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Abstract

The prevalent Observation-Oriented modeling paradigm in machine learning, including AI,
inherently views “time” as a singular, linear timeline, rather than as computational dimen-
sions. Specifically, it requires identifying observational variables before modeling relations,
limiting access to dynamical temporal features, and overlooking the multi-dimensional tem-
poral feature space. These limitations introduce inherent bias, affecting the robustness and
generalizability of structural causal AI models and contributing to AI Alignment issues.
This study examines these limitations uniquely through a dimensionality lens and presents
a new Relation-Oriented paradigm. Inspired by the relation-centric nature of human cog-
nition, this paradigm aims to enable interpretable Artificial General Intelligence (AGI) de-
velopment grounded in human knowledge. As its methodological counterpart, the proposed
relation-defined representation learning is substantiated by extensive efficacy experiments.

1 Introduction
The prevailing modeling paradigm rules that observed variables (and outcomes) are the premise of building
relationships. Model variables are often estimated by their observational values with an independent and
identical distribution (i.i.d.) setting. Back in the 1890s, Picard-Lindelof theorem introduced a logical timeline
t to record observational timestamps, establishing the paradigm xt+1 = f(xt) to depict variable X’s time
evolution. Since then, this Observation-Oriented principle has become our learning convention, where
temporal dimensional computing is equated to counting {t, t+ 1} unit, a predetermined constant time lag.

For a relationship X → Y , the model can be in form yt+m = f(xt), or yt+m = f({xt}), where {xt} =
{x1, . . . , xt, xt+1, . . . , xT } represents a time sequence of X within a certain length T , and a predetermined
time progress m from X to Y . Regardless of its form, the outcome Y is strictly observational with a specified
timestamp, leaving all potentially significant dynamics of the Y object entirely managed by f(·). However,
whether the selected function f(·) is linear or nonlinear only influences the dimensionality of Rd, where
X ∈ Rd, while the time evolution from t to t+m for the Y object remains invariably linear.

Such a linearity on the temporal dimension may be sufficient in the past, but not in the present, given the
current technological advancements in data collection and Artificial Intelligence (AI) methods. Exploring
nonlinear distributions on temporal dimension(s) is gradually becoming essential, calling for a new modeling
paradigm Scholkopf (2021), which does not rest on the conventional i.i.d.-assumed observations, but can
treat relative timelines, i.e., potentially multiple t-axes, as distinct computational dimensions.

This study aims to fundamentally reveal the inherent deficiency of the current Observation-Oriented modeling
paradigm (Chapter I: Sections 2-4), and accordingly propose the new Relation-Oriented one as desired,
along with feasibility validations (Chapter II: Sections 5-7). Particularly, the linear absolute timeline t that
we conventionally use inherently fails to capture dynamics of causal effects within the multi-dimensional
temporal feature space (see subsection 1.3). This limitation leads to biases, resulting in AI models misaligned
with our cognitive understanding Christian (2020) and challenging to generalize Scholkopf (2021).

In this paper, we interpret the “relationship” modeling through a novel dimensionality framework (in Figure
1), offering a unique perspective. The remainder of this section aims to lay the groundwork. In Chapter I, we
will inspect causal learnings with respect to the temporal dimensional distributions, highlighting the key role
of relations. Subsequently, Chapter II will concentrate on the proposed relation-defined representation
learning method, which embodies the advocated Relation-Oriented modeling paradigm.
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1.1 Manifestation of AI Misalignment
AI has displayed capabilities surpassing humans in observational learning tasks, such as generating images,
Go gaming (in a single absolute timeline), etc, but may appear “unintelligent” in comprehending some
knowledge humans find intuitive. For instance, AI-created personas on social media can have realistic faces
but barely with the presence of hands, due to AI treating them as arbitrary assortments of finger-like items.

Moreover, when it comes to time evolution, causal reasoning presents a substantial challenge for AI. De-
spite valuable contributions from traditional causal learning methods Wood (2015); Vuković (2022); Ombadi
(2020), and the rise of neural network applications tackling large-scale causal questions Luo et al. (2020),
limitations in model generalizability persist Scholkopf (2021). Accordingly, our causal model applications are
often context-specific, and AI’s nonlinear learning capability remains constrained on the temporal dimension.

The questions “How to utilize AI in causality” and “How to simulate reasonable hands” may seemly pertain
to specific domains such as causal inference and computer vision. However, they fundamentally converge
toward the broader challenge of AI Alignment, encapsulated by the essential question: “Why some relations
in knowledge are unseen to AI?”, which is increasingly critical to address for today Christian (2020).

1.2 Relations in Hyper-Dimension

Consider a pairwise relationship comprised of three elements: two observable objects, and a relation con-
necting them, which comes from our knowledge. The two objects can be solely observational (e.g., images,
spatial coordinates of a quadrotor, etc.), or either observational-temporal (e.g., trends of stocks, a quadrotor’s
movement in one hour, etc.). Interestingly, the “relation” has to be unobservable to make this relationship
meaningful for machine learning, distinguished from mere statistical dependencies.

This principle was initially introduced in the form of Common Cause Dawid (1979); Scholkopf (2021),
suggesting that any nontrivial conditional independence between two observables requires a third, mutual
cause (i.e., our unobservable “relation”). Take the relationship “Bob has a son named Jim” as an example.
The father-son relation is unobservable information that exists in our knowledge, which can also be seen
as the common cause that makes their connection unique rather than any random pairing of “Bob” and
“Jim”. Given sufficient observed social activities, AI may deduce this pair of “Bob” and “Jim” have a special
connection, but that does not equate to discerning the father-son relation between them.

Put simply, the existence of unobservables makes our relationship modeling informative. In other words,
the information contained by the model stems from our knowledge, rather than direct observations. Let’s
denote the model as Y = f(X; θ) with θ indicating the function parameter in demand. Then, in the context
of modeling, the term “relation” can be represented by θ.

Figure 1: The knowledge space split by dimensionality types: Observational, Temporal, Hyper-Dimension.

Hence, from a dimensionality perspective, a relationship in modeling is interpretable as a joint distribution
across multiple dimensions, with modeling objects existing on observational-temporal dimensions, and their
relation, the modeling target, manifesting as an unseen distribution in a hyper-dimension. Figure 1 cat-
egorizes our knowledge-storing cognitive space into three sections accordingly, with the hyper-dimensional
space representing the aggregate of all unobservable relations in our knowledge. Current narrow AI, lim-
ited by the Observation-Oriented principle, can overlook crucial temporal features and hinder its ability to
autonomously learn causal relations within this space, potentially impeding progress towards realizing AGI.
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1.3 Observational and Temporal Spaces

Presently, most machine learning models primarily work within the observational space, maybe adhering to a
single absolute timeline. For example, Convolutional Neural Networks (CNNs) recognize pixel associations; a
quadrotor’s movements are identifiable within three spatial dimensions; and Large Language Models (LLMs)
operate in semantic space along a logical timeline representing word order. Applications similar to the latter
two, in alignment with the Picard-Lindelof theorem, utilize absolute timestamp t to depict time evolution,
commonly referred to as “spatial-temporal” analysis Alkon (1988); Turner (1990); Andrienko (2003).

Equating the “temporal dimension” to a singular t-timeline has become conventional Wes (2023), however,
it seems to be a common misunderstanding. From a modeling viewpoint, timestamp values are not distinct
from other observational attributes. In our comprehension of causal knowledge, multiple relative timelines
can coexist within a complex causal structure, each representing different causal effects (see Section 4 for
additional insights). Thus, we classify the absolute t-timeline as a dimension within the observational space,
addressing the knowledge-aligned temporal distributions in a separate space as shown in Figure 1.

As initially discussed, solely relying on t-timeline allows for capturing only temporally linear relationships,
yielding outcomes with static causal effects while excluding their dynamical aspects found in temporal
nonlinearity (see subsection 3.3 for further discussions). Consider the example “rain leads to wet floors”,
both objects, the cause “rain” and the effect “wet floors”, are status snapshotted at specific timestamps,
thus viewed as static. In contrast, the effects such as “floors becoming progressively wetter” are considered
dynamical due to the temporally significant patterns. More importantly, the presence of relative timelines
in our knowledge can collectively form a multi-dimensional space, representing temporal features. Neglected
nonlinear dynamics, combined with overlooked multiple timelines, can result in inherent bias (see subsection
4.1 for details) and compromise causal models’ generalizability (see subsection 4.2). Presently, the advent of
large AI-based model applications has exacerbated this inherent misalignment.

In this paper, we use the term “feature” to indicate the potential variable that fully represents the distribution
of interest in any dimension. Additionally, the observational-temporal joint space may also be referred to as
“observable data space”, in contrast to the “latent feature space”.

