Under review as a conference paper at ICLR 2025

ASYNCHRONOUS STOCHASTIC GRADIENT DESCENT
WITH DECOUPLED BACKPROPAGATION AND LAYER-
WISE UPDATES

Anonymous authors
Paper under double-blind review

ABSTRACT

The increasing size of deep learning models has created the need for more efficient
alternatives to the standard error backpropagation algorithm, that make better use
of asynchronous, parallel and distributed computing. One major shortcoming of
backpropagation is the interlocking between the forward phase of the algorithm,
which computes a global loss, and the backward phase where the loss is back-
propagated through all layers to compute the gradients, which are used to update
the network parameters. To address this problem, we propose a method that paral-
lelises SGD updates across the layers of a model by asynchronously updating them
from multiple threads. Furthermore, since we observe that the forward pass is of-
ten much faster than the backward pass, we use separate threads for the forward
and backward pass calculations, which allows us to use a higher ratio of forward
to backward threads than the usual 1:1 ratio, reducing the overall staleness of the
parameters. Thus, our approach performs asynchronous stochastic gradient de-
scent using separate threads for the loss (forward) and gradient (backward) com-
putations and performs layer-wise partial updates to parameters in a distributed
way. We show that this approach yields close to state-of-the-art results while
running up to 2.97x faster than Hogwild! scaled on multiple devices (Locally-
Partitioned-Asynchronous-Parallel SGD). We theoretically prove the convergence
of the algorithm using a novel theoretical framework based on stochastic differ-
ential equations and the drift diffusion process, by modeling the asynchronous
parameter updates as a stochastic process.

1 INTRODUCTION

Scaling up modern deep learning models requires massive resources and training time. Asyn-
chronous parallel and distributed methods for training them using backpropagation play a very
important role in easing the demanding resource requirements for training these models. Back-
propagation (BP) (Werbos, 1982) has established itself as the de facto standard method for learning
in deep neural networks (DNN). Although BP achieves state-of-the-art accuracy on literally all rel-
evant machine learning tasks, it comes with a number of inconvenient properties that prohibit an
efficient implementation at scale.

BP is a two-phase synchronous learning strategy in which the first phase (forward pass) computes the
training loss, £, given the current network parameters and a batch of data. In the second phase, the
gradients are propagated backwards through the network to determine each parameter’s contribution
to the error, using the same weights (transposed) as in the forward pass (see Equation 1). BP suffers
from update locking, where a layer can only be updated after the previous layer has been updated.
Furthermore, the computation of gradients can only be started after the loss has been calculated in
the forward pass.

Moreover, the backward pass usually requires approximately twice as long as the forward pass (Ku-
mar et al., 2021). The bulk of the computational load comes from the number of matrix multiplica-
tions required during each phase. If we consider a DNN with M layers, then at any layer m < M
with pre-activations z,,, = 0., Ym—1 and post-activations y,, = f(2m—1), the computations dur-
ing the forward pass are dominated by one matrix multiplication 6,,,y,,—1. During the backward

Under review as a conference paper at ICLR 2025

pass, the computations at layer m are dominated by two matrix multiplications:

a£ ’ a£
—— = f (OmYm—1) X ym—lT and 5
Ym—1

00,
approximately doubling the compute budget required for the backward pass compared to the for-
ward pass. In Eq. 1, 6,, denotes the network weights at layer m and f’ the partial derivative with
respect to 6,,,. This imbalance between forward and backward phase further complicates an efficient
parallelization of BP, particularly in heterogeneous settings.

= £ (OmYm—1) x O | (1)

In this work, we propose a new approach to parallelize training of deep networks on non-convex
objective functions by asynchronously performing the forward and backward passes at a layer-wise
granularity in multiple separate threads that make lock-free updates to the parameters in shared
memory. The lock-free updates address the locking problem, performing layer-wise updates mit-
igates the issue of conflicts between parameter updates, and performing the backward pass and
updates using more threads than the forward pass mitigates the staleness problem. Specifically, the
imbalance in execution time between forward and backward passes is taken care of by having twice
as many backward threads than forward threads, breaking the 1:1 ratio of vanilla Backpropagation,
therefore significantly speeding-up the training process.

In summary, the contributions of this paper are as follows:

1. We introduce a novel asynchronous formulation of Backpropagation which allows the for-
ward pass and the backward pass to be executed separately and in parallel, which allows us
to run more backward than forward threads. This approach accounts for the unequal time
required by the forward and backward passes.

