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ABSTRACT

Recently, transformer-based models have been widely applied to time series fore-
casting tasks due to their remarkable capability to capture complex interactions
within sequential data. However, as the sequence length expands, Transformer-
based models suffer from increased memory consumption, overfitting, and perfor-
mance deterioration in capturing long-range dependencies. Recently, several stud-
ies have shown that MLP-based models can outperform advanced Transformer-
based models for long-term time series forecasting (LTSF) tasks. Unfortunately,
linear mappings often struggle to capture intricate dependencies when handling
multivariate time series. Although modeling each channel independently can al-
leviate this issue, it will significantly increase the computational cost. To this end,
we introduce a set of simple yet effective depthwise convolution models named
LTSF-Conv to perform LTSF. Specifically, we apply unique filters to each chan-
nel to achieve channel independence, which plays a pivotal role in enhancing over-
all forecasting performance. Experimental results show that LTSF-Conv models
outperform the state-of-the-art Transformer-based and MLP-based models across
seven real-world LTSF benchmarks. Surprisingly, a two-layer non-stacked net-
work can outperform the state-of-the-art Transformer model in 91% of cases with
a significant reduction of computing resources. In particular, LTSF-Conv mod-
els substantially decrease the average number of trainable parameters (by ∼ 12×),
maximum memory consumption (by ∼ 86×), running time (by ∼ 18×), and infer-
ence time (by ∼ 2×) on the Electricity benchmark. We hope this simple network
unit opens up new research directions for the LTSF tasks.

1 INTRODUCTION

Time series forecasting is a prevalent problem across a series of domains, including energy man-
agement for efficient resource allocation (Shao et al., 2022b), meteorology for weather forecasting
(Wang et al., 2019), transportation for optimizing traffic flow (Shao et al., 2022a), and finance for in-
formed decision-making (Cheng et al., 2022). These applications emphasize the far-reaching impact
of accurate predictions in the real world. In the era of data-driven decision-making, extending the
forecasting horizon can enable organizations and policymakers to plan long-term goals and strate-
gies more accurately. In this context, long-term time series forecasting (LTSF) emerges as an area of
paramount significance. However, extending the length of time series input-output presents several
challenges in modeling techniques for LTSF tasks, triggering significant interest among researchers
(Zhou et al., 2021; Wu et al., 2021; Zhou et al., 2022; Zeng et al., 2022).

In recent years, the rapid development of deep learning technology has led to significant progress
in time series forecasting tasks. Transformer-based models have attracted considerable attention
among various approaches. The self-attention mechanism in Transformers enables it to effectively
capture long-term dependencies and dynamically focus on different parts of the input sequence.
Although Transformers have demonstrated exceptional performance in tasks like natural language
processing (NLP) (Devlin et al., 2018; Brown et al., 2020), transferring their success to the time
series domain presents challenges. The permutation-invariant self-attention mechanism in Trans-
formers, although powerful, can result in some loss of temporal information. Some improved posi-
tional embeddings are added to convey temporal information, but they might not fully compensate
for the inherent sequence ordering present in time series data, inadvertently leading to a loss of
fine-grained temporal information that is vital for accurate forecasting. Moreover, the substantial
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size of Transformer models leads to longer training times and increased computational demands,
especially during the training process where the risk of overfitting becomes more high. This hy-
pothesis has received empirical validation in a study referenced as (Zeng et al., 2022), wherein a
very simple linear model, named DLinear, managed to outperform the majority of the Transformer-
based forecasting models mentioned earlier. This emphasizes the significance of considering model
complexity, as even a seemingly basic model can yield competitive results in comparison to more
intricate architectures. Built on this research, a series of subsequent approaches have arisen, focus-
ing on the utilization of Multi-Layer Perceptron (MLP) based techniques. Although these stacked
linear layer approaches slightly improve the predictive performance, MLP-based models often pos-
sess constrained representational capacity, especially when dealing with multi-channel datasets. A
potential solution involves the adoption of channel-independent (CI) modeling, as proposed in refer-
ence (Nie et al., 2023). However, it concurrently introduces a substantial increase in computational
demands. Among various deep learning models developed for long-term time series forecasting,
it’s difficult to strike a balance between performance and efficiency when using Transformer-based
models or MLP-based models.

Convolutional neural networks possess an underestimated potential in the domain of long-term time
series prediction, providing a promising path for addressing current issues. To answer this ques-
tion, we engage in an investigation involving intensive experiments and analyses to delve into the
intricate operational mechanisms of recent LTSF models. We then introduce a series of models
named LTSF-Conv, which integrate an exceedingly simple basic network. Our models utilize a
single depthwise convolution layer as the temporal feature extractor and employ a one-layer linear
projection for the final prediction results. We perform comprehensive experiments on seven public
real-world datasets across several domains: weather, traffic, electricity, etc. Surprisingly, our re-
sults reveal that LTSF-Conv models consistently outperform existing complex Transformer-based
models for averaged performance across all scenarios in 91% cases. Furthermore, our models also
surpass the state-of-the-art stacked MLP-based models for averaged performance in 86% cases. We
find that, in contrast to the existing transformer-based and MLP-based architectures, LTSF-Conv
models exhibit remarkable performance while maintaining a high level of efficiency. The main
contributions of this work include:

• We have introduced a series of two-layer convolution models, called LTSF-Conv. It’s
important to emphasize that these models maintain an unstacked structure, representing a
simple yet competitive basic unit with substantial potential for future research exploration
in LTSF tasks.

• Surprisingly, experimental evaluations on seven popular public datasets show that our sim-
ple foundational component significantly outperforms the strongest Transformer-based and
MLP-based models in LTSF tasks while achieving notable reductions in compute resources.
For example, Conv model attains the best results in 100% of cases for average metrics
across various horizons, while achieving a 95% reduction in the number of training param-
eters, a 99% reduction in GPU memory usage, a 90% reduction in running time, and a 54%
reduction in inference time compared to the strongest Transformer model on the Weather
benchmark.

• We conduct comprehensive empirical investigations across some dimensions of popular
Transformer-based and MLP-based solutions, including the sensitivity to different input
window sizes, the impact of encoder-decoder structure, and the limitations in dealing with
time series with multiple periods among channels, etc. These findings can offer valuable
insights for future research within the realm of LTSF.

2 BACKGROUNDS

2.1 TRANSFORMER-BASED LTSF MODELS

Over the past few years, researchers have dedicated significant effort to propose novel Transformer
models for improving long sequence prediction performance. However, dealing with long sequences
can drastically increase the computational complexity of the Transformer-based models, resulting
in a greater demand for computational resources and processing time. To address the challenge
from the quadratic complexity inherent in self-attention mechanisms, the LogTrans (Li et al., 2019)
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Figure 1: The pipeline of existing LTSF solutions.

model introduces an innovative attention mechanism called LogSparse attention, which effectively
mitigates computational complexity, reducing it to O(L(logL)2). Similarly, the Informer model
(Zhou et al., 2021) incorporates the distilling operation and the ProbSparse attention mechanism
based on the Kullback-Leibler divergence. These strategies further significantly reduce the compu-
tational complexity to O(L(logL)). Autoformer (Wu et al., 2021) introduces an auto-correlation
mechanism to enhance computational efficiency and the utilization of sequence information. Fur-
thermore, it also incorporates a decomposition block that can progressively extract the long-term
stationary trend. Building upon this scheme, FEDFormer (Zhou et al., 2022) improves decomposed
blocks by integrating frequency domain representations of time series into attention computation.
The forecasting accuracy is significantly influenced by the size of the look-back window. To capture
more contextual information from a longer historical window, the PatchTST model (Nie et al., 2023)
presents a patching component that segments the time series into subseries-level patches. PatchTST
first applies channel-independence technology to Transformer-based models and significantly im-
proves prediction accuracy.

2.2 CONVOLUTION AND MLP-BASED LTSF MODELS

Although Transformer-based models exhibit potential in time series forecasting, challenges arise
from the disparities between NLP and time series data. Recently, DLinear (Zeng et al., 2022)
achieved remarkable success by relying on a single linear layer, surpassing the performance of
certain complex Transformer-based architectures by a significant margin. On top of this scheme,
subsequent MLP-based approaches exhibit better performance in LTSF tasks. TSMixer (Vijay et al.,
2023) presents a hybrid architecture of augmenting various reconciliation heads that enhances the
learning capacity by integrating gated attention mechanisms into the channel-independent backbone.
TiDE (Das et al., 2023) is a simple encoder-decoder model that encodes historical time-series data
and covariates using dense MLPs, followed by decoding the time-series and future covariates using
dense MLPs again. Many of the extracted patterns might encompass unpredictable noise and lack
clear interpretability. Besides MLP-based solutions, other types of convolution networks are also
widely explored. SCINet (Liu et al., 2022) employs a recursive downsample-convolve-interact ar-
chitecture that iteratively downsamples the sequence into two sub-sequences to effectively extract
temporal features. (Wu et al., 2022) proposes a task-general foundational model named TimesNet,
which transforms 1D time series into a set of 2D tensors to more effectively capture intra-period and
inter-period variations in the 2D space. MICN (Shao et al., 2022b) captures local correlations and
global correlations by incorporating a multi-scale branch structure with down-sampled convolution.
MPPN (Wang et al., 2023) constructs multi-resolution contextual-aware semantic units within time
series and introduces a multi-period pattern mining mechanism to explicitly capture crucial time
series patterns, which has better interpretability.

3 THEORETICAL STUDY ON THE CONVOLUTION MAPPING

3.1 NOTATION

Considering a series of observed time series signals X = [x0, . . . , xt, . . . , xL−1] ∈ RC×L, where L
represents the length of time steps and C denotes the recorded variates. Then, given a historical time

3



Under review as a conference paper at ICLR 2024

series Xin = [xt−sl, . . . , xt−1], our goal is to learn a mapping function and forecast the subsequent
T time steps Ŷ = [xt, . . . , xt+T−1] ∈ RC×T .