1.4 Hyper-Dimensional Space

Like regular dimensions, joint distributions exist on hyper-dimensions but remain undetected due to their
unobservable nature. Some unseen relations, although not targeted in the modeling process, can significantly
influence our models. Consider joint relations ⟨θ, ψ⟩ ∈ Rh connecting observables X and Y , where Rh denotes
the hyper-dimensional space. While the relationship model Y = f(X; θ) aims to model θ using given X and
Y , the unseen ψ plays a crucial role - It can necessitate the model’s generalizability across various scenarios,
and also may contribute to a misalignment between the model and our knowledge comprehension.

For example, when examining how family income levels (i.e., X) influence (i.e., θ) grocery shopping frequen-
cies (i.e., Y ), underlying cultural factors (i.e., ψ) may play a role, such that established model Y = f(X; θ)
proves practically useful only when conditioned on a specific country (i.e., a particular ψ value). Accordingly,
there are two levels for the objective relation: the global-level θ without a ψ value, and the local-level θ with
a specified ψ value. Model generalizability can be viewed as the ability to cross these levels, allowing the
learned lower-level relationships to inform higher-level learnings Scholkopf (2021). Broadly, this also signifies
the ability to individualize established models from higher to lower levels for different ψ values.

For clarity, we term such unseen relation ψ as unobservable hierarchy, which, while external to the modeling
target θ, remains vital for f(·). Such hierarchies are common in learning tasks and hold various meanings in
different applications. For instance, they may signify levels of granularity (e.g., population vs. individual),
as illustrated in subsection 2.2, or denote decision-making dependencies, as seen in subsection 2.1.

These hidden relations, while unobservable to AI, exist within our knowledge. Accordingly, their absence
may lead to our current Observation-Oriented models misaligned with our anticipated understanding. While
this absence can often be resolved when the modeling objects are purely observational (refer to subsection
2.1), it becomes a noticeable inherent deficiency under the current paradigm when critical temporal dynamics
are involved (refer to subsections 2.2 and 2.3).
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Chapter I: Deficiency of Current Observation-Oriented Paradigm

Human intelligence is inherently relation-centric, with relations serving as indices pointing to mental repre-
sentations Pitt (2022), facilitating understanding of observational and temporal objects. This nature creates
a fundamental misalignment with the prevailing modeling paradigm, which prioritizes observational objects
as variables and outcomes. Depending on the application, this discrepancy can result in noticeable AI Align-
ment issues Christian (2020), ineffective use of causal knowledge in large AI-based models Luo et al. (2020),
or challenges with model generalizability in traditional causal learning Scholkopf (2021).

This chapter explores the influences of hidden relations under the current paradigm (Section 2), re-evaluates
causal learning in light of often-overlooked critical temporal features (Section 3), and highlights the multi-
dimensionality of the temporal feature space, along with the inherent biases it introduces (Section 4).

2 Impact of Unobservable Hierarchy
Unobservable hierarchies indicate hidden relations, vital but separate from the modeling objective. For tasks
solely involving observational learning, such information absence might be resolved by leveraging knowledge
to enhance modeling (subsection 2.1). However, when it comes to temporally significant causal learning, these
hierarchies may lead to a fundamental loss of dynamical features in the temporal dimension (subsection 2.2),
presenting a substantial challenge to conventional causal inference methods (subsection 2.3).

2.1 On Solely Observational Learning

(a) AI-generated faces accompanied with hands (b) How human understand images of hands  

Observed Features Memorized Features

Level 𝑰    Knuckles, Nails, …
Level 𝑰𝑰  Relative Positions
Level 𝑰𝑰𝑰 Gestures

Identification of Fingers
Left/Right & Gestures
Intentions  

Figure 2: A comparison of AI-generated and human-sketched hand images. AI processes observable features
simultaneously, thus treating hands as arbitrary mixtures of finger-like items. The process is hierarchical for
humans, indexed through relations, where higher-level recognition relies on lower-level conclusions.

Figure 2(a) showcases AI-created hands with faithful color but unrealistic shapes, while humans can easily
recognize a plausible hand from simple grayscale sketches in (b). Indeed, we rapidly make decisions according
to different relations in our knowledge, hierarchically from lower to higher levels: I identifies fingers through
knuckles and nails; II determines hand gestures through finger positions; III retrieves the gesture’s meaning
from memory. This intuitive hierarchy is unobservable, existing in our cognitions only. To AI, or similarly, to
some extraterrestrial intelligent life without our knowledge, the hands in Figure 2(a) may seem reasonable.

In purely observational learning tasks, such hierarchies might not always pose significant issues. If features
at different levels do not significantly overlap, AI may successfully “distinguish” them. For example, AI
can generate convincing faces as the appearance of eyes strongly indicates facial angle, negating the need to
recognize “eyes” from “faces”, while various similar-looking hand gestures can create confusion. However,
based on completely captured observational features at each level, AI may reveal hidden knowledge through
methods like reinforcement learning Sutton & Barto (2018), guided by human feedback. For instance, human
approval of five-fingered hands may lead AI to autonomously identify fingers.

2.2 On Temporally Significant Learning

Figure 3(a) illustrates an example from health informatics, depicting the causal effects of action do(A) on
B, with t indicating the elapsed days. For simplicity, assume the patient’s hidden personal characteristics
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linearly influence MA’s release, i.e., uniformly accelerate or decelerate its effective progress. The red and
blue curves in (a) are individualized, shaped by two levels of dynamical features on the temporal dimension:
1) the standard population-level effect sequence with a length of 30, and 2) the individual-level progress
speed. The modeling objective is to estimate level 1) dynamic, as the clinical effectiveness evaluation of MA.

Timeline 𝒕 
(# of Days)

30 Days20 Days 40 Days

General 
Causal Effect 

Causal Effect 
of 𝑷𝒊 

Specify the after-30-days 
Correlations for all patients

Daily Effect 
of 𝑑𝑜(𝑨)

 on 𝑩

0 Day

𝑑𝑜(𝑨)

Causal Effect 
of 𝑷𝑗  

𝑨 = Dose of Medication 𝑀𝐴  𝑑𝑜(𝑨) = Event “𝑨 changes from 0 to 1”  𝑩 = Measured Blood Lipid

(a) Observational Time Sequences 

D1

(b) Complete Dynamical Features

Figure 3: Medication MA treats high blood lipid, with do(A) denoting its initial use. It is given that the
population-level effect takes about 30 days to fully release (t = 30 at the elbow), depicted by the black curve
in (a). Patient Pi achieves this effect curve elbow in 20 days, while Pj takes 40 days.

Conventionally, the medical effect of MA’s is estimated by averaging the performances of all patients after
30 days, resulting in a correlation model Bt+30 = f(do(At)). This model captures only the static feature
Bt+30, the final step of level 1) dynamics, neglecting the preceding 29 steps. These steps are highlighted in
Figure 3’s complete feature vector, which is disentangled by hierarchical levels. Due to the lack of nonlinear
modeling ability for effect objects, employing a sequence of length 30 to represent effects (e.g., in a Granger
causality model) can, at best, capture level 1) sequence, but exclude further dynamical feature levels.

Dynamical causal effects, prevalent in applications like epidemic progression, economic fluctuations, and
strategic decision-making, often occur within different granularity levels. Group-specific learning Fuller et al.
(2007) methodologies are commonly used to address this, essentially equivalent to a manual specification of
the value of ψ (see subsection 1.4 for reference of ψ).

2.3 The Elusive Hidden-Confounder

𝑑𝑜(𝑨)

𝑩

the Unobserved 
Characteristics  

of Patient

(a) DAG with Hidden Confounder

Correlation Model 𝑩𝒕+𝟑𝟎 = 𝑓(𝑑𝑜 𝑨𝒕 )

(b) Relation-Oriented Disentanglement (c) Latent Space Representation of (b)

𝑑𝑜 𝑨 ∗ 𝑬 = {𝑑𝑜 𝑨 ∗ 𝑬𝒊 , 𝑑𝑜 𝑨 ∗ 𝑬𝒋, … } Patient ID = {𝑖, 𝑗, … } 

Decode

Encode

ID Sequences

ID

Sequences

∗ →

Sequences

𝒇(𝒅𝒐(𝑨))  
𝑑𝑜(𝑨) 𝑑𝑜 𝑨 ∗ 𝑬

ID
𝑬 = {𝑬𝒊, 𝑬𝒋, … }

Figure 4: (a) Traditional causal inference DAG. (b) Hierarchical disentanglement of dynamics using relations
as indices. (c) Autoencoder-based generalized and individualized reconstructions of the sequential data.

