
Tool Zero: Training Tool-Augmented LLMs via Pure RL from Scratch

Anonymous ACL submission

Abstract001

Training tool-augmented LLMs has emerged002
as a promising approach to enhancing language003
models’ capabilities for complex tasks. The cur-004
rent supervised fine-tuning paradigm relies on005
constructing extensive domain-specific datasets006
to train models. However, this approach often007
struggles to generalize effectively to unfamiliar008
or intricate tool-use scenarios. Recently, rein-009
forcement learning (RL) paradigm can endow010
LLMs with superior reasoning and generaliza-011
tion abilities. In this work, we address a key012
question: Can the pure RL be used to effec-013
tively elicit a model’s intrinsic reasoning capa-014
bilities and enhance the tool-agnostic general-015
ization? We propose a dynamic generalization-016
guided reward design for rule-based RL, which017
progressively shifts rewards from exploratory018
to exploitative tool-use patterns. Based on this019
design, we introduce the Tool-Zero series mod-020
els. These models are trained to enable LLMs021
to autonomously utilize general tools by di-022
rectly scaling up RL from Zero models (i.e.,023
base models without post-training). Experimen-024
tal results demonstrate that our models achieve025
over 7% performance improvement compared026
to both SFT and RL-with-SFT models under027
the same experimental settings. These gains028
are consistently replicated across cross-dataset029
and intra-dataset evaluations, validating the ef-030
fectiveness and robustness of our methods.031

1 Introduction032

Integrating LLMs with external tools has emerged033

as a pivotal advancement, significantly enhances034

their ability to address complex tasks (Qu et al.,035

2025; Wang et al., 2024). It opens up many prac-036

tical uses across different fields. For example, it037

supports the automation of reasoning tasks (Jin038

et al., 2025; Manduzio et al., 2024), and enables039

Agent applications (Gunter et al., 2024; Chen et al.,040

2024). A tool-augmented model can respond to041

a user’s query by invoking and executing external042

Figure 1: A response demonstration of a tool-augmented
model trained in SFT paradigm. The model fails to rec-
ognize similar but unfamiliar task contexts (e.g., code
transpilation), highlighting limited generalization to un-
seen tool-use scenarios.