3.2 THEORETICAL INSIGHTS

In this paper, we consistently employ the following variable names: sl ≤ L: the look-back window
length, kl ≤ sl: the convolutional kernel length, kn: the number of convolution kernels. The
definition of a convolution operation is as follows

Z = K ⊗Xin, (1)

where Z ∈ RC×sl. The h-th element of the output sequence can be expressed as follows

z[h] =

kl−1∑
i=0

(w(i) ∗ x(h+ i)) + b, (2)

where w represents the weights associated with the convolutional window, i is the relative position
of the convolution window within the input sequence, and b is the bias term.

For time series forecasting tasks, periodicity and trend with tolerable noise are fundamental charac-
teristics that play a crucial role in the success of time series forecasting (Holt, 2004) (Zhang & Qi,
2005). Periodicity refers to the data exhibiting regular and predictable fluctuations over a specific
interval. By capturing the periodic behavior, forecasting models can identify repetitive patterns.
The trend represents the underlying upward or downward movement observed in the series. Incor-
porating the trend component is essential in forecasting as it helps capture the overall trajectory and
anticipate future changes in the data. We first consider the widely acknowledged assumption that
the time series exhibits periodicity.

Theorem 1. Given a seasonal time series that satisfies x(t) = x(t− p), where p ≤ kl is the period.
A solution exists for valid convolution models to predict future values, which can be expressed as
follows

w(i) =

{
1, if i = (sl − α · p) mod p

, bi = 0,
0, otherwise

(3)

where 1 ≤ α ∈ Z ≤ ⌊sl/p⌋. Equation 3 implies that when the length of the input historical
sequence and the convolutional kernel are equal to or greater than the period, convolutional maps
have the ability to predict periodic signals. More proof is in Appendix A.

4 CONVOLUTION-BASED LTSF SOLUTIONS

LTSF-Conv is a set of convolution-based models. For clearness, we name these two types of
temporal variations as Conv and DConv respectively.

4.1 BASIC BACKBONE

We denote the i-th univariate series with a length of L, starting at time index 0, as xi
0:L−1 =

(xi
0, x

i
1, ..., x

i
L−1), where i ranges from 1 to C. The input is divided into C separate univariate

series, where each series is independently fed into a separate kernel backbone. In LTSF tasks, main-
taining channel independence has been observed to improve prediction performance as compared
to channel mixing. Concretely, the input time series firstly segment undergoes reversible instance
normalization, denoted as RevIN (Nie et al., 2023). RevIN is applied to standardize the data distri-
bution by removing the mean and dividing by the standard deviation, a process designed to mitigate
data shifts within the time series.
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Conv uses a one-layer depthwise convolution operation, and each convolutional kernel is respon-
sible for processing one input channel independently. Each channel is convolved with a separate
kernel, and this process generates a feature map with the same number of channels as the input.
We utilizes group-wise convolution to cleverly achieve channel independence. Then, we apply a
one-layer linear projection to the feature map for the final prediction results.

Autoformer (Wu et al., 2021) first introduces a new methodology by integrating seasonal-trend de-
composition ahead of each neural block, leveraging a widely employed technique in time series
analysis (Cleveland et al., 1990; Hamilton, 2020) for enhancing the predictability of raw data. In-
spired by this scheme, DConv combines a decomposition scheme with convolutional layers to create
a powerful and lightweight model architecture. DConv initiates the modeling process by decompos-
ing the raw input data into two main components: the trend component and the seasonal component.
Then, we use the separate one-layer linear projection to each component for the final prediction
results, as follows

Xt = Z⊺, (4)
Xs = X −Xt, (5)

Ŷ = (Wt(Xt) +Ws(Xs))
⊺, (6)

where Z can be obtained by Equation 1, and Wt and Ws ∈ RT×sl represent the one-layer linear
model. This process allows the model to model the unique characteristics and patterns within each
component individually. Subsequently, the features obtained from both components are summed up
to obtain the final prediction. By incorporating these two linear layers and aggregating their outputs,
DConv effectively combines the information from both the trend and remainder components to
make a comprehensive prediction.

4.1.1 LOSS FUNCTION

We choose to use the mean squared error (MSE) loss as a measure of the discrepancy between
the predictions and the ground truth in each channel. The MSE loss in each channel, denoted as
||ŷisl:sl+T−1 − yisl:sl+T−1||22, is computed individually for each time series. Then, the losses from C
time series are gathered and averaged to obtain the overall objective loss, as follows

L = EX
1

C

C∑
i=1

||ŷisl:sl+T−1 − yisl:sl+T−1||22 (7)

5 EXPERIMENTAL EVALUATION

5.1 DATASET

In this section, we assess the performance of the LTSF-Conv models on seven widely used mul-
tivariate time series datasets, including Weather, Traffic, Electricity, and four ETT datasets. Table
6 of the Appendix provides a brief overview of these datasets. For the Weather, Electricity, and
Traffic datasets, adopted a standard split ratio of 7:1:2 for the training set, validation set, and test
set, respectively. For the ETT dataset, adopted a standard split ratio of 6:2:2 for the training set,
validation set, and test set. Since our primary interest lies in long-term forecasting results, we have
excluded the ILI dataset with shorter horizons.

5.2 BASELINES AND CONFIGURATION

We choose recent popular Transformer models in the domain of LTSF for comparison, including
PatchTST (Nie et al., 2023), Preformer (Du et al., 2023), FEDformer (Zhou et al., 2022), and Auto-
former (Wu et al., 2021). Additionally, we also compare the latest non-Transformer models: MPPN
(Wang et al., 2023), TimesNet (Wu et al., 2022), MICN-regre (Shao et al., 2022b), TiDE (Das et al.,
2023), and DLinear (Zeng et al., 2022). By default, all methods adhere to a uniform experimental
setup with prediction lengths of 96, 192, 336, 720. We utilize Mean Squared Error (MSE) and Mean
Absolute Error (MAE) as the standard error metrics for evaluation. To ensure fairness in compar-
ison, in Table 1 and Table 4, we perform experiments with a fixed look-back window size of 512.
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Table 1: Multivariate long-term time series forecasting results in terms of MSE and MAE, the lower
the better. The best numbers in each row are highlighted in bold and the second best numbers are
highlighted with an underline. Among them, * denotes re-implementation with a fixed look-back
window of 512. Other results collect from PatchTST (Nie et al., 2023).

Conv* DConv* PatchTST TimesNet* MICN-regre* FEDformer Autoformer DLinear InformerMethods (Ours) (Ours) 2023 2022 2022 2022 2022 2022 2021
Metric MSE MAE MAE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.140 0.190 0.169 0.223 0.149 0.198 0.159 0.215 0.174 0.236 0.238 0.314 0.249 0.329 0.176 0.237 0.354 0.405
192 0.183 0.230 0.214 0.260 0.194 0.241 0.220 0.267 0.221 0.282 0.275 0.329 0.325 0.37 0.220 0.282 0.419 0.434
336 0.234 0.271 0.259 0.294 0.245 0.282 0.274 0.306 0.257 0.316 0.339 0.377 0.351 0.391 0.265 0.319 0.583 0.543
720 0.306 0.325 0.324 0.342 0.314 0.334 0.347 0.356 0.319 0.359 0.389 0.409 0.415 0.426 0.323 0.362 0.916 0.705

Weather

Avg 0.216 0.254 0.242 0.280 0.225 0.263 0.250 0.286 0.243 0.298 0.310 0.357 0.335 0.379 0.246 0.300 0.568 0.521
96 0.132 0.227 0.135 0.231 0.129 0.222 0.181 0.286 0.155 0.265 0.186 0.302 0.196 0.313 0.140 0.237 0.304 0.393
192 0.145 0.241 0.146 0.243 0.147 0.240 0.192 0.294 0.185 0.293 0.197 0.311 0.211 0.324 0.153 0.249 0.327 0.417
336 0.161 0.257 0.163 0.259 0.163 0.259 0.196 0.299 0.180 0.292 0.213 0.328 0.214 0.327 0.169 0.267 0.333 0.422
720 0.201 0.289 0.203 0.292 0.197 0.290 0.226 0.323 0.207 0.316 0.233 0.344 0.236 0.342 0.203 0.301 0.351 0.427

Electricity

Avg 0.160 0.254 0.162 0.256 0.159 0.252 0.199 0.301 0.182 0.292 0.207 0.321 0.214 0.326 0.166 0.263 0.328 0.414
96 0.161 0.249 0.163 0.252 0.166 0.256 0.191 0.280 0.176 0.275 0.180 0.271 0.205 0.293 0.167 0.260 0.355 0.462
192 0.216 0.288 0.218 0.289 0.223 0.296 0.257 0.324 0.254 0.334 0.252 0.318 0.278 0.336 0.224 0.303 0.595 0.586
336 0.271 0.327 0.271 0.325 0.274 0.329 0.295 0.349 0.288 0.351 0.324 0.364 0.343 0.379 0.281 0.342 1.270 0.871
720 0.361 0.387 0.357 0.380 0.362 0.385 0.452 0.432 0.417 0.440 0.410 0.420 0.414 0.419 0.397 0.421 3.001 1.267

ETTm2

Avg 0.252 0.313 0.252 0.312 0.256 0.316 0.299 0.346 0.284 0.350 0.291 0.343 0.310 0.356 0.267 0.331 1.305 0.796
96 0.292 0.338 0.304 0.346 0.293 0.346 0.335 0.376 0.311 0.364 0.326 0.390 0.510 0.492 0.299 0.343 0.626 0.560
192 0.332 0.361 0.335 0.365 0.333 0.370 0.396 0.410 0.356 0.388 0.365 0.415 0.514 0.495 0.335 0.365 0.725 0.619
336 0.364 0.380 0.366 0.383 0.369 0.392 0.441 0.433 0.407 0.422 0.392 0.425 0.510 0.492 0.369 0.386 1.005 0.741
720 0.418 0.411 0.419 0.412 0.416 0.420 0.551 0.495 0.464 0.462 0.446 0.458 0.527 0.493 0.425 0.421 1.133 0.845