For patients Pi and Pj , the population-level estimated effect Bt+30 is biased. To counter this individual-level
bias and improve model interpretability, statistical causal inference incorporates the “hidden confounder”
concept into Directed Acyclic Graphs (DAG), representing the concealed ψ as node E in Figure 4 (a).
However, it does not necessitate collecting additional data for E, leading to an illogical assertion: “The
model bias stems from unknown factors we don’t intend to explore.” This strategy compensates for the
overlooked level 2) dynamics in causal models. Due to the observational learning essence, such observable
dynamical effect features are explained through a hidden observational variable, E, associated with the cause.
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As illustrated in Figure 4(b), the hidden composite cause do(A) ∗E does not offer a modelable relationship -
While introducing E may enhance human understanding, it unnecessarily improves the model. Conversely,
the Relation-Oriented approach treats relations as indices, empowering AI to autonomously extract obser-
vational and temporal representations using any observed identifier, like patient ID. These representations,
disentangled per the desired knowledge-derived hierarchy, enhance model generalizability.

3 Causality on Temporal Dimension

Causal learning acts as a portal to reach the temporal dimensional distributions beyond the observational
space. However, the current causal learning paradigm fails to grasp temporally nonlinear relationships - It
necessitates predefined timestamps for causal effects and focuses solely on their static, snapshotted observa-
tional features, thereby limiting their dynamism in the temporal dimension. Overlooking key dynamics can
misalign the modeled relations with our anticipated knowledge (stored in the hyper-dimensional space).

The inherent nature of observational learning significantly complicates our modeling methods and the in-
terpretation of inferences on causality. This section revisits causal learning tasks with a focus on temporal
dimensional features, aiming to provide more intuitive insights into related theories and concepts. We start
by redefining the concept of causal modeling (subsection 3.1), then assess the effectiveness of existing meth-
ods in learning dynamics (subsection 3.2), and finally highlight the inherent limitations of the prevailing
Observation-Oriented causal model paradigm (subsection 3.3).

3.1 Redefine Causal Modeling

From a modeling perspective, specified timestamps are associated with observations rather than constituting
a separate computational dimension. Consequently, in traditional causal inference, the temporal-evolving
aspects that distinguish causality from correlation are not directly built into the current modeling framework.
Instead, they are mainly evident in model interpretations, guiding potential improvements to the model.
With this in mind, we identify causality in modeling by integrating temporal dimensional features.

Theorem 1. Causality vs. Correlation in the modeling context.
• Causality is the relationship between observational-temporal features, which can be dynamical.
• Correlation is the relationship between features not dynamical.

In particular, causal modeling is crucial as it enables the answering of counterfactual questions Scholkopf
(2021), such as “What effect would result if the cause were changed?” Simply put, causal models are
valuable if they can effectively capture temporal dimensional distributions, thereby responding accurately to
conditional queries regarding the temporal dimension.

The current causal modeling framework, which only captures linear features on a specified absolute timeline,
may have sufficed in past decades but falls short of current needs. While AI-based models like RNNs facilitate
nonlinear modeling, this capability depends on the accurate specification of time sequences (primarily as the
cause only) and a correct timeline. Violating the former condition results in a failure to capture dynamics (see
subsection 3.2), and violating the latter introduces inherent bias, fundamentally reducing model effectiveness
(refer to Section 4).

The significance of model interpretation in traditional causal models is underscored by their emphasis on
determining the “causal direction”, i.e., the roles of cause and effect, which may not be crucial in the modeling
context. Specifically, when selecting a model for the causal relationship X → Y , one could use Y = f(X; θ)
to predict the effect on Y , or inversely use X = g(Y ;ϕ) to infer the cause X given Y . Both parameters, θ
and ϕ, are obtained from the joint probability P(X,Y ) without the need for imposing modeling constraints.

Empirically, concern for causal direction arises for a couple of reasons: firstly, there is a need for align-
ment with our intuitive understanding of temporal progression; secondly, the current paradigm exhibits
an imbalance in capturing dynamics between the cause and the effect (see subsection 3.2 for details). For
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instance, the hierarchical dynamics overlooked in Figure 4 can be fully captured by an inverse model of
do(A) = f({Bt, . . . , Bt+40}) using RNNs, eliminating the need for a hidden confounder.

3.2 Learning Temporal Dynamics

Importantly, using a sequence as a variable does not necessarily entail the ability to capture dynamics. The
difference between “a sequence of static variables” and “a dynamical variable” depends on the capability to
capture the nonlinearity among them. The advent of RNNs Xu et al. (2020) addresses this dynamical learning
concern by transforming data sequences into a latent feature space. In this space, temporal distributions are
converted into representations that are indistinguishable from other observational representations, allowing
the input timeline to function as a computational dimension.

Before the emergence of RNNs, autoregressive models Hyvärinen et al. (2010) usually appeared to embody
the “sequential static learning” for the cause only. While both autoregressive models and RNNs utilize the
format yt+m = f({xt}) with {xt} = {x1, . . . , xt, xt+1, . . . , xT }, the function f(·) conventionally selected for
autoregressive models is often linear, treating {xt} as a static sequence, unlike the deep learning approach
inherent to RNNs. With precise parameter settings (e.g., “30 days” in Figure 3(a)), at best, single-level
dynamical features of the cause may be learned (e.g., population-level in Figure 3(b)).

Additionally, Granger causality Maziarz (2015), a methodology well-acknowledged in economics, utilizes
another sequence for causal effects, expressed as {yτ} = f({xt}), with t and τ representing distinct timelines
for cause and effect, respectively. This format aligns well with the causal modeling defined in Theorem
1, allowing for learning dynamics in both cause and effect if incorporating latent space representations like
those in RNNs. Nonetheless, the fundamental challenge stems from identifiability difficulty Zhang (2012).
Specifically, organizing sequential data according to a significant causal event (e.g., days of heavy rain) is
feasible, but pinpointing the exact start of subsequent effects (e.g., the flood’s start day caused by this rain)
proves problematic. Furthermore, identifying appropriate timelines presents an additional challenge.

Remark 1. Identifiability difficulty is inevitable under the Observation-Oriented paradigm. In
contrast, the proposed Relation-Oriented principle allows for autonomous effect identification in AI
by indexing relations, mirroring the human understanding process.

Another method, do-calculus Pearl (2012); Huang (2012), sidesteps time sequence specifications, focusing
instead on identifiable temporal events as modeling objects to perform an elementary calculus. Its differential
nature, however, adds complexity, while we offer a simplified reinterpretation of its three core rules from an
integral perspective. Let do(xt) = {xt, xt+1} indicate the occurrence of an instantaneous event do(x) at time
t, with the time step ∆t sufficiently small to make this event’s interventional effect identifiable as a function
of the resultant distribution at t + 1. Meanwhile, a separate observational effect is provoked by the static
xt. Then, for variable X ∈ Rd, its dynamics X as the cause object can be expressed as follows:

Given X → Y | ψ, where X = ⟨X, t⟩ ∈ Rd+1 with augmented t-dimension residing a T -length sequence,

X =
∫ T

0
do(xt) · xt dt with


(do(xt) = 1) | ψ, Observational only (Rule 1)
(xt = 1) | ψ, Interventional only (Rule 2)
(do(xt) = 0) | ψ, No interventional (Rule 3)
otherwise Associated observational and interventional

The effect of X can be derived as f(X ) =
∫ T

0
ft

(
do(xt) · xt

)
dt =

T −1∑
t=0

(yt+1 − yt) = yT − y0

For the causal relationship X → Y , given conditional knowledge ψ, the do-calculus rules tackle three specific
scenarios, where conditional independence is maintained between the observational and the interventional
effects, but bypassing more generalized cases (an identifiable do(xt)·xt pertains to Rule 2). Utilizing the do(·)
format, we can also represent a dynamical effect as Y = ⟨Y, τ⟩. However, specification of the events for Y is
still required under the current paradigm, while the proposed one is designed to construct Y autonomously.
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3.3 Limitations of Current Causal Model Paradigm

In essence, traditional causal models employ an observational-based paradigm to learn relationships that are
both observational and dynamical significant, thus often relying on fundamental hypotheses (such as causal
Sufficiency and Faithfulness assumptions) or specific conditions derived from knowledge (as in do-calculus).

Figure 5 classifies causal modeling tasks into four scenarios. Modeling queries can be divided into Discovery
and Buildup, depending on whether the objective relation θ is known; they can also be further categorized
by the dynamic significance of the effect. For example, the causality “raining → wet floor” falls into area
4 , while “raining → floor becoming wetter” is in area 3 . They will be examined from two perspectives:

the modeling critical objective Relation (i.e., θ), and the interpretationally essential causal Direction.

