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Abstract

Training tool-augmented LLMs has emerged
as a promising approach to enhancing language
models’ capabilities for complex tasks. The cur-
rent supervised fine-tuning paradigm relies on
constructing extensive domain-specific datasets
to train models. However, this approach often
struggles to generalize effectively to unfamiliar
or intricate tool-use scenarios. Recently, rein-
forcement learning (RL) paradigm can endow
LLMs with superior reasoning and generaliza-
tion abilities. In this work, we address a key
question: Can the pure RL be used to effec-
tively elicit a model’s intrinsic reasoning capa-
bilities and enhance the tool-agnostic general-
ization? We propose a dynamic generalization-
guided reward design for rule-based RL, which
progressively shifts rewards from exploratory
to exploitative tool-use patterns. Based on this
design, we introduce the Tool-Zero series mod-
els. These models are trained to enable LLMs
to autonomously utilize general tools by di-
rectly scaling up RL from Zero models (i.e.,
base models without post-training). Experimen-
tal results demonstrate that our models achieve
over 7% performance improvement compared
to both SFT and RL-with-SFT models under
the same experimental settings. These gains
are consistently replicated across cross-dataset
and intra-dataset evaluations, validating the ef-
fectiveness and robustness of our methods.

1 Introduction

Integrating LLLMs with external tools has emerged
as a pivotal advancement, significantly enhances
their ability to address complex tasks (Qu et al.,
2025; Wang et al., 2024). It opens up many prac-
tical uses across different fields. For example, it
supports the automation of reasoning tasks (Jin
et al., 2025; Manduzio et al., 2024), and enables
Agent applications (Gunter et al., 2024; Chen et al.,
2024). A tool-augmented model can respond to
a user’s query by invoking and executing external
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Figure 1: A response demonstration of a tool-augmented
model trained in SFT paradigm. The model fails to rec-
ognize similar but unfamiliar task contexts (e.g., code
transpilation), highlighting limited generalization to un-
seen tool-use scenarios.

Translate 'Hello, world!" into Chinese.

tools. In this paper, tools are used interchangeably
with APIs, functions, and plugins.

Current approaches to enhance tool-use capabil-
ity involve synthesizing extensive tool-use trajec-
tories with advanced language models, followed
by SFT on the generated data (Liu et al., 2024a;
Lin et al., 2024; Chen et al., 2025). Under this
paradigm, models achieves satisfactory perfor-
mance in the scenarios that have the same distribu-
tion as the training data (Yan et al., 2024). How-
ever, these SFT-trained models primarily engage
in imitating surface-level patterns rather than inter-
nalizing the reasoning process, tend to memorize
the training trajectories rather than developing ro-
bust, intrinsic reasoning capabilities (Chen et al.,
2025). Consequently, they exhibit limited general-
ization ability when applied to unseen scenarios, as
elaborated in preliminary study in Section 3.

An illustrative example in Figure 1 demonstrates
that while the model correctly addresses a natural
language translation task, it fails to appropriately
invoke tools for code transpilation. Specifically, the
model interprets "translation" solely at the natural



language level, failing to recognize the code tran-
spilation scenario implicit in the user’s query. This
mismatch underscores a critical limitation: current
models lack the intrinsic reasoning abilities to dis-
cern nuanced task contexts. Enabling LL.Ms with
genuine reasoning capabilities to overcome such
generalization barriers has thus become an urgent
research imperative.

Recent studies have demonstrated that simple
rule-based R1-style RL (DeepSeek-Al, 2025), even
without SFT, can significantly enhance LLMs’ com-
plex reasoning capabilities (Zeng et al., 2025a; Lu
et al., 2025; Shen et al., 2025). This paradigm
inspires us to extend pure RL to the tool learn-
ing domain, aiming to address the generaliza-
tion limitations by eliciting models’ intrinsic rea-
soning abilities. To this end, we propose a dy-
namic generalization-guided reward design for rule-
based RL. This approach employs a progressive
reward strategy: it first promotes early-stage ex-
ploratory behavior to cultivate intrinsic reasoning,
then refines these capabilities into tool-use pat-
terns focused on final-task precision. This design
effectively resolves the exploration-exploitation
dilemma in open-domain tool learning, bridging
the gap between reasoning generalization and task-
specific tool use.