tools. In this paper, tools are used interchangeably 043

with APIs, functions, and plugins. 044

Current approaches to enhance tool-use capabil- 045

ity involve synthesizing extensive tool-use trajec- 046

tories with advanced language models, followed 047

by SFT on the generated data (Liu et al., 2024a; 048

Lin et al., 2024; Chen et al., 2025). Under this 049

paradigm, models achieves satisfactory perfor- 050

mance in the scenarios that have the same distribu- 051

tion as the training data (Yan et al., 2024). How- 052

ever, these SFT-trained models primarily engage 053

in imitating surface-level patterns rather than inter- 054

nalizing the reasoning process, tend to memorize 055

the training trajectories rather than developing ro- 056

bust, intrinsic reasoning capabilities (Chen et al., 057

2025). Consequently, they exhibit limited general- 058

ization ability when applied to unseen scenarios, as 059

elaborated in preliminary study in Section 3. 060

An illustrative example in Figure 1 demonstrates 061

that while the model correctly addresses a natural 062

language translation task, it fails to appropriately 063

invoke tools for code transpilation. Specifically, the 064

model interprets "translation" solely at the natural 065

1

language level, failing to recognize the code tran-066

spilation scenario implicit in the user’s query. This067

mismatch underscores a critical limitation: current068

models lack the intrinsic reasoning abilities to dis-069

cern nuanced task contexts. Enabling LLMs with070

genuine reasoning capabilities to overcome such071

generalization barriers has thus become an urgent072

research imperative.073

Recent studies have demonstrated that simple074

rule-based R1-style RL (DeepSeek-AI, 2025), even075

without SFT, can significantly enhance LLMs’ com-076

plex reasoning capabilities (Zeng et al., 2025a; Lu077

et al., 2025; Shen et al., 2025). This paradigm078

inspires us to extend pure RL to the tool learn-079

ing domain, aiming to address the generaliza-080

tion limitations by eliciting models’ intrinsic rea-081

soning abilities. To this end, we propose a dy-082

namic generalization-guided reward design for rule-083

based RL. This approach employs a progressive084

reward strategy: it first promotes early-stage ex-085

ploratory behavior to cultivate intrinsic reasoning,086

then refines these capabilities into tool-use pat-087

terns focused on final-task precision. This design088

effectively resolves the exploration-exploitation089

dilemma in open-domain tool learning, bridging090

the gap between reasoning generalization and task-091

specific tool use.092

To evaluate generalization, we conducted exten-093

sive experiments across diverse function-calling094

benchmarks. Results demonstrate that our pro-095

posed Tool-Zero 7B/32B models, trained using our096

method, significantly outperform both SFT models097

and RL-with-SFT baselines. For example, Tool-098

Zero-7B achieves a 7.14% performance improve-099

ment compared to SFT model ToolACE-8B. No-100

tably, it also surpasses the RL-with-SFT model101

ToolRL-7B by 7.18%. Additionally, these gains102

are consistently replicated in both cross-dataset and103

intra-dataset evaluations.104

2 Related Work105

To contextualize our approach, we survey prior106

research on tool learning and its integration with107

large language models.108

2.1 Tool Learning109

Enhancing LLMs with external tools has emerged110

as a pivotal direction for addressing complex tasks111

in open domains (Qu et al., 2025; Wang et al.,112

2024). Typical applications include integrating113

LLMs with search engines (Zhang et al., 2024b;114

Lazaridou et al., 2022; Shuster et al., 2022), cal- 115

culators (Nakano et al., 2021), and Python inter- 116

preters (Wang et al., 2024; Song et al., 2024; Chen 117

et al., 2022). A dominant paradigm for equip- 118

ping LLMs with external tools is imitation learning, 119

where language models are trained via imitation 120

on human-labeled datasets. This framework typi- 121

cally involves constructing large-scale supervised 122

tool-use datasets (Prabhakar et al., 2025; Liu et al., 123

2024b,a) and applying either SFT (Zhang et al., 124

2024a,b; Qin et al., 2023) or direct preference op- 125

timization (DPO) reinforcement learning (Zeng 126

et al., 2025b; Yu et al., 2024), enabling models 127

to autonomously create and invoke tools. However, 128

this paradigm faces challenges in enabling LLMs 129

to generalize across diverse tools with varied argu- 130

ment structures and domains, highlighting a critical 131

gap in tool-agnostic generalization. 132

2.2 Tool-Integrated Reasoning with 133

Reinforcement Learning 134

RL has gained traction as a more scalable and 135

generalizable training paradigm. Models like R1- 136

Zero leverage group relative policy optimization 137

(GRPO) (Shao et al., 2024) to unlock the model’s 138

reasoning capabilities at test time (DeepSeek-AI, 139

2025; Yu et al., 2025). This R1-style reasoning 140

paradigm—marking a shift from train-time scaling 141

to test-time scaling (Muennighoff et al., 2025; Xia 142

et al., 2025)—has demonstrated success in math- 143

ematics (Shao et al., 2024), coding (Pan and Liu, 144

2025). 145

Recent studies (Jin et al., 2025; Qian et al., 2025) 146

have explored unlocking tool-integrated reasoning 147

for LLMs, with works like Torl (Li et al., 2025) and 148

ReTool (Feng et al., 2025) achieving promising per- 149

formance in mathematical tasks by integrating code 150

tools. However, their training follows the SFT-then- 151

RL paradigm and remains constrained to single- 152

type tool-use scenarios. In contrast, our work 153

aims to unlock the model’s tool-agnostic (general- 154

purpose tools) generalization capabilities via pure 155

reinforcement learning scaled directly from Zero 156

model. 157

3 Problem Statement and Analysis 158

Problem Formulation. We first provide the prob- 159

lem formulation of reasoning in tool augmented 160

models. It formalizes the integration of external 161

tools into the inference process to solve complex 162

tasks. Given a tool set T = {t1, t2, . . . , tn} and a 163

2

user query q, the reasoning trajectory up to step k164

is defined as:165

τk = [a1(c1), o1] , [a2(c2), o2] , . . . , [ak(ck), ok] , (1)166

here, ai denotes the model’s reasoning action (nat-167

ural language thought) at step i, ci ⊆ T represents168

the subset of tools called at step i, and oi denotes169

the observations received after tool execution, in-170

cluding environment and user feedback.171

The model’s policy is defined as π : τk →172

ak+1(ck+1). At each step k + 1, the model must173

generate the next reasoning action ak+1, select a174

tool subset ck+1 ⊆ T , and formulate parameter-175

ized tool invocations for ck+1. The goal is to enable176

LLMs with a generalized policy π that effectively177

addresses user queries by producing a sequence of178

action-observation pairs (at, ot).179

3.1 Preliminary Study180

This section aims to show the generalization chal-181

lenges faced by tool-augmented models trained in182

the SFT paradigm and presents the motivation of183

this paper. To this end, we conducted the following184

two preliminary studies:185

(1) Intra-Dataset Performance. We compared186

two SFT-trained models: ToolACE-8B (Llama3.1-187

8b-inst finetuned on ToolACE (Liu et al., 2024a))188

and xLAM-7B-r (Mistral-7b finetuned on xLAM189

(Liu et al., 2024b)), evaluated on the BECL bench-190

mark (Yan et al., 2024) (comprising Single-turn191

(Non-Live, Live) and Multi-turn subsets). Notably,192

both training datasets use LLM-synthesized data193

to mimic real-world scenarios, with distributions194

aligned to BFCL-Live (details in Section 4.1). Re-195

sults in Figure 2 show significant improvements196

on the Live metric (reflecting in-distribution perfor-197

mance), such as a improvement from 61.1 to 78.6.198

Conversely, exhibiting negligible gains or regres-199

sions on Non-Live and Multi-Turn subsets (e.g.,200

9.6 → 7.8). This suggests that SFT struggles with201

out-of-distribution generalization in open-domain202

settings. For instance, single-turn training data fails203

to transfer to multi-turn scenarios, and simple tool204

use patterns do not generalize to complex, interde-205

pendent tool chains.206

(2) Cross-Dataset Performance. We extended our207

evaluation to diverse benchmarks (details in Ap-208

pendix A.2), inspired by Lin et al., 2024. Notably,209

these benchmarks encompass varied tool-use sce-210

narios(e.g., candidate tools, contextual domains,211

and invocation formats (JSON vs. Python code)).212

Results in Table 1 reveal inconsistent performance213

of existing tool-use models across benchmarks. For 214

example, while xLAM-7B-fc achieved top perfor- 215

mance on BFCL, it suffered significant degradation 216

on two others, leading to the lowest overall av- 217

erage score. In contrast, the foundation models 218

demonstrated more consistent cross-dataset perfor- 219

mance. Therefore, this result highlighting a critical 220

issue: SFT enhances in-distribution performance 221

but weakens generalization to unseen scenarios. 222

(e.g., novel tools, invocation formats). 223

In summary, our analysis reveals a fundamental 224

trade-off in the SFT paradigm: while it enhances 225

in-distribution tool-use accuracy, it severely limits 226

generalization to unseen scenarios. To address this, 227

we propose adopting a pure RL framework for tool 228

learning, designed to dynamically balance explo- 229

ration of new tool interactions with exploitation of 230

task-relevant patterns. 231

4 Method 232

In this section, we provide a detailed introduction to 233

our method. Figure 3 shows the overall architecture 234

of our proposed dynamic Generalization-Guided 235

reward strategy for GRPO (GG-GRPO). 236

4.1 Training Data Preparation 237

The following data are utilized in RL training. (1) 238

ToolACE (Liu et al., 2024a): It is a general-purpose 239

tool-use dataset, where the model learns when to 240

invoke tools and when to respond directly, thereby 241

enhancing decision-making in multi-step interac- 242

tions. (2) xLAM (Liu et al., 2024b): This is a com- 243

positional dataset that requires one or multiple tool 244

calls per turn. It encourages the model to reason 245

about tool dependencies and actively plan diverse 246

tool-calling actions. We also include an irrelevance- 247

augmented subset1 originating from xLAM. 248

Data Filtering. Since these datasets are gener- 249

ated by potentially unstable LLMs, they often con- 250

tain non-standard formats for Abstract Syntax Tree 251

(AST) parsing and GRPO training. We standardize 252

the data by filtering out samples with invalid (1) 253

tool calls (i.e., can be parsed in JSON or Python 254

code format), (2) candidate tools (can be parsed in 255

JSON format). 256

Multi-Turn Augment. Due to the lack of multi- 257

turn tool-calling trajectories in xLAM, we have 258

augmented it. The following four strategies were 259

employed: (1) single-turn combination: concate- 260

1https://huggingface.co/datasets/MadeAgents/xlam-
irrelevance-7.5k

3

Figure 2: Intra-Dataset Performance. The improvement on metric (Live) with training-distributed data is significantly
greater than that on other metrics. SFT struggles with out-of-distribution generalization in open-domain settings.