Relationship still 
Unknown

Relationship 
in Knowledge

No Significant 
Dynamical Features

Include Significant 
Dynamical Features

❶ ❷

❸ ❹

Causal Modeling 

Causal 
Discovery

Causal 
Buildup

Modeled Relation Modeled Direction

❶
Observational Only.

Undiscovered Dynamics covered 
by Faithfulness Assumption.

Observation Determined.
No Logical Meaning.

❷
Observational Only.

Aligned with Knowledge.
Observation Determined.

Maybe Logically Meaningful.

❸

Knowledge Determined.
Unmodeled Dynamics covered 

by Hidden Confounders or 
Sufficiency Assumption.

Knowledge Determined.

❹ Knowledge Determined. Knowledge Determined.

Figure 5: An overview of the current Observation-Oriented causal model paradigm. The left rectangle cube
represents all logical causal relationships, with the potentially modelable scope circled in blue.

(1) Modeled Relation
Causal inference has notably advanced by making particular dynamics observationally accessible and linearly
modelable, (e.g., the independence explored in do-calculus). For overlooked dynamics in relationship buildup,
if existing knowledge suggests a potential cause, introducing a hidden confounder can enhance comprehension.
If not, they may be dismissed due to the assumed causal Sufficiency, potentially leading to later challenges.

Causal discovery mainly examines the observational space to uncover statistical dependencies. If the true
causality of interest does not have significant dynamics, the discovered associations can be insightful. How-
ever, if such dynamics are present, especially along unknown hierarchy ψ, the potential undetected gap may
be dismissed by the Faithfulness assumption, positing that observables can fully represent causal reality.

(2) Modeled Causal Direction
Consider causally related variables X and Y with potential directional models Y = f(X; θ) and X = g(Y ;ϕ).
In observational space, the discovered direction depends on the likelihoods of estimated θ̂ and ϕ̂. The
preference is for X → Y if L(θ̂) > L(ϕ̂). Now, let I(θ) be a simplified form of IX,Y (θ) (the Fisher
information), representing the information in P(X,Y ) about the relevant θ. If p(·) is the density function,
then

∫
X
p(x; θ)dx is constant in this context. Thus, we have:

I(θ) = E[( ∂
∂θ

log p(X,Y ; θ))2 | θ] =
∫

Y

∫
X

( ∂
∂θ

log p(x, y; θ))2p(x, y; θ)dxdy

= α

∫
Y

( ∂
∂θ

log p(y;x, θ))2p(y;x, θ)dy + β = αIY |X(θ) + β,with α, β constants.

Thus, θ̂ = arg max
θ

P(Y | X, θ) = arg min
θ
IY |X(θ) = arg min

θ
I(θ), and L(θ̂) ∝ 1/I(θ̂).

The likelihoods of the estimated θ̂ and ψ̂ rely on the information I(θ̂) and I(ψ̂). Consequently, the inferred
directionality between X and Y reflects the extent to which their designated distributions appear in the data,
with the predominant one deemed the “cause” - It assumes, by default, that observations capture the cause
more thoroughly than the effect. While limited data collection techniques made it reasonable in the past, it
is no longer safe to assume such observationally inferred directions to hold logical meaning for causality.
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4 The Overlooked Temporal Space

To comprehend the issue of model generalizability in causal learning, consider the following analogy:

Imagine ants dwelling on a floor’s two-dimensional plane. The ant scientists among them, aiming to predict
risks, instinctively use the nearest tree’s height as a reference for their two-dimensional models. During their
modeling, they noticed an increase in disruptions at the tree’s mid-level. This increase correlates to a higher
likelihood of encountering children. However, without understanding humans as three-dimensional beings,
the ants’ interpretations are limited to observations at the tree’s mid-level.

If these ants were to relocate to a tree of different heights, the mid-level would no longer correlate with risk,
making their model ineffective. They may conclude that human behavior is too complex to model accurately.
Similarly, when we specify a single, absolute timeline for all potential events, this timeline becomes our “tree”.

Our logical understanding allows for the co-existence of multiple timelines Coulson (2009). With one absolute
timeline, the others are relative, each embodying distinct causal effects. These effects, while possibly stem-
ming from a single cause, can possess unique dynamical features, and interrelate with each other. Therefore,
when identifying temporal events based on structural causal knowledge, it is crucial to consider all potential
relative timelines comprehensively to avoid bias in the temporal dimension.

Theorem 2. The term Temporal Dimension encompasses all potential logical timelines, not just a
singular one. Consequently, a Temporal Space is defined as the space built by multiple timeline axes.

Inherently, causal inference adopts a Relation-Oriented perspective, acknowledging distinct effects and their
respective dynamics. However, given that Observation-Oriented models typically rely on a single absolute
timeline as a regular observational dimension, various de-confounding methods, including propensity score
matching Benedetto (2018) and backdoor adjustment Pearl (2009), are utilized to eliminate inter-relations
within the knowledge structure for more effective modeling.

In contrast, employing AI methods for causal questions is challenging due to their black-box nature and large
scale, which makes manual inspections impractical. Crudely consolidating all dynamics into one timeline
exacerbates the inherent biases, yielding uninterpretable results Luo et al. (2020). Think of traditional
causal learning as manually building Schrödinger’s box so the “cat” appears reasonable upon revelation; the
proposed relation-indexing approach aims to have AI autonomously craft this box.

In this section, we’ll first introduce the inherent bias resulting from neglecting underlying multi-timelines
through an intuitive example (subsection 4.1). Next, we’ll demonstrate how this bias affects the generalizabil-
ity of structural causal models (subsection 4.2). Finally, we’ll summarize the advancements and challenges
encountered on our path toward causal knowledge-aligned AGI (subsection 4.3).

4.1 Scheme of the Inherent Bias

Timeline of Days

𝑡 𝑡 + 30𝑡 + 20 𝑡 + 40…

𝑩

𝑑𝑜(𝑨)

𝑩 𝑩

𝑷𝒊 is 1/3 Faster 𝑷𝒋 is 1/3 Slower𝑑𝑜(𝑨)

𝑩

the Unobserved 
Characteristics  

of Patient 𝑬 = {𝑬𝒊, 𝑬𝒋, … }

(a) (b)

Figure 6: (a) Traditional Causal DAG introducing hidden E. (b) Enhanced DAG.

To more effectively address this issue, the causal DAG (directed acyclic graph) Pearl (2009) is enhanced in
two ways: 1) by incorporating desired logical timelines as axes into the DAG space, and 2) by assuming
causal effects are dynamically significant, with varying edge lengths indicating different timespans required
to achieve identical effects. For instance, Figure 6(a) revisits the hidden-confounder example, which aims to
interpret different individualized effects. Alternatively, the enhanced DAG shown in (b) provides a convenient
representation of these effects.
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Figure 7(a) expands on Figure 6, using A as shorthand for do(A) for simplicity. In this figure, A has two
distinct effects: it not only has a primary effect on B but also indirectly influences B through a side effect
on another vital sign, C, represented by the edges −→AC and −−→CB. The confounding relationship among nodes
{A,B,C} forms a triangle across timelines TX and TY According to the causal Markov condition, this shape
should consistently hold for all individuals or populations. The process of individualization for patients
Pi and Pj involves “stretching” this triangle along TX at different ratios, conducting a homographic linear
transformation within this DAG space, as depicted in Figure 7 (a).

Timeline 
𝑇𝑋

Timeline 
𝑇𝑌

𝑩 𝑩𝑨 𝑩

𝑪

𝑩𝒕+𝟐𝟎𝑨𝒕 𝑩𝒕+𝟑𝟎

𝑪𝒕+𝟏𝟎

𝑩𝒕+𝟑𝟎 𝑩𝒕+𝟒𝟎𝑨𝒕

𝑪𝒕+𝟏𝟎

(b) (c)

20 30 400

𝐵𝑡+30 ≠ 𝑓(𝐴𝑡 , 𝐶𝑡+10) 𝐵𝑡+30 ≠ 𝑓(𝐴𝑡 , 𝐶𝑡+10) (a) Valid Individualization = Linear Transformation

Figure 7: (a) A two-timeline DAG space, where a valid individualization presents a linear transformation.
(b)(c) Violations of the Markov condition for the prevailing SCM with confounding dynamics across timelines.