To evaluate generalization, we conducted exten-
sive experiments across diverse function-calling
benchmarks. Results demonstrate that our pro-
posed Tool-Zero 7B/32B models, trained using our
method, significantly outperform both SFT models
and RL-with-SFT baselines. For example, Tool-
Zero-7B achieves a 7.14% performance improve-
ment compared to SFT model Tool ACE-8B. No-
tably, it also surpasses the RL-with-SFT model
ToolRL-7B by 7.18%. Additionally, these gains
are consistently replicated in both cross-dataset and
intra-dataset evaluations.

2 Related Work

To contextualize our approach, we survey prior
research on tool learning and its integration with
large language models.

2.1 Tool Learning

Enhancing LLMs with external tools has emerged
as a pivotal direction for addressing complex tasks
in open domains (Qu et al., 2025; Wang et al.,
2024). Typical applications include integrating
LLMs with search engines (Zhang et al., 2024b;

Lazaridou et al., 2022; Shuster et al., 2022), cal-
culators (Nakano et al., 2021), and Python inter-
preters (Wang et al., 2024; Song et al., 2024; Chen
et al., 2022). A dominant paradigm for equip-
ping LLMs with external tools is imitation learning,
where language models are trained via imitation
on human-labeled datasets. This framework typi-
cally involves constructing large-scale supervised
tool-use datasets (Prabhakar et al., 2025; Liu et al.,
2024b,a) and applying either SFT (Zhang et al.,
2024a,b; Qin et al., 2023) or direct preference op-
timization (DPO) reinforcement learning (Zeng
et al., 2025b; Yu et al., 2024), enabling models
to autonomously create and invoke tools. However,
this paradigm faces challenges in enabling LLMs
to generalize across diverse tools with varied argu-
ment structures and domains, highlighting a critical
gap in tool-agnostic generalization.

2.2 Tool-Integrated Reasoning with
Reinforcement Learning

RL has gained traction as a more scalable and
generalizable training paradigm. Models like R1-
Zero leverage group relative policy optimization
(GRPO) (Shao et al., 2024) to unlock the model’s
reasoning capabilities at test time (DeepSeek-Al,
2025; Yu et al., 2025). This R1-style reasoning
paradigm—marking a shift from train-time scaling
to test-time scaling (Muennighoff et al., 2025; Xia
et al., 2025)—has demonstrated success in math-
ematics (Shao et al., 2024), coding (Pan and Liu,
2025).

Recent studies (Jin et al., 2025; Qian et al., 2025)
have explored unlocking tool-integrated reasoning
for LLMs, with works like Torl (Li et al., 2025) and
ReTool (Feng et al., 2025) achieving promising per-
formance in mathematical tasks by integrating code
tools. However, their training follows the SFT-then-
RL paradigm and remains constrained to single-
type tool-use scenarios. In contrast, our work
aims to unlock the model’s tool-agnostic (general-
purpose tools) generalization capabilities via pure
reinforcement learning scaled directly from Zero
model.

3 Problem Statement and Analysis

Problem Formulation. We first provide the prob-
lem formulation of reasoning in tool augmented
models. It formalizes the integration of external
tools into the inference process to solve complex
tasks. Given a tool set 7 = {t1,t2,...,t,} and a



user query ¢, the reasoning trajectory up to step k
is defined as:

Tk = [al(cl),ol] : [az(CQ),OQ] yeeey [ak(ck),ok} ) (1)

here, a; denotes the model’s reasoning action (nat-
ural language thought) at step 7, ¢; C T represents
the subset of tools called at step ¢, and o; denotes
the observations received after tool execution, in-
cluding environment and user feedback.

The model’s policy is defined as 7« : 7, —
ak+1(cg+1). Ateach step k + 1, the model must
generate the next reasoning action a1, select a
tool subset c;+; C 7T, and formulate parameter-
ized tool invocations for ¢ 1. The goal is to enable
LLMs with a generalized policy 7 that effectively
addresses user queries by producing a sequence of
action-observation pairs (a, o).