ETTm1

Avg 0.352 0.373 0.356 0.377 0.352 0.382 0.431 0.429 0.408 0.425 0.382 0.422 0.515 0.493 0.357 0.378 0.872 0.691
96 0.365 0.393 0.366 0.392 0.37 0.400 0.443 0.458 0.389 0.424 0.376 0.415 0.435 0.446 0.375 0.399 0.941 0.769
192 0.401 0.416 0.400 0.412 0.413 0.429 0.492 0.491 0.481 0.495 0.423 0.446 0.456 0.457 0.405 0.416 1.007 0.786
336 0.419 0.437 0.420 0.424 0.422 0.440 0.483 0.487 0.516 0.524 0.444 0.462 0.486 0.487 0.439 0.443 1.038 0.784
720 0.464 0.472 0.435 0.451 0.447 0.468 0.545 0.520 0.743 0.664 0.469 0.492 0.515 0.517 0.472 0.490 1.144 0.857

ETTh1

Avg 0.412 0.430 0.405 0.420 0.413 0.434 0.491 0.489 0.532 0.527 0.428 0.453 0.473 0.476 0.422 0.437 1.032 0.799
96 0.269 0.339 0.269 0.334 0.274 0.337 0.383 0.420 0.313 0.396 0.332 0.374 0.332 0.368 0.289 0.353 1.549 0.952
192 0.329 0.383 0.330 0.376 0.341 0.382 0.405 0.437 0.498 0.519 0.407 0.446 0.426 0.434 0.383 0.418 3.792 1.542
336 0.335 0.394 0.327 0.387 0.329 0.384 0.390 0.437 0.929 0.705 0.400 0.447 0.477 0.479 0.448 0.465 4.215 1.642
720 0.379 0.424 0.381 0.432 0.379 0.422 0.460 0.471 1.256 0.817 0.412 0.469 0.453 0.490 0.605 0.551 3.656 1.619

ETTh2

Avg 0.328 0.385 0.327 0.382 0.330 0.381 0.410 0.441 0.749 0.609 0.387 0.434 0.422 0.442 0.431 0.446 3.303 1.438
96 0.396 0.275 0.391 0.272 0.360 0.249 0.602 0.321 0.473 0.306 0.576 0.359 0.597 0.371 0.410 0.282 0.733 0.410
192 0.407 0.279 0.396 0.273 0.379 0.256 0.615 0.331 0.475 0.298 0.610 0.380 0.607 0.382 0.423 0.287 0.777 0.435
336 0.417 0.285 0.408 0.281 0.392 0.264 0.614 0.333 0.493 0.307 0.608 0.375 0.623 0.387 0.436 0.296 0.776 0.434
720 0.453 0.304 0.451 0.301 0.432 0.286 0.648 0.348 0.531 0.325 0.621 0.375 0.639 0.395 0.466 0.315 0.827 0.466

Traffic

Avg 0.426 0.286 0.412 0.282 0.390 0.263 0.620 0.333 0.493 0.309 0.603 0.372 0.616 0.383 0.433 0.295 0.778 0.436

Table 2: Multivariate long-term time series forecasting results. Best denotes re-implementation
with a longer look-back window of {336, 512, 720, 1600}, consistently choosing the most optimal
results. Other results collect from Tide (Nie et al., 2023) and MPPN (Wang et al., 2023).

Weather Electricity ETTm2 ETTm1Methods Metric 96 192 336 720 Avg 96 192 336 720 Avg 96 192 336 720 Avg 96 192 336 720 Avg
MSE 0.140 0.182 0.234 0.294 0.213 0.129 0.143 0.159 0.195 0.157 0.161 0.217 0.257 0.325 0.240 0.287 0.328 0.364 0.394 0.343Conv-Best MAE 0.188 0.230 0.271 0.324 0.253 0.225 0.238 0.255 0.286 0.251 0.249 0.287 0.329 0.379 0.311 0.334 0.358 0.380 0.408 0.370
MSE 0.166 0.209 0.253 0.306 0.234 0.130 0.144 0.160 0.199 0.158 0.161 0.213 0.258 0.325 0.239 0.300 0.335 0.356 0.393 0.346Dconv-Best MAE 0.220 0.259 0.293 0.335 0.277 0.225 0.238 0.256 0.288 0.252 0.253 0.292 0.325 0.369 0.310 0.342 0.363 0.384 0.405 0.374
MSE 0.149 0.194 0.245 0.306 0.224 0.129 0.147 0.163 0.197 0.159 0.165 0.220 0.274 0.350 0.252 0.290 0.332 0.366 0.407 0.349PatchTST-Best MAE 0.198 0.241 0.282 0.334 0.263 0.222 0.240 0.259 0.290 0.252 0.255 0.292 0.329 0.380 0.314 0.342 0.369 0.392 0.421 0.381
MSE 0.227 0.275 0.324 0.394 0.305 0.180 0.189 0.201 0.232 0.201 0.213 0.269 0.324 0.418 0.306 0.516 0.556 0.572 0.598 0.561Preformer-Best MAE 0.292 0.322 0.352 0.393 0.340 0.297 0.302 0.319 0.342 0.315 0.295 0.329 0.363 0.416 0.351 0.482 0.491 0.509 0.533 0.504
MSE 0.166 0.209 0.254 0.313 0.235 0.132 0.147 0.161 0.196 0.159 0.161 0.215 0.267 0.352 0.248 0.306 0.335 0.364 0.413 0.354TiDE MAE 0.222 0.263 0.301 0.340 0.281 0.229 0.243 0.261 0.294 0.256 0.251 0.289 0.326 0.383 0.312 0.349 0.366 0.384 0.413 0.378
MSE 0.144 0.189 0.240 0.310 0.220 0.131 0.145 0.162 0.200 0.159 0.162 0.217 0.273 0.368 0.255 0.287 0.330 0.369 0.426 0.353MPPN MAE 0.196 0.240 0.281 0.333 0.262 0.226 0.239 0.256 0.289 0.252 0.250 0.288 0.325 0.383 0.311 0.335 0.360 0.382 0.414 0.372

In Table 2, Table 3, and Table 5, we conducted experiments within a broader window size range of
{336, 512, 720, 1600} to explore better results. Further implementation details can be found in the
Appendix B.

5.3 RESULTS

Multivariate Results In multivariate long-term TS forecasting tasks, we compare Conv and
DConv to the latest competitive Transformer-based and non-Transformer baselines on seven popu-
lar benchmarks. For fixed look-back window size of 512, Table 1 shows that our method can match
or outperform the strongest model PatchTST on popular LTSF benchmarks. However, our model
can further enhance predictive capabilities by utilizing a longer look-back window. In Table 2 and
Table 5, from an overall perspective, our models achieve the best results in 86% cases in MSE and
86% cases in MAE for all compared models. Specifically, our models outperform the strongest
Transformer baseline PatchTST in 86% cases in MSE and 75% cases in MAE. Additionally, our
models perform best in 86% cases in MSE and 86% cases in MAE compared to the state-of-the-
art MLP-based models (TiDE). Please note that our models have not performed effectively on the
largest Traffic dataset. This limitation is due to the simplicity of our model, which comprises only a
single convolution layer. We recognize the potential of stacking our Conv-based unit. By designing
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Figure 2: The ball chart illustrates the efficiency of various models with look-back window size 336 and
forecasting lengths of {96, 192, 336, 720}, evaluated on the Weather dataset. Each ball’s size is indicative of
the model’s complexity.

Table 3: Univariate long-term time series forecasting results. Best denotes re-implementation with a
longer look-back window of {336, 512, 720, 1600}, consistently choosing the most optimal results.

ETTm1 ETTm2 ETTh1 ETTh2Methods Metric 96 192 336 720 Avg 96 192 336 720 Avg 96 192 336 720 Avg 96 192 336 720 Avg
MSE 0.025 0.038 0.050 0.065 0.044 0.062 0.089 0.116 0.163 0.107 0.052 0.064 0.075 0.078 0.067 0.129 0.167 0.170 0.186 0.163Conv-Best MAE 0.120 0.147 0.169 0.196 0.158 0.181 0.223 0.257 0.316 0.244 0.174 0.197 0.217 0.228 0.204 0.278 0.325 0.338 0.351 0.323
MSE 0.025 0.037 0.049 0.066 0.044 0.062 0.089 0.116 0.162 0.107 0.053 0.069 0.077 0.079 0.069 0.128 0.168 0.175 0.199 0.167Dconv-Best MAE 0.120 0.147 0.170 0.199 0.159 0.182 0.223 0.257 0.315 0.244 0.177 0.204 0.220 0.225 0.206 0.277 0.322 0.337 0.360 0.324
MSE 0.026 0.039 0.053 0.073 0.048 0.065 0.093 0.120 0.171 0.112 0.055 0.071 0.076 0.087 0.072 0.129 0.168 0.171 0.223 0.173PatchTST-Best MAE 0.121 0.150 0.173 0.206 0.163 0.186 0.231 0.265 0.322 0.251 0.179 0.205 0.220 0.232 0.209 0.282 0.328 0.336 0.380 0.332
MSE 0.029 0.047 0.059 0.077 0.053 0.066 0.113 0.133 0.183 0.124 0.056 0.072 0.081 0.082 0.073 0.136 0.186 0.197 0.172 0.173TimesNet-Best MAE 0.127 0.163 0.188 0.211 0.172 0.187 0.250 0.277 0.335 0.262 0.182 0.209 0.225 0.228 0.211 0.286 0.340 0.360 0.344 0.333
MSE 0.033 0.050 0.065 0.089 0.059 0.065 0.105 0.132 0.166 0.117 0.063 0.075 0.092 0.129 0.090 0.125 0.181 0.203 0.272 0.195MICN-Best MAE 0.134 0.166 0.190 0.221 0.178 0.187 0.240 0.275 0.317 0.255 0.186 0.208 0.239 0.288 0.230 0.267 0.327 0.362 0.424 0.345

advanced architectures to enhance the model’s capability to handle complex patterns and improve
its performance on the larger Traffic dataset.