Simplifying for discussion, assume individual-level diversity is confined to the primary effect −−→AB only, with
the timespan for −→AC being 10 days for all patients. Traditional Structural Causal Models (SCMs) typically
assign effects a predefined timestamp, such as 30 in this instance, representing the population-level average.
Consequently, the SCM function becomes Bt+30 = f(At, Ct+10). However, as depicted in (b) and (c), setting
the outcome of f to Bt+30 for either Pi or Pj results in violations of the Markov condition. This discrepancy
introduces individual-level biases in the SCM due to specifying a static timestamp for the effect.

Importantly, in this simplified example, violations may not pose significant issues for models able to address
nonlinearity, due to the independence of dynamics on TX and TY . The SCM can become Bt+30 = f1(At) +
f2(Ct+10), implying that cross-timeline confounding can be dissected into two single-timeline problems.
However, invariably assuming independence or absence of confounding is impractical. In extensive causal
AI applications, such inherent biases may emerge between any pair of distinct dynamical effects, accruing
exponentially and substantially affecting model robustness, regardless of the selected modeling approach.

Theorem 3. The inherent bias may occur in SCM if it contains: 1) Confounded dynamical causal
effects across Multiple logical timelines, and 2) Hierarchical diversity due to unobservable ψ.

Interestingly, most successful causal applications instinctively avoid either confounding or multi-timeline.
Causal inference typically employs de-confounding, to mitigate inherent bias and other confounding biases
resulting from unaddressed nonlinearity. Meanwhile, many AI accomplishments, including Large Language
Models (LLMs), which operate in a semantic space, do not inherently deal with relative timelines, maintaining
words consistently ordered along a singular timeline.

4.2 Inherent Impact on SCM Generalizability

Unobservable hierarchies imply different scenarios with identical core relationships. Traditional SCMs typi-
cally require specifying the event timestamps for modeling, according to a single absolute timeline. It affects
not only model robustness but also hinders the generalizability of established SCMs across varied scenarios.

Consider the practical scenario depicted in Figure 8. Here, ∆t and ∆τ represent actual time spans. Yet, the
crux is not on determining their exact values, but on realizing their intended causal relationship: As each unit
of Statin’s effect is delivered on LDL via

−−→
SA′, it immediately impacts T2D through

−−−→
A′B′. Simultaneously,

the next unit effect begins generation. This dual action runs concurrently until S is fully administered. At
B′, the ultimate aim of this process is to evaluate the total cumulative influence stemming from S.
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Given the relationship
−−→
SB′ =

−−→
SA′ +

−−−→
A′B′, specifying the

−−→
SB′ time span (= half of the

−−→
AB′ time span)

inherently sets the ∆t : ∆τ ratio, defining the ASB′ triangle’s shape in the DAG space. While the estimated
mean effect at B′ might be precise for the present population, the preset ∆t : ∆τ ratio’s universality is
questionable, potentially constraining the established SCM’s generalizability.

A B
C

S

A’ B’

C’
A

B

CS A B C

S

A’ B’ C’

T2D: Type II Diabetes
LDL: Blood Lipid

Statin: Medicine to Reduce LDL
BP: Blood Pressure

Figure 8: An exemplified 3D observational-temporal DAG space, with specified SCM, B′ = f(A,C, S) , to
evaluate Statin’s medical effect on reducing the risk of T2D, including two logical timelines TY and TZ . On
TY , the step ∆t from t to (t+ 1) allows A and C to fully influence B, while the step ∆τ on TZ , from (τ + 1)
to (τ + 2), let medicine S completely release its effect to progress from A to A′.

4.3 Toward Causal Knowledge-Aligned AGI

In pursuit of causally interpretable AI, our modeling techniques expand beyond the purely observational to
encompass temporal dimensions, as summarized in Figure 9. The present challenge is ensuring the generaliz-
ability of structural models across the temporal space. Acknowledging its multi-dimensional nature is critical
to preventing inherent biases that render AI systems uninterpretable. Manually discerning underlying logical
timelines for observables is impractical. Thus, it may have been time for us to consider the new paradigm.

Model Principle Cause Relation & Direction Effect
Handle 

Unobservable 
Hierarchy

Capture 
Dynamics

Mechanistic or 
Physical

𝒴 = 𝑓(𝒳; 𝜃)
Observational-

Temporal 𝒳 = 𝑋, 𝑡
by Knowledge

Observational-
Temporal 𝒴 = 𝑌, 𝑡

Yes Yes

Relation-Indexing 
Methodology

Given 𝑷(𝒳,𝒴) & 𝒳 → 𝒴
Observational-

Temporal 𝒳 = 𝑋, 𝑡
by Representation 

෠𝒴 = 𝑓(𝒳; 𝜃)

Observational-

Temporal ෠𝒴 = ෠𝑌, 𝑡
Yes Yes

Structural Causal 
Learning

Given 𝑷(𝑋, 𝑌) & 𝑋 → 𝑌
𝑌 = 𝑓(𝑋; 𝜃)

Observational 
Sequence {𝑋𝑡}

𝑋 → 𝑌 via Relation  𝜃
by Knowledge

Observational and 
Static 𝑌𝑡

? ?

Graphical Causal 
Discovery

Given 𝑷(𝑋, 𝑌)
Find ℒ 𝑌 𝑋; 𝜃 > ℒ 𝑋 𝑌; 𝜃

Observational 𝑋
Observationally 

Associated 𝑋 and 𝑌
Observational 𝑌 ? No

Common Cause 
Model

Given 𝑷 𝑋, 𝑌 𝑍) Observational 𝑋 Related via 𝑍 Observational 𝑌 ? No

i.i.d Data Driven 
Model

Given 𝑷(𝑋, 𝑌) Observational 𝑋 None Observational 𝑌 No No

Figure 9: Simple taxonomy of models (adapted in part of Table 1 in Scholkopf (2021)), from more knowledge-
driven (top in purple) to more data-driven (bottom in green). Notations: θ = parameter derived from joint
or conditional distribution, ⟨X, t⟩ = augment t-dimension, “?” = depending on practice.

The initial models under i.i.d. assumption only approximate observational associations, proved unreliable
for causal reasoning Pearl et al. (2000); Peters et al. (2017). Correspondingly, the common cause principle
highlights the significance of the nontrivial conditional properties, to distinguish structural relationships from
statistical dependencies Dawid (1979); Geiger & Pearl (1993), providing a basis for effectively uncovering
the underlying structures in graphical models Peters et al. (2014).
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Graphical causal models relying on conditional dependencies to construct Bayesian networks (BNs) often
operate in observational space and neglect temporal aspects, reducing their causal relevance Scheines (1997).
Causally significant models, such as Structural Equation Models (SEMs) and Functional Causal Models
(FCMs) Glymour et al. (2019); Elwert (2013), can address counterfactual queries Scholkopf (2021), with
respect to temporal distributions by leveraging prior knowledge, to construct causal DAGs accordingly.

State-of-the-art deep learning applications on causality, which encode the DAG structural constraint into
continuous optimization functions Zheng et al. (2018; 2020); Lachapelle et al. (2019), undoubtedly enable
highly efficient solutions, especially for large-scale problems. However, larger question scales indicate more
underlying logical timelines, which may lead to snowballing temporal biases. It can be evident from the
limited successful applications of incorporating DAG structure into network architectures Luo et al. (2020);
Ma (2018), e.g., neural architecture search (NAS).

Schölkopf Scholkopf (2021) summarized three key challenges impeding causal AI applications to achieving
generalizable success: 1) limited model robustness, 2) insufficient model reusability, and 3) inability to handle
data heterogeneity (caused by unobservable hierarchies in knowledge). Notably, all these challenges can be
attributed to the timestamp specification required by Observation-Oriented SCMs.

On the other side, physical models, which explicitly integrate temporal dimensions in computation, and are
able to establish abstract concepts through relations, may provide insights into these challenges. We believe
the relation-indexing approach can help bridge the gap between observational and temporal spaces.

Chapter II: Realization of Proposed Relation-Oriented Paradigm

This chapter begins by formulating the factorizations to achieve hierarchical disentanglement in the latent
space. Then, we explore the proposed relation-defined representation methodology as an embodiment of the
Relation-Oriented paradigm. Lastly, we validate its efficacy through comprehensive experiments.

5 Hierarchical Disentanglement in Latent Space

Given an observational variable X ∈ Rd, we denote its time sequence of length T as {xt} = {x1, . . . , xt−1,
xt, xt+1, . . . , xT }. Our goal is to construct a latent feature space RL for two specific purposes: 1) Fully
represent the observational-temporal features of X = ⟨X, t⟩ ∈ Rd+1. 2) Hierarchically disentangle X ’s repre-
sentation according to relations in knowledge. Consequently, the established system realizes the reusability
of models at any hierarchical level by indexing through the corresponding relations.