2. We propose to asynchronously update the model’s parameters at a layer-wise granularity
without using a locking mechanism which reduces staleness.

3. We give convergence guarantees of the algorithm to a stationary distribution centered
around the local optima of conventional BP.

4. We show that the algorithm can reach state-of-the-art performances while being signifi-
cantly faster than competing asynchronous algorithms.

2 RELATED WORK

Asynchronous stochastic gradient descent (SGD). Asynchronous SGD has a long history, starting
from Baudet (1978); Bertsekas & Tsitsiklis (2015). Hogwild! (Recht et al., 2011) allows multiple
processes to perform SGD without any locking mechanism on shared memory. Kungurtsev et al.
(2021) proposed PASSM and PASSM+, where they partition the model parameters across the work-
ers on the same device to perform SGD on the partitions. Chatterjee et al. (2022) decentralizes
Hogwild! and PASSM+ to allow parameters or their partitions to be located on multiple devices and
perform Local SGD on them. Zheng et al. (2017) compensate the delayed gradients with a gradient
approximation at the current parameters. Unlike these methods, we run multiple backward passes in
parallel on different devices and don’t need any gradient compensation scheme.

Nadiradze et al. (2021) provides a theoretical framework to derive convergence guarantees for a wide
variety of distributed methods. Mishchenko et al. (2022) proposes a method of “virtual iterates” to
provide convergence guarantees independent of delays. More recently, Even et al. (2024) proposed
a unified framework for convergence analysis of distributed algorithms based on the AGRAF frame-
work. There have been lots of other analysis methods proposed for deriving convergence guarantees
for asynchronous distributed SGD (see Assran et al. (2020) for a survey). In our work, we propose an
entirely novel framework based on stochastic differential equations, and provide convergence guar-
antees of the algorithm to a stationary distribution centered around the local optima of conventional
BP.

Communication-efficient algorithms. One of the bottlenecks when training on multiple devices
or nodes in parallel is the synchronization step. The bigger or deeper the models get, the more time
is consumed by synchronization. PowerSGD computes low-rank approximations of the gradients
using power iteration methods. Poseidon (Zhang et al., 2017) also factorizes gradient matrices
but interleaves their communication with the backward pass. Wen et al. (2017) and Alistarh et al.

Under review as a conference paper at ICLR 2025

(2017) quantize gradients to make them lightweight for communication. Like Zhang et al. (2017),
we interleave the backward pass with gradients communication but without gradients averaging.

Block local learning. Dividing the network across multiple devices and performing local updates is
a widely recognized approach in distributed learning. The backward passes of the different blocks
can be done simultaneously. The global loss is used to provide feedback only to the output block
while the remaining blocks get learning signals from auxiliary networks which each compute local
targets. Jaderberg et al. (2016) models synthetic gradients through auxiliary networks. Ma et al.
(2024) uses a shallower version of the network itself as the auxiliary network at each layer. Gomez
et al. (2022) allows gradients to flow to k-neighboring blocks. Ngkland & Eidnes (2019) don’t
allow gradients to flow to neighboring blocks, and instead use an auxiliary matching loss and a
local cross-entropy loss to compute the local error. Decoupled Parallel Backpropagation (Huo et al.,
2018) does full Backpropagation but uses stored stale gradients in the blocks to avoid update locking,
therefore needing additional memory buffers. Kappel et al. (2023) take a probabilistic approach by
interpreting layers outputs as parameters of a probability distribution. Auxiliary networks provide
local targets, which are used to train each block individually. Similar to these distributed paradigms,
we mimic the execution of multiple backward passes in parallel by reordering the training sequence
but without splitting the network explicitly during forward and backward propagation across devices
and needing external buffers or architectural complexities.

3 METHODS

B

L= = | o] s TeTw] Ta [e

A >
{ 1] o

[v]e]ef EE T
Thread
—_—
Interactions

| L3 | L2 | L1 | | L3 ‘ L2 ?_:Ckward
read 2

BY

Figure 1: Illustration of decoupled backpropagation with separate threads for the forward and back-
ward passes and the layer-wise updates. For each thread, the order of computations for a sample
network with three layers denoted L1, L2 and L3, are shown. Arrows denote dependencies across
threads. Within each thread, the computations for each layer are performed sequentially, whereas
across threads, the dependencies are layer-wise. Interactions for 2 backward threads and a single
forward thread are shown. This asynchronous interaction, along with layer-wise updates, reduces
the staleness of parameters.

