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Abstract

In light of the widespread success of generative models, a significant amount of
research has gone into speeding up their sampling time. However, generative
models are often sampled multiple times to obtain a diverse set incurring in a cost
that is orthogonal to sampling time. We tackle the question of how to improve
diversity and sample efficiency by moving beyond the common assumption of
independent samples. For this we propose particle guidance, an extension of
diffusion-based generative sampling where a joint-particle time-evolving potential
enforces diversity. We analyze theoretically the joint distribution that particle
guidance generates, its implications on the choice of potential, and the connections
with methods in other disciplines. Empirically, we test the framework both in the
setting of conditional image generation, where we are able to increase diversity
without affecting quality, and molecular conformer generation, where we reduce
the state-of-the-art median error by 13% on average.

1 Introduction

Deep generative modeling has become pervasive in many computational tasks across computer vision,
natural language processing, physical sciences, and beyond. In many applications, these models
are used to take a number of representative samples of some distribution of interest. Although
independent samples drawn from a distribution will perfectly represent it in the limit of infinite
samples, for a finite number, this may not be the optimal strategy. Therefore, while deep learning
methods have so far largely focused on the task of taking independent identically distributed (I.I.D.)
samples from some distribution, this paper examines how one can use deep generative models to take
a finite number of samples that can better represent the distribution of interest.

Towards the goal of better finite-samples generative models, we propose a general framework for
sampling sets of particles using a diffusion model. This framework, which we call particle guidance,
is based on the use of a time-dependent permutation-invariant potential to guide the inference process.
For example, when, to optimize coverage, this potential is set to be the sum of pairwise inverse
similarity kernels, the resulting reverse diffusion process combines the usual element-wise score
vectors with repulsive terms among particles, inducing the generation of a more diverse set of samples
that better covers the distribution of interest (see Fig. 1).

The theoretical analysis of the framework leads us to two key results. On one hand, we obtain
an expression for the joint marginal distribution of the sampled process when using any arbitrary
guidance potential. On the other, we derive a simple objective one can use to train a model to learn a
time-evolving potential that exactly samples from a joint distribution of interest. Further, we also
demonstrate the relations of particle guidance to techniques for non-I.I.D. sampling developed in
other fields and natural processes and discuss its advantages.

Empirically, we demonstrate the effectiveness of the method in both synthetic experiments and two
of the most successful applications of diffusion models: text-to-image generation and molecular
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Figure 1: Comparison of I.I.D. and particle guidance sampling. The center figure represents each
step, with the distribution in pink and the samples as yellow crosses, where particle guidance uses not
only the score (in blue) but also the guidance from the repulsion of the particles (red), leading it to
discover different modes (right-hand samples vs those on the left). At the bottom, Van Gogh cafe
images samples generated with Stable Diffusion with and without particle guidance.

conformer generation. In the former, we show that particle guidance can improve the diversity of
the samples generated with Stable Diffusion while maintaining a quality comparable to that of I.I.D.
sampling. For molecular conformer generation, applied to the state-of-the-art method Torsional
Diffusion, particle guidance is able to simultaneously improve precision and coverage, reducing
their median error by respectively 19% and 8%. In all settings, we also study the critical effect that
different potentials can have on the diversity and sample quality.

2 Particle Guidance

Sampling Sets of Particles Our goal is to define a sampling process that promotes the diversity of
a finite number of samples while retaining the advantages and flexibility that characterize diffusion
models. Let p(x) be some probability distribution of interest and ∇x log pt(x) be the score that we
have learned to reverse the diffusion process dx = f(x, t)dt+ g(t)dw. Similarly to how classifier
guidance is applied, we modify the reverse diffusion process by adding the gradient of a potential.
However, we are now sampling together a whole set of particles x1, ..., xn, and the potential log Φt

is not only a function of the current point but a permutation invariant function of the whole set:

dxi =

[
− f(xi, t

′) + g2(t′)

(
∇xi

log pt′(xi) +∇xi
log Φt′(x1, ...,xn)

)]
dt+ g(t′)dw. (1)

where the points are initially sampled I.I.D. from a prior distribution pT . We call this idea particle
guidance. This framework allows one to impose different properties, such as diversity, on the set of
particles being sampled without the need to retrain a new score model operating directly on the space
of sets.

To promote diversity and sample efficiency, in our experiments, we choose the potential log Φt

to be the negative of the sum of a pairwise similarity kernel k between each pair of particles
log Φt(x1, ...xn) = −αt

2

∑
i,j kt(xi,xj) obtaining:

dxi =

[
− f(xi, t

′) + g2(t′)

(
∇xi

log pt′(xi)− αt′∇xi

n∑
j=1

kt′(xi,xj)

)]
dt+ g(t′)dw (2)

Intuitively, this will push our different samples to be dissimilar from one another while at the same
time matching our distribution, improving sample efficiency. Critically, this does not come at a
significant additional runtime as, in most domains, the cost of running the pairwise similarity kernels
is very small compared to the execution of the large score network architecture. Moreover, it allows
the use of domain-specific similarity kernels and does not require training any additional classifier or
score model.
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Theoretical analysis To understand the effect that particle guidance has beyond a simple intuition,
we study the joint distribution of sets of particles coming out of the proposed reverse diffusion process.
However, unlike methods related to energy-based models (see coupled replicas, metadynamics, SVGD
in Section B) analyzing the effect of the addition of a time-evolving potential log Φt in the reverse
diffusion is non-trivial.

While the score component in particle guidance is the score of the sequence of probability distributions
p̃t(x1, . . . ,xn) = Φt(x1, . . . ,xn)

∏n
i=1 pt(xi), we are not necessarily sampling exactly p̃0 because,

for an arbitrary time-evolving potential Φt, this sequence of marginals does not correspond to a
diffusion process. One strategy used by other works in similar situations [Du et al., 2023] relies
on taking, after every step or at the end, a number of Langevin steps to reequilibrate and move the
distribution back towards p̃t. This, however, increases significantly the runtime cost and is technically
correct only in the limit of infinite steps leaving uncertainty in the real likelihood of our samples.
Instead, in Theorem 1 in Appendix C.1, we use the Feynman-Kac theorem to derive a formula for the
exact reweighting that particle guidance has on a distribution.

Preserving Invariances The objects that we learn to sample from with generative models often
present invariances such as the permutation of the atoms in a molecule or the roto-translation of a
conformer. For diffusion models, to obtain a distribution that is invariant to the action of some group
G such as that of rotations or permutations, it suffices to have an invariant prior and build a score
model that is G-equivariant [Xu et al., 2021]. Similarly, we are interested in distributions that are
invariant to the action of G on any of the set elements (see Section 3.2), we show that a sufficient
condition for this invariance to be maintained is that the time-evolving potential Φt is itself invariant
to G-transformations of any of its inputs (see Proposition 1 in Appendix C.3).