Models BFCL-v3 API-Bank SealTool Tool-Alpaca Nexus Raven Avg.

♣ Granite-20B-FunctionCalling ③49.31 ②68.53 ①92.74 ②58.03 ①75.15 ①68.75
♣ Gorilla-OpenFunctions-v2-7B ②52.10 ③62.50 ②91.12 ③51.30 ②68.46 ②65.09
♣ xLAM-7B-fc ①54.75 ①72.45 ③76.90 ①59.00 ③57.50 ③64.12

♠ Llama-3.1-8B-Instruct ③50.87 ③69.92 ③89.27 ③59.36 ③67.30 ③67.34
♠ Qwen2.5-7B-Instruct ②53.69 ①70.76 ②91.07 ②60.24 ②72.24 ②69.64
♠ GPT-3.5-Turbo-0125 ①53.91 ②70.71 ①93.51 ①62.50 ①82.86 ①72.62

Table 1: Cross-Dataset Performance of SFT models (♣) and foundation models (♠). Smaller ranking numbers
(circled numbers) in each column indicate larger values. Inconsistent performance of SFT models across benchmarks,
indicating SFT enhances in-distribution performance but weakens generalization to unseen scenarios.

nate related single-turn dialogs into multi-turn se-261

quences. (2) tool removal: randomly remove one262

tool and reintroduce it in subsequent turns. (3) pa-263

rameter clarification: randomly mask a parameter264

value to prompt user clarification. (4) result valida-265

tion: randomly remove tools, delete parameters, or266

alter values in ground-truth answer to simulate user267

challenge the response. We present the statistical268

information of the proceeding data in Table 2.

xLAM ToolACE

Single-T. Multi-T. Single-T. Multi-T.
Raw Data 67500 0 102154 2000

Multi-Aug. 0 10254 0 0
After 77754 10254 97300 1966

Table 2: Data statistics for xLAM and ToolACE in data
processing.

269
Data Mask. Recent studies (Lin et al., 2024;270

Chen et al., 2025) have shown that naming pref-271

erences in tool descriptionss can significantly de-272

grade model robustness when testing environments273

diverge from training conventions. To mitigate this274

issue, we adopt a name-masking strategy aligned275

with Lin et al., 2024, which masks function names276

(e.g., calculate_sum → func_1) and parameter277

names (e.g., input_list → param_1). It redirects278

the model’s attention to tool descriptions and argu- 279

ment semantics, reduces overfitting to superficial 280

naming patterns, thereby improving tool-agnostic 281

reasoning in open-domain settings. 282

4.2 Generalization Guided Reward Design 283

To enhance tool generalization within the GRPO 284

framework, we introduce a dynamic generalization- 285

guided reward design that combines flexible explo- 286

ration with structured convergence. Building on 287

prior rule-based reward mechanisms (Qian et al., 288

2025; Li et al., 2025; Jin et al., 2025), our formu- 289

lation decomposes the total reward Rfinal into two 290

components: 291

Rfinal = Rformat +Rgeneralize, (2) 292

where Rformat enforces tool invocation format 293

correctness, and Rgeneralize drives generalization 294

through a progressive reward strategy. 295

Our strategy balances initial model exploration 296

with final task precision via two stages: 297

1. General Rule-Based Reward. During early 298

training iterations, we use a lenient, fine-grained 299

reward to elicit the model’s inherent generaliza- 300

tion capabilities. This reward (rgeneral) measures 301

the semantic overlap (e.g., tool name, argument 302

4

Policy Model

 O1 ：response_1

 O2 ：response_2

 OG ：response_G

Mask

RL for policy learning

Mask

Dialogue History
Name: translation_tool
Parameters: {text: str, target_language: str}
Name: code_transpiler
Parameters: {text: str, target_language: str}

Translate 'Hello, world!' into Chinese.

Translate Python code 'print(Hello, world!)'
into js.

{ "name": "translation_tool", "parameters": {"text":
"Hello, world!", "target_language": "Chinese"}

<think>...</think>
<answer>...</answer>Reword Module

Strict Correctness-base

Total Score

-1.2

AST Answer

-1.1

+1.4

σ

Rfinal = Rgeneralize + Rformat

Ground answer: code_transpiler(text=‘print(Hello,world!)’, target_language=‘JavaScript’)

Generic Rule-base
 O1 : translation_tool(text=‘Hello,world!’,
target_language=‘JavaScript’)

O2: { "name": "code_transpiler", "parameters":
{"text": "Hello, world!", "target_language": "JS"}

 OG : code_transpiler(text=‘print(Hello,world!)’,
target_language=‘JavaScript’)

ValueMulti Pattern

+1.0 +0.3 +0.1

+0.3 -0.1-0.3-1.0

0 +0.1-0.3-1.0

0

Score = 3/5 = 0.6

Score = 3/5 = 0.6

Score = 5/5 = 1.0

tool-special signals

Figure 3: The overall architecture of GG-GRPO introduces a dynamic generalization-guided reward design for
rule-based RL. It progressively shifts the reward mechanism from a fine-grained generic reward to a strict answer
correctness reward.