3.1 ASYNCHRONOUS FORMULATION OF BACKPROPAGATION

We introduce a new asynchronous stochastic gradient descent method where, instead of performing
the forward and backward phases sequentially, we execute them in parallel and perform layer-wise
parameter updates as soon as the gradients for a given layer are available. The dependencies between
forward and backward phases are illustrated in Figure 1.

Since the gradient computation in the backward pass tends to consume more time than the loss
calculation in the forward pass, we decouple these two into separate threads and use one forward
thread and two backward threads to counterbalance the disproportionate execution time.

Figure 1 illustrates the interaction among threads based on one example. Initially, only the first

forward pass, Féo), is performed. The resulting loss is then used in the first backward pass Bél),

) (2)

which starts in parallel to the second forward pass F1(1 . Once Fl(l) ends, its loss is used by B

running in parallel to the next forward pass and B((Jl).

Under review as a conference paper at ICLR 2025

3.2 LAYER-WISE UPDATES

Parallelizing the forward and backward passes can speed up training, but it violates several key
assumptions of Backpropagation leading to sub-optimal convergence observed in different studies
(Keuper & Preundt, 2016; Zheng et al., 2017). This happens because the losses and gradients are
often calculated using inconsistent and outdated parameters.

To alleviate this problem, we update the layers as soon as the corresponding gradients are available

from the backward pass. Fl(l) receives partial parameter updates from B((Jl) as soon as they are

)

available. Therefore, the parameters used in Fl(l) will differ from those used in Féo because some

layers of the model would have been already updated by the thread Bél). On average, we can expect

that the second half of the layers use a new set of parameters. It is important to note that the updates
happen without any locking mechanism and asynchronous to the backward pass as done by Zhang
et al. (2017).

3.3 SPEED-UP ANALYSIS

Before discussing experimental results, we study the potential speed-up of the asynchronous with
layer-wise updates formulation over standard Backpropagation. To arrive at this result, we make the
following assumptions to estimate the performance gain

* We assume that there are no delays between the end of a forward pass, the beginning of
its corresponding backward pass and the next forward pass. This implies for example that

as soon as Féo) ends, Fl(l) and Bél) begin immediately. Multiples backward threads are
therefore running in parallel.

* Vanilla Backpropagation performs b forward passes. We assume that this number also
corresponds to the number of backward passes and the number of batches of data to be
trained on.

* A forward pass lasts 7" units of time and a backward pass 87 units of time, with a scaling
factor 8 > 1 (expected to be at around 2 as show in appendix A.3).

The speed-up factor A observed can be express as the fraction between the estimated time taken
by the standard BP, 7}, over the Async version of BP, 75. Due to the sequential nature of BP,
Ty = (14 B)bT. Similarly, T5 = (b + B)T since the backward pass runs parallel to the forward
pass. The speed-up factor A is given by:

N (1+8)b

(b+8)

Considering a large number of batches, b — co, we have
A=1+7.

Hence, the maximum achievable speedup is expected to be 1 + 3, where 3 is the scaling factor of
the backward pass time. In practice, the speed-up factor A can be influenced by multiples factors
like data loading which is sometimes a bottleneck (Leclerc et al., 2023; Isenko et al., 2022), or the
system overhead, which reduce the achievable speedup.

3.4 STALENESS ANALYSIS

Here, we demonstrate the advantage of applying layer-wise updates (LU) compared to block updates
(BU). BU refers to performing updates only after the entire backward pass is complete, a technique
used in various previous asynchronous learning algorithms, e.g. (Recht et al., 2011; Chatterjee et al.,
2022; Zheng et al., 2017). We use the same notation as in section 3.3.

To express this formally, we define the relative staleness 7 of BU compared to LU as the time delay
between when the gradients become available and when they are used to update the model weights.
The intuition behind this lies in the fact that the more the updates are postponed, the more likely the
gradients will become stale. The staleness will only increase with time and accumulate across the

Under review as a conference paper at ICLR 2025

layers. Assuming that the time required to compute the gradients for each layer is uniform and equal

to %, the relative staleness is expressed as 7 = %

To see this, we use that by definition, the staleness increases as we approach the output layer. At any
layer m, the layer-wise staleness 7,,, = BT, Averaging over the layers, we have

M
M M
_ BT WM -1
T = mZ:le = MMZIm BT 3

Clearly, 7 increases with the network’s depth and the time required to perform one backward pass.
Thus, the speedup is expected to scale approximately linearly with the network depth, showing the
advantage of LU over BU for large M.