3.1 Preliminary Study

This section aims to show the generalization chal-
lenges faced by tool-augmented models trained in
the SFT paradigm and presents the motivation of
this paper. To this end, we conducted the following
two preliminary studies:

(1) Intra-Dataset Performance. We compared
two SFT-trained models: T00lACE-8B (Llama3.1-
8b-inst finetuned on ToolACE (Liu et al., 2024a))
and xLAM-7B-r (Mistral-7b finetuned on xLAM
(Liu et al., 2024b)), evaluated on the BECL bench-
mark (Yan et al., 2024) (comprising Single-turn
(Non-Live, Live) and Multi-turn subsets). Notably,
both training datasets use LLM-synthesized data
to mimic real-world scenarios, with distributions
aligned to BFCL-Live (details in Section 4.1). Re-
sults in Figure 2 show significant improvements
on the Live metric (reflecting in-distribution perfor-
mance), such as a improvement from 61.1 to 78.6.
Conversely, exhibiting negligible gains or regres-
sions on Non-Live and Multi-Turn subsets (e.g.,
9.6 — 7.8). This suggests that SFT struggles with
out-of-distribution generalization in open-domain
settings. For instance, single-turn training data fails
to transfer to multi-turn scenarios, and simple tool
use patterns do not generalize to complex, interde-
pendent tool chains.

(2) Cross-Dataset Performance. We extended our
evaluation to diverse benchmarks (details in Ap-
pendix A.2), inspired by Lin et al., 2024. Notably,
these benchmarks encompass varied tool-use sce-
narios(e.g., candidate tools, contextual domains,
and invocation formats (JSON vs. Python code)).
Results in Table 1 reveal inconsistent performance

of existing tool-use models across benchmarks. For
example, while xLAM-7B-fc achieved top perfor-
mance on BFCL, it suffered significant degradation
on two others, leading to the lowest overall av-
erage score. In contrast, the foundation models
demonstrated more consistent cross-dataset perfor-
mance. Therefore, this result highlighting a critical
issue: SFT enhances in-distribution performance
but weakens generalization to unseen scenarios.
(e.g., novel tools, invocation formats).

In summary, our analysis reveals a fundamental
trade-off in the SFT paradigm: while it enhances
in-distribution tool-use accuracy, it severely limits
generalization to unseen scenarios. To address this,
we propose adopting a pure RL framework for tool
learning, designed to dynamically balance explo-
ration of new tool interactions with exploitation of
task-relevant patterns.

4 Method

In this section, we provide a detailed introduction to
our method. Figure 3 shows the overall architecture
of our proposed dynamic Generalization-Guided
reward strategy for GRPO (GG-GRPO).

4.1 Training Data Preparation

The following data are utilized in RL training. (1)
ToolACE (Liu et al., 2024a): It is a general-purpose
tool-use dataset, where the model learns when to
invoke tools and when to respond directly, thereby
enhancing decision-making in multi-step interac-
tions. (2) xXLAM (Liu et al., 2024b): This is a com-
positional dataset that requires one or multiple tool
calls per turn. It encourages the model to reason
about tool dependencies and actively plan diverse
tool-calling actions. We also include an irrelevance-
augmented subset' originating from xLAM.

Data Filtering. Since these datasets are gener-
ated by potentially unstable LLMs, they often con-
tain non-standard formats for Abstract Syntax Tree
(AST) parsing and GRPO training. We standardize
the data by filtering out samples with invalid (1)
tool calls (i.e., can be parsed in JSON or Python
code format), (2) candidate tools (can be parsed in
JSON format).

Multi-Turn Augment. Due to the lack of multi-
turn tool-calling trajectories in xXLAM, we have
augmented it. The following four strategies were
employed: (1) single-turn combination: concate-

"https://huggingface.co/datasets/MadeAgents/xlam-
irrelevance-7.5k
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Figure 2: Intra-Dataset Performance. The improvement on metric (Live) with training-distributed data is significantly
greater than that on other metrics. SFT struggles with out-of-distribution generalization in open-domain settings.

Models | BFCL-v3  API-Bank SealTool Tool-Alpaca Nexus Raven | Avg.

% Granite-20B-FunctionCalling ®49.31 ©68.53 ©92.74 ©58.03 ®75.15 ©68.75
% Gorilla-OpenFunctions-v2-7B @52.10 ®62.50 @91.12 ®51.30 @68.46 @65.09
% xLAM-7B-fc ®54.75 @72.45 ®76.90 ®59.00 @57.50 ®64.12
# | lama-3.1-8B-Instruct ®50.87 3®69.92 ®89.27 ®59.36 ®67.30 ®67.34
& Qwen2.5-7B-Instruct @53.69 ®70.76 @91.07 @60.24 @72.24 @69.64
& GPT-3.5-Turbo-0125 ®53.91 @70.71 @®93.51 ©62.50 ©82.86 @72.62