3 Experiments

3.1 Text-to-image generation

In practice, most prevalent text-to-image diffusion models, such as Stable Diffusion [Rombach et al.,
2021] or Midjourney, generally constrain the output budget to four images per given prompt. Ideally,
this set of four images should yield a diverse batch of samples for user selection. However, the
currently predominant method of classifier-free guidance [Ho, 2022] tends to push the mini-batch
samples towards a typical mode to enhance fidelity, at the expense of diversity.

To mitigate this, we apply the proposed particle guidance to text-to-image generation. Stable Diffusion
v1.5 2 serves as our testbed, having been pre-trained on LAION-5B [Schuhmann et al., 2022] with a
resolution of 512× 512. In line with [Xu et al., 2023a], we use the validation set in COCO 2014 [Lin
et al., 2014] for evaluation, and the CLIP [Hessel et al., 2021]/Aesthetic score [Team, 2022] to assess
the text-image alignment/visual quality, respectively. To evaluate the diversity within each batch of
generated images corresponding to a given prompt, we introduce the in-batch similarity score. This
metric represents the average pairwise cosine similarity of features within an image batch, utilizing
DINO [Caron et al., 2021] as the feature extractor. For particle guidance, we implement the RBF
kernel on the (down-sampled) pixel space in Stable Diffusion model as well as the feature space
provided by DINO. Please refer to Appendix F.1 for more experimental details.
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Figure 2: In-batch similiarity score versus (a) CLIP ViT-g/14 score and (b) Aesthetic score for
text-to-image generation at 512×512 resolution, using Stable Diffusion v1.5 with a varying guidance
scale from 6 to 10.

2https://huggingface.co/runwayml/stable-diffusion-v1-5
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Table 1: Quality of generated conformer ensembles for the GEOM-DRUGS test set in terms of
Coverage (%) and Average Minimum RMSD (Å).

Recall Precision
Coverage ↑ AMR ↓ Coverage ↑ AMR ↓

Method Mean Med Mean Med Mean Med Mean Med

RDKit ETKDG 38.4 28.6 1.058 1.002 40.9 30.8 0.995 0.895
OMEGA 53.4 54.6 0.841 0.762 40.5 33.3 0.946 0.854
GeoMol 44.6 41.4 0.875 0.834 43.0 36.4 0.928 0.841
GeoDiff 42.1 37.8 0.835 0.809 24.9 14.5 1.136 1.090

Torsional Diffusion 72.7 80.0 0.582 0.565 55.2 56.9 0.778 0.729
TD w/ particle guidance 77.0 82.6 0.543 0.520 68.9 78.1 0.656 0.594

As shown in Fig. 2(a) and Fig. 2(b), particle guidance (PG) consistently obtains a better (lower)
in-batch similarity score in most cases, given the same CLIP/Aesthetic score, with a classifier-free
guidance scale ranging from 6 to 10. Conversely, we observe that while in-batch similarity score of
I.I.D. sampling improves with the reduced classifier-free guidance scale, particle guidance continues
to surpass I.I.D. sampling in terms of CLIP/Aesthetic score given the same in-batch similarity. When
the repulsive force is applied in the feature space, particle guidance notably attains a lower in-batch
similarity score compared to I.I.D. sampling or to the approach in the original downsampled pixel
space. This suggests that utilizing a semantically meaningful feature space is more appropriate for
determining distances between images.

3.2 Molecular conformer generation

Molecular conformer generation is a key task in computational chemistry that consists of finding the
set of different conformations that a molecule most likely takes in 3D space. Critically it is often
important to find all or most of the low-energy conformers as each can determine a different behavior.

Over the past few years, molecular conformer generation has been extensively studied by the machine
learning community, with well-established benchmarks [Axelrod & Gomez-Bombarelli, 2022] and
several generative models designed specifically for this task [Ganea et al., 2021; Xu et al., 2021; Jing
et al., 2022]. However, all these methods are based on generating a large number of I.I.D. samples.
Therefore, we take the state-of-the-art conformer generation model, torsional diffusion, and, without
retraining the model itself, we show that we can obtain significant improvements in both coverage
and precision via particle guidance.

Torsional diffusion [Jing et al., 2022] defines the diffusion process over the manifold defined by
changes in torsion angles from some initial conformer because of the relative rigidity of the remaining
degrees of freedom. Given this observation, we also define the guidance kernel on this manifold as
an RBF kernel over the dihedral angle differences in such a way that preserves atom permutation
invariance (formalized in Appendix E).

Table 1 shows that by tuning the different parameters that derive from applying particle guidance to
torsional diffusion (see Appendix E) we are able to balance diversity and coverage with the precision
being able to obtain, without retraining the model, significantly improved results on both metrics with
8% and 19% simultaneous reductions respectively in recall and precision median AMR.

4 Conclusion

In this paper, we have analyzed how one can improve the sample efficiency of generative models by
moving beyond I.I.D. sampling and enforcing diversity, a critical challenge in many real applications
that has been largely unexplored. Our proposed framework, particle guidance, steers the sampling
process of diffusion models toward more diverse sets of samples via the definition of a time-evolving
joint potential. We have studied the theoretical properties of the framework such as the joint
distribution it converges to and shown how it has strong parallels with techniques developed in
other disciplines for energy-based methods. Finally, we evaluated its performance in two important
applications of diffusion models text-to-image generation and molecular conformer generation, and
showed how in both cases it is able to push the Pareto frontier of sample diversity vs quality.
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A Extension: Controlling the Joint Marginal

As we saw in the experiments in Section 3, defining particle guidance with some simple kernels as
in Eq. 2 leads to significant sample efficiency improvements with no additional training required
and little inference overhead. However, in some domains, particularly in scientific applications,
researchers need to control the distribution that they are sampling so that, for example, importance
weights can be applied and free energy differences computed. While Theorem 1 allows us to
theoretically analyze properties of the distribution, the marginal distribution itself remains largely
intractable.

We therefore derive an alternative strategy for choosing the potential in particle guidance: instead of
defining the time-evolving potential first and then studying the joint marginal distribution it induces,
one can also define the joint distribution of interest and then learn a time-evolving potential that
generates it. This is partially similar to learning noise-dependent classifiers in classifier guidance.
To achieve this, we mandate that the generation process of particle guidance in Eq. 1 adheres to the
sequence of marginals p̂t(xt

1, ...,x
t
n) = Φt(x

t
1, ...,x

t
n)

∏n
i=1 pt(x

0
i ) where Φ0 is defined by the user

based on the desired final joint distribution. We can now learn Φθ
t (xt) to satisfy this evolution. Under

mind assumptions, using Doob h-theory (derivation in Appendix C.2), we show that we can learn the
Φθ

t (xt) by the following objective:

θ∗ = argmin
θ

Ex0
1,...,x

0
n∼p0

Ext
i∼pt|0(·|x0

i )
[∥Φ0(x

0
1, ...,x

0
n)− Φθ

t (x
t
1, ...,x

t
n)∥2]

where pt|0 is the Gaussian perturbation kernel in diffusion models. Importantly, here the initial x0
i are

sampled independently from the data distribution, and p0t refers to the independent diffusion process
so this training scheme can be easily executed in parallel to learning the score of pt.