3.5 ALGORITHM

The Async BP algorithm is illustrated in Figure 1 and described in Algorithm listing 1. The al-
gorithm consists of two components: a single forward thread and multiple backward threads. All
threads work independently and asynchronously without any locking mechanism.

The forward thread is solely responsible for computing the loss £;(0“, x;,y,), given the current
mini batch of data (x;,y;) € D and the latest set of updated weights 8. Since the algorithm
works asynchronously, the weights 8 can be updated by any backward thread even while forward
pass progresses. Once the forward pass is done, £; is sent to one of the backward threads and the
forward thread moves to the next batch of data.

In parallel, a backward thread k receives a loss £; and performs the backward pass. At each layer

m, the gradients G (), ;) = % are computed, after which 6;, , is immediately used to update

the forward thread parameters. Note that the backward thread here can potentially calculate the
gradients for different values of parameters 6, ;. than the ones used for the forward pass 8*. In
Section 5 and appendix B we show that this algorithm closely approximates conventional stochastic
gradient descent, if asynchronous parameter updates arrive sufficiently frequently.

Algorithm 1 Async BP with decoupled partial updates

Forward thread

Given: Data: (z;,y;) € D, latest up-to-date parameters: 6
Compute £; (0%, x;,y;)
send(L;) /l send loss to a backward thread

Backward Thread k¥ (running in parallel to the forward thread)

Given: Loss: £}, learning rate: n
for layer m € [M,1] do
Compute G (0}, ;)
O < Opg —1.G
O Ofnﬂi // asynchronously update forward thread

end for

4 RESULTS

We evaluate our method on three vision tasks, CIFAR-10, CIFAR-100 and Imagenet, and on one
sequence modeling task: IMDb sentiment analysis. We use Resnet18 and Resnet50 architectures for
vision tasks and a LSTM network for sequence modelling. These networks are trained on a machine
with 3 NVIDIA A100 80GB PCIe GPUs with two AMD EPYC CPUs sockets of 64 cores each. The
experiment code is based on the C++ frontend of Torch (Paszke et al., 2019) - Libtorch.

Under review as a conference paper at ICLR 2025

The Performance of these tasks is compared to Locally-Asynchronous-Parallel SGD (LAPSGD)
and Locally-Partitioned-Asynchronous-Parallel SGD (LPPSGD) (Chatterjee et al., 2022). These
methods extend the well-known Hogwild! algorithm and Partitioned Asynchronous Stochastic Sub-
gradient (PASSM+) to multiple devices, respectively.

We record the achieved accuracy on the tasks and the wall-clock time to reach a target accuracy
(TTA). If not stated otherwise, this accuracy is chosen to be the best accuracy achieved by the worst
performing algorithm. We used the code made available by Chatterjee et al. (2022) which uses
Pytorch Distributed Data-Parallel API.

4.1 ASYNCHNOUS TRAINING OF VISION TASKS

We follow the training protocol of LAPSGD and LPPSGD and chose the number of processes per
GPU to be 1 since the GPU utilization was close to 100%. We trained them with a batch size of
128 per-rank. We used Stochastic gradient descent (SGD) for both Async BU and LU, with an
initial learning rate of 0.005 for 5 epochs and 0.015 after the warm-up phase, a momentum of 0.9
and a weight decay of 5 X 110~2. We use a cosine annealing schedule with a T}, of 110. We
trained Resnet-50 on Imagenet-1K task (Table 5) for a total of 250 epochs with the same learning
rate but with a cosine schedule with T},,,, of 250 and weight decay of 3.5 x 110~2 . Although,
the simulations were run with cosine annealing scheduler, implying the ideal number of training
epochs, early stopping was applied, i.e. training was stopped if no improvement of the accuracy was
achieved for 30 epochs.