Univariate Results We provide details about the univariate results of four typical ETT datasets.
In Table 4, we compare some baselines under a look-back window size of 512. In Table 3, with
an increase in input length, LTSF-Conv achieves the best results in 100% of cases for both av-
erage MSE and MAE metrics across various horizons. In particular, compared with the advanced
Transformer-based solution PatchTST, our methods match or outperform it in all of the settings.
Also, we observe that LTSF-Conv outperforms TimesNet by an avg. of 7.8%, and outperforms
MICN by an avg. of 13.3%. For more exhaustive results, refer to the Appendix Table 4.

Effciency Comparison In this section, we aim to illustrate that LTSF-Conv models exhibit sig-
nificantly improved efficiency compared to Transformer-based models in terms of trainable param,
GPU memory, running time, training time, and inference times. The ball charts presented in Fig-
ures 2(a) and 2(b) illustrate the MSE metric on the Weather dataset relative to the GPU memory
and trainable parameter of the different models, where the size of each ball corresponds to the com-
plexity of the model. Overall, It can be intuitively observed that Transformer-based models require
approximately 13 ∼ 67× the number of parameters and 162 ∼ 407× the GPU memory compared
to LTSF-Conv models, yet they exhibit higher mean squared error. More detailed results about the
comparison of different datasets can be found in Table 13-15 of the Appendix. In particular, under a
look-back length of 336 on the Electricity dataset, Conv achieves a 94% reduction (2.21→0.13) in
the number of training parameters required, a 99% reduction (16032.05→165.96) in GPU memory
usage, a 95% reduction (265.65→13.98) in running time, and a 66% reduction (56.74→19.11) in
inference time compared to the advanced patchTST model.

Interpretability LTSF-Conv is a set of convolution-based models, and the weights visualization
within the projection layer can provide valuable insights into prediction. Here, let’s take the Conv
model as an example. We visualize the weights with two fixed input lengths and two different
forecasting horizons. Specifically, Figure 3 illustrates the weight distribution of the Conv model
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Figure 3: Visualization of the weights of Conv on Electricity benchmark. The X-axis represents the
look-back window size, and the Y-axis represents the prediction length.

on the Electricity dataset. We can observe that the model assigns considerable weight to time steps
with a 24-hour interval within the look-back window, indicating their higher relevance. Please note
that the data is recorded at hourly intervals from 2012 to 2014, with each day comprising 24 time
steps. This demonstrates that our model has the capability to capture a daily periodicity. Then we
further expand the look-back window size to 336 which encompasses weekly patterns. Within these
forecasting time steps, some time steps with a 168-hour interval within the look-back window are
also assigned greater weight. This suggests that the Conv model is capable of capturing a weekly
periodic pattern. More visualization results of DConv can be found in Figure 7 of the Appendix.

6 MORE ANALYSES ON LTSF-TRANSFORMER

In time series forecasting tasks, extending the forecasting horizon presents a practical but challeng-
ing problem. Although Transformer has achieved breakthrough success in some domains, applying
it directly to long-term time series forecasting tasks remains a significant set of problems. Firstly,
transformer-based models heavily rely on self-attention mechanisms to capture long-range depen-
dencies and interactions within the data. However, the increased input and output sizes lead to a
higher risk of overfitting, particularly in comparison to short-term forecasting scenarios. Secondly,
the complex encoder-decoder structure of Transformers magnifies the memory bottleneck. In this
section, we will explore the Transformer-based methods’ suitability for long sequence prediction
from two perspectives.

6.1 DO WE NEED AN ENCODER-DECODER STRUCTURE TO MODEL

Over the past few decades, there has been significant progress in artificial neural networks, driven
by the belief that increasing network complexity can improve performance. These sophisticated
networks are constructed with multiple layers comprising a large number of neurons or transformer
blocks (Vaswani et al., 2017; Liu et al., 2021). Successful architectural design patterns for one task
are often applied to address related tasks. Given the significant success in natural language pro-
cessing, it is natural to use an encoder-decoder structure in LTSF tasks would be advantageous
and imperative. However, as these models grow in complexity, they face challenges in optimiza-
tion, and intricate operations, such as transformer models, call for a shift toward a simple struc-
ture. A recent paper has already questioned whether the encoder-decoder structure is effective for
time series forecasting from a theoretical perspective (Liu et al., 2023). We performed experiments
on nine real-world benchmarks to rigorously evaluate the performance and generalizability of the
proposed conclusion. For a fair comparison, we chose three representative models with encoder-
decoder structure and adopted the experimental settings used in the studies by (Wu et al., 2021). We
maintained a consistent look-back length of 96 across all experiments. In the Ori structure, both
the encoder and decoder are kept intact, representing the original and complete architecture of the
LTSF-Transformer models. In contrast, the Half -Ex structure preserves the decoder as is, thereby
reducing its complexity and capacity. By evaluating these two structures, our primary goal is to un-
derstand the influence of the structure reduction on the overall capabilities of the model. Table 16 of
the Appendix presents a comparison of the performance between the complete Encoder-Decoder
structure and a reduced version comprising only half of the original components. As shown in
the table, for the average performance across four different output horizons, the FEDformer-based
reduced structure achieves the best results in 89% cases in terms of MSE and MAE metrics. The re-
duced structure based on Autoformer achieves the best results in 83% of the cases for both MSE and
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MAE metrics. Similarly, the LogTrans-based reduced structure also exhibits strong performance,
securing the best results in 94% of the cases for MSE and MAE metrics. Overall, by analyzing its
performance across various metrics, we can gain valuable insights into the impact of reducing the
encoder-decoder structure’s complexity for the model’s forecasting capabilities. More analysis of
Transformers can be found in the Appendix C.1.

7 MORE ANALYSES ON LTSF-LINEAR

Recently, a series of LTSF-MLP models have emerged in the time series forecasting field. These
models are known for their lightweight and fast nature, while still achieving performance compa-
rable to or even better than Transformer-based methods. Although linear mapping can effectively
learn periodic patterns in time series data, there are still some limitations compared to convolutional
models for LTSF tasks. For the following subsection, we use the variable names: Linear-S: every
channel shares the same linear layer, and Linear-CI: a linear layer for each channel individually
(Channel Independent).

7.1 LIMITATIONS OF DEALING WITH MULTIPLE PERIODS AMONG CHANNELS

In the context of LTSF tasks, linear mapping proves effective in capturing and modeling periodicity
in univariate data (Li et al., 2023). However, when dealing with tasks involving multiple periods
across channels, where each channel represents a distinct aspect or feature of the data, the limita-
tions of the Linear-S mapping become apparent. It lacks the capacity to capture intricate interactions
between channels, making it challenging to model complex patterns and interactions accurately. Fur-
thermore, LTSF tasks require capturing dependencies over extended periods. With multiple chan-
nels, the complexity of capturing long-term dependencies increases further. As a result, the forecast-
ing accuracy of the model may be limited. Figure 6 of the Appendix shows the forecasting results of
different Linear-S models applied to the real-world dataset consisting of distinct periodic channels.
The results indicate that the proposed Conv basic unit is capable of capturing the underlying curves,
whereas Linear-S struggles to fit the multiple channels data more effectively. Specifically, our model
demonstrates accuracy in predicting the peaks and troughs at the early stages, while also achieving
impressive precision in forecasting the trend in the long-term future. However, the Linear-S model
exhibits an over-smoothing problem, causing the predicted trends to deviate further from the actual
data trends. As the prediction length increases, this trend deviation becomes even more pronounced,
highlighting the limitations of the model’s ability to capture the true dynamics of the data.

To address this challenge, a potential solution is to use Linear-CI modeling. However, this approach
does come with a trade-off, as it noticeably increases the computational overhead required for the
training process. Table 17 of the Appendix measures the computational cost of each Linear-CI model
on the Electricity benchmark. It can be observed that the utilization of Linear-CI models leads to
a substantial increase in the number of parameters, memory usage (Max), and running time (Avg)
compared to Linear-S models. Specifically, RLinear-CI leads to a substantial increase in the average
number of trainable parameters (by ∼ 320×), maximum GPU memory consumption (by ∼ 2×),
and epoch time (by ∼ 7×). Similarly, DLinear-CI results in a significant rise in the average number
of trainable parameters (by ∼ 320×), maximum GPU memory usage (by ∼ 3×), and running time
(by ∼ 5×). This increase is primarily due to the number of channels. Notably, when the look-
back window size is increased, some datasets with a large number of channels, such as Traffic (862
channels), encounter an unacceptable training time.

8 CONCLUSION

This work systematically investigates the limitations of Transformer-based and MLP-based solu-
tions in long-term time series forecasting tasks. We use an embarrassingly simple convolution unit
as a temporal feature extractor to verify our claims. By embracing the depthwise convolution mech-
anism, the LTSF-Conv models exhibit their adeptness in achieving a balance between computa-
tional efficiency and model performance. This progress is particularly valuable in situations involv-
ing the processing of long sequences, as it adeptly tackles the computational limitations inherent in
conventional Transformers and MLPs. Note that LTSF-Conv models serve as straightforward yet
competitive basic units, exhibiting promising potential for further expansion.
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Table 4: Univariate long-term time series forecasting results on ETT full benchmark, with a fixed
input length sl=512.