B Connections with Existing Methods

As discussed in the introduction, other fields have developed methods to improve the tradeoff between
sampling cost and coverage of the distribution of interest. In this section, we will briefly introduce
four methods (coupled replicas, metadynamics, SVGD and electrostatics) and draw connections with
particle guidance.

B.1 Coupled Replicas and Metadynamics

In many domains linked to biochemistry and material science, researchers study the properties of the
physical systems by collecting several samples from their Boltzmann distributions using molecular
dynamics or other enhanced sampling methods. Motivated by the significant cost that sampling each
individual structure requires, researchers have developed a range of techniques to go beyond I.I.D.
sampling and improve sample efficiency. The most popular of these techniques are parallel sampling
with coupled replicas and sequential sampling with metadynamics.

As the name suggests, replica methods involve directly taking n samples of a system with the different
sampling processes, replicas, occurring in parallel. In particular, coupled replica methods [Hummer
& Köfinger, 2015; Pasarkar et al., 2023], like particle guidance, create a dependency between the
replicas by adding an extra potential Φ to the energy function to enforce diversity or better match
experimental observables. This results in energy-based sampling procedures that target:

p̃(x1, . . . ,xn) = Φ(x1, . . . ,xn)

n∏
i=1

p(xi).

Metadynamics [Laio & Parrinello, 2002; Barducci et al., 2008] was also developed to more efficiently
sample the Boltzmann distribution of a given system. Unlike replica methods and our approach,
metadynamics is a sequential sampling technique where new samples are taken based on previously
taken ones to ensure diversity, typically across certain collective variables of interest s(x). In its
original formulation, the Hamiltonian at the kth is augmented with a potential as:

H̃k = H − ω
∑
j<k

exp

(
−
∥s(x)− s(x0

j )∥2

2σ2

)
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where H is the original Hamiltonian, x0
j are the previously sampled elements and ω and σ parameters

set a priori. Once we take the gradient and perform Langevin dynamics to sample, we obtain dynamics
that, with the exception of the fixed Hamiltonian, resemble those of particle guidance in Eq. 2 where

∇xi
log Φt(x1, · · · ,xn)← ∇xi

ω
∑
j<i

exp

(
−
∥s(xi)− s(x0

j )∥2

2σ2

)
.

Although they differ in their parallel or sequential approach, both coupled replicas and metadynamics
can be broadly classified as energy-based generative models. As seen here, energy-based models
offer a simple way of controlling the joint distribution one converges to by simply adding a potential
to the energy function. On the other hand, however, the methods typically employ an MCMC
sampling procedure, which lacks the critical finite-time sampling property of diffusion models and
significantly struggles to cover complex probability distributions such as those of larger molecules
and biomolecular complexes. Additionally, the MCMC typically necessitates a substantial number
of steps, generally proportional to a polynomial of the data dimension [Chewi et al., 2020]. With
particle guidance, we instead aim to achieve both properties (controllable diversity and finite time
sampling) at the same time. We can simulate the associated SDE/ODE with a total number of steps
that is independent of the data dimension.

B.2 SVGD

Stein Variational Gradient Descent (SVGD) [Liu & Wang, 2016] is a well-established method in the
variational inference community to iteratively transport a set of particles to match a target distribution.
Given a set of initial particles {x0

1 . . .x
0
n}, it updates them at every iteration as:

xℓ−1
i ← xℓ

i + ϵℓψ(x
ℓ
i) where ψ(x) =

1

n− 1

n∑
j=1

[k(xℓ
j ,x)∇xℓ

j
log p(xℓ

j) +∇xℓ
j
k(xℓ

j ,x)] (3)

where k is some (similarity) kernel and ϵℓ the step size. Although SVGD was developed with the
intent of sampling a set of particles that approximate some distribution p without the direct goal of
obtaining diverse samples, SVGD and our method have a close relation.

This relation between our method and SVGD can be best illustrated under specific choices for drift
and potential under which the probability flow ODE discretization of particle guidance can be
approximated as (derivation in Appendix C.4):

xt+∆t
i ≈ xt

i + ϵt(xi)ψt(x
t
i) where ψ(x) =

1

n− 1

n∑
j=1

[kt(x
t
j ,x)∇x log pt(x) +∇xt

j
kt(x

t
j ,x)] (4)

Comparing this with Eq. 3, we can see a clear relation in the form of the two methods, with some
key distinctions. Apart from the different constants, the two methods use different terms for the total
score component. Interestingly both methods use smoothed-out scores, however, on the one hand,
particle guidance uses the diffused score at the specific particle xi,∇xi

log pt(xi), while on the other,
SVGD smoothes it out by taking a weighted average of the score of nearby particles weighted by the
similarity kernel (

∑
j k(xi,xj)∇xj log p(xj))/(

∑
j k(xi,xj)).

The reliance of SVGD on other particles for the “smoothing of the score”, however, causes two
related problems, firstly, it does not have the finite-time sampling guarantee that the time evolution
of diffusion models provides and, secondly, it suffers from the collapse to few local modes near the
initialization and cannot discover isolated modes in data distribution [Wenliang & Kanagawa, 2020].
This challenge has been theoretically [Zhuo et al., 2018] and empirically [Zhang et al., 2020] studied
with several works proposing practical solutions. In particular, relevant works use an annealing
schedule to enhance exploration [D’Angelo & Fortuin, 2021] or use score matching to obtain a
noise-conditioned kernel for SVGD [Chang et al., 2020]. Additionally, we empirically observe that
the score smoothing in SVGD results in blurry samples in image generation.

B.3 Electrostatics

Recent works [Xu et al., 2022, 2023b] have shown promise in devising novel generative models
inspired by the evolution of point charges in high-dimensional electric fields defined by the data
distribution. It becomes natural therefore to ask whether particle guidance could be seen as describing
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the evolution of point charges when these are put in the same electric field such that they are not
only attracted by the data distribution but also repel one another. One can show that this evolution
can indeed be seen as the combination of Poisson Flow Generative Models with particle guidance,
where the similarity kernel is the extension of Green’s function in N+1-dimensional space, i.e.,
k(x, y) ∝ 1/||x− y||N−1. We defer more details to Appendix C.5.

C Derivations

C.1 Joint Distribution under Particle Guidance

Theorem 1. Under integrability assumptions, sampling xT
1 , ...,x

T
n from pT and following the particle

guidance reverse diffusion process, we obtain samples from the following joint probability distribution
at time t = 0:

p̂0(x1, . . . ,xn) = E[Z exp[−
∫ T

0
g(t)2{⟨∇ log Φt(Xt),∇ log p̂t(Xt)⟩+∆ logΦt(Xt)}dt]], (5)

with Z (explicit in the appendix) such that∏N
i=1 p0(xi) = E[Z], (6)

(Xt)t∈[0,T ] is a stochastic process driven by the equation

dXt = {f(Xt, t)− g(t)2∇ log pt(Xt)}dt+ g(t)dw, X0 = {xi}Ni=1. (7)

Hence the density p̂0 can be understood as a reweighting of the random variable Z.