Table 1: Cross-Dataset Performance of SFT models (¢) and foundation models (). Smaller ranking numbers
(circled numbers) in each column indicate larger values. Inconsistent performance of SFT models across benchmarks,
indicating SFT enhances in-distribution performance but weakens generalization to unseen scenarios.

nate related single-turn dialogs into multi-turn se-
quences. (2) tool removal: randomly remove one
tool and reintroduce it in subsequent turns. (3) pa-
rameter clarification: randomly mask a parameter
value to prompt user clarification. (4) result valida-
tion: randomly remove tools, delete parameters, or
alter values in ground-truth answer to simulate user
challenge the response. We present the statistical
information of the proceeding data in Table 2.

xLAM ToolACE
Single-T. Multi-T. ‘ Single-T. Multi-T.
Raw Data 67500 0 102154 2000
Multi-Aug. 0 10254 0 0
After 77754 10254 97300 1966

Table 2: Data statistics for xLAM and ToolACE in data
processing.

Data Mask. Recent studies (Lin et al., 2024;
Chen et al., 2025) have shown that naming pref-
erences in tool descriptionss can significantly de-
grade model robustness when testing environments
diverge from training conventions. To mitigate this
issue, we adopt a name-masking strategy aligned
with Lin et al., 2024, which masks function names
(e.g., calculate_sum — func_1) and parameter
names (e.g., input_list — param_1). It redirects

the model’s attention to tool descriptions and argu-
ment semantics, reduces overfitting to superficial
naming patterns, thereby improving tool-agnostic
reasoning in open-domain settings.

4.2 Generalization Guided Reward Design

To enhance tool generalization within the GRPO
framework, we introduce a dynamic generalization-
guided reward design that combines flexible explo-
ration with structured convergence. Building on
prior rule-based reward mechanisms (Qian et al.,
2025; Li et al., 2025; Jin et al., 2025), our formu-
lation decomposes the total reward Ry, into two
components:

2

Rﬁnal = Rformat + Rgeneralizea

where Riomat €nforces tool invocation format
correctness, and Rgeneralize drives generalization
through a progressive reward strategy.

Our strategy balances initial model exploration
with final task precision via two stages:
1. General Rule-Based Reward. During early
training iterations, we use a lenient, fine-grained
reward to elicit the model’s inherent generaliza-
tion capabilities. This reward (rgeperal) measures
the semantic overlap (e.g., tool name, argument
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Figure 3: The overall architecture of GG-GRPO introduces a dynamic generalization-guided reward design for
rule-based RL. It progressively shifts the reward mechanism from a fine-grained generic reward to a strict answer

correctness reward.

name and value) between the model’s response
y and the ground-truth answer y* by splitting
both into tokenized elements using delimiters, e.g.,
OL1,.: ’"=, forming sets ) = {tokens(y)} and
V* = {tokens(y*)}. The overlap rate is then cal-
culated as:

Yy

T'general = Toverlap — W 3)

This allows the model to receive partial credit for
incomplete but semantically relevant responses, en-
couraging broad exploration of tool-use patterns
during low-capability phases.

2. Strict AST-Based Reward. As training pro-
gresses, we transition to a strict Abstract Syntax
Tree (AST)-based check to enforce task-specific
tool integration. This stage verifies the struc-
tural and semantic correctness of tool invocations
(e.g., API argument validity, multi-tool dependency
chains) by comparing the generated tool call syntax
against a reference AST 7T *:

1 ifAST(y)=T7,
= 4
Fast {O otherwise. @

This ensures the model converges to precise, tool-
agnostic reasoning that adheres to complex tool
specifications.

To further enhance the model’s tool-integrated
reasoning in context, we incorporate three tool-
specific feedback signals into the strict reward
Rsuict: (1) multi-tool collaboration: +0.3 reward
for reinforcing correct collaborative tool usage pat-
terns in multi-step tool chains or dialogs. (2) pa-
rameter value error: +0.3 penalty per invalid pa-
rameter value to enforce exploring precise context
grounding because it demands high-order reason-
ing from context (Zeng et al., 2025b; Lin et al.,
2024). (3) call pattern consistency: +0.1 re-
ward/penalty for matching/deviating from the ref-
erence format, to accommodate different tool invo-
cation formats (i.e., JSON vs. code).