For Y = ⟨Y, τ⟩ ∈ Rb+1, if the relationship X → Y identifies certain features of Y’s distribution, the proposed
relation-defined representation learning aims to extract the representation Ŷ as determined by the relation
with X . Moreover, the resulting Ŷ should be reusable in developing subsequent levels of Y’s representations,
thereby facilitating the generalizability of the relationship model for X → Y. For instance, in a graphical
system {X ,Y,Z} with relationship X → Y ← Z, Y can be viewed as in a two-level hierarchy. The first
level is defined by X → Y and the second by ⟨X ,Z⟩ → Y, where the second level enhances the first by
incorporating an additional data stream from Z.

5.1 Factorize Observational-Temporal Hierarchy
Let X = (X1, . . . , Xd) ∈ Rd, and assume X = ⟨X, t⟩ ∈ Rd+1 has an n-level hierarchy. Define Θi as the i-th
level component of X in the observable data space, and its counterpart in the latent feature space RL as θi.
The representation function fi facilitates the transformation from Rd+1 to RLi for the i-th level, considering
all prior lower-level features as attributes. θi is a vector in RL, with its significant value residing in a subset of
the L dimensions, denoted as RLi , forming the disentanglement {RL1 , . . . ,RLi , . . . ,RLn}. Then, we obtain:

X =
n∑

i=1
Θi, where Θi = fi

(
θi; Θ1, . . . ,Θi−1

)
with Θi ∈ Rd+1 and θi ∈ RLi ⊆ RL (1)

To illustrate an observational hierarchy, refer to Figure 2 (b). Let θ1 ∈ RL1 , θ2 ∈ RL2 , and θ3 ∈ RL3 represent
the three levels of features, with each subspace being mutually exclusive. That is, L = L1 + L2 + L3. The
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combined vector ⟨θ1, θ2, θ3⟩ ∈ RL represent the whole image. In correspondence, Θ1, Θ2, and Θ3 are full-
scale images, each presenting unique content. For instance, Θ1 highlights the details of the fingers, whereas
Θ1 + Θ2 expands to showcase the entire hand.

In the context of an observational-temporal hierarchy, the component Θi ∈ Rd+1 can be expressed as the
original time sequence {Θt}i = {Θti ∈ Rd | ti = 1, . . . , T}. Consequently, we obtain a set of relative logical
timelines {t1, . . . , ti, . . . , tn} which, in contrast to the absolute timeline t, are each uniquely determined by
the relationship at their respective levels. However, in the observable data space, the i-th level observational-
temporal feature, represented as the sum Θ1 + . . .+ Θi, still maintains its timestamp attribute along t.

5.2 Factorize Hierarchy of Relationship
Given a set of n-level hierarchical representation functions for X , denoted by F(ϑ) =

{
fi

(
θi

)
| i = 1, . . . , n

}
,

our goal is to define n relationship functions, collectively termed G, such that Y = G(X ) exhibits an n-level
hierarchy. Each i-th level relationship function is gi(X ;φi), where φi is its parameter. Then, we have:

G(X ) =
n∑

i=1
gi(X ;φi) =

n∑
i=1

gi(Θi;φi) =
n∑

i=1
gi

(
θi; Θ1, . . . ,Θi−1, φi

)
= Y (2)

The i-th level relation-defined representation for Y is gi(θi;φi) considering the features of the preceding
(i − 1) levels of X . This relationship can be portrayed as the augmented feature vector ⟨θi, φi⟩ in latent
space RL. Using ϑX and ϑY to distinguish the collective hierarchical representations for X and Y respectively,
the overall relationship from X to Y becomes ϑY = ⟨ϑX , φ⟩, where φ = {φ1, . . . , φn}. The term ⟨ϑX , φ⟩
represents the pairwise augmentations between collections ϑX and φ.

6 Relation-Defined Representation Methodology

Causal Knowledge 
(e.g., DAGs)

Generated/Simulated/Imputed…
Observations

Traditional 
Causal Models

Relation-Defined 
Representations

Observed
Time Series Data

Encoding

Decoding

Causal Model 
Generalization/Individualization

Latent Feature 

Space

Originally Observed

Data Space

Reconstructed 

Data Space

Figure 10: Framework of using relation-defined representations to enhance traditional models.

By extracting relation-defined representations, we facilitate the construction of causally interpretable AI
systems in the latent feature space, adaptable to various scenarios (i.e., generalization or individualization).
Figure 10 illustrates how this approach conceals AI’s black-box nature within the latent space, managing
human-indecipherable feature representations while simultaneously enhancing traditional models by refining
observations, such as simulating counterfactual effects.

This section introduces a specialized autoencoder architecture crucial for implementing this approach, out-
lines the method for hierarchical representation disentanglement in constructing graphical models, and
presents a causal discovery algorithm for the latent feature space.

6.1 Invertible Autoencoder for Higher-Dimensional Representation

Autoencoders are generally used for dimensionality reduction, often aligning all observational variables as
data attributes for this purpose in structural modeling Wang et al. (2016). However, our objective diverges.
We aim to model individual relationships to disentangle variables’ representations and simultaneously “stack”
them to form a DAG within the latent space, RL. This space must be large enough to accommodate potential
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relationships in the form of ϑY = ⟨ϑX , φ⟩. This poses a substantial technical challenge, as we need to achieve
higher-dimensional representation extraction for individual variables.

Remark 2. Given a causal graph G with data matrix X column-augmented by all nodes’ attributes,
the latent space dimensionality L must satisfy L ≥ rank(X) to adequately represent G.

Remark 2 stems from the notion that the autoencoder-learned RL is spanned by X’s top principal com-
ponents, often referred to in Principal Component Analysis (PCA) Baldi & Hornik (1989); Plaut (2018);
Wang et al. (2016). Hypothetically, reducing L below rank(X) may yield a less adequate but causally more
significant latent space through better alignment Jain et al. (2021) (further exploration is needed). In this
study, we will set aside discussions on the boundaries of dimensionality. Our experiments feature 10 variables
with dimensions 1 to 5 (Table 1), and we empirically fine-tune and reduce L from 64 to 16.

Encoder Decoder

Fully 
Connect

Relu

…

Encrypt

Latent Space 
Representation

Copy

Input 

𝒙

Decrypt

Output 

𝒙
Keys

Figure 11: Invertible autoencoder architecture for extracting higher-dimensional representations.

Figure 11 depicts the proposed autoencoder architecture, featured by the symmetrical Encrypt and Decrypt
layers. Encrypt amplifies the input vector −→x by extracting its higher-order associative features; conversely,
Decrypt symmetrically reduces dimensionality and restores −→x to its original form. To ensure reconstruction
accuracy, the invertibility of these operations is naturally required.

Figure 11 illustrates a double-wise associative feature expansion, where each pair of two digits from −→x are
encoded to form a new digit, by associating with a randomized constant Key, which is created by the encoder
and mirrored by the decoder. A double-wise expansion on −→x ∈ Rd generates a (d−1)(d−1) length vector. By
using multiple Keys and augmenting the derived vectors, −→x can have a significantly extended dimensionality.

The four differently patterned blue squares represent the vectors expanded by four distinct Keys, with the
grid patterns indicating their “signatures”. Each square visualizes a (d−1)(d−1) length vector (not signifying
a 2-dimensional vector). In a similar way, higher-order extensions, such as triple-wise ones across every three
digits, can also be employed by appropriately adapting Keys.

Figure 12 depicts the encryption and decryption processes used to expand a digit pair (xi, xj), where i ̸= j ∈
1, . . . , d. The encryption function fθ(xi, xj) = xj ⊗ exp(s(xi)) + t(xi) is defined by two specific elementary
functions, s(·) and t(·). The parameter θ, serving as a Key, consists of their respective weights, θ = (ws, wt).

Specifically, the encryption of (xi, xj) transforms xj into a new digit yj using xi as a selected attribute. The
decryption process symmetrically employs the inverse function f−1

θ , defined as (yj − t(yi)) ⊗ exp(−s(yi)).
Notably, this approach sidesteps the need to calculate s−1 or t−1, allowing s(·) and t(·) to be flexibly specified
as needed for nonlinear transformations. This design is inspired by the pioneering work of Dinh et al. (2016)
on invertible neural network layers that utilize bijective functions.

By collectively representing all fθ functions as F(X;ϑ), where ϑ encompasses all parameters, the Encrypt
and Decrypt layers can be denoted as Y = F(X;ϑ) and X = F−1(Y ;ϑ), respectively. The source code for
both Encrypt and Decrypt is provided 1, along with a comprehensive experimental demo.