name and value) between the model’s response303

y and the ground-truth answer y∗ by splitting304

both into tokenized elements using delimiters, e.g.,305

()[],.: ’"=, forming sets Y = {tokens(y)} and306

Y∗ = {tokens(y∗)}. The overlap rate is then cal-307

culated as:308

rgeneral = roverlap =
|Y ∩ Y∗|
|Y∗|

. (3)309

This allows the model to receive partial credit for310

incomplete but semantically relevant responses, en-311

couraging broad exploration of tool-use patterns312

during low-capability phases.313

2. Strict AST-Based Reward. As training pro-314

gresses, we transition to a strict Abstract Syntax315

Tree (AST)-based check to enforce task-specific316

tool integration. This stage verifies the struc-317

tural and semantic correctness of tool invocations318

(e.g., API argument validity, multi-tool dependency319

chains) by comparing the generated tool call syntax320

against a reference AST T ∗:321

rast =

{
1 if AST(y) ≡ T ∗,

0 otherwise.
(4)322

This ensures the model converges to precise, tool-323

agnostic reasoning that adheres to complex tool324

specifications.325

To further enhance the model’s tool-integrated 326

reasoning in context, we incorporate three tool- 327

specific feedback signals into the strict reward 328

Rstrict: (1) multi-tool collaboration: +0.3 reward 329

for reinforcing correct collaborative tool usage pat- 330

terns in multi-step tool chains or dialogs. (2) pa- 331

rameter value error: +0.3 penalty per invalid pa- 332

rameter value to enforce exploring precise context 333

grounding because it demands high-order reason- 334

ing from context (Zeng et al., 2025b; Lin et al., 335

2024). (3) call pattern consistency: ±0.1 re- 336

ward/penalty for matching/deviating from the ref- 337

erence format, to accommodate different tool invo- 338

cation formats (i.e., JSON vs. code). 339

Switching Trick. The dynamic shift from a 340

general reward rgeneral to a strict reward rstrict is 341

governed by a sigmoid-based decay function: 342

Rgeneralize = σ(t,m)·rstrict+(1− σ(t,m))·rgeneral, (5) 343

where σ(t,m) = 1
1+e−κ(t−m) is a sigmoid function 344

with steepness κ, t and m are the current training 345

step and transition midpoint, respectively. This 346

automated transition trick can avoid abrupt reward 347

changes that may destabilize training. 348

Format Reward. The format reward Rformat ∈ 349

{0, 1} checks whether the model output contains 350

all required special tokens in the correct order (i.e., 351

<think>...</think><answer>...</answer>). 352

5

Overall, our strategy first nurtures broad general-353

ization capabilities and then refines them into struc-354

tured tool-use behaviors, effectively addressing the355

exploration-exploitation dilemma in open-domain356

tool learning.357

4.3 RL Training with Generalization-guided358

Reward359

To train LLMs from Zero model through scaling360

reinforcement learning, we employ Group Rela-361

tive Policy Optimization (GRPO) (DeepSeek-AI,362

2025; Shao et al., 2024), that unlocks the model’s363

reasoning capabilities at test time.364

GRPO foregoes the critic model and estimates365

the baseline from group scores instead. For366

each question q, GRPO generates G completions367

{o1, o2, . . . , oG} using πθold , then optimizes πθ by368

maximizing the following objective:369

JGRPO(θ) =Eq∼P (Q),{oi}∼πθold

{
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

min [ρi,tAi, clip(ρi,t, 1−ϵ, 1+ϵ)Ai]

} (6)370

where the importance ratio ρi,t is defined as:371

ρi,t ≜
πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
, (7)372

here, ϵ is a hyperparameter. Following Yu et al.,373

2025, we remove the KL divergence regulariza-374

tion from the GRPO objective. And Ai is the375

advantage computed using a group of rewards376

{r1, r2, . . . , rG} corresponding to the completions377

within each group:378

Ai =
ri − mean({r1, r2, . . . , rG})

std({r1, r2, . . . , rG})
. (8)379

In the reward design of GRPO, we replace380

the rule-based accuracy reward function with381

a generalization-guided reward (GG-GRPO) for382

more effective and adaptive reward computation.383

The new reward formula is expressed as follows:384

ri = Rformat(oi) +Rgeneralize(oi). (9)385

where, Rformat(oi) denotes format reward of oi386

response, Rgeneralize(oi) denotes dynamic gener-387

alization guided reward.388

5 Experiments389

In this section, we show the superiority of our390

method in performance and robustness across var-391

ious benchmarks, and in-depth analysis to verify392

the effectiveness of our method.393

5.1 Experimental Setup 394

In the experiment, we employ the Qwen2.5-7B 395

Base and Qwen2.5-32B Base as Zero model, and 396

train with GG-GRPO to get our Tool-Zero-7B and 397

Tool-Zero-32B respectively2. More details in Ap- 398

pendix A. 399

Evaluation Dataset. The BFCL evaluates the 400

LLMs ability to invoke functions in the real-world 401

by actually triggering the API call and compar- 402

ing responses, provides a comprehensive dataset 403

comprising 4k+ instances (updating), consisting 404

of Non-live, Live (with user-contributed complex 405

tools avoiding contamination), Multi-turn subset. 406

Other benchmarks, namely API-Bank (Li et al., 407

2023), Nexus Raven (Srinivasan et al., 2023), Tool- 408

Alpaca (Tang et al., 2023), and Seal-Tools (Wu 409

et al., 2024), are elaborated in Appendix A.2. 410

Baselines (1) Vanilla Model: the original model 411

without additional training (e.g., Llama3.1-series, 412

Qwen2.5-series). (2) SFT Models: instruct models 413

fine-tuned on supervised data, to assess whether 414

GRPO training outperforms standard SFT, includ- 415

ing ToolACE-8B (trained in ToolACE), xLAM- 416

series (trained in xLAM)(Zhang et al., 2024a), 417

and Hammer-series (trained on xLAM with func- 418

tion mask to enhance generalization) (Lin et al., 419

2024). (3) API-based closed-source models (e.g., 420

GPT-series, Gemini-series). (4) R1-like Model: 421

models trained using GRPO with SFT as the RL 422

paradigm, such as QwQ-32B (Team, 2025), Tool- 423

N1 series (single turn tool-use models trained in 424

mixed ToolACE and xLAM data) (Zhang et al., 425

2025), and ToolRL(trained in subset of mixed 426

ToolACE and xLAM data) (Qian et al., 2025). In- 427

stead, our Tool-Zero series trained with pure RL 428

without SFT (i.e., R1-Zero). 429

5.2 Overall Performance 430

Results on BFCL. Table 3 shows the evaluation 431

results, covering three subset metrics. We observe 432

that SFT models like ToolACE-8B and xLAM-7b- 433

r perform well on Live (data with the same dis- 434

tribution as training data) due to domain-specific 435

training but exhibit poor generalization in out-of- 436

distribution metrics (e.g., Multi-Turn). In con- 437

trast, Tool-Zero series models outperform others 438

across all metrics. For instance, Tool-Zero-7B 439

achieves 13.32 and 19.32 improvement in Live and 440

Multi-Turn, respectively, compared to Qwen2.5- 441

7B-Instruct. 442

2trained with ToolACE dataset in the main experiment

6

Type Model Non-Live Live Multi-Turn Overall Acc

♣Vanilla
Llama-3.1-8B-Instruct 84.21 61.08 9.62 50.87
Qwen2.5-7B-Instruct 86.46 67.44 7.62 53.69
Qwen2.5-32B-Instruct 85.81 74.23 17.75 59.67