Switching Trick. The dynamic shift from a
general reward 7T'geperal 10 a strict reward 7Tyice 1S
governed by a sigmoid-based decay function:

Rgeneralize = o(t,m) Tsyiet+(1 — o (2, m))'rgenerala ®)

where o (t,m) = Wﬁ is a sigmoid function
with steepness k, t and m are the current training
step and transition midpoint, respectively. This
automated transition trick can avoid abrupt reward
changes that may destabilize training.

Format Reward. The format reward Rormar €
{0,1} checks whether the model output contains
all required special tokens in the correct order (i.e.,
<think>...</think><answer>...</answer>).



Overall, our strategy first nurtures broad general-
ization capabilities and then refines them into struc-
tured tool-use behaviors, effectively addressing the
exploration-exploitation dilemma in open-domain
tool learning.

4.3 RL Training with Generalization-guided
Reward

To train LLMs from Zero model through scaling
reinforcement learning, we employ Group Rela-
tive Policy Optimization (GRPO) (DeepSeek-Al,
2025; Shao et al., 2024), that unlocks the model’s
reasoning capabilities at test time.

GRPO foregoes the critic model and estimates
the baseline from group scores instead. For
each question g, GRPO generates G completions
{01,02,...,0G} using my_,, then optimizes 7y by
maximizing the following objective:

0;

L
|oi] 4

G
1
Tareo(0) =Eqnp(@).{0i} v, { €] Z
=1 =! (6)

where the importance ratio p; ; is defined as:

A WG(Oi,t’qa 0i,<t)

T (0i 5 0i <)’
here, € is a hyperparameter. Following Yu et al.,
2025, we remove the KL divergence regulariza-
tion from the GRPO objective. And A; is the
advantage computed using a group of rewards
{r1,ra,...,rg} corresponding to the completions
within each group:

Pit (N

r; —mean({r1,72,...,7G})
std({r1,re,...,r¢})

In the reward design of GRPO, we replace
the rule-based accuracy reward function with
a generalization-guided reward (GG-GRPO) for
more effective and adaptive reward computation.
The new reward formula is expressed as follows:

A = (8)

i = R format(03) + Ryeneratize(0i). ()

where, R format(0;) denotes format reward of o;
response, R generalize(0;) denotes dynamic gener-
alization guided reward.

5 Experiments

In this section, we show the superiority of our
method in performance and robustness across var-
ious benchmarks, and in-depth analysis to verify
the effectiveness of our method.

5.1 Experimental Setup

In the experiment, we employ the Qwen2.5-7B
Base and Qwen2.5-32B Base as Zero model, and
train with GG-GRPO to get our Tool-Zero-7B and
Tool-Zero-32B respectively?. More details in Ap-
pendix A.

Evaluation Dataset. The BFCL evaluates the
LLMs ability to invoke functions in the real-world
by actually triggering the API call and compar-
ing responses, provides a comprehensive dataset
comprising 4k+ instances (updating), consisting
of Non-live, Live (with user-contributed complex
tools avoiding contamination), Multi-turn subset.
Other benchmarks, namely API-Bank (Li et al.,
2023), Nexus Raven (Srinivasan et al., 2023), Tool-
Alpaca (Tang et al., 2023), and Seal-Tools (Wu
et al., 2024), are elaborated in Appendix A.2.
Baselines (1) Vanilla Model: the original model
without additional training (e.g., Llama3.1-series,
Qwen2.5-series). (2) SFT Models: instruct models
fine-tuned on supervised data, to assess whether
GRPO training outperforms standard SFT, includ-
ing ToolACE-8B (trained in ToolACE), xLAM-
series (trained in XLAM)(Zhang et al., 2024a),
and Hammer-series (trained on XLAM with func-
tion mask to enhance generalization) (Lin et al.,
2024). (3) API-based closed-source models (e.g.,
GPT-series, Gemini-series). (4) Ri-like Model:
models trained using GRPO with SFT as the RL
paradigm, such as QwQ-32B (Team, 2025), Tool-
N1 series (single turn tool-use models trained in
mixed ToolACE and xLAM data) (Zhang et al.,
2025), and ToolRL(trained in subset of mixed
ToolACE and xLLAM data) (Qian et al., 2025). In-
stead, our Tool-Zero series trained with pure RL
without SFT (i.e., R1-Zero).