Conv DConv PatchTST TimesNet MICN-regre FEDformer Autoformer DLinear Informer LogTransMethods (Ours) (Ours) 2023 2023 2023 2022 2022 2022 2021 2019
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.026 0.122 0.026 0.122 0.026 0.123 0.031 0.135 0.036 0.142 0.033 0.140 0.056 0.183 0.028 0.123 0.109 0.277 0.049 0.171
192 0.039 0.150 0.039 0.150 0.040 0.151 0.048 0.169 0.052 0.171 0.058 0.186 0.081 0.216 0.045 0.156 0.151 0.310 0.157 0.317
336 0.052 0.173 0.052 0.173 0.053 0.174 0.059 0.188 0.070 0.202 0.084 0.231 0.076 0.218 0.061 0.182 0.427 0.591 0.289 0.459
720 0.072 0.204 0.070 0.204 0.073 0.206 0.077 0.211 0.089 0.221 0.102 0.250 0.110 0.267 0.080 0.210 0.438 0.586 0.430 0.579

ETTm1

Avg 0.047 0.162 0.047 0.162 0.048 0.163 0.054 0.176 0.062 0.184 0.069 0.201 0.080 0.221 0.053 0.167 0.281 0.441 0.231 0.381
96 0.063 0.182 0.063 0.183 0.065 0.187 0.078 0.212 0.077 0.208 0.067 0.198 0.065 0.189 0.063 0.183 0.088 0.225 0.075 0.208
192 0.091 0.225 0.090 0.225 0.093 0.231 0.108 0.252 0.093 0.229 0.102 0.245 0.118 0.256 0.092 0.227 0.132 0.283 0.129 0.275
336 0.119 0.261 0.118 0.261 0.121 0.266 0.138 0.289 0.132 0.278 0.130 0.279 0.154 0.305 0.119 0.261 0.180 0.336 0.154 0.302
720 0.172 0.321 0.171 0.320 0.172 0.322 0.183 0.335 0.166 0.317 0.178 0.325 0.182 0.335 0.175 0.320 0.300 0.435 0.160 0.321

ETTm2

Avg 0.111 0.247 0.111 0.247 0.112 0.251 0.127 0.272 0.117 0.258 0.119 0.261 0.129 0.271 0.112 0.247 0.175 0.319 0.129 0.276
96 0.053 0.177 0.056 0.183 0.059 0.189 0.063 0.196 0.066 0.198 0.079 0.215 0.071 0.206 0.056 0.180 0.193 0.377 0.283 0.468
192 0.065 0.198 0.072 0.212 0.074 0.215 0.079 0.224 0.100 0.248 0.104 0.245 0.114 0.262 0.071 0.204 0.217 0.395 0.234 0.409
336 0.075 0.217 0.077 0.221 0.076 0.220 0.081 0.225 0.115 0.269 0.119 0.270 0.107 0.258 0.098 0.244 0.202 0.381 0.386 0.546
720 0.082 0.227 0.082 0.229 0.087 0.236 0.082 0.228 0.258 0.424 0.142 0.299 0.126 0.283 0.189 0.359 0.183 0.355 0.475 0.629

ETTh1

Avg 0.069 0.205 0.071 0.211 0.074 0.215 0.076 0.218 0.135 0.285 0.111 0.257 0.104 0.252 0.103 0.246 0.198 0.377 0.344 0.513
96 0.135 0.285 0.135 0.285 0.131 0.284 0.146 0.300 0.146 0.299 0.128 0.271 0.153 0.306 0.131 0.279 0.213 0.373 0.217 0.379
192 0.173 0.328 0.173 0.328 0.171 0.329 0.195 0.351 0.184 0.338 0.185 0.330 0.204 0.351 0.176 0.329 0.227 0.387 0.281 0.429
336 0.179 0.342 0.177 0.340 0.171 0.336 0.197 0.360 0.203 0.362 0.231 0.378 0.246 0.389 0.209 0.367 0.242 0.401 0.293 0.437
720 0.219 0.376 0.219 0.375 0.223 0.380 0.172 0.344 0.410 0.524 0.278 0.420 0.268 0.409 0.276 0.426 0.291 0.439 0.218 0.387

ETTh2

Avg 0.177 0.333 0.176 0.332 0.174 0.332 0.178 0.339 0.236 0.381 0.205 0.349 0.217 0.363 0.198 0.350 0.243 0.400 0.252 0.408

Table 5: Multivariate long-term time series forecasting best results.
ETTh1 ETTh2 TrafficMethods Metric 96 192 336 720 Avg 96 192 336 720 Avg 96 192 336 720 Avg

MSE 0.365 0.401 0.424 0.450 0.411 0.268 0.327 0.329 0.379 0.326 0.383 0.397 0.411 0.450 0.410Conv-Best MAE 0.393 0.416 0.428 0.460 0.425 0.339 0.382 0.390 0.424 0.384 0.271 0.275 0.282 0.302 0.283
MSE 0.366 0.400 0.421 0.429 0.404 0.269 0.326 0.321 0.382 0.325 0.378 0.390 0.404 0.442 0.404Dconv-Best MAE 0.382 0.412 0.422 0.446 0.416 0.334 0.375 0.386 0.428 0.381 0.264 0.269 0.275 0.294 0.276
MSE 0.370 0.414 0.422 0.447 0.413 0.274 0.339 0.329 0.379 0.330 0.360 0.379 0.392 0.432 0.390PatchTST-Best MAE 0.400 0.421 0.440 0.468 0.432 0.336 0.379 0.384 0.422 0.380 0.249 0.256 0.264 0.286 0.263
MSE 0.438 0.457 0.464 0.503 0.466 0.339 0.385 0.394 0.466 0.396 0.560 0.565 0.577 0.597 0.575Preformer-Best MAE 0.455 0.474 0.481 0.512 0.481 0.384 0.435 0.441 0.479 0.435 0.349 0.349 0.351 0.358 0.352
MSE 0.375 0.412 0.435 0.454 0.419 0.270 0.332 0.360 0.419 0.345 0.336 0.346 0.355 0.386 0.355TiDE MAE 0.398 0.422 0.433 0.465 0.429 0.336 0.380 0.407 0.451 0.393 0.253 0.257 0.260 0.273 0.260
MSE 0.371 0.405 0.426 0.436 0.409 0.278 0.344 0.362 0.393 0.344 0.387 0.396 0.410 0.449 0.410MPPN MAE 0.393 0.413 0.425 0.452 0.420 0.335 0.380 0.400 0.434 0.387 0.271 0.273 0.279 0.301 0.281

A PROOFS

Corollary 1. When considering transformed periodic sequences x(t) = a ·x(t− p)+ c, the convo-
lutional model still has an explicit solution to Equation 2 as

w(i) =

{
a, if i = (sl − α · p) mod p

, bi = c.
0, otherwise

(8)

We have discovered that a single convolutional network can successfully capture periodicity in a
time series. However, a general time series can be decomposed into two components: a periodic
sequence and a sequence with a smooth trend (Wu et al., 2021) (Zhou et al., 2022).

Theorem 2. Let x(t) = s(t) + g(t), where s(t) represents the seasonal signal with pe-
riod p and g(t) satisfies V -Lipschitz smooth (i.e. |g(a) − g(b)| ≤ V |a − b|). Then there
exists a convolutional model with look-back window length sl = p + ϵ, ϵ ≥ 0, such that
|x[sl + h]− x̂[sl + h]| ≤ V · (p+ ϵ), h = 0, . . . ,H − 1.

Proof. We denote the length of historical data as sl. In terms of the ground truth of the future time
series, it can be described as follows:

x[sl + h] = s(p+ ϵ+ h) + g(p+ ϵ+ h) (9)

Assuming that the convolutional network is only capable of capturing periodic patterns, we can use
Equation 3 directly as an approximate solution. Then the h-th true value will be predicted:

x̂[sl + h] = x(h+ (p+ ϵ− α · p) mod p)

= s(h+ (p+ ϵ) mod p) + g(h+ (p+ ϵ− α · p) mod p)

= s(p+ ϵ+ h) + g((p+ ϵ− α · p) mod p+ h)

(10)
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Figure 4: The MSE, GPU memory, and average running time (Y-axis) of models under different look-back
window sizes (X-axis) on the Electricity benchmark (T=96).

So we can get

|x[sl + h]− x̂[sl + h]| = g(p+ ϵ+ h)− g((p+ ϵ− α · p) mod p+ h)

≤ V · (p+ ϵ− (p+ ϵ− α · p) mod p)

≤ V · (p+ ϵ)

(11)

This analysis highlights the associated error is bounded given an appropriate look-back window size.

B IMPLEMENTATION DETAILS

All experiments are conducted on the NVIDIA GeForce RTX 2080 Ti GPU, implemented in Py-
Torch. The training process is early stopped within five epochs. We use the ADAM optimizer with
a decay learning rate schedule, which gradually decreases the learning rate over time in a smooth
and controlled manner. The initial learning rate is set to 5·1e-3. and the hyper-parameter convo-
lution kernel size is fine-tuned within the range {20, 35, 55, 128, 196}. Under the configuration
with a look-back window size of 512, the specific hyper-parameters chosen of the Conv model for
each dataset are summarized in Table 7 and Table 8. For long-term time series forecasting, all best
experimental results are derived from three runs with different random seeds, and then calculating
the mean. The related standard deviation and mean values results are summarized in Table 9.

C MORE EXPERIMENTAL RESULTS

Table 6: Summary of seven benchmarks.