♦SFT
Hammer2.1-7b 88.65 75.11 23.50 61.83
ToolACE-8B 87.54 78.59 7.75 58.42
xLAM-7b-r 81.06 75.22 10.00 54.75

♥API-based

GPT-3.5-Turbo-0125 83.94 64.02 19.50 53.91
GPT-4o-mini-2024-07-18 85.21 74.41 34.12 64.10
GPT-4o-2024-11-20 88.10 79.83 47.62 72.08
Gemini-2.0-Flash-001 84.90 79.12 17.88 60.42
Gemini-2.0-Pro-Exp-02-05 83.94 78.50 20.75 61.55

♠R1-like

DeepSeek-R1 87.35 74.41 12.38 56.89
QwQ-32B 86.48 75.48 2.12 53.93
Tool-N1-7B* 89.25 80.38 - -
Tool-N1-14B* 90.52 81.42 - -
ToolRL-7B 82.21 74.90 18.12 58.38
Tool-Zero-7B 88.98 80.76 25.93 65.22
Tool-Zero-32B 90.76 82.43 28.18 67.12

Table 3: Comparison on the BFCL-v3. Overall Acc denotes the average performance on three subsets. * indicates
single-turn tool use models, and multi-turn results are not reported. Bold for best performance in R1-like models
and underline for best performance in the other types.

Models BFCL-v3 API-Bank SealTool Tool-Alpaca Nexus Raven Avg.

♣ Qwen2.5-32B-Instruct ③59.67 ③75.87 ②93.08 ①65.16 ②89.12 ③76.58
♦ ToolACE-8B ④58.42 ⑤61.74 ③74.74 ⑤58.83 ④63.15 ④63.38
♦ xLAM-7B-fc ⑤54.75 ④72.45 ⑤76.90 ④59.00 ⑤57.50 ⑤64.12
♦ Hammer2.1-7b ②61.83 ①81.45 ①94.94 ②64.60 ③84.35 ②77.43
♥ GPT-4o-2024-11-20 ①72.08 ②80.52 ④90.63 ③62.37 ①90.19 ①79.16

♠ DeepSeek-R1 ④56.89 ③71.22 ④89.97 ②65.75 ②82.88 ③73.34
♠ QwQ-32B ⑤53.93 ④70.29 ③92.94 ④62.29 ③63.61 ④68.61
♠ ToolRL-7B ③58.38 ⑤69.92 ⑤89.27 ⑤59.36 ③67.30 ⑤67.34
♠ Tool-Zero-7B ②65.22 ②79.85 ②94.73 ③63.71 ③82.74 ②77.32
♠ Tool-Zero-32B ①67.12 ①81.63 ①95.16 ①64.38 ①85.33 ①78.99

Table 4: Comparison on more benchmarks. Rankings within each column are shown with circled numbers, where
smaller numbers indicate larger values. Tool-Zero demonstrate better performance across multiple benchmarks
consistently.

Pure RL paradigms outperform the SFT-then-443

RL approach. For instance, among R1-like mod-444

els, Tool-Zero-7B surpasses DS-R1 by +8.33 and445

ToolRL-7B by +6.84. This indicates RL better elic-446

its intrinsic reasoning abilities from Zero model,447

whereas SFT merely focuses on mimicking super-448

ficial patterns. Notably, compared to SFT mod-449

els, models trained with GRPO (Tool-N1, ToolRL,450

Tool-Zero) perform comparably on Live and better451

on Non-live and multi-turn tasks. These results452

confirm that the RL paradigm is more effective for453

enhancing tool-integrated reasoning.454

Results on More Benchmarks. Table 4 presents455

the results. Across different benchmarks, SFT mod-456

els show inconsistent performance, while GPT-4o457

performs best. Notably, Hammer2.1-7b exhibits458

relatively consistent performance, attributed to its459

function masking techniques. Compared to SFT 460

and R1-like models, Tool-Zero models demonstrate 461

significantly more stable performance, highlighting 462

the robustness of GG-GRPO. These findings indi- 463

cate that our method generalizes effectively across 464

various tool-use scenarios, offering new avenues 465

for enhancing the tool-integrated reasoning capa- 466

bilities of LLMs. 467

5.3 Experimental Analysis 468

5.3.1 Ablation Study 469

We conduct an ablation study for GG-GRPO, 470

which comprises the progressive reward strategy 471

(PRS), three tool-specific signals (multi-tool, value 472

error, call pattern), and the tool mask. Using 473

the Vanilla model Qwen2.5-7B-inst, we compare 474

model training via SFT and pure GRPO train- 475

7

Figure 4: Ablation study results for GG-GRPO on
BFCL benchmark overall performance.

Figure 5: Hyperparameter analysis for progressive re-
ward strategy on BFCL benchmark overall performance.

ing with same training data ToolACE. The results476

are presented in 4. We observe that GG-GRPO477

achieved a +5.26 improvement compared to GRPO,478

and a +6.8 mprovement compared to SFT. Experi-479

mental results demonstrate that all components con-480

tribute significantly to model performance. Among481

them, multi-tool and value error signals yield more482

substantial improvements compared to call pattern483

signals and the tool mask.484

Additionally, we conduct a hyperparameter ab-485

lation study on the progressive reward strategy486

by varying two key parameters: transition mid-487

point tm ∈ {0, 25, 50, 100} and steepness factor488

κ ∈ {0.1, 1} (controlling reward transition slope).489

Results (Figure 5) show that a smaller transition490

midpoint (tm = 25) yields the best performance,491

while larger values (tm ≥ 50) lead to degradation.492

This aligns with prior observations (Pan et al., 2024;493

Zhang et al., 2025) that excessive exploration in494

fine-grained schemes may induce reward hacking495

and overfitting to superficial cues. Also, a lower496

steepness factor consistently outperforms, indicat-497

ing that gradual reward shaping stabilizes training.498

These findings validate the design choices in GG-499

GRPO’s progressive reward mechanism.500

Models Non-live Live Multi-turn

In ToolACE

w/ qwen2.5-7b 88.98 80.76 25.93
w/ qwen2.5-32b 90.76 82.43 28.18
w/ qwen2.5-7b-inst 89.39 79.39 21.74
w/ qwen2.5-7b-coder 88.94 80.12 24.38

In xLAM

w/ qwen2.5-7b 87.15 76.93 32.38
w/o MT-Aug. 87.04 74.79 16.18

w/ qwen2.5-7b-inst 85.28 75.32 29.47

Table 5: The result of data & backbones generalizability
analysis, MT-Aug. typos multi turn augment in Section
4.1.