Proof. First we restate the Feynman-Kac theorem. Let u : [0, T ]× Rd such that for any t ∈ [0, T ]
and x ∈ Rd we have

∂tu(t, x) + ⟨b(t, x),∇u(t, x)⟩+ (1/2)⟨Σ(t, x),∇2u(t, x)⟩ − V (t, x)u(t, x) + f(t, x) = 0, (8)

with u(T, x) = Φ(T, x). Then, under integrability and regularity assumptions, see Karatzas & Shreve
[1991] for instance, we have

u(0, x) = E[
∫ T

0
exp[−

∫ r

0
V (τ,Xτ )dτ ]f(r,Xr)dr+exp[−

∫ T

0
V (τ,Xτ )dτ ]Φ(T,XT ) |X0 = x],

(9)
with u(T, x) = Φ(T, x) and dXt = b(t,Xt)dt+Σ(t,Xt)dBt. In the rest of this section, we derive
the specific case of Theorem 1.

We recall that the generative model with particle guidance is given by (p̂t)t∈[0,T ] and is associated
with the generative model

dŶt = {−f(Ŷt, T − t) + g(T − t)2(sθ(Ŷt, T − t) +∇ log ΦT−t(Ŷt))}dt+ g(T − t)dw. (10)

We also recall that the generative model without particle guidance is given by (qt)t∈[0,T ] and is
associated with the generative model

dYt = {−f(Yt, T − t) + g(T − t)2sθ(Yt, T − t)}dt+ g(T − t)dw. (11)

Using the Fokker-Planck equation associated with equation 11 we have for any x ∈ (Rd)N

∂tqt(x) + div({−f(T − t, ·) + g(T − t)2sθ(T − t, ·)}qt)(x)− (g(T − t)2/2)∆qt(x) = 0. (12)

This can also be rewritten as

∂tqt(x) + ⟨−f(T − t, x) + g(T − t)2sθ(x, T − t),∇qt(x)⟩ − (g(T − t)2/2)∆qt(x) (13)

+ div({−f(·, T − t) + g(T − t)2sθ(T − t, ·)})(x)qt(x) = 0 (14)

Denoting ut = qT−t we have

∂tut(x) + ⟨f(x, t)− g(t)2sθ(x, t),∇ut(x)⟩+ (g(t)2/2)∆ut(x) (15)

− div({−f(t, ·) + g(t)2sθ(·, t)})(x)ut(x) = 0. (16)

Note that since ut = qT−t, we have that ut = pt with the conventions from 2. Now combining this
result with equation 8 and equation 9 with V (t, x) = div({−f(·, t) + g(t)2sθ(t, ·)})(x) and f = 0
we have that

u0(x) = E[Z], (17)
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with
Z = exp[−

∫ T

0
V (τ,Xτ )dτ ]p0(XT ), (18)

and
dXt = {f(t,Xt)− g(t)2sθ(Xt, t)}dt+ g(t)dw. (19)

with X0 = x. We now consider a similar analysis in the case of the generative with particle guidance.
Using the Fokker-Planck equation associated with equation 10 we have for any x ∈ (Rd)N

∂tq̃t(x)+div({−f(·, T−t)+g(T−t)2(sθ(·, T−t)+∇ log ΦT−t)}q̃t)(x)−(g(T−t)2/2)∆q̃t(x) = 0.
(20)

This can also be rewritten as

∂tq̃t(x) + ⟨−f(x, T − t) + g(T − t)2sθ(x, T − t),∇q̃t(x)⟩ − (g(T − t)2/2)∆q̃t(x) (21)

+ div({−f(·, T − t) + g(T − t)2sθ(·, T − t)})(x)q̃t(x) (22)

+ g(T − t)2(⟨log ΦT−t(x),∇ log q̃t(x)⟩+∆ logΦT−t(x))q̃t(x) = 0. (23)

Denoting ût = q̃T−t we have

∂tût(x) + ⟨f(t, x)− g(t)2sθ(x, t),∇ût(x)⟩+ (g(t)2/2)∆ût(x) (24)

− div({−f(·, t) + g(t)2sθ(t, ·)})(x)ût(x) (25)

− g(t)2(⟨∇ log Φt(x),∇ log q̃T−t(x)⟩+∆ logΦt(x))ût(x) = 0. (26)

Following the convetion of 2, we have that ût = p̂0. Now combining this result with equation 8 and
equation 9 with V̂ (t, x) = div({−f(·, t)+g(t)2sθ(·, t)})(x)+g(t)2(⟨∇ log Φt(x),∇ log p̃T−t(x)⟩+
∆ logΦt(x)) and f = 0 we have that

û0(x) = E[Ẑ], (27)
with

Ẑ = exp[−
∫ T

0
V̂ (τ,Xτ )dτ ]p0(XT ), (28)

and
dXt = {f(Xt, t)− g(t)2sθ(Xt, t)}dt+ g(t)dw. (29)

again with X0 = x. We conclude the proof upon noting that

Ẑ = Z exp[−
∫ T

0
g(t)2(⟨∇ log Φt(Xt),∇ log ût(Xt)⟩+∆ logΦt(Xt))dt]. (30)

Riemannian Manifolds. Note that our theoretical insights can also be extended to the manifold
framework. This is a direct consequence of the fact that the Feynman-Kac theorem can be extended
to the manifold setting, see for instance Benton et al. [2022].

C.2 Sampling predefined joint distribution

For ease of derivation via the Doob h-transform, we temporarily reverse the time from t to T − t.
Here, pT is treated as the data distribution, and ΦT is regarded as the potential, as specified by users.
We now consider another model. Namely, we are looking for a generative model p̂t with t ∈ [0, T ]
such that for any t ∈ [0, T ] we have p̂t = ptΦt with ΦT given by the user. In layman’s terms, this
means that we are considering a factorized model for all times t with the additional requirement that
at the final time T , the model is given by pT = p̂TΦT with ΦT known. This is to be compared with
Theorem 1. Indeed in Theorem 1 while the update on the generative dynamics is explicit (particle
guidance term), the update on the density is not. In what follows, we are going to see, using tools
from Doob h-transform theory, that we can obtain an expression for the update of the drift in the
generative process when considering models of the form p̂t = ptΦt.