Datasets Weather Electricity Traffic ETTm1 ETTm2 ETTh1 ETTh2
Features 21 321 862 7 7 7 7

Timesteps 52,696 26,304 17,544 69,680 69,680 17,420 17,420
Granularity 10 Minutes 1 Hour 1 Hour 15 Minutes 15 Minutes 1 Hour 1 Hour

Date 2020/1-2021/1 2016/7-2019/7 2016/7-2018/7 2016/7-2018/6 2016/7-2018/6 2016/7-2018/6 2016/7-2018/6

C.1 CAN EXISTING LTSF TRANSFORMERS BENEFIT FROM LONGER LOOK-BACK WINDOWS

For the LTSF tasks, a longer look-back window expands the receptive field, which can potentially
improve the predictive accuracy of forecasting models. Here, we compare Conv and Transformer-
based solutions across various look-back window sizes on the Electricity benchmark. We conducted
experiments using a range of look-back window sizes {48, 72, 96, 168, 336, 512, 720, 1000, 1600}
for long-term forecasting, where T=96. In Figure 4 (a), it is evident that the performance of existing
Transformer-based models either degrades or remains stable as the look-back window size increases.
These models struggle to efficiently extract more valuable temporal information when extending the
input horizon. This finding contradicts our initial hypothesis. However, as the look-back window
size increases, Conv demonstrates significant improvements in performance, highlighting its capac-
ity to effectively learn from extended historical data.
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Table 7: Hyperparameters of multivariate long-term time series forecasting tasks. The look-back
window size is 512.

Dataset Pre len Batch Size Learning Rate Kernel Size Individual

ETTh1

96 16 0.005 55 0
192 16 0.005 55 0
336 128 0.005 78 1
720 16 0.005 55 0

ETTh2

96 128 0.005 55 0
192 128 0.005 78 0
336 128 0.0005 78 0
720 128 0.0001 78 0

ETTm1

96 16 0.005 78 1
192 16 0.005 35 0
336 16 0.005 35 0
720 16 0.005 35 0

ETTm2

96 16 0.005 24 1
192 16 0.005 55 1
336 16 0.005 35 0
720 64 0.005 24 0

Weather

96 16 0.005 55 0
192 16 0.005 78 1
336 16 0.005 24 1
720 128 0.005 78 0

Electricity

96 16 0.005 55 0
192 128 0.005 55 1
336 64 0.005 55 0
720 16 0.005 55 0

Traffic

96 16 0.005 35 0
192 16 0.005 35 0
336 16 0.005 24 0
720 16 0.005 24 0

Table 8: Hyperparameters of univariate long-term time series forecasting tasks. The look-back
window size is 512.

Dataset Pre Len Batch size Learning rate Kernel Size Individual

ETTh1

96 16 0.005 24 0
192 16 0.005 55 0
336 64 0.005 55 0
720 128 0.005 78 0

ETTh2

96 128 0.005 24 0
192 16 0.005 35 0
336 128 0.005 24 0
720 128 0.005 24 0

ETTm1

96 64 0.005 55 0
192 64 0.005 24 0
336 16 0.005 35 0
720 16 0.005 35 0

ETTm2

96 16 0.005 55 0
192 16 0.005 24 0
336 64 0.005 24 0
720 16 0.005 24 0

Weather

96 64 0.005 78 0
192 16 0.005 24 0
336 16 0.005 78 0
720 128 0.005 55 0

Electricity

96 16 0.005 35 0
192 64 0.005 35 0
336 64 0.005 35 0
720 16 0.005 35 0

Traffic

96 16 0.005 24 0
192 64 0.005 35 0
336 16 0.005 35 0
720 16 0.005 24 0

In Figure 4 (b) and (c), we illustrate the GPU memory utilization and average running time of
Transformer-based models and Conv model as the look-back window size is varied from 48 to
1000. Notably, PatchTST and Autoformer exhibit heightened sensitivity to changes in window size.
Moreover, PatchTST runs out of memory when the look-back window size is greater than or equal
to 720. In contrast, our model maintains relatively stable memory utilization while the lookback
window increases. Conv achieves superior accuracy while concurrently sustaining significantly
improved memory efficiency and reduced average running time.
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Table 9: The error bars of Conv-Best with 3 runs, output length H ∈ {96, 192, 336, 720} on Traffic,
Electricity, and ETTm2.

Dataset Traffic Electricity ETTm2
Metric Seed1 Seed2 Seed3 Mean Std. Seed1 Seed2 Seed3 Mean Std. Seed1 Seed2 Seed3 Mean Std.

96 MSE 0.3837 0.3838 0.3833 0.3836 0.00021 0.1294 0.1294 0.1295 0.1295 0.00005 0.1615 0.1621 0.1618 0.1618 0.00023
MAE 0.2714 0.2715 0.2708 0.2712 0.00029 0.2249 0.2249 0.2250 0.2250 0.00005 0.2492 0.2494 0.2495 0.2494 0.00012

192 MSE 0.3977 0.3970 0.3970 0.3972 0.00035 0.1438 0.1441 0.1437 0.1439 0.00015 0.2174 0.2171 0.2171 0.2172 0.00014
MAE 0.2755 0.2751 0.2752 0.2753 0.00018 0.2385 0.2390 0.2385 0.2387 0.00024 0.2879 0.2878 0.2878 0.2878 0.00006

336 MSE 0.4114 0.4110 0.4110 0.4111 0.00022 0.1594 0.1594 0.1598 0.1595 0.00019 0.2576 0.2577 0.2575 0.2576 0.00008
MAE 0.2820 0.2819 0.2820 0.2820 0.00005 0.2549 0.2553 0.2553 0.2551 0.00018 0.3292 0.3294 0.3292 0.3293 0.00007

720 MSE 0.4509 0.4499 0.4507 0.4505 0.00041 0.1955 0.1949 0.1950 0.1951 0.00023 0.3230 0.3268 0.3243 0.3247 0.00157
MAE 0.3027 0.3017 0.3019 0.3021 0.00042 0.2863 0.2861 0.2863 0.2863 0.00008 0.3787 0.3794 0.3796 0.3793 0.00038

C.2 ABLATION STUDIES

In this section, we conduct additional ablation experiments to verify the validity of the group-wise
convolution (the number of channels is equal to the variable dimension and the number of filters) and
cross-channel convolution in the Conv model. Tables 10 and 11 display quantitative results with
fixed input lengths of 336 and 512 and four different forecasting horizons. We use the following
variable names: 1 Conv uses depthwise convolution (channel independence), 2 ConvCD uses
so-called channel-dependent convolution. It proves that the group-wise convolution can better mine
the long sequence information, at least for existing benchmarks.

Table 10: Ablations on depthwise convolution with a look-back window size of 336 on six bench-
marks.

Conv ConvCDBenchmark 96 192 336 720 96 192 336 720
MSE 0.370 0.407 0.422 0.451 0.394 0.475 0.464 0.535ETTh1 MAE 0.394 0.417 0.428 0.458 0.418 0.461 0.465 0.509
MSE 0.277 0.341 0.330 0.379 0.340 0.398 0.373 0.452ETTh2 MAE 0.343 0.383 0.387 0.420 0.394 0.433 0.421 0.466
MSE 0.287 0.328 0.366 0.422 0.305 0.346 0.378 0.430ETTm1 MAE 0.334 0.358 0.380 0.413 0.352 0.375 0.390 0.421
MSE 0.163 0.217 0.271 0.368 0.175 0.247 0.330 0.437ETTm2 MAE 0.250 0.288 0.324 0.385 0.264 0.310 0.368 0.426
MSE 0.143 0.185 0.237 0.313 0.145 0.192 0.247 0.321Weather MAE 0.189 0.230 0.271 0.326 0.199 0.243 0.284 0.333
MSE 0.136 0.150 0.167 0.204 0.250 0.279 0.274 0.310Electricity MAE 0.230 0.243 0.259 0.292 0.356 0.371 0.372 0.396

Table 11: Ablations on depthwise convolution with a look-back window size of 512 on six bench-
marks.

Conv ConvCD

Benchmark 96 192 336 720 96 192 336 720

MSE 0.365 0.401 0.419 0.464 0.450 0.441 0.512 0.605ETTh1 MAE 0.393 0.416 0.437 0.472 0.455 0.460 0.501 0.541

MSE 0.269 0.329 0.335 0.379 0.336 0.371 0.369 0.470ETTh2 MAE 0.339 0.383 0.394 0.424 0.385 0.411 0.419 0.481

MSE 0.292 0.332 0.364 0.418 0.315 0.358 0.390 0.445ETTm1 MAE 0.338 0.361 0.380 0.411 0.359 0.385 0.405 0.441

MSE 0.161 0.216 0.271 0.361 0.179 0.248 0.311 0.430ETTm2 MAE 0.249 0.288 0.327 0.387 0.272 0.318 0.363 0.429

MSE 0.140 0.183 0.234 0.306 0.150 0.199 0.246 0.315Weather MAE 0.190 0.230 0.271 0.325 0.203 0.251 0.283 0.334

MSE 0.132 0.145 0.161 0.201 0.252 0.246 0.263 0.282Electricity MAE 0.227 0.241 0.257 0.289 0.360 0.351 0.367 0.378
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C.3 ROBUSTNESS EXPERIMENTS

In order to assess the potential influence of different random initializations for long-term forecasting,
we conduct experiments on Weather, Electricity, Traffic, ETTm2, ETTh1, and ETTh2 datasets. Each
experimental configuration was repeated with five random seeds. The robust experimental results
are provided in Figure 5. In general, we observe that DConv exhibits reliability and stability towards
different initialization. However, on the traffic dataset, there is a certain degree of fluctuation in the
results. We think the reason for the poor performance of DConv on traffic datasets is excessively
high variable dimensionality (C = 862). A simple two-layer network is insufficient for modeling
high-dimensional and large-scale datasets due to the limited parameter capacity of the model.
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Figure 5: Robust experiments of DConv with different random seeds. The X-axis corresponds to the prediction
length, and the Y-axis represents the MSE/MAE metrics.