As shown below, Async LU achieves the highest accuracies while Async BU converges the fastest
in terms of time to reach the target accuracy. The CIFAR-10 and CIFAR-100 results are presented
in Tables 1, 2 and Tables 3, 4 respectively. In Tables 1 and 3, the time to target accuracy (TTA) is
chosen to be the time taken to achieved the best accuracy reached by the worst algorithm. Whereas
in Tables 2 and 4, it represents taken by an algorithm achieve its best accuracy. Async BU achieves a
speed-up of up to 2.97x over LPPSGD on CIFAR100 (see Table 3). The poor performance of both
LAPSGD and LPPSGD can be explained by the influence of staleness, thus requiring large number
of training epochs.

We also achieved promising results on the ImageNet-1k dataset (see Table 5). Async LU achieved
73% accuracy X3 faster than Backpropagation on single GPU, showing potential of ideal linear
scaling. An extensive comparison of Async LU with multi-GPU Backpropagation (Data Distributed
Parallel) is provided in appendix A.2.

Although Async BU converges quicker than Async LU, it reaches lower accuracy. This is particu-
larly visible on CIFAR100, a harder task than CIFAR10 (see Figures 2 and 3). Overall, Async BU
showed a good balance between convergence speed and reduction of staleness.

Table 1: Comparison of Async LU, Async BU, LAPSGD and LPPSGD based on time to reach
accuracy (TTA): 87% for ResNet18 and 89% for ResNet50, and the number of epochs to reach the
target for 3 runs on CIFAR10.

Network architecture Training method TTA (in seconds) Epochs

mean =+ std mean =+ std
ResNet-18 Async LU 223.8 £ 28 65 £ 10
Async BU 1734 + 2 64 2
LAPSGD 706.3 £ 13 104 £+ 2
LPPSGD 461.0 £7 86 L1
ResNet-50 Async LU 737.9 £+ 24 866
Async BU 700.6 + 20 86 £ 1
LAPSGD 999.5 + 38 117 +3
LPPSGD 863.4 + 35 119 +1

Under review as a conference paper at ICLR 2025

Table 2: Comparison of Async LU, Async BU, LAPSGD, and LPPSGD based on best accuracy,
time to reach accuracy (TTA), and epoch at the accuracy is achieved for 3 runs on CIFAR10.

Network architecture Training method Best accuracy TTA (in seconds) Epochs

mean =+ std mean =+ std mean =+ std
ResNet-18 SGD 93.7 £ o.16 + 114 £1
Async LU 93.7 £+ 0.28 380.7 £33 114 £+ 9
Async BU 92.7 £ 0.16 308.5 & 14 115+2
LAPSGD 88.2 + 043 799.5 + 20 118 +2
LPPSGD 87.8 £+ 0.09 5234 + 15 97 +1
ResNet-50 SGD 94.1 £+ 0.20 + 99 + 5
Async LU 93.9 £+ o0.10 1038.8 + 61 121 £+ 6
Async BU 93.2 £ 025 953.7 + 73 116 + 3
LAPSGD 89.7 £ 027 1098.9 + 30 117 £33
LPPSGD 89.3 £+ 043 888.4 + 37 119 £+ 1

Table 3: Comparison of Async LU, Async BU, LAPSGD and LPPSGD based on time to reach
accuracy (TTA): 60% for ResNet18 and 63% for ResNet50, and the number of epochs to reach the
target for 3 runs on CIFAR100.

Network architecture Training method TTA (in seconds) Epochs

mean =+ std mean =+ std
ResNet-18 Async LU 2264 £ 10 69 £7
Async BU 1554 + 10 57 £4
LAPSGD 667.1 £3 99 + 2
LPPSGD 6729 + 11 100 £ 2
ResNet-50 Async LU 622.7 + 32 70 £ 5
Async BU 641.8 + 16 81 +3
LAPSGD 1006.6 £ 13 107 +£1
LPPSGD 1016.0 £ 6 107 £1

4.2 ASYNCHRONOUS TRAINING OF SEQUENCE MODELLING TASK

For demonstrating Async BP training on sequence modelling, we evaluated an LSTM networks on
the IMDb dataset (Maas et al., 2011). Sentiment analysis is the task of classifying the polarity of
a given text. We used a 2-Layer LSTM network with 256 hidden dimensions to evaluate this task.
We trained the network until convergence using the Adam optimizer with an initial learning rate of
1 x 1072, Results are shown in Table 6.

We observe that although both Async LU and Async BU achieve the same accuracy, performing
layer-wise updates reduces the training time and number of steps to convergence almost by half (see
Figure 4 in Appendix A) highlighting again the importance of this strategy.