5.2 Overall Performance

Results on BFCL. Table 3 shows the evaluation
results, covering three subset metrics. We observe
that SFT models like ToolACE-8B and xLAM-7b-
r perform well on Live (data with the same dis-
tribution as training data) due to domain-specific
training but exhibit poor generalization in out-of-
distribution metrics (e.g., Multi-Turn). In con-
trast, Tool-Zero series models outperform others
across all metrics. For instance, Tool-Zero-7B
achieves 13.32 and 19.32 improvement in Live and
Multi-Turn, respectively, compared to Qwen2.5-
"/B-Instruct.

*trained with ToolACE dataset in the main experiment



Type | Model | Non-Live Live Multi-Turn | Overall Acc
Llama-3.1-8B-Instruct 84.21 61.08 9.62 50.87
& Vanilla Qwen2.5-7B-Instruct 86.46 67.44 7.62 53.69
Qwen2.5-32B-Instruct 85.81 74.23 17.75 59.67
Hammer2.1-7b 88.65 75.11 23.50 61.83
¢SFT ToolACE-8B 87.54 78.59 7.75 58.42
xLAM-7b-r 81.06 75.22 10.00 54.75
GPT-3.5-Turbo-0125 83.94 64.02 19.50 53.91
GPT-40-mini-2024-07-18 85.21 74.41 34.12 64.10
YAPI-based | GPT-40-2024-11-20 88.10 79.83 47.62 72.08
Gemini-2.0-Flash-001 84.90 79.12 17.88 60.42
Gemini-2.0-Pro-Exp-02-05 83.94 78.50 20.75 61.55
DeepSeek-R1 87.35 74.41 12.38 56.89
QwQ-32B 86.48 75.48 2.12 53.93
Tool-N1-7B° 89.25  80.38 - -
#R1-like Tool-N1-14B 90.52  81.42 - -
ToolRL-7B 82.21 74.90 18.12 58.38
Tool-Zero-7B 88.98 80.76 25.93 65.22
Tool-Zero-32B 90.76 82.43 28.18 67.12

Table 3: Comparison on the BFCL-v3. Overall Acc denotes the average performance on three subsets. * indicates
single-turn tool use models, and multi-turn results are not reported. Bold for best performance in R1-like models

and underline for best performance in the other types.

Models ‘ BFCL-v3 API-Bank SealTool Tool-Alpaca Nexus Raven ‘ Avg.

% Qwen2.5-32B-Instruct | ©59.67 ®75.87 @93.08 @65.16 @89.12 ®76.58
4 ToolACE-8B @58.42 ®61.74 ®74.74 ®58.83 @63.15 @63.38
4 xXLAM-7B-fc ®54.75 @72.45 ®76.90 @59.00 ®57.50 ®64.12
4 Hammer2.1-7b ©61.83 ®81.45 ©94.94 @64.60 ®84.35 @77.43
¥ GPT-40-2024-11-20 ®72.08 ©80.52 @90.63 ®62.37 @90.19 @79.16
# DeepSeek-R1 @®56.89 ®71.22 @89.97 @65.75 @82.88 ®73.34
& QwQ-32B ®53.93 @70.29 392.94 @®62.29 ®63.61 @68.61
4 ToolRL-7B ®58.38 ®69.92 ®89.27 ®59.36 ®67.30 ®67.34
# Tool-Zero-7B ©65.22 @79.85 @94.73 ®63.71 ®82.74 @77.32
# Tool-Zero-32B ©67.12 ®81.63 @95.16 ®64.38 ®85.33 ®78.99

Table 4: Comparison on more benchmarks. Rankings within each column are shown with circled numbers, where
smaller numbers indicate larger values. Tool-Zero demonstrate better performance across multiple benchmarks

consistently.

Pure RL paradigms outperform the SFT-then-
RL approach. For instance, among R1-like mod-
els, Tool-Zero-7B surpasses DS-R1 by +8.33 and
ToolRL-7B by +6.84. This indicates RL better elic-
its intrinsic reasoning abilities from Zero model,
whereas SFT merely focuses on mimicking super-
ficial patterns. Notably, compared to SFT mod-
els, models trained with GRPO (Tool-N1, ToolRL,
Tool-Zero) perform comparably on Live and better
on Non-live and multi-turn tasks. These results
confirm that the RL paradigm is more effective for
enhancing tool-integrated reasoning.