C.4 MORE EXPERIMENTAL DATASETS

In this section, we add additional experiments to further verify the validity of LTSF-Conv model
in different LTSF tasks. Solar power prediction is a crucial aspect within the realm of renewable
energy, wielding significant influence across diverse domains. We add two datasets from real-world
applications, namely the Solar-Jinta and Solar-Alabama benchmarks. Solar-Jinta records seven key
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Table 12: Multivariate long-term time series forecasting results on Solar benchmarks.

Benchmarks Methods
Metric

MSE MAE
96 192 336 720 Avg 96 192 336 720 Avg

Solar-Energy

DConv 0.173 0.189 0.201 0.206 0.192 0.229 0.237 0.244 0.245 0.239
PatchTST 0.178 0.192 0.203 0.218 0.197 0.248 0.265 0.267 0.274 0.263

Flowformer 0.190 0.267 0.279 0.243 0.245 0.229 0.263 0.268 0.252 0.253
Reformer 0.195 0.223 0.253 0.281 0.238 0.234 0.252 0.286 0.286 0.265
Informer 0.195 0.220 0.259 0.246 0.230 0.241 0.241 0.274 0.266 0.256
LogTrans 0.219 0.217 0.224 0.241 0.225 0.240 0.244 0.258 0.269 0.252
Dlinear 0.221 0.231 0.247 0.255 0.239 0.294 0.301 0.317 0.314 0.307

Solar- Jinta

DConv 0.480 0.521 0.539 0.648 0.547 0.481 0.496 0.522 0.573 0.518
PatchTST 0.491 0.602 0.617 0.710 0.605 0.464 0.523 0.533 0.601 0.530

Flowformer 0.646 0.792 0.748 1.065 0.812 0.565 0.624 0.611 0.783 0.645
Reformer 0.954 0.934 0.993 0.995 0.969 0.773 0.757 0.742 0.730 0.751
Informer 0.718 0.821 0.847 1.102 0.872 0.616 0.656 0.737 0.855 0.716
LogTrans 0.704 0.817 0.754 1.012 0.821 0.594 0.651 0.642 0.762 0.662
Dlinear 0.523 0.588 0.638 0.734 0.620 0.496 0.531 0.562 0.616 0.551

meteorological factors of solar radiation, collected by the hour. Solar-Alabama 1 contains the solar
power production of 137 PV plants in the USA, with a data granularity of 10 minutes. The solar
power of different PV plants is influenced by varying geographical and weather conditions. Table
12 provides a summary of prediction results from several popular baselines on the Solar-Energy
datasets. It can be observed that DConv outperforms the other baselines for most horizons by a large
margin. Moreover, compared to other datasets, the Solar-Jinta benchmark has a smaller size. The
experimental results also indicate that our model performs equally well on small datasets, ensuring
its generalizability and robustness.

D LIMITATIONS AND FUTURE WORK

In this work, we reconsider the significance of model complexity on prediction results, even seem-
ingly straightforward models can yield competitive results. However, for high-dimensional and
large-scale datasets, we need to further stack our proposed basic units to increase the model’s ca-
pacity, enabling it to better adapt to intricate tasks, enhancing representational power, depth, feature
extraction, and generalization performance. In practical scenarios, a substantial amount of time
series data frequently incorporates spatial information. In future work, we intend to construct ad-
ditional spatial modules built upon the LTSF-Conv basic unit to strengthen the adaptability of the
model. Furthermore, we plan to extend LTSF-Conv to various other downstream tasks, such as
classification and anomaly detection.

-1.5

-0.5

0.5

1.5

2.5

3.5

Ground Truth RLinear DLinear Ours

(a): Channel 1.

-1

-0.5

0

0.5

1

1.5

2

OursDLinearRLinearGround Truth

(b): Channel 2.

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Ground Truth RLinear DLinear Ours

(c): Channel 3.

Figure 6: Forecasting results on Electricity with three random channels of different periods under the predict-
96 setting.

1https://github.com/laiguokun/multivariate-time-series-data/
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Table 13: Model efficiency comparison under sl = 336 on Electricity.

Models Series Length Trainable Parameter GPU Memory Running Time Iters Training Time Inference Time GPUs
(M) (MiB) (s / iter) (nums) (s) (s) (nums)

Conv

96 0.0446 90.71 10.56 20 211.27 10.75 1
192 0.0769 117.45 11.89 22 261.59 14.40 1
336 0.1254 170.00 14.04 19 266.75 21.58 1
720 0.2548 285.68 19.43 30 582.79 29.69 1
Avg 0.1254 165.96 13.98 22.75 330.60 19.11 1

DConv

96 0.0763 119.99 11.68 26 303.65 15.40 1
192 0.1410 146.42 13.08 29 379.41 24.64 1
336 0.2380 207.08 15.08 19 286.46 34.72 1
720 0.4968 349.91 20.06 20 401.24 59.55 1
Avg 0.2380 205.85 14.98 23.5 342.69 33.58 1

PatchTST

96 0.9212 15978.00 265.30 50 13264.98 40.55 2
192 1.4374 15999.82 265.87 19 5051.50 48.58 2
336 2.2117 16034.15 266.07 49 13037.56 57.42 2
720 4.2764 16116.24 265.34 22 5837.58 80.39 2
Avg 2.2116 16032.05 265.65 35 9297.90 56.74 2

Autoformer

96 12.1439 4538.82 136.52 6 819.10 30.14 1
192 12.1439 5223.64 156.88 7 1098.13 37.52 1
336 12.1439 5513.15 185.88 6 1115.30 51.26 1
720 12.1439 8529.48 273.23 7 1912.64 79.31 1
Avg 12.1439 5951.27 188.18 6.5 1236.29 49.56 1

Informer

96 12.4537 2315.98 86.87 8 694.94 19.08 1
192 12.4537 2444.42 96.50 15 1447.57 25.46 1
336 12.4537 2086.85 113.19 8 905.48 33.97 1
720 12.4537 2590.08 149.48 18 2690.69 56.90 1
Avg 12.4537 2359.33 111.51 12.25 1434.67 33.85 1

Reformer

96 6.4382 2858.95 115.18 10 1151.81 22.61 1
192 6.4382 3467.09 137.28 7 960.94 29.53 1
336 6.4382 4378.95 170.68 10 1706.78 41.98 1
720 6.4382 7049.06 263.51 13 3425.62 67.07 1
Avg 6.4382 4438.52 171.66 10 1811.29 40.30 1

LogTrans

96 11.6657 3087.83 88.51 8 708.07 17.79 1
192 11.6657 3375.00 98.27 14 1375.80 23.89 1
336 11.6657 2996.17 113.14 7 791.99 34.02 1
720 11.6657 5033.59 175.74 28 4920.77 56.55 1
Avg 11.6657 3623.15 118.92 14.25 1949.16 33.07 1
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Figure 7: Visualization of the weights of DConv on different benchmarks. The X-axis represents
the look-back window size, and the Y-axis represents the prediction length.
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Table 14: Model efficiency comparison under sl = 336 on Weather.

Models Series Length Trainable Parameter GPU Memory Running Time Iters Training Time Inference Time GPUs
(M) (MiB) (s / iter) (nums) (s) (s) (nums)

Conv

96 0.0332 6.19 7.58 11 83.42 5.91 1
192 0.0655 8.40 7.54 20 150.73 6.51 1
336 0.1140 12.09 7.97 15 119.48 7.58 1
720 0.2434 21.94 8.62 21 181.04 8.82 1
Avg 0.1140 12.15 7.93 16.75 133.67 7.20 1

DConv

96 0.0654 8.49 8.85 8 70.78 7.68 1
192 0.1302 11.04 9.24 10 92.38 8.55 1
336 0.2272 15.43 8.94 25 223.56 9.47 1
720 0.4860 28.12 9.36 10 93.57 13.47 1
Avg 0.2272 15.77 9.10 13.25 120.08 9.79 1

PatchTST

96 0.9212 1065.29 81.14 23 1866.22 13.29 1
192 1.4374 1073.08 81.33 13 1057.25 14.44 1
336 2.2117 1086.64 81.73 11 898.98 15.63 1
720 4.2764 1122.29 82.86 12 994.39 19.41 1
Avg 2.2116 1086.82 81.76 14.75 1204.20 15.69 1

Autoformer

96 10.6076 4465.52 266.57 6 1599.39 42.04 1
192 10.6076 5142.19 303.50 6 1820.98 48.28 1
336 10.6076 5125.08 363.88 6 2183.29 69.68 1
720 10.6076 8016.37 532.23 6 3193.39 96.93 1
Avg 10.6076 5687.29 366.54 6 2199.26 64.23 1

Informer

96 11.3782 2251.79 158.98 7 1112.86 19.923 1
192 11.3782 2369.26 176.47 7 1235.31 22.22 1
336 11.3782 1997.09 203.78 6 1222.69 32.52 1
720 11.3782 2435.73 278.99 11 3068.91 45.62 1
Avg 11.3782 2263.47 204.56 7.75 1659.94 30.07 1

Reformer

96 5.8235 2784.63 221.54 11 2436.91 27.35 1
192 5.8235 3371.91 268.70 8 2149.58 32.99 1
336 5.8235 4256.18 343.30 7 2403.12 46.07 1
720 5.8235 6892.63 526.34 10 5263.38 72.81 1
Avg 5.8235 4326.33 339.97 9 3063.25 44.80 1

LogTrans

96 10.5902 3018.15 168.47 6 1010.84 19.03 1
192 10.5902 3297.23 189.21 6 1135.27 25.35 1
336 10.5902 2892.28 220.57 6 1323.41 30.14 1
720 10.5902 4877.56 344.36 6 2066.19 43.56 1
Avg 10.5902 3521.30 230.65 6 1383.92 29.52 1

Table 15: Model efficiency comparison under sl = 336 on ETTm2.