5 THEORETICAL ANALYSIS OF CONVERGENCE

Here, we theoretically analyse the convergence behavior of the algorithm outlined above. For the
theoretical analysis, we consider the general case of multiple threads, acting on the parameter set 8,
such that the threads interact asynchronously and can work on outdated versions of the parameters.
We model the evolution of the learning algorithm as a continuous-time stochastic process (Bellec
et al., 2017) to simplify the analysis. This assumption is justified by the fact that learning rates are
typically small, and therefore the evolution of network parameters is nearly continuous.

In the model studied here, the stochastic interaction between threads is modelled as noise induced by
random interference of network parameters. To arrive at this model, we use the fact that the dynam-
ics of conventional stochastic gradient descent (SGD) can be modelled as the system of stochastic

Under review as a conference paper at ICLR 2025

Table 4: Comparison of Async LU, Async BU, LAPSGD and LPPSGD based on best accuracy, time
to reach accuracy (TTA), and epoch at the accuracy is achieved for 3 runs on CIFAR100.

Network architecture Training method Best accuracy TTA (in seconds) Epochs

mean =+ std mean =+ std mean =+ std
ResNet-18 SGD 73.7 £ 0.08 + 99 44
Async LU 73.9 £+ 038 339.0 £+ 10 114 £+ 9
Async BU 71.8 £ 0.08 2772+ 17 103 £+ 5
LAPSGD 61.3 023 762.5 + 15 114 £+ 3
LPPSGD 61.0 £ 0.17 742.0 £ 19 110 £+ 2
ResNet-50 SGD 76.8 £ 044 + 104 +1
Async LU 76.2 £ 0.57 1071.0 = 80 122 + 6
Async BU 73.7 £ 023 956.2 + 28 123 +4
LAPSGD 63.7 £ 033 1110.1 & 27 118 3
LPPSGD 63.5 £ 0.10 1122.1 & 24 119 2

Table 5: Classification accuracy (% correct) for Async LU (3 GPUs) and vanilla backpropagation
(single GPU) on the ImageNet task.

Network architecture training method test-accuracy train-accuracy TTA (in 1000 seconds)

ResNet-50 Async LU 73.42 93.08 134.24
BP (single GPU) 73.40 91.90 403.77

differential equations that determine the dynamics of the parameter vector 0

0 11 0SGD
_W%L(O)dt + 7 dWg 2)

with learning rate 7 and where dWVj, are stochastic changes of the Wiener processes.

dby, =

Eq. 2 describes the dynamics of a single parameter ;. The dynamics is determined by the gradient
of the loss function £, and the noise induced by using small mini-batches modelled here as idealized
Wiener process with amplitude osgp. Because of this noise, SGD does not strictly converge to a
local optimum but maintains a stationary distribution p*(60}) e~ 7508 that assigns most of the
probability mass to parameter vectors that reside close to local optima (Bellec et al., 2017).

In the concurrent variant of SGD studied here, however, the dynamics is determined by perturbed
gradients for different stale parameters. When updating the network using the described asyn-
chronous approach without locking, we potentially introduce noise in the form of partially stale
parameters or from one thread overwriting the updates of another. This noise will introduce a de-
viation from the ideal parameter vector 8. We model this deviation as additive Gaussian noise
& ~ N(0,0staLE) to the current parameter vector with variance ostarg. To approximate the noisy
loss function, we use a first-order Taylor expansion around the noise-free parameters:

LO+E) = L(O)+VeL(O) €+ 0O(c?)

3)
~ L(0)+VoL(0)"E,
and thus the gradient can be approximated as
VoL(6+& X,Y) ~ VoL(0)+ V5L(0) €. €

Based on this, we can express the update rule as a Stochastic Differential Equation (SDE) and model
the various noise terms using a Wiener Process VV. The noise sources in the learning dynamics
come from two main sources, (1) noise caused by stochastic gradient descent, and (2) noise caused
by learning with outdated parameters. We model the former as additive noise with amplitude ogaLE
and the latter using the Taylor approximation Eq. (4). Using this, we can write the approximate
dynamics of the parameter vector @ as the stochastic differential equation

dOx = pi(0,t) + +/ Dk(e) AWy)

Under review as a conference paper at ICLR 2025

Table 6: Comparison of Async LU, Async BU based on best accuracy, time to reach accuracy (TTA),
and epoch at the accuracy is achieved for 3 runs on IMDb