Results on More Benchmarks. Table 4 presents
the results. Across different benchmarks, SFT mod-
els show inconsistent performance, while GPT-40
performs best. Notably, Hammer2.1-7b exhibits
relatively consistent performance, attributed to its

function masking techniques. Compared to SFT
and R1-like models, Tool-Zero models demonstrate
significantly more stable performance, highlighting
the robustness of GG-GRPO. These findings indi-
cate that our method generalizes effectively across
various tool-use scenarios, offering new avenues
for enhancing the tool-integrated reasoning capa-
bilities of LLMs.

5.3 Experimental Analysis

5.3.1 Ablation Study

We conduct an ablation study for GG-GRPO,
which comprises the progressive reward strategy
(PRS), three tool-specific signals (multi-tool, value
error, call pattern), and the tool mask. Using
the Vanilla model Qwen2.5-7B-inst, we compare
model training via SFT and pure GRPO train-
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Figure 4: Ablation study results for GG-GRPO on
BFCL benchmark overall performance.
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Figure 5: Hyperparameter analysis for progressive re-
ward strategy on BECL benchmark overall performance.

ing with same training data ToolACE. The results
are presented in 4. We observe that GG-GRPO
achieved a +5.26 improvement compared to GRPO,
and a +6.8 mprovement compared to SFT. Experi-
mental results demonstrate that all components con-
tribute significantly to model performance. Among
them, multi-tool and value error signals yield more
substantial improvements compared to call pattern
signals and the tool mask.

Additionally, we conduct a hyperparameter ab-
lation study on the progressive reward strategy
by varying two key parameters: transition mid-
point ¢, € {0,25,50,100} and steepness factor
k € {0.1,1} (controlling reward transition slope).
Results (Figure 5) show that a smaller transition
midpoint (t,, = 25) yields the best performance,
while larger values (¢,, > 50) lead to degradation.
This aligns with prior observations (Pan et al., 2024;
Zhang et al., 2025) that excessive exploration in
fine-grained schemes may induce reward hacking
and overfitting to superficial cues. Also, a lower
steepness factor consistently outperforms, indicat-
ing that gradual reward shaping stabilizes training.
These findings validate the design choices in GG-
GRPO’s progressive reward mechanism.

Models Non-live  Live  Multi-turn

In ToolACE

w/ qwen2.5-7b 88.98 80.76 25.93

w/ qwen2.5-32b 90.76 82.43 28.18

w/ qwen2.5-7b-inst 89.39 79.39 21.74

w/ qwen2.5-7b-coder 88.94 80.12 24.38

In xLAM

w/ qwen2.5-7b 87.15 76.93 32.38
w/o MT-Aug. 87.04 74.79 16.18

w/ qwen2.5-7b-inst 85.28 75.32 29.47

Table 5: The result of data & backbones generalizability
analysis, MT-Aug. typos multi turn augment in Section
4.1.

5.3.2 Training Data & Backbones
Generalizability

To further validate the effectiveness of the proposed
methods, we investigated the performance of our
GG-GRPO across different datasets and backbone
language models. As shown in Table 5, the exper-
imental results demonstrate that training with the
Base model consistently yields better performance
across various training datasets compared to the
Instruct model. This indicates that models with
stronger instruction-following capabilities do not
necessarily bring greater training benefits to tool-
augmented models in RL. We attribute this to the
Base model’s higher plasticity, which more easily
elicits intrinsic reasoning abilities. Additionally,
when trained on different xXLAM datasets, it also
achieves consistently strong performance. Further-
more, through ablation experiments on Multi-Turn
Augment in xXLAM, we observed a significant in-
crease in results from 16.18 to 32.28, highlighting
the effectiveness of this augmentation strategy.

6 Conclusion

This study firstly extends a pure rule-based RL
paradigm in tool-augmented models. Designing a
dynamic generalization-guided reward to tackle
the generalization limitations. By fostering in-
trinsic reasoning through progressive exploration-
exploitation strategies, our approach reduces re-
liance on task-specific data and enhances tool-
agnostic adaptability. Across diverse benchmarks,
Tool-Zero models outperform SFT and RL-with-
SFT baselines. These results validate RL’s potential
for scalable, autonomous tool learning in LLMs, ad-
vancing versatile Al agents for open-domain tasks.