Models Series Length Trainable Parameter GPU Memory Running Time Iters Training Time Inference Time GPUs
(M) (MiB) (s / iter) (nums) (s) (s) (nums)

Conv

96 0.0326 2.40 6.11 26 158.79 5.84 1
192 0.0649 3.46 6.18 18 111.20 5.92 1
336 0.1135 5.19 6.27 27 169.33 6.32 1
720 0.2429 9.79 6.80 16 108.74 7.15 1
Avg 0.1134 5.21 6.34 21.75 137.02 6.31 1

DConv

96 0.0650 3.55 10.90 22 239.78 8.36 1
192 0.1297 4.88 12.19 15 182.87 10.29 1
336 0.2267 7.05 12.16 16 194.59 8.73 1
720 0.4855 13.18 10.36 16 165.82 10.13 1
Avg 0.2267 7.17 11.40 17.25 195.76 9.38 1

PatchTST

96 0.9212 365.60 29.28 11 322.07 8.27 1
192 1.4374 376.49 30.79 11 338.71 8.91 1
336 2.2117 387.91 30.04 10 300.44 9.56 1
720 4.2764 421.48 30.20 9 271.81 10.37 1
Avg 2.2116 387.87 30.08 10.25 308.26 9.28 1

Autoformer

96 10.5370 3046.10 191.56 9 1724.04 37.30 1
192 10.5370 3378.39 215.69 7 1509.83 41.80 1
336 10.5370 2909.60 246.71 10 2467.10 53.38 1
720 10.5370 4449.39 346.27 6 2077.63 72.89 1
Avg 10.5370 3445.87 250.06 8 1944.65 51.35 1

Informer

96 11.3290 2258.83 161.44 6 968.66 26.85 1
192 11.3290 2381.14 180.83 6 1084.99 30.28 1
336 11.3290 2005.51 204.47 8 1635.76 36.36 1
720 11.3290 3128.20 282.11 15 4231.67 50.62 1
Avg 11.3290 2443.42 207.21 8.75 1980.27 36.03 1

Reformer

96 5.7953 2780.49 208.82 6 1252.94 31.75 1
192 5.7953 3368.69 253.63 6 1521.75 37.71 1
336 5.7953 4249.20 317.01 8 2536.10 47.34 1
720 5.7953 6884.70 489.97 7 3429.76 73.77 1
Avg 5.7953 4320.77 317.36 6.75 2185.14 47.64 1

LogTrans

96 10.5411 3015.32 159.83 9 1438.46 22.07 1
192 10.5411 3293.75 178.98 7 1252.85 25.12 1
336 10.5411 2888.15 207.05 7 1449.32 28.89 1
720 10.5411 4870.88 322.14 7 2254.95 42.60 1
Avg 10.5411 3517.03 217.00 7.5 1598.89 29.67 1
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Table 16: The performance comparison of two structures. Ori represents the original encoder-
decoder structure, and a modified version is denoted as Half -Ex, which retains half of the original
design, only the decoder part.

Methods FEDformer Autoformer LogTrans
MSE MAE MSE MAE MSE MAE

Predict Length Ori Half -Ex Ori Half -Ex Ori Half -Ex Ori Half -Ex Ori Half -Ex Ori Half -Ex

ETTh1

96 0.376 0.374 0.419 0.414 0.449 0.387 0.459 0.423 0.878 0.839 0.74 0.708
192 0.42 0.422 0.448 0.446 0.5 0.437 0.482 0.447 1.037 1.056 0.824 0.823
336 0.459 0.447 0.465 0.463 0.521 0.502 0.496 0.491 1.238 1.005 0.932 0.811
720 0.506 0.487 0.507 0.492 0.514 0.493 0.512 0.501 1.135 1.212 0.852 0.914
Avg 0.44 0.432 0.459 0.453 0.496 0.454 0.487 0.465 1.072 1.028 0.837 0.814

ETTh2

96 0.346 0.34 0.388 0.383 0.358 0.405 0.397 0.422 2.116 1.772 1.197 1.074
192 0.429 0.431 0.439 0.438 0.456 0.426 0.452 0.433 4.315 3.986 1.635 1.601
336 0.496 0.481 0.487 0.479 0.482 0.452 0.486 0.463 4.511 3.722 1.758 1.588
720 0.463 0.466 0.474 0.478 0.515 0.467 0.511 0.482 3.188 3.161 1.54 1.473
Avg 0.433 0.429 0.447 0.444 0.452 0.437 0.461 0.45 3.532 3.16 1.532 1.434

ETTm1

96 0.379 0.361 0.419 0.408 0.505 0.517 0.475 0.484 0.6 0.548 0.546 0.529
192 0.426 0.404 0.441 0.432 0.553 0.557 0.496 0.504 0.837 0.659 0.7 0.602
336 0.445 0.454 0.459 0.461 0.621 0.541 0.537 0.496 1.124 1.011 0.832 0.77
720 0.543 0.508 0.49 0.488 0.671 0.559 0.561 0.507 1.153 1.079 0.82 0.806
Avg 0.448 0.431 0.452 0.447 0.587 0.543 0.517 0.497 0.928 0.824 0.724 0.676

ETTm2

96 0.203 0.188 0.287 0.281 0.255 0.214 0.339 0.296 0.768 0.555 0.642 0.547
192 0.269 0.255 0.328 0.322 0.281 0.273 0.34 0.33 0.989 0.854 0.757 0.713
336 0.325 0.318 0.366 0.363 0.339 0.328 0.372 0.363 1.334 1.153 0.872 0.794
720 0.421 0.427 0.415 0.422 0.422 0.428 0.419 0.421 3.048 3.048 1.328 1.31
Avg 0.304 0.297 0.349 0.347 0.324 0.31 0.367 0.352 1.534 1.402 0.899 0.841

Traffic

96 0.587 0.569 0.366 0.352 0.613 0.615 0.388 0.396 0.684 0.676 0.384 0.369
192 0.604 0.599 0.373 0.373 0.616 0.626 0.382 0.394 0.685 0.674 0.39 0.367
336 0.621 0.614 0.383 0.376 0.622 0.619 0.337 0.385 0.734 0.658 0.408 0.358
720 0.626 0.624 0.382 0.38 0.66 0.635 0.408 0.395 0.717 0.679 0.396 0.363
Avg 0.609 0.601 0.376 0.37 0.627 0.623 0.378 0.392 0.705 0.671 0.394 0.364

Exchange

96 0.148 0.135 0.278 0.263 0.197 0.153 0.323 0.285 0.968 0.59 0.812 0.594
192 0.271 0.278 0.38 0.384 0.3 0.268 0.369 0.378 1.04 1.076 0.851 0.783
336 0.46 0.448 0.5 0.492 0.509 0.45 0.524 0.499 1.659 1.28 1.081 0.923
720 1.195 1.163 0.841 0.824 1.447 1.141 0.941 0.827 1.941 2.545 1.127 1.366
Avg 0.518 0.506 0.499 0.49 0.613 0.503 0.539 0.497 1.402 1.372 0.967 0.916

ILI

24 3.228 3.171 1.26 1.235 3.483 3.277 1.287 1.255 4.48 4.226 1.444 1.325
36 2.679 2.598 1.08 1.056 3.103 2.772 1.148 1.118 4.799 4.598 1.467 1.405
48 2.622 2.48 1.078 1.045 2.669 2.697 1.085 1.114 4.8 4.967 1.468 1.462
60 2.857 2.721 1.157 1.118 2.77 2.737 1.125 1.122 5.278 4.772 1.56 1.461

Avg 2.846 2.742 1.143 1.113 3 2.87 1.161 1.152 4.839 4.64 1.484 1.413

Electricity

96 0.193 0.184 0.308 0.299 0.201 0.195 0.317 0.307 0.258 0.271 0.357 0.365
192 0.201 0.196 0.315 0.31 0.222 0.225 0.334 0.335 0.266 0.278 0.368 0.37
336 0.214 0.212 0.329 0.326 0.231 0.251 0.338 0.359 0.28 0.283 0.38 0.373
720 0.246 0.239 0.355 0.348 0.254 0.28 0.361 0.383 0.283 0.289 0.376 0.375
Avg 0.213 0.207 0.326 0.32 0.227 0.237 0.337 0.346 0.271 0.28 0.37 0.37

Weather

96 0.217 0.264 0.239 0.345 0.266 0.225 0.336 0.3 0.458 0.435 0.49 0.462
192 0.276 0.254 0.336 0.316 0.307 0.298 0.367 0.353 0.658 0.459 0.589 0.474
336 0.339 0.359 0.38 0.395 0.359 0.345 0.395 0.382 0.797 0.501 0.652 0.504
720 0.403 0.398 0.428 0.411 0.419 0.411 0.428 0.42 0.675 0.668 1.13 0.587
Avg 0.308 0.318 0.345 0.366 0.337 0.319 0.381 0.363 0.647 0.515 0.715 0.506

Table 17: Comparison of practical efficiency of LTSF-Linear and LTSF-Conv under sl = 336 on
the Electricity. All results are the average test of three runs.

Models RLinear DLinear Conv

CI S CI S -

Trainable Parameter (M)

96 10.39 0.03 31.15 0.1 0.04
192 20.77 0.07 62.31 0.19 0.08
336 36.35 0.11 109.04 0.34 0.13
720 77.89 0.24 233.66 0.73 0.25

GPU Memory (MiB)

96 536.93 307.47 716.18 398.01 336.79
192 737.83 400.058 1190.77 501.78 452.89
336 1148.48 581.36 1905.77 661.24 634.2
720 2263.83 1064.83 3974.65 1148.93 1117.67

Running Time (s / epoch)

96 68.47 7.83 50.81 8.48 7.18
192 73.13 9.095 53.46 9.96 8.47
336 78.92 11.19 64.29 13.96 12.99
720 94.57 16.25 93.61 20.4 16.54
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