5.3.2 Training Data & Backbones 501

Generalizability 502

To further validate the effectiveness of the proposed 503

methods, we investigated the performance of our 504

GG-GRPO across different datasets and backbone 505

language models. As shown in Table 5, the exper- 506

imental results demonstrate that training with the 507

Base model consistently yields better performance 508

across various training datasets compared to the 509

Instruct model. This indicates that models with 510

stronger instruction-following capabilities do not 511

necessarily bring greater training benefits to tool- 512

augmented models in RL. We attribute this to the 513

Base model’s higher plasticity, which more easily 514

elicits intrinsic reasoning abilities. Additionally, 515

when trained on different xLAM datasets, it also 516

achieves consistently strong performance. Further- 517

more, through ablation experiments on Multi-Turn 518

Augment in xLAM, we observed a significant in- 519

crease in results from 16.18 to 32.28, highlighting 520

the effectiveness of this augmentation strategy. 521

6 Conclusion 522

This study firstly extends a pure rule-based RL 523

paradigm in tool-augmented models. Designing a 524

dynamic generalization-guided reward to tackle 525

the generalization limitations. By fostering in- 526

trinsic reasoning through progressive exploration- 527

exploitation strategies, our approach reduces re- 528

liance on task-specific data and enhances tool- 529

agnostic adaptability. Across diverse benchmarks, 530

Tool-Zero models outperform SFT and RL-with- 531

SFT baselines. These results validate RL’s potential 532

for scalable, autonomous tool learning in LLMs, ad- 533

vancing versatile AI agents for open-domain tasks. 534

8

7 Limitaiton535

While our study has achieved notable advance-536

ments, it is important to acknowledge several limi-537

tations that could be addressed in future work. (1)538

The applicability of the pure RL paradigm across539

diverse backbone model sizes remains uninvesti-540

gated; it may be ineffective for smaller models541

lacking intrinsic reasoning capacity or extremely542

large models with distinct optimization dynam-543

ics. Further exploration of model size–RL per-544

formance relationships is needed to validate gener-545

alizability. (2) The progressive reward-switching546

strategy, though effective for generalization, intro-547

duces additional computational costs during the548

RL training phase, particularly for large models549

(e.g., Tool-Zero-32B). This limits scalability on550

resource-constrained hardware without further op-551

timization. We will address these limitations in our552

future work.553

References554

Chen Chen, Xinlong Hao, Weiwen Liu, Xu Huang,555
Xingshan Zeng, Shuai Yu, Dexun Li, Shuai Wang,556
Weinan Gan, Yuefeng Huang, et al. 2025. Acebench:557
Who wins the match point in tool learning? arXiv558
preprint arXiv:2501.12851.559

Wei Chen, Zhiyuan Li, and Mingyuan Ma. 2024. Octo-560
pus: On-device language model for function calling561
of software apis. arXiv preprint arXiv:2404.01549.562

Wenhu Chen, Xueguang Ma, Xinyi Wang, and563
William W Cohen. 2022. Program of thoughts564
prompting: Disentangling computation from reason-565
ing for numerical reasoning tasks. arXiv preprint566
arXiv:2211.12588.567

DeepSeek-AI. 2025. Deepseek-r1: Incentivizing rea-568
soning capability in llms via reinforcement learning.569
Preprint, arXiv:2501.12948.570

Hugging Face. 2025. Open r1: A fully open reproduc-571
tion of deepseek-r1.572

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang,573
Yujia Qin, Baoquan Zhong, Chengquan Jiang, Jinxin574
Chi, and Wanjun Zhong. 2025. Retool: Reinforce-575
ment learning for strategic tool use in llms. arXiv576
preprint arXiv:2504.11536.577

Tom Gunter, Zirui Wang, Chong Wang, Ruoming578
Pang, Andy Narayanan, Aonan Zhang, Bowen Zhang,579
Chen Chen, Chung-Cheng Chiu, David Qiu, et al.580
2024. Apple intelligence foundation language mod-581
els. arXiv preprint arXiv:2407.21075.582

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon,583
Sercan Arik, Dong Wang, Hamed Zamani, and Jiawei584

Han. 2025. Search-r1: Training llms to reason and 585
leverage search engines with reinforcement learning. 586
arXiv preprint arXiv:2503.09516. 587

Angeliki Lazaridou, Elena Gribovskaya, Wojciech 588
Stokowiec, and Nikolai Grigorev. 2022. Internet- 589
augmented language models through few-shot 590
prompting for open-domain question answering. 591
arXiv preprint arXiv:2203.05115. 592

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, 593
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang, 594
and Yongbin Li. 2023. Api-bank: A comprehensive 595
benchmark for tool-augmented llms. arXiv preprint 596
arXiv:2304.08244. 597

Xuefeng Li, Haoyang Zou, and Pengfei Liu. 2025. 598
Torl: Scaling tool-integrated rl. arXiv preprint 599
arXiv:2503.23383. 600

Qiqiang Lin, Muning Wen, Qiuying Peng, Guanyu 601
Nie, Junwei Liao, Jun Wang, Xiaoyun Mo, Jiamu 602
Zhou, Cheng Cheng, Yin Zhao, et al. 2024. Ham- 603
mer: Robust function-calling for on-device lan- 604
guage models via function masking. arXiv preprint 605
arXiv:2410.04587. 606

Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao, 607
Shuai Yu, Dexun Li, Shuai Wang, Weinan Gan, 608
Zhengying Liu, Yuanqing Yu, et al. 2024a. Toolace: 609
Winning the points of llm function calling. arXiv 610
preprint arXiv:2409.00920. 611

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, 612
Tian Lan, Shirley Kokane, Juntao Tan, Weiran Yao, 613
Zhiwei Liu, Yihao Feng, et al. 2024b. Apigen: 614
Automated pipeline for generating verifiable and 615
diverse function-calling datasets. arXiv preprint 616
arXiv:2406.18518. 617

Zhengxi Lu, Yuxiang Chai, Yaxuan Guo, Xi Yin, Liang 618
Liu, Hao Wang, Han Xiao, Shuai Ren, Guanjing 619
Xiong, and Hongsheng Li. 2025. Ui-r1: Enhanc- 620
ing action prediction of gui agents by reinforcement 621
learning. arXiv preprint arXiv:2503.21620. 622