7 Limitaiton

While our study has achieved notable advance-
ments, it is important to acknowledge several limi-
tations that could be addressed in future work. (1)
The applicability of the pure RL paradigm across
diverse backbone model sizes remains uninvesti-
gated; it may be ineffective for smaller models
lacking intrinsic reasoning capacity or extremely
large models with distinct optimization dynam-
ics. Further exploration of model size—-RL per-
formance relationships is needed to validate gener-
alizability. (2) The progressive reward-switching
strategy, though effective for generalization, intro-
duces additional computational costs during the
RL training phase, particularly for large models
(e.g., Tool-Zero-32B). This limits scalability on
resource-constrained hardware without further op-
timization. We will address these limitations in our
future work.
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A Details of Experimental Setup
A.1 The Implementation Settings

The experiments were executed using the publicly
accessible training framework MindSpeed-RL?,
an end-to-end reinforcement learning acceleration
framework based on the Ascend ecosystem. Key
hyperparameters included: x = 0.1, temperature
parameter for exploration-exploitation trade-off;
Transition midpoint set to 25 (defining the inflec-
tion point in reward function scheduling).

For all the tool calls in the dataset, we use a hy-
brid format combining JSON structure and Python
code snippets was adopted to encode various tool
call format. For the GG-GRPO (a variant of GRPO)
training, model training can be done within 28
hours with 5*8 Ascend 910b NPUs per run with
the following hyperparameters:

Category Hyperparameter
Data Configuration

Global Batch Size 128
Max Prompt Length 2048
Max Response Length 2048
Optimization

Learning Rate Se-7
LR Decay Style cosine
Mini Batch Size 1024
Tensor Model Parallel Size 4
KL Loss Used False
€ 0.2
Rollout Configuration

Rollout Name vllm
GPU Memory Utilization 0.9
Number of Rollouts 4
Temperature 0.8

Table 6: Configuration for GG-GRPO training.

A.2 Benchmark & Metric Details.

The BFCL is an evolving benchmark. For our study,
we utilized the version checked out on February 26,

3https://gitee.com/ascend/MindSpeed-RL
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2024. Other benchmarks include: (1) API-Bank
with 314 tool-use dialogues and 753 API calls, eval-
uating known API invocation (L-1) and candidate
list retrieval/calling (L.-2), we report their average
result in evaluation; (2) Nexus Raven API Evalu-
ation offering 318 test examples across 65 APIs
for function-calling assessment; (3) Tool-Alpaca’s
271 synthetic tool-use instances in 50 categories
(100 simulated tests used); (4) Seal-Tools, a recent
benchmark with 4,076 auto-generated APIs across
life domains. The BFCL assesses models using
Abstract Syntax Tree Evaluation and Executable
Function Evaluation Accuracy, and the other bench-
marks assesses models using Function and Parame-
ter matching F1 score (Lin et al., 2024).

A.3 System Thinking Template

We adopt a lightweight prompting schema to elicit
tool-use capabilities from the LLM, drawing inspi-
ration from prior work (DeepSeek-Al, 2025; Face,
2025). As illustrated in Figure 6, the template
explicitly instructs the model to encapsulate in-
termediate reasoning within <think>...</think>
tags, followed by the final answer enclosed in
<answer>...</answer> tags. Tool call specifica-
tions are embedded within the answer section us-
ing <tool_call>...</tool_call> markup. By
allowing the model greater freedom in articulating
its reasoning process, we aim to enhance gener-
alization across diverse tool integration scenarios.
Additionally, this design facilitates seamless adap-
tation to complex tool-augmented reasoning tasks.



System Prompt for Training

A conversation between User and Assistant, the user asks a question, and the Assistant solves it.

The assistant first thinks about the reasoning process in the mind and then provides the user with the answer.
The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags,
respectively,

i.e., <think> reasoning process here </think><answer> answer here </answer>.

You are an expert in composing functions, given a question and a set of possible functions.

Based on the question, you will need to make one or more function/tool calls to achieve the purpose.
1. If none of the function can be used, point it out.

2. If the given question lacks the parameters required by the function, also point it out.

3. You should only return the function call in tools call sections.

If you decide to invoke any function(s), MUST use the format:

<tool_call>

[func_namel(params_namel=params_valuel, ...), func_name2(params)]
</tool_call>

Here is a list of functions in JSON format that you can invoke: {{Tool List}}

Figure 6: The system think prompt with Python code format for RL Training. The prompt guides the LLM to
explicitly separate reasoning process and answer.
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