
in very wide networks (Lee et al., 2019; Jesus et al., 2021).
To visualize the change in weights, we “watermark” the hid-
den layer weights of an MLP of width 1024 at initialization
by zeroing out matrix entries in the shape of the letter “a”.
We then train for 1000 steps on CIFAR-10, across ten differ-
ent learning rates. For each run, we plot the final training
accuracy along with an image of the learned weight matrix.
Not only does dualized gradient descent reach higher train-
ing accuracies than the non-dualized method, but dualized
gradient descent also “erases” the watermark at the highest
stable learning rate, constituting substantial weight change.
More experimental details are given in Appendix A.

which all singular values have the same magnitude. For the
case of a square weight matrix, the weight update is simply
an orthogonal matrix, which acts as an isometry on inputs
vectors—meaning that feature learning happens trivially.

6.5 A Numerical Paradox: The Weights Don’t Change!

Past work (Lee et al., 2019; Jesus et al., 2021) has pointed
out an apparent paradox in deep learning: the weights seem
to move a vanishing amount from initialization in the limit
of large network width. This finding led to substantial inter-
est in linearized training dynamics (Jacot et al., 2018). Prior
work attempted to resolve this paradox by showing that the
weights move a roughly constant amount at any width when
the change is measured in spectral norm (Yang et al., 2023).
But duality maps lead to a new story: Linear.dualize ramps
up the stable rank of updates, causing the weights to move at
large width even in the Frobenius norm—provided the batch
size is not too small. This result, shown in Figure 2, chal-
lenges the belief that very wide neural networks cannot stray
from their initialization; instead the numerical movement of
the weights depends on the choice of optimizer.
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7 Conclusion
This paper has proposed a recursive procedure called modu-
lar dualization for building duality maps for general neural
architectures. The procedure unifies past strands of opti-
mization research on Shampoo (Gupta et al., 2018) and µP
(Yang & Hu, 2021). Duality-based optimizers have already
led to significant wall-clock speedups in transformer train-
ing ranging from 124M to 1.5B parameters (Jordan et al.,
2024b). The rectangular Newton-Schulz iteration provides a
GPU-friendly and numerically stable means of dualizing un-
der the RMS Ñ RMS operator norm, while avoiding some
of the downsides of sketching-based approaches (Carlson
et al., 2015b). Overall, we hope that our theory of modu-
lar duality provides a clarifying toolkit for the design and
analysis of deep learning systems.

Impact Statement
The methods developed in this paper may be used to make
the training of machine learning systems more efficient, for
either good or ill.
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A Experimental Details
Datasets. The dataset for all experiments is CIFAR-10
(Krizhevsky & Hinton, 2009). We use the standard train and
test splits with no data augmentation.

Architectures. The architecture for all experiments is a
3-layer MLP with a ReLU nonlinearity, one hidden layer,
and no biases. Having three layers allows all three types of
weight matrix shape to be present: square, wide rectangular,
and tall rectangular. In the learning rate transfer experiment,
the width of the hidden layer varies from 32 to 4096. In the
weight erasure experiment, the width is fixed to 1024.

Precision. All experiments use the default precision float32.
It is well demonstrated in the NanoGPT speedruns that
Newton-Schulz iterations can run in bfloat16 (Jordan et al.,
2024a). We believe it is a promising future direction to
explore whether dualization leads to improved speed and
scalability in further reduced precisions.

A.1 Learning Rate Transfer

We run experiments with hidden layer widths 32, 64, 128,
256, 512, 1024, 2048, and 4096. For each width, we sweep
between 10 and 20 different learning rates. We train for 20
epochs with batch size 128.

Adam (SP). The hyperparameters for Adam are the default
ones in PyTorch, except for the sweep over the learning
rate. Weight matrices are initialized according to the default
PyTorch initialization (Kaiming uniform).

Adam (µP). In µP, the learning rate of each layer is equal
to the global learning rate (which we sweep) divided by
that layer’s input dimension din, and weight matrices are
initialized as zero-mean Gaussians with standard deviation
σ “

a

minpdin, doutq{d2in (Qiu et al., 2024). All other
hyperparameters are the default ones in PyTorch.

Dualization. We use orthogonal weight initialization. Con-
cretely, we create weight matrices with unit Gaussian entries
and then iterate them through Newton-Schulz for 30 steps.
Our duality-based optimizer in this experiment uses no mo-
mentum. It passes the raw gradient through the duality map
UΣV J ÞÑ

a

dout{din UV J, implemented via 5 steps of
Newton-Schulz iteration and then multiplying by the dimen-
sional constant. We use a quintic Newton-Schulz iteration

with coefficients p2,´1.5, 0.5q.

A.2 Erasure of Watermarked Initial Weights

We run experiments with hidden layer width 1024 and learn-
ing rate ranging across 2´6, . . . , 23. We train for 1000 steps
with batch size 1024.

The dualization uses ten steps of a quintic Newton-Schulz
iteration with coefficients p3.0,´3.2, 1.2q, followed by mul-
tiplication by the dimensional constant. These quintic coef-
ficients are different from above but lead to the same duality
map UΣV J ÞÑ

a

dout{din ˆ UV J.

To align the maximum stable learning rate between dual-
ized and non-dualized training, we spectrally normalize the
regular gradient descent update as g ÞÑ g{}g}˚{3. We
also divide by 3 to match the scalar division that occurs
in Linear.dualize due to the module masses for a 3-layer
MLP. This way both the dualized and non-dualized methods
become unstable at the same learning rate, approximately
lr “ 1.1, as seen in Figure 2. Disabling spectral normaliza-
tion does not change the qualitative findings.
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