1https://github.com/kflijia/bijective_crossing_functions/blob/main/code_bicross_extracter.py
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Figure 12: Encrypt (left) and Decrypt (right).
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Figure 13: Relationship model architecture.

6.2 Stacking Hierarchical Representations to form SCM

Consider a causal system comprising three variables {X ,Y,Z}, each with corresponding representations
{H,V,K} ∈ RL initially extracted by three separate autoencoders. Figure 13 illustrates the process of
linking H and V to model the relationship X → Y. Additionally, Figure 14 depicts how two modeled
relationships related to Y are stacked to form a hierarchically disentangled representation.

Consider instances x and y for the relationship X → Y, which are represented as h and v in RL. To
estimate the latent dependency P(v|h), we use an RNN, as shown in Figure 13, to explicitly include the
temporal features of h. For now, we suppose V can capture potential dynamics autonomously, expecting
future refinements. Each iteration of the learning process involves three optimizations:

1. Optimizing encoder P(h|x), RNN model P(v|h), and decoder P(y|v) to reconstruct x→ y relation.
2. Fine-tuning encoder P(v|y) and decoder P(y|v) to accurately represent y.
3. Fine-tuning encoder P(h|x) and decoder P(x|h) to accurately represent x.

Throughout the learning, h and v values are iteratively refined to minimize their distance in RL, and RNN
acts as a bridge to traverse this distance, thereby informatively modeling the relation x→ y.
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Figure 14: Architecutres of the relation-defined hierarchical disentanglement.

Figure 14 presents two stacking scenarios for Y within the {X ,Y,Z} system, according to different causal
directions. Given the established X → Y relationship in RL, the left-side architecture completes X → Y ← Z
structure, while the right-side caters to X → Y → Z. By stacking an additional representation layer,
hierarchical disentanglement is formed, allowing for various input-output combinations (denoted as 7→) based
on practical needs. For instance, in the left-side setup, P(v|h) 7→ P(α) signifies the X → Y relationship,
while P(α|k) suggests Z → Y. On the right side, P(v) 7→ P (β|k) indicates the Y → Z relationship with Y
as input; conversely, P(v|h) 7→ P (β|k) signifies the causal chain X → Y → Z.
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Causal relationships of known edges can be sequentially stacked using existing causal DAGs in domain
knowledge. Additionally, this approach aids in discovering causal structures within the latent space by
identifying potential relationships among the initial variable representations.

6.3 Causal Discovery in Latent Space
Algorithm 1 outlines the heuristic procedure for identifying edges among the initial variable representations.
We use Kullback-Leibler Divergence (KLD) as a metric to evaluate the strength of causal relationships.
Specifically, as depicted in Figure 13, KLD evaluates the similarity between the RNN output P(v|h) and
the prior P(v). Lower KLD values indicate stronger causal relationships due to closer alignment with the
ground truth. Although Mean Squared Error (MSE) is a common evaluation metric, its susceptibility to
data variances Reisach et al. (2021); Kaiser & Sipos (2021) led us to prefer KLD, using MSE as a secondary
measure. In the graphical representation context, we refer to variables A and B in the edge A → B as the
cause node and result node, respectively.

Algorithm 1: Latent Space Causal Discovery
Result: ordered edges set E = {e1, . . . , en}
E = {} ; NR = {n0 | n0 ∈ N, P arent(n0) = ∅} ;
while NR ⊂ N do

∆ = {} ;
for n ∈ N do

for p ∈ P arent(n) do
if n /∈ NR and p ∈ NR then

e = (p, n); β = {};
for r ∈ NR do

if r ∈ P arent(n) and r ̸= p then
β = β ∪ r

end
end
δe = K(β ∪ p, n) − K(β, n);
∆ = ∆ ∪ δe;

end
end

end
σ = argmine(δe | δe ∈ ∆);
E = E ∪ σ; NR = NR ∪ nσ ;

end

G = (N,E) graph G consists of N and E
N the set of nodes
E the set of edges
NR the set of reachable nodes
E the list of discovered edges
K(β, n) KLD metric of effect β → n
β the cause nodes
n the result node
δe KLD Gain of candidate edge e
∆ = {δe} the set {δe} for e
n,p,r notations of nodes
e,σ notations of edges

Figure 15 illustrates the causal structure discovery process in latent space over four steps. Two edges, (e1
and e3), are sequentially selected, with e1 setting node B as the starting point for e3. In step 3, edge e2
from A to C is deselected and reassessed due to the new edge e3 altering C’s existing causal conditions. The
final DAG represents the resulting causal structure.
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Figure 15: An example of causal discovery in the latent space.

7 Efficacy Validation Experiments
The experiments aim to validate the efficacy of the relation-defined representation learning method in three
areas: 1) extracting higher-dimensional representations with the proposed autoencoder architecture, 2) hi-
erarchically establishing relation-defined representations, and 3) discovering DAG structure in latent space.
A full demonstration of the experiments conducted in this study is available online 2.

2https://github.com/kflijia/bijective_crossing_functions.git
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We use a synthetic hydrology dataset for our experiments, a common resource in the field of hydrology. The
task focuses on predicting streamflow based on observed environmental conditions like temperature and pre-
cipitation. The application of relation-defined representation learning aims to create a streamflow prediction
model that is generalizable across various watersheds. While these watersheds share a fundamental hydro-
logical scheme governed by physical rules, they may exhibit unique features due to unobserved conditions
such as economic development and land use. Current models based on physical knowledge, however, often
lack the flexibility to fully capture multiple levels of dynamical temporal features across these watersheds.

To evaluate robustness and generalizability, health informatics data would be optimal due to their complex
confounding dynamics across multiple timelines. However, empirical constraints prevented us from accessing
such data for this study. For validating the inherent bias, please refer to previous work Li et al. (2020).

1st tier causality

2nd tier causality

3rd tier causality

A

B

C

D

E

F

G

H

I

J

ID Variable Name Explanation

A Environmental set I Wind Speed, Humidity, Temperature

B Environmental set II Temperature, Solar Radiation, Precipitation

C Evapotranspiration Evaporation and transpiration

D Snowpack The winter frozen water in the ice form

E Soil Water Soil moisture in vadose zone

F Aquifer Groundwater storage

G Surface Runoff Flowing water over the land surface

H Lateral Vadose zone flow

I Baseflow Groundwater discharge

J Streamflow Sensors recorded outputs

Figure 16: Hydrological causal DAG: routine tiers organized by descending causal strength.

7.1 Hydrology Dataset
In hydrology, deep learning, particularly RNN models, has gained favor for extracting observational rep-
resentations and predicting streamflow Goodwell et al. (2020); Kratzert (2018). For our experiments, we
employ the Soil and Water Assessment Tool (SWAT), a comprehensive system grounded in physical modules,
to generate dynamically significant hydrological time series. We focus on a simulation of the Root River
Headwater watershed in Southeast Minnesota, covering 60 consecutive virtual years with daily updates.

Figure 16 displays the causal DAG employed by SWAT, complete with node descriptions. The hierarchy of
hydrological routines is color-coded based on their contribution to output streamflow. Surface runoff (1st
tier) significantly impacts rapid streamflow peaks, followed by lateral flow (2nd tier). Baseflow dynamics (3rd
tier) have a subtler influence. Our causal discovery experiments aim to reveal these underlying relationships
from the observed data.

7.2 Higher-Dimensional Variable Representation Test
In this test, we have a total of ten variables (or nodes), each requiring a separate autoencoder for initializing a
higher-dimensional representation. Table 1 lists the statistics of their post-scaled (i.e., normalized) attributes,
as well as their autoencoders’ reconstruction accuracies. Accuracy is assessed in the root mean square error
(RMSE), where a lower RMSE indicates higher accuracy for both scaled and unscaled data.

The task is challenging due to the limited dimensionality of the ten variables - maxing out at just 5 dimensions
and the target node, J , having just one attribute. To mitigate this, we duplicate their columns to a consistent
12 dimensions and add 12 dummy variables for months, resulting in a 24-dimensional input. A double-wise
extension amplifies this to 576 dimensions, from which a 16-dimensional representation is extracted via the
autoencoder. Another issue is the presence of meaningful zero-values, such as node D (Snowpack in winter),
which contributes numerous zeros in other seasons and is closely linked to node E (Soil Water). We tackle
this by adding non-zero indicator variables, called masks, evaluated via binary cross-entropy (BCE).