Graziano A Manduzio, Federico A Galatolo, 623
Mario GCA Cimino, Enzo Pasquale Scilingo, 624
and Lorenzo Cominelli. 2024. Improving small- 625
scale large language models function calling for 626
reasoning tasks. arXiv preprint arXiv:2410.18890. 627

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi- 628
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke 629
Zettlemoyer, Percy Liang, Emmanuel Candès, and 630
Tatsunori Hashimoto. 2025. s1: Simple test-time 631
scaling. arXiv preprint arXiv:2501.19393. 632

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, 633
Long Ouyang, Christina Kim, Christopher Hesse, 634
Shantanu Jain, Vineet Kosaraju, William Saunders, 635
et al. 2021. Webgpt: Browser-assisted question- 636
answering with human feedback. arXiv preprint 637
arXiv:2112.09332. 638

9

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1

Alexander Pan, Erik Jones, Meena Jagadeesan, and639
Jacob Steinhardt. 2024. Feedback loops with lan-640
guage models drive in-context reward hacking. arXiv641
preprint arXiv:2402.06627.642

Zhenyu Pan and Han Liu. 2025. Metaspatial: Reinforc-643
ing 3d spatial reasoning in vlms for the metaverse.644
arXiv preprint arXiv:2503.18470.645

Akshara Prabhakar, Zuxin Liu, Ming Zhu, Jianguo646
Zhang, Tulika Awalgaonkar, Shiyu Wang, Zhiwei647
Liu, Haolin Chen, Thai Hoang, et al. 2025. Apigen-648
mt: Agentic pipeline for multi-turn data generation649
via simulated agent-human interplay. arXiv preprint650
arXiv:2504.03601.651

Cheng Qian, Emre Can Acikgoz, Qi He, Hongru Wang,652
Xiusi Chen, Dilek Hakkani-Tür, Gokhan Tur, and653
Heng Ji. 2025. Toolrl: Reward is all tool learning654
needs. arXiv preprint arXiv:2504.13958.655

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan656
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,657
Bill Qian, et al. 2023. Toolllm: Facilitating large658
language models to master 16000+ real-world apis.659
In The Twelfth International Conference on Learning660
Representations.661

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai,662
Shuaiqiang Wang, Dawei Yin, Jun Xu, and Ji-Rong663
Wen. 2025. Tool learning with large language mod-664
els: A survey. Frontiers of Computer Science,665
19(8):198343.666

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,667
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan668
Zhang, YK Li, Y Wu, et al. 2024. Deepseekmath:669
Pushing the limits of mathematical reasoning in open670
language models. arXiv preprint arXiv:2402.03300.671

Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang,672
Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun Zhang,673
Kangjia Zhao, Qianqian Zhang, et al. 2025. Vlm-674
r1: A stable and generalizable r1-style large vision-675
language model. arXiv preprint arXiv:2504.07615.676

Kurt Shuster, Jing Xu, Mojtaba Komeili, Da Ju,677
Eric Michael Smith, Stephen Roller, Megan Ung,678
Moya Chen, Kushal Arora, Joshua Lane, et al. 2022.679
Blenderbot 3: a deployed conversational agent that680
continually learns to responsibly engage. arXiv681
preprint arXiv:2208.03188.682

Linxin Song, Jiale Liu, Jieyu Zhang, Shaokun Zhang,683
Ao Luo, Shijian Wang, Qingyun Wu, and Chi684
Wang. 2024. Adaptive in-conversation team build-685
ing for language model agents. arXiv preprint686
arXiv:2405.19425.687

Venkat Krishna Srinivasan, Zhen Dong, Banghua Zhu,688
Brian Yu, Damon Mosk-Aoyama, Kurt Keutzer,689
Jiantao Jiao, and Jian Zhang. 2023. Nexusraven:690
a commercially-permissive language model for func-691
tion calling. In NeurIPS 2023 Foundation Models for692
Decision Making Workshop.693

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei 694
Han, Qiao Liang, Boxi Cao, and Le Sun. 2023. 695
Toolalpaca: Generalized tool learning for language 696
models with 3000 simulated cases. arXiv preprint 697
arXiv:2306.05301. 698

Qwen Team. 2025. Qwq-32b: Embracing the power of 699
reinforcement learning. 700

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, 701
Yunzhu Li, Hao Peng, and Heng Ji. 2024. Executable 702
code actions elicit better llm agents. In Forty-first 703
International Conference on Machine Learning. 704

Mengsong Wu, Tong Zhu, Han Han, Chuanyuan Tan, 705
Xiang Zhang, and Wenliang Chen. 2024. Seal-tools: 706
Self-instruct tool learning dataset for agent tuning 707
and detailed benchmark. In CCF International Con- 708
ference on Natural Language Processing and Chi- 709
nese Computing, pages 372–384. Springer. 710

Shijie Xia, Yiwei Qin, Xuefeng Li, Yan Ma, Run-Ze Fan, 711
Steffi Chern, Haoyang Zou, Fan Zhou, Xiangkun Hu, 712
Jiahe Jin, et al. 2025. Generative ai act ii: Test time 713
scaling drives cognition engineering. arXiv preprint 714
arXiv:2504.13828. 715

Fanjia Yan, Huanzhi Mao, Charlie Cheng-Jie Ji, Tianjun 716
Zhang, Shishir G. Patil, Ion Stoica, and Joseph E. 717
Gonzalez. 2024. Berkeley function calling leader- 718
board. 719

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, 720
Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong Liu, 721
Lingjun Liu, Xin Liu, et al. 2025. Dapo: An open- 722
source llm reinforcement learning system at scale. 723
arXiv preprint arXiv:2503.14476. 724

Yuanqing Yu, Zhefan Wang, Weizhi Ma, Zhicheng Guo, 725
Jingtao Zhan, Shuai Wang, Chuhan Wu, Zhiqiang 726
Guo, and Min Zhang. 2024. Steptool: A step-grained 727
reinforcement learning framework for tool learning 728
in llms. arXiv preprint arXiv:2410.07745. 729

Weihao Zeng, Yuzhen Huang, Wei Liu, Keqing He, 730
Qian Liu, Zejun Ma, and Junxian He. 2025a. 731
7b model and 8k examples: Emerging reason- 732
ing with reinforcement learning is both effective 733
and efficient. https://hkust-nlp.notion.site/ 734
simplerl-reason. Notion Blog. 735

Yirong Zeng, Xiao Ding, Yuxian Wang, Weiwen Liu, 736
Wu Ning, Yutai Hou, Xu Huang, Bing Qin, and Ting 737
Liu. 2025b. Boosting tool use of large language 738
models via iterative reinforced fine-tuning. arXiv 739
preprint arXiv:2501.09766. 740

Jianguo Zhang, Tian Lan, Ming Zhu, Zuxin Liu, Thai 741
Hoang, Shirley Kokane, Weiran Yao, Juntao Tan, Ak- 742
shara Prabhakar, Haolin Chen, Zhiwei Liu, Yihao 743
Feng, Tulika Awalgaonkar, Rithesh Murthy, Eric Hu, 744
Zeyuan Chen, Ran Xu, Juan Carlos Niebles, Shelby 745
Heinecke, Huan Wang, Silvio Savarese, and Caim- 746
ing Xiong. 2024a. xlam: A family of large action 747
models to empower ai agent systems. arXiv preprint 748
arXiv:2409.03215. 749

10

https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/
https://hkust-nlp.notion.site/simplerl-reason
https://hkust-nlp.notion.site/simplerl-reason
https://hkust-nlp.notion.site/simplerl-reason

Shaokun Zhang, Yi Dong, Jieyu Zhang, Jan Kautz,750
Bryan Catanzaro, Andrew Tao, Qingyun Wu, Zhid-751
ing Yu, and Guilin Liu. 2025. Nemotron-research-752
tool-n1: Tool-using language models with reinforced753
reasoning. arXiv preprint arXiv:2505.00024.754

Shaokun Zhang, Jieyu Zhang, Dujian Ding,755
Mirian Hipolito Garcia, Ankur Mallick, Daniel756
Madrigal, Menglin Xia, Victor Rühle, Qingyun Wu,757
and Chi Wang. 2024b. Ecoact: Economic agent758
determines when to register what action. arXiv759
preprint arXiv:2411.01643.760

A Details of Experimental Setup761

A.1 The Implementation Settings762

The experiments were executed using the publicly763

accessible training framework MindSpeed-RL3,764

an end-to-end reinforcement learning acceleration765

framework based on the Ascend ecosystem. Key766

hyperparameters included: κ = 0.1, temperature767

parameter for exploration-exploitation trade-off;768

Transition midpoint set to 25 (defining the inflec-769

tion point in reward function scheduling).770

For all the tool calls in the dataset, we use a hy-771

brid format combining JSON structure and Python772

code snippets was adopted to encode various tool773

call format. For the GG-GRPO (a variant of GRPO)774

training, model training can be done within 28775

hours with 5*8 Ascend 910b NPUs per run with776

the following hyperparameters:777

Category Hyperparameter

Data Configuration

Global Batch Size 128
Max Prompt Length 2048
Max Response Length 2048

Optimization

Learning Rate 5e-7
LR Decay Style cosine
Mini Batch Size 1024
Tensor Model Parallel Size 4
KL Loss Used False
ϵ 0.2

Rollout Configuration

Rollout Name vllm
GPU Memory Utilization 0.9
Number of Rollouts 4
Temperature 0.8

Table 6: Configuration for GG-GRPO training.

A.2 Benchmark & Metric Details.778

The BFCL is an evolving benchmark. For our study,779

we utilized the version checked out on February 26,780

3https://gitee.com/ascend/MindSpeed-RL

2024. Other benchmarks include: (1) API-Bank 781

with 314 tool-use dialogues and 753 API calls, eval- 782

uating known API invocation (L-1) and candidate 783

list retrieval/calling (L-2), we report their average 784

result in evaluation; (2) Nexus Raven API Evalu- 785

ation offering 318 test examples across 65 APIs 786

for function-calling assessment; (3) Tool-Alpaca’s 787

271 synthetic tool-use instances in 50 categories 788

(100 simulated tests used); (4) Seal-Tools, a recent 789

benchmark with 4,076 auto-generated APIs across 790

life domains. The BFCL assesses models using 791

Abstract Syntax Tree Evaluation and Executable 792

Function Evaluation Accuracy, and the other bench- 793

marks assesses models using Function and Parame- 794

ter matching F1 score (Lin et al., 2024). 795

A.3 System Thinking Template 796

We adopt a lightweight prompting schema to elicit 797

tool-use capabilities from the LLM, drawing inspi- 798

ration from prior work (DeepSeek-AI, 2025; Face, 799

2025). As illustrated in Figure 6, the template 800

explicitly instructs the model to encapsulate in- 801

termediate reasoning within <think>...</think> 802

tags, followed by the final answer enclosed in 803

<answer>...</answer> tags. Tool call specifica- 804

tions are embedded within the answer section us- 805

ing <tool_call>...</tool_call> markup. By 806

allowing the model greater freedom in articulating 807

its reasoning process, we aim to enhance gener- 808

alization across diverse tool integration scenarios. 809

Additionally, this design facilitates seamless adap- 810

tation to complex tool-augmented reasoning tasks. 811

11

System Prompt for Training

A conversation between User and Assistant, the user asks a question, and the Assistant solves it.
The assistant first thinks about the reasoning process in the mind and then provides the user with the answer.
The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags,
respectively,
i.e., <think> reasoning process here </think><answer> answer here </answer>.

You are an expert in composing functions, given a question and a set of possible functions.
Based on the question, you will need to make one or more function/tool calls to achieve the purpose.
1. If none of the function can be used, point it out.
2. If the given question lacks the parameters required by the function, also point it out.
3. You should only return the function call in tools call sections.

If you decide to invoke any function(s), MUST use the format:
<tool_call>
[func_name1(params_name1=params_value1, ...), func_name2(params)]
</tool_call>

Here is a list of functions in JSON format that you can invoke: {{Tool List}}

Figure 6: The system think prompt with Python code format for RL Training. The prompt guides the LLM to
explicitly separate reasoning process and answer.

12

	Introduction
	Related Work
	Tool Learning
	Tool-Integrated Reasoning with Reinforcement Learning

	Problem Statement and Analysis
	Preliminary Study

	Method
	Training Data Preparation
	Generalization Guided Reward Design
	RL Training with Generalization-guided Reward

	Experiments
	Experimental Setup
	Overall Performance
	Experimental Analysis
	Ablation Study
	Training Data & Backbones Generalizability

	Conclusion
	Limitaiton
	Details of Experimental Setup
	The Implementation Settings
	Benchmark & Metric Details.
	System Thinking Template