Network architecture best accuracy TTA(in seconds) epoch
meanzstd meanzstd mean=std
LSTM Async LU 85.15+£0.15 49.3+9.46 6t1
Async BU 85.06+0.59 83.41£12.56 1242
0751 23:2 ';LJJ 075

0.70

0.65

0.60

Accuracy
o
(=)}
o

0.55 - 0.55 ==
., - /- 4~
0.50 i ﬂ‘g/f 0.50 1 ﬁ
i /] ,H 4///31"'/ :

0.45 i 7 f 0.45 j‘,ﬁ

I [7]
0.40 . 0.40 1]

0 100 200 300 400 0 20 40 60 80 100 120 140
Duration (seconds) Epoch

Accuracy
o
(=)}
o

|
0 200 400 600 800 1000 1200 1400 0 20 40 60 80 100 120 140 160
Duration (seconds) Epochs

Figure 2: Learning curves of Asynchronous SGD with layer-wise updates (Async LU) and Block
updates (Async BU) on the CIFAR100 dataset. 3 independent runs are shown for each class.

with 5
1k (0) = BT L£(6) "
2 2 2 2 2
_N"05ep | M OSTALE 0
D) =75+ 7 ZZ o600, “ %)

where pu, is the drift and Dy, the diffusion of the SDE.

In Appendix B we study the stationary distribution of this parameter dynamics. We show that the
stationary distribution is a close approximation to p* of SGD, which is perfectly recovered if ostarg
is small compared to osgp, i.€. if the effect of staleness is small compared to the noise induced by
minibatch sampling.

6 DISCUSSION

In this work, we introduced a novel asynchronous approach to train deep neural networks that de-
couples the forward and backward passes and performs layer-wise parameter updates. Our method
addresses key limitations of standard backpropagation by allowing parallel execution of forward and
backward passes and mitigating update locking through asynchronous layer-wise updates.

The experimental results demonstrate that our approach can achieve comparable or better accuracy
than synchronous backpropagation and other asynchronous methods across multiple vision and lan-

Under review as a conference paper at ICLR 2025

guage tasks, while providing significant speedups in training time. On CIFAR-10 and CIFAR-100,
we observed speedups of up to 2.97x compared to asynchronous SGD covering a broad range of
paradigms. The method also showed promising results on a sentiment analysis task and the Ima-
geNet classification task where it reached close to ideal scaling.

Our theoretical analysis, based on modeling the learning dynamics as a continuous-time stochastic
process, provides convergence guarantees and shows that the algorithm converges to a stationary
distribution closely approximating that of standard SGD under certain conditions. This offers a
solid foundation for understanding the behavior of our asynchronous approach.

While our implementation using C++ and LibTorch demonstrated the potential of this method, we
also identified some limitations related to GPU resource allocation in SIMT architectures. Future
work could explore optimizing the implementation for more efficient GPU utilization, or investigat-
ing hybrid CPU-GPU approaches to fully leverage the benefits of asynchronous execution.

Overall, this work presents a promising direction for scaling up deep learning through asynchronous,
decoupled updates. The approach has the potential to enable more efficient training of large-scale
models, particularly in distributed and heterogeneous computing environments. Further research
could explore extensions to even larger models, additional tasks, and more diverse hardware setups
to fully realize the potential of this asynchronous training paradigm.

REPRODUCIBILITY

We ensure that the results presented in this paper are easily reproducible using just the information
provided in the main text as well as the supplement. Details of the models used in our simulations
are presented in the main paper and further elaborated in the supplement. We provide additional
details and statistics over multiple runs in the supplement section A.4. We use publicly available
libraries and datasets in our simulations. We will further provide the source code to the reviewers
and ACs in an anonymous repository once the discussion forums are opened. This included code
will also contain “readme” texts to facilitate easy reproducibility. The theoretical analysis provided
in section 5 is derived in the supplement.

REFERENCES

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd:
Communication-efficient sgd via gradient quantization and encoding, 2017. URL https:
//arxiv.org/abs/1610.02132.

Mahmoud Assran, Arda Aytekin, Hamid Reza Feyzmahdavian, Mikael Johansson, and Michael G
Rabbat. Advances in asynchronous parallel and distributed optimization. Proceedings of the
IEEE, 108(11