Despite challenges, RMSE values ranging from 0.01 to 0.09 indicate success, except for node F (the Aquifer).
Given that aquifer research is still emerging (i.e., the 3rd tier baseflow routine), it is likely that node F in
this synthetic dataset may better represent noise than meaningful data.
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Table 1: Statistics of variable attributes and performances of the variable representation test.
Variable Dim Mean Std Min Max Non-Zero Rate% RMSE on Scaled RMSE on Unscaled BCE of Mask

A 5 1.8513 1.5496 -3.3557 7.6809 87.54 0.093 0.871 0.095
B 4 0.7687 1.1353 -3.3557 5.9710 64.52 0.076 0.678 1.132
C 2 1.0342 1.0025 0.0 6.2145 94.42 0.037 0.089 0.428
D 3 0.0458 0.2005 0.0 5.2434 11.40 0.015 0.679 0.445
E 2 3.1449 1.0000 0.0285 5.0916 100 0.058 3.343 0.643
F 4 0.3922 0.8962 0.0 8.6122 59.08 0.326 7.178 2.045
G 4 0.7180 1.1064 0.0 8.2551 47.87 0.045 0.81 1.327
H 4 0.7344 1.0193 0.0 7.6350 49.93 0.045 0.009 1.345
I 3 0.1432 0.6137 0.0 8.3880 21.66 0.035 0.009 1.672
J 1 0.0410 0.2000 0.0 7.8903 21.75 0.007 0.098 1.088

Table 2: Brief summary of the latent space causal discovery test.
Edge A→C B→D C→D C→G D→G G→J D→H H→J B→E E→G E→H C→E E→F F→I I→J D→I
KLD 7.63 8.51 10.14 11.60 27.87 5.29 25.19 15.93 37.07 39.13 39.88 46.58 53.68 45.64 17.41 75.57
Gain 7.63 8.51 1.135 11.60 2.454 5.29 25.19 0.209 37.07 -5.91 -3.29 2.677 53.68 45.64 0.028 3.384

7.3 Hierarchical Relation-Defined Representations Test

Table 3 presents the results of the relation-defined representation learning. We use the term “single-effect”
to describe the accuracy of a specific result node when reconstructed from a single cause node (e.g., B → D
and C → D), and “full-effect” for the accuracy when all its cause nodes are stacked (e.g., BC → D). To
provide context, we also include baseline performance scores based on the initial variable representations.
During the relation learning process, the result node serves two purposes: it maintains its own accurate
representation (as per optimization no.2 in 6.2) and helps reconstruct the relationship (as per optimization
no.1). Both aspects are evaluated in Table 3.

The KLD metrics in Table 3 indicate the strength of learned causality, with a lower value signifying stronger.
For instance, node J ’s minimal KLD values suggest a significant effect caused by nodes G (Surface Runoff),
H (Lateral), and I (Baseflow). In contrast, the high KLD values imply that predicting variable I using D
and F is challenging. For nodes D, E, and J , the “full-effect” are moderate compared to their “single-effect”
scores, suggesting a lack of informative associations among the cause nodes. In contrast, for nodes G and H,
lower “full-effect” KLD values imply capturing meaningful associative effects through hierarchical stacking.
The KLD metric also reveals the most contributive cause node to the result node. For example, the proximity
of the C → G strength to CDE → G suggests that C is the primary contributor to this causal relationship.

Figure 17 showcases reconstructed time series, for the result nodes J , G, and I, in the same synthetic year
to provide a straightforward overview of the hierarchical representation performances. Here, black dots
represent the ground truth; the blue line indicates reconstruction via the initial variable representation, and
the “full-effect” representation generates the red line. In addition to RMSE, we also employ the Nash–Sutcliffe
model efficiency coefficient (NSE) as an accuracy metric, commonly used in hydrological predictions. The
NSE ranges from -∞ to 1, with values closer to 1 indicating higher accuracy.

The initial variable representation closely aligns with the ground truth, as shown in Figure 17, attesting to
the efficacy of our proposed autoencoder architecture. As expected, the “full-effect” performs better than
the “single-effect” for each result node. Node J exhibits the best prediction, whereas node I presents a
challenge. For node G, causality from C proves to be significantly stronger than the other two, D and E.

One may observe via the demo that our experiments do not show smooth information flows along successive
long causal chains. Since RNNs are designed primarily for capturing the dynamics of causes rather than
the effects, relying on them to autonomously construct dynamical representations of the effects might prove
unreliable. It underscores a significant opportunity for enhancing effectiveness by improving the architecture.

7.4 Latent Space Causal Discovery Test

The discovery test initiates with source nodes A and B and proceeds to identify potential edges, culminating
in the target node J . Candidate edges are selected based on their contributions to the overall KLD sum (less
gain is better). Table 6 shows the order in which existing edges are discovered, along with the corresponding
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Figure 17: Reconstructed time series, via hierarchically stacked relation-defined representations.

KLD sums and gains after each edge is included. Color-coding in the cells corresponds to Figure 16, indicating
tiers of causal routines. The arrangement underscores the efficacy of this latent space discovery approach.

A comprehensive list of candidate edges evaluated in each discovery round is provided in Table 4 in Appendix
A. For comparative purposes, we also performed a 10-fold cross-validation using the conventional FGES
discovery method; those results are available in Table 5 in Appendix A.

8 Conclusions
Driven by the misalignment issues between causal knowledge and established causal models in widespread
AI applications, this study examines fundamental limitations of the dominant Observation-Oriented learning
paradigm. In response, we advocate for a novel Relation-Oriented paradigm, inspired by the relation-centric
nature of human knowledge, and complemented by a practical approach of relation-defined representation
learning, with demonstrated efficacy.

The concept of a “hyper-dimension” is initially proposed, as an accommodation for unobservable knowledge.
We subsequently build a comprehensive framework of dimensionality, to offer more intuitive insights into
relationship learning. The discrepancy, between our comprehension of “time” and the single timeline used
in our causal models, inherently causes misalignment, and results in model generalizability issues.

Relation-Oriented reflects the process of human understanding, aims to mitigate AI misalignment, paving
the way toward causally interpretable AGI. Constructing AGI is a long-term, intricate process requiring
extensive work within interdisciplinary efforts, and we seek to lay a foundation for its future advancements.
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Table 3: Performances of the relation-defined representations, sorted by the result node.
Variable Representation
(Initial)

Variable Representation
(in Relation Learning) Relationship Reconstruction

RMSE BCE RMSE BCE RMSE BCE KLDResult
Node on Scaled

Values
on Unscaled

Values Mask

Cause
Node on Scaled

Values
on Unscaled

Values Mask on Scaled
Values

on Unscaled
Values Mask (in latent

space)
C 0.037 0.089 0.428 A 0.0295 0.0616 0.4278 0.1747 0.3334 0.4278 7.6353

BC 0.0350 1.0179 0.1355 0.0509 1.7059 0.1285 9.6502
B 0.0341 1.0361 0.1693 0.0516 1.7737 0.1925 8.5147D 0.015 0.679 0.445
C 0.0331 0.9818 0.3404 0.0512 1.7265 0.3667 10.149
BC 0.4612 26.605 0.6427 0.7827 45.149 0.6427 39.750
B 0.6428 37.076 0.6427 0.8209 47.353 0.6427 37.072E 0.058 3.343 0.643
C 0.5212 30.065 1.2854 0.7939 45.791 1.2854 46.587

F 0.326 7.178 2.045 E 0.4334 8.3807 3.0895 0.4509 5.9553 3.0895 53.680
CDE 0.0538 0.9598 0.0878 0.1719 3.5736 0.1340 8.1360
C 0.1057 1.4219 0.1078 0.2996 4.6278 0.1362 11.601
D 0.1773 3.6083 0.1842 0.4112 8.0841 0.2228 27.879G 0.045 0.81 1.327

E 0.1949 4.7124 0.1482 0.5564 10.852 0.1877 39.133
DE 0.0889 0.0099 2.5980 0.3564 0.0096 2.5980 21.905
D 0.0878 0.0104 0.0911 0.4301 0.0095 0.0911 25.198H 0.045 0.009 1.345
E 0.1162 0.0105 0.1482 0.5168 0.0097 3.8514 39.886
DF 0.0600 0.0103 3.4493 0.1158 0.0099 3.4493 49.033
D 0.1212 0.0108 3.0048 0.2073 0.0108 3.0048 75.577I 0.035 0.009 1.672
F 0.0540 0.0102 3.4493 0.0948 0.0098 3.4493 45.648
GHI 0.0052 0.0742 0.2593 0.0090 0.1269 0.2937 5.5300
G 0.0077 0.1085 0.4009 0.0099 0.1390 0.4375 5.2924
H 0.0159 0.2239 0.4584 0.0393 0.5520 0.4938 15.930J 0.007 0.098 1.088

I 0.0308 0.4328 0.3818 0.0397 0.5564 0.3954 17.410
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