More precisely, we consider the following model. Let p̂T = pT and for any s, t ∈ [0, T ] with s < t
and x1:n

s = {xi
t}ni=1 ∈ (Rd)n and x1:n

t = {xi
t}ni=1 ∈ (Rd)n we define

p̂t|s(x
1:n
t |x1:n

s ) = pt|s(x
1:n
t |x1:n

s )Φt(x
1:n
t )/Φs(x

1:n
s ), (31)

with Φt which satisfies for any x1:n
t ∈ (Rd)n

∂tΦt(x
1:n
t )+⟨−fT−t(x

1:n
t )+g(T−t)2∇ log pt(x

1:n
t ),∇Φt(x

1:n
t )⟩+(g(T−t)2/2)∆Φt(x

1:n
t ) = 0,

(32)
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with ΦT given. Note that equation 32 expresses that Φt satisfies the backward Kolmogorov equation.
Under mild assumptions, using Doob h-theory, we get that there exists (X̂t)t∈[0,T ] such that for any
t ∈ [0, T ] we have Ŷt ∼ p̂t and for any t ∈ [0, T ]

dŶt = {−fT−t(Ŷt) + g(T − t)2[∇ log pt(Ŷt) +∇ log Φt(Ŷt)]}dt+ g(T − t)dw. (33)

The main difficulty is to compute Φt for any t ∈ [0, T ]. Under mild assumptions, solutions to the
backward Kolmogorov equation 32 are for any t ∈ [0, T ] by

Φt(x
1:n
t ) = E[ΦT (YT )|Yt = x1:n

t ] =
∫
ΦT (YT = x1:n

T )pT |t(x
1:n
T |x1:n

t )dx1:n
T , (34)

where we have

dYt = {−fT−t(Yt) + g(T − t)2∇ log pt(Yt)}dt+ g(T − t)dw. (35)

This means that (Yt)t∈[0,T ] is given by the original generative model, with time-dependent marginals
pt. The expression equation 34, suggests to parameterize Φt by Φθ

t and to consider the loss function

ℓt(θ) = EYT
EYt∼pt|T (·|YT )[∥ΦT (YT )− Φθ

t (Yt)∥2]. (36)

Then, we can define a global loss function L(θ) =
∫ T

0
λ(t)ℓt(θ)dt where λt is some weight. One

problem with this original loss function is that it requires sampling and integrating with respect to Yt

which requires sampling from the generative model.

Recall that we reverse the time from t to T − t at the beginning. Reverse back to the original
convention in the main text, Eq. (37) can be expressed as

ℓt(θ) = EX0∼p0
EXt∼pt|0(·|XT )[∥Φ0(X0)− Φθ

t (Xt)∥2]. (37)

C.3 Invariance of Particle Guidance

Proposition 1. Let G be the group of rotations or permutations of a set of vectors. Assuming that
pT (x) is a G-invariant distribution, the learned score s(x, t) and f(x, t) are G-equivariant and the
potential log Φt(x1 . . .xn) is G-invariant to a transformation of any of its inputs, then the resulting
distribution we sample from will also be G-invariant to a transformation of any of the elements of the
set.

Note that in this section we will derive this specific formulation for the group of rotations or
permutations and the Brownian motion in Euclidean space. For a more general statement on Lie
groups G and Brownian motions associated with a given metric, one could generalize the result from
Yim et al. [2023] Proposition F.2.

Proof. For simplicity, we will consider Euler discretization steps going with time from T to 0 (as
used in our experiments), however, the proposition applies in the continuous setting too:

pθ(x
(t−1)
i |x(t)

1:n) = pz(x
(t−1)
i − x

(t)
i + f(x

(t)
i , t)− g2(sθ(x(t)

i , t) +∇
x
(t)
i

log Φt(x
(t)
1:n)))

where z ∼ N(0, g2I). Without loss of generality since the whole method is invariant to permutations
of the particles, consider xn to be the particle to which we apply Tg the transformation of an arbitrary
group element g.

Since by assumption log Φt(x
(t)
1:n) = logΦt(x

(t)
1:n−1, Tg(x

(t)
n )) we have pθ(x

(t−1)
i |x(t)

1:n) =

pθ(x
(t−1)
i |x(t)

1:n−1, Tg(x
(t)
n )).

On the other hand, since log Φt(x
(t)
1:n) is invariant to G transformations of x(t)

n , its gradient w.r.t. the
same variable will be G-equivariant. Therefore:

pθ(Tg(x
(t−1)
n )|x(t)

1:n−1, Tg(x
(t)
n )) =

= pz(Tg(x
(t−1)
n )− Tg(x(t)

n ) + f(Tg(x
(t)
n ), t)− g2(sθ(Tg(x(t)

n ), t) +∇
x
(t)
n

log Φt(x
(t)
1:n−1, Tg(x

(t)
n ))))

= pz(Tg(x
(t−1)
n )− Tg(x(t)

n ) + Tg(f(x
(t)
n , t))− g2(Tg(sθ(x(t)

n , t)) + Tg(∇x
(t)
n

log Φt(x
(t)
1:n))))

= pz(Tg(x
(t−1)
n − x(t)

n + f(x(t)
n , t)− g2(sθ(x(t)

n , t) +∇
x
(t)
n

log Φt(x
(t)
1:n)))) = pθ(x

(t−1)
n |x(t)

1:n)
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where between lines 2 and 3 we have used the equivariance assumptions and in the latter two the
properties of elements of G.

Putting these together, we follow a similar derivation of Proposition 1 from Xu et al. [2021]:

pθ(x
(0)
1:n−1, Tg(x

(0)
n )) =

=

∫
p(x

(T )
1:n−1, Tg(x

(T )
n ))

T∏
t=1

pθ(x
(t−1)
1:n−1, Tg(x

(t−1)
n )|x(t)

1:n−1, Tg(x
(t)
n )) =

=

∫ (∏
i<n

p(x
(T )
i )

)( T∏
t=1

∏
i<n

pθ(x
(t−1)
i |x(t)

1:n−1, Tg(x
(t)
n ))

)
·

·
(
p(Tg(x

(T )
n ))

T∏
t=1

pθ(Tg(x
(t−1)
n )|x(t)

1:n−1, Tg(x
(t)
n ))

)
=

=

∫ (∏
i<n

p(x
(T )
i )

)( T∏
t=1

∏
i<n

pθ(x
(t−1)
i |x(t)

1:n)

)(
p(x(T )

n )

T∏
t=1

pθ(x
(t−1)
n |x(t)

1:n)

)
= pθ(x

(0)
1:n)

C.4 Particle Guidance as SVGD

In this section, we derive the approximation of Eq. 4 starting from the probability flow ODE
equivalent of Eq. 2 under the assumptions of no drift f(x, t) = 0 and using the following form
for Φt(x1, ..., xn) = (

∑
i,j kt(xi, xj))

−n−1
2 where kt is a similarity kernel based on the Euclidean

distance (e.g. RBF kernel).

dxi =

[
f(xi, t)−

1

2
g2(t)

(
∇xi

log pt(xi) +∇xi
log

(∑
ij

kt(xi, xj)
)−n−1

2

)]
dt

= −1

2
g2(t)dt

(
∇xi

log pt(xi)−
1
2∇xi

∑
ij kt(xi, xj)

1
n−1

∑
ij kt(xi, xj)

)
Now we can simplify the numerator using the fact that kt is symmetric and approximate the denomi-
nator assuming that different particles will have similar average distances to other particles:

≈ −1

2
g2(t)dt

(
∇xi

log pt(xi)−
∇xi

∑
j kt(xi, xj)∑

j kt(xi, xj)

)

= − g
2(t)dt

2 S(xi)

(∑
j

kt(xi, xj)∇xi
log pt(xi)−∇xi

kt(xi, xj)

)
where S(xi) =

∑
j kt(xi, xj). Now we can use the fact that ∇xikt(xi, xj) = −∇xjkt(xi, xj)

because the kernel only depends on the Euclidean distance between the two points:

= −n g
2(t)dt

2 S(xi)

(
1

n− 1

∑
j

kt(xi, xj)∇xi
log pt(xi) +∇xj

kt(xi, xj)

)

Letting ϵt(xi) =
n g2(t)∆t
2 S(xi)

, we obtain Eq. 4:

xt−∆t
i ≈ xti + ϵt(xi)ψt(x

t
i) where ψ(x) =

1

n− 1

n∑
j=1

[kt(x
t
j , x)∇x log pt(x) +∇xt

j
kt(x

t
j , x)]
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C.5 Particle Guidance in Poisson Flow Generative Models

In this section, we consider the more general Poisson Flow Generative Models++ [Xu et al., 2023b]
framework in which the N -dimensional data distribution is embedded into N +D-dimensional space,
where D is a positive integer (D = 1/D → ∞ recover PFGM [Xu et al., 2022]/diffusion models).
The data distribution is interpreted as a positive charge distribution. Each particle independently
follows the electric field generated by the N -dimensional data distribution p(x) embedded in a
N +D-dimensional space. One can similarly do particle guidance in the PFGM++ scenarios, treating
the group of particles as negative charges, not only attracted by the data distribution but also exerting
the mutually repulsive force. Formally, for the augmented data the ODE in PFGM++ (Eq.4 in Xu
et al. [2023b]) is

dx

dr
=
E(x, r)x
E(x, r)r

where Ex and Er are the electric fields for different coordinates:

E(x, r)x =
1

SN+D−1(1)

∫
x− y

(∥x− y∥2 + r2)
N+D

2

p(y)dy

E(x, r)r =
1

SN+D−1(1)

∫
r

(∥x− y∥2 + r2)
N+D

2

p(y)dy

Note that when r = σ
√
D,D → ∞, the ODE is dx

dr = E(x,r)x
E(x,r)r

= − σ√
D
∇x log pσ(x) and the

framework degenerates to diffusion models.

Now if we consider the repulsive forces among a set of (uniformly weighted) particles with the same
anchor variables r, {(xi, r)}ni=1, only the electric field in the x coordinate changes (the component in
the r coordinate is zero). Denote the new electric field in x component as Êx:

Ê(xi, r)x = E(xi, r)x︸ ︷︷ ︸
attractive force by data

+
1

SN+D−1(1)

1

n− 1

∑
j ̸=i

xj − xi
(∥xj − xi∥2)

N+D
2︸ ︷︷ ︸

repulsive force between particles

The corresponding new ODE for the i-th particle is

dxi
dr

=
Ê(xi, r)x
E(xi, r)r

=
E(xi, r)x
E(xi, r)r

+

1
SN+D−1(1)

1
n−1

∑
j ̸=i

xj−xi

(∥xj−xi∥2)
N+D

2

E(xi, r)r

=
E(xi, r)x
E(xi, r)r︸ ︷︷ ︸

predicted by pre-trained models

+

1
n−1

∑
j ̸=i

xj−xi

(∥xj−xi∥2)
N+D

2∫
r

(∥x−y∥2+r2)
N+D

2

p(y)dy︸ ︷︷ ︸
particle guidance

=
E(xi, r)x
E(xi, r)r

+

1
n−1

∑
j ̸=i

xj−xi

∥xj−xi∥N+D

SN+D−1

rD−1SD−1
pr(xi)

where pr is the intermidate distribution, and Sn is the surface area of n-sphere. Clearly, the direction
of the guidance term can be regarded as the sum of the gradient of N + D-dimensional Green’s
function G(x, y) ∝ 1/||x− y||N+D−2, up to some scaling factors:

∇xi
G(xi, xj) =

xi − xj
∥xj − xi∥N+D
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C.6 Combinatorial Analysis of Synthetic Experiments

Proposition 2. Let us have a random variable taking a value equiprobably between N distinct bins.
The expectation of the proportion of bins discovered (i.e. sampled at least once) after N samples is
1− (N−1

N )N which tends to 1− 1/e as N tends to infinity.

Proof. Let ni be the number of samples in the iit bin. The proportion of discovered bins is equal to:

1

N
E[

N∑
i=1

Ini>0] =
1

N

N∑
i=1

E[Ini>0] = P (ni > 0) = 1− P (ni = 0) = 1− (
N − 1

N
)N

In the limit of N →∞:

lim
N→∞

1− (
N − 1

N
)N = 1− y = 1− 1

e

since (using L’Hôpital’s rule):

log y = lim
N→∞

N log(
N − 1

N
) = lim

N→∞

log(N−1
N )

1/N
= lim

N→∞

1/N2

−1/N2
= −1

Therefore for N = 10 we would expect 10 ∗ (1 − 0.910) ≈ 6.51, which corresponds to what is
observed in the empirical results of Section D.
Proposition 3. (Coupon collector’s problem) Let us have a random variable taking a value equiprob-
ably between N distinct bins. The expectation of the number of samples required to discover all the
bins is N HN , where HN is the Nth harmonic number, which is Θ(N logN) as N tends to infinity.

Proof. Len Li|j be the number of samples it takes to go from j to i bins discovered. We are therefore
interested in E[LN |0].

E[Lj|j−1] =
N − (j − 1)

N
∗ 1 + j − 1

N
[E[Lj|j−1] + 1] =⇒ E[Lj|j−1] =

N

N − (j − 1)

Therefore:

E[LN |0] = E[

N∑
j=1

Lj|j−1] =

N∑
j=1

E[Lj|j−1] = N

N∑
j=1

1

N − (j − 1)
= N

N∑
j=1

1

j
= N HN

Since HN is Θ(logN), then E[LN |0] is Θ(N logN).

For N = 10, E[L10|0] ≈ 29.29.

D Synthetic experiments

To show visually the properties of particle guidance and its effect on sample efficiency, we use a
two-dimensional Gaussian mixture model. In particular, we consider a mixture of N = 10 identical
Gaussian distributions whose centers are equally spaced over the unit circle and whose variance is
0.005. These Gaussians form a set of approximately disjoint equal bins. As we are interested in
inference, no model is trained and the true score of the distribution is given as an oracle.

As expected if one runs normal I.I.D. diffusion, the sample falls in one bin at random. Taking ten
samples, as shown in Fig. 3, some of them will fall in the same bin and some bins will be left unfound.
The empirical experiments confirm the combinatorial analysis (see Appendix C.6) which shows that
the expected number of bins discovered with N = 10 samples is only 6.5 and it takes on average
more than 29 samples to discover all the bins.

In many settings this behavior is suboptimal, and we would want our model to discover all the modes
of the distribution with as few samples as possible. Using the straightforward application of particle
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Radial
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I.I.D.
sampling

Radial kernelEuclidean kernel

Figure 3: Left: plot of random samples (in blue) of the two-dimensional Gaussian mixture distribution
(density depicted in red). I.I.D. samples often recover the same modes, while particle guidance with
a radial kernel captures all modes. Right: average number of modes recovered with 10 samples as
a function of the weight given by the diffusion noising terms and the repulsion weight when using
an RBF kernel with Euclidean and radial distances respectively. As expected with little weight to
the repulsion terms we obtain approximately 6.5 modes recovered in line with the I.I.D. diffusion
performance. Further increasing the repulsion weight on the Euclidean creates instability.

guidance with a simple RBF kernel based on the squared Euclidean distance, we are able to encourage
diversity obtaining, on average, the discovery of nearly 9 bins (see Fig. 3).

Intrinsic diffusion models [Corso, 2023] have shown significant improvements when diffusion models
operate on the submanifold where the data lies. Similarly, here building into the kernel the degrees of
freedom over which the diversity lies helps the particle guidance to effectively distribute the samples
over the distribution. We know that the different modes are distributed in a radial fashion, and thus
we build an RBF kernel based on the angle difference w.r.t. the origin. Using this lower-dimensional
kernel enables us to consistently discover all modes of the distribution. This submanifold observation
aligns well with the practice of methods such as metadynamics where the kernels are defined over
some lower-dimensional collective variables of interest.

E Molecular Conformer Generation Experiments

E.1 Dataset, Metrics and Baselines

Dataset We evaluate the method for the task of molecular conformer generation using the data
from GEOM [Axelrod & Gomez-Bombarelli, 2022], a collection of datasets that has become the
standard benchmark for this task in the machine learning community. In particular, we focus on
GEOM-DRUGS, the largest, most pharmaceutically relevant and widely used dataset in GEOM
which consists of 304k drug-like molecules. For each of these molecules, an ensemble of conformers
was generated with metadynamics in CREST [Pracht et al., 2020], a procedure that gives accurate
structures but is prohibitive in high-throughput applications, costing an average of 90 core-hours per
molecule. To be able to use existing pretrained models we rely on the experimental setup and splits
introduced by Ganea et al. [2021] and used by several papers afterward. As we do not retrain the
score model, we do not use the training set, instead, we finetune the inference parameters for particle
guidance and the other ablation experiments on a random subset of 200 molecules out of 30433 from
the validation set.

Evaluation metrics To evaluate conformer generation methods we want to test the ability of a
method to generate a set of conformers that are both individually good poses (precision) and as a set
cover the distribution of true conformers (recall). For this we employ the same evaluation setup and
metrics used by several papers in the field starting from Ganea et al. [2021]. In this setup, methods
are asked to generate twice as many conformers as in the original ensemble and then the so-called
Average Minimum RMSD (AMR) and Coverage (COV) are measured for precision (P) and recall (R).
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For K = 2L let {C∗
l }l∈[1,L] and {Ck}k∈[1,K] be respectively the sets of ground truth and generated

conformers:

COV-R :=
1

L

∣∣∣∣{l ∈ [1..L] : ∃k ∈ [1..K],RMSD(Ck, C
∗
l ) < δ

∣∣∣∣
AMR-R :=

1

L

∑
l∈[1..L]

min
k∈[1..K]

RMSD(Ck, C
∗
l )

(38)

where δ is the coverage threshold (set to 0.75Å for the GEOM-DRUGS experiments). Swapping
ground truth and generated conformers in the equations above we obtain the precision metrics.

Baselines As baselines we report the performances of previous methods as measured by Ganea et al.
[2021] and Jing et al. [2022]. These are the cheminformatics methods RDKit ETKDG [Landrum
et al., 2013] and OMEGA [Trott & Olson, 2010; Hawkins & Nicholls, 2012] and the machine
learning models GeoMol [Ganea et al., 2021], GeoDiff [Xu et al., 2021], CGCF [Shi et al., 2021],
and Torsional Diffusion [Jing et al., 2022].

E.2 Particle Guidance Setup

Reverse diffusion As discussed in Section 3.2, we applied particle guidance to torsional diffusion,
as this is currently considered to be state-of-the-art and it uses, like most ML-based methods before,
I.I.D. sampling during inference. We define the particle guidance kernel to operate directly on the
implicit hypertorus manifold where torsional diffusion defines the diffusion process, this, at the
same time, makes the kernel lower dimensional and it involves a minor modification to the existing
inference procedure. The reverse diffusion process that we apply is:

dτi =
1

2
g2(T − t) s(τi, L, T − t) dt︸ ︷︷ ︸

diffusion ODE

+βT−t

(
1

2
g2(t) s(τi, L, T − t) dt+ g(T − t) dw

)
︸ ︷︷ ︸

Langevin diffusion SDE

+
γT−t

2
g2(T − t) ∇τi

log ΦT−t(τ1, ..., τn)dt︸ ︷︷ ︸
particle guidance

where we follow the idea from Karras et al. [2022] of dividing the different components of the reverse
diffusion and tuning their individual parameters. The potential was chosen to be:

log Φt(τ1, ...τn) = −
αt

2n

∑
i,j

kt(τi, τj) where kt(τi, τj) = exp(−||τi − τj ||2

ht
) (39)

where the difference of each torsion angle is computed to be in (−π, π]. αt, βt, γt and ht are
inference hyperparameters that are ’logarithmically interpolated’ between two end values chosen
with hyperparameter tuning (using T = 1), e.g. αt = exp(t log(α1) + (1− t) log(α0)).

Permutation invariant kernel Since the kernel operates on the torsion angle differences it is
naturally invariant to SE(3) transformations, i.e. translations or rotations, of the conformers in space.
Moreover, as illustrated in Fig. 2 of Jing et al. [2022], while exact torsion angle values depend on
arbitrary choices of neighbors or orientation (to compute the dihedral angle) differences in torsion
angles are invariant to these choices. However, one transformation that the kernel in Equation 39 is
not invariant to are permutations of the atoms in the molecule. Many of these permutations lead to
isomorphic molecular graphs where however each of the torsion angles may now refer to a different
dihedral. To maximize the sample efficiency we make the kernel invariant to these by taking the
minimum over the values of the kernel under all such permutations:

k′t(τi, τj) = min
π∈Π

kt(τi, Pπτj)

where Π is the set of all permutations that keep the graph isomorphic (but do change the torsion angles
assignment) and Pπ is the permutation matrix corresponding to some permutation π. In practice,
these isomorphisms can be precomputed efficiently, however, to limit the overhead from applying the
kernel multiple times, whenever there are more than 32 isomorphic graphs leading to a change in
dihedral assignments we subsample these to only keep 32.
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E.3 Full Results

We provide in Table 2 again the results reported in Table 1 with the additions of other baselines and
ablation experiments. In particular, as ablations, on top of running non-invariant particle guidance
i.e. without the minimization over the permutations described in the previous section, we also test
low-temperature sampling, another variation of the inference-time procedure that has been proposed
for diffusion models that we applied as described below.

Low-temperature sampling. Low-temperature sampling of some distribution p(x) with tem-
perature λ−1 < 1 consists of sampling the distribution pλ(x) ∝ p(x)λ. This helps mitigate the
overdispersion problem by concentrating more on high-likelihood modes and trading off sample
diversity for quality. Exact low-temperature sampling is intractable for diffusion models, however,
various approximation schemes exist. We use an adaptation of Hybrid Langevin-Reverse Time SDE
proposed by Ingraham et al. [2022]:

dτ = −
(
λt +

λ ψ

2

)
sθ,G(C, t) g

2(t) dt+
√
1 + ψ g(t) dw with λt =

σd + σt
σd + σt/λ

where λ (the inverse temperature), ψ and σd are parameters that can be tuned.

Table 2: Quality of generated conformer ensembles for the GEOM-DRUGS test set in terms of
Coverage (%) and Average Minimum RMSD (Å). Minimizing recall and precision refers to the
hyperparameter choices that minimize the respective median AMR on the validation set.

Recall Precision
Coverage ↑ AMR ↓ Coverage ↑ AMR ↓

Method Mean Med Mean Med Mean Med Mean Med

RDKit ETKDG 38.4 28.6 1.058 1.002 40.9 30.8 0.995 0.895
OMEGA 53.4 54.6 0.841 0.762 40.5 33.3 0.946 0.854
CGCF 7.6 0.0 1.247 1.225 3.4 0.0 1.837 1.830
GeoMol 44.6 41.4 0.875 0.834 43.0 36.4 0.928 0.841
GeoDiff 42.1 37.8 0.835 0.809 24.9 14.5 1.136 1.090

Torsional Diffusion 72.7 80.0 0.582 0.565 55.2 56.9 0.778 0.729

TD w/ low temperature
- minimizing recall 73.3 77.7 0.570 0.551 66.4 73.8 0.671 0.613
- minimizing precision 68.0 69.6 0.617 0.604 72.4 81.3 0.607 0.548

TD w/ non-invariant PG
- minimizing recall 75.8 81.5 0.542 0.520 66.2 72.4 0.668 0.607
- minimizing precision 58.9 56.8 0.730 0.746 76.8 88.8 0.555 0.488
TD w/ invariant PG
- minimizing recall 77.0 82.6 0.543 0.520 68.9 78.1 0.656 0.594
- minimizing precision 72.5 75.1 0.575 0.578 72.3 83.9 0.617 0.523

F Experimental Details on Stable Diffusion

F.1 Setup

In this section, we detail the experimental setup on Stable Diffusion model. We replace the score
function (∇xi log pt′(xi)) in the original particle guidance formula (Eq. (2)) with the classifier-free
guidance [Ho, 2022] as follows:

s̃(xi, c, t
′) = w∇xi

log pt′(xi, c) + (1− w)∇xi
log pt′(xi)

where c symbolizes the text condition, w ∈ R+ is the guidance scale, and
∇xi

log pt′(xi, c)/ log pt′(xi) is the conditional/unconditional scores, respectively. As prob-
ability ODE with classifier-free guidance is the prevailing method employed in text-to-image
models [Saharia et al., 2022], we subsititue the reverse-time SDE in Eq. (2) with the margianlly
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equivalent ODE. Assuming that f(xi, t
′) = 0, the new backward ODE with particle guidance is

dxi =

[
1

2
g2(t′)

(
s̃(xi, c, t

′)− αt′∇xi

n∑
j=1

kt′(xi,xj)

)]
dt

Following SVGD [Liu & Wang, 2016], we employ RBF kernel kt(τi, τj) = exp(− ||τi−τj ||2
ht

) with
ht = m2

t/ log n, where mt is the median of particle distances. We implement the kernel both in
the original (dowmsampled) pixel space or the feature space of DINO-VIT-b/8 [Caron et al., 2021].
Defining the DINO feature extractor as gDINO, the formulation becomes:

dxi =

[
1

2
g2(t′)

(
s̃(xi, c, t

′)− αt′∇x0
i

n∑
j=1

kt′
(
gDINO(x

0
i ), gDINO(x

0
j )
))]

dt

where we set the input to the DINO feature extractor gDINO to the x0-prediction of at xi: x0
i =

xi + σ(t′)2s̃(xi, c, t
′), as x0-prediction lies in the data manifold rather than noisy images. σ(t) is

the standard deviation of Gaussian perturbatio kernel given time t in diffusion models. The gradient
can be calculated by forward-mode auto-diff. We hypothesize that defining Euclidean distance in
the feature space is markedly more natual and effective compared to the pixel space, allowing the
repulsion in the semantic meaning. Our experimental resutls in Fig. 3.1 corroborate the hypothesis.

We randomly sample 500 prompts from the COCO validation set [Lin et al., 2014]. For each prompts,
we generate a batch of four images. To get the average CLIP score/Aesthetic score versus in-batch
similarity score curve, for I.I.D. sampling, we use w ∈ {6, 7.5, 8.5, 9}; for particle guidance, we use
a set of larger guidance scales: w ∈ {7.5, 8, 9, 9.5, 10}. We set the hyper-parameter αt′ to 8σ(t) in
particle guidance (feature) and 30σ(t)2 in particle guidance (pixel). We use Euler solver with 30
NFE in all the experiments.

F.2 In-batch similarity score

We propose in-batch similarity score to capture the diversity of a small set of samples {x1, . . . ,xn}
given a prompt c:

In-batch similarity score(x1, . . . ,xn) =
1

n(n− 1)

∑
i ̸=j

gDINO(xi)
T gDINO(xj)

||gDINO(xi)||2||gDINO(xj)||2

To save memory, we use the DINO-VIT-s/8 [Caron et al., 2021] as the feature extractor.

G Extended Image Samples

In Fig. 4-Fig. 8, we visualize samples generated by the I.I.D. sampling process, particle guidance in
the pixel space and particle guidance in the DINO feature space, on four different prompts. For Fig. 4-
Fig. 6, we select the prompts in Somepalli et al. [2023], with which Stable Diffusion model is shown
to replicate content directly from the LAION dataset. We also include the the generated samples
of SVGD-guidance, in which we replace the particle guidance term with SVGD formula (Eq. (3)).
In Fig. 9, we observe that SVGD generally leads to blurry images when increasing the coefficient
αt. This is preditable as the guidance term in SVGD involves a weighted sum of scores of nearby
samples, which will steer the samples toward the mean of nearby samples.

19



(a) I.I.D. (b) particle guidance (pixel) (c) particle guidance (feature)

Figure 4: Text prompt: Captain Marvel Exclusive Ccxp Poster Released Online By Marvel

(a) I.I.D. (b) particle guidance (pixel) (c) particle guidance (feature)

Figure 5: Text prompt: Portrait of Tiger in black and white by Lukas Holas

(a) I.I.D. (b) particle guidance (pixel) (c) particle guidance (feature)

Figure 6: Text prompt: VAN GOGH CAFE TERASSE copy.jpg
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(a) I.I.D. (b) particle guidance (pixel) (c) particle guidance (feature)

Figure 7: Text prompt: A transparent sculpture of a duck made out of glass

(a) I.I.D. (b) particle guidance (pixel) (c) particle guidance (feature)

Figure 8: Text prompt: A unicorn in a snowy forest

(a) αt = 0.1 (b) αt = 0.3 (c) αt = 1 (d) αt = 2

Figure 9: SVGD guidance, with varying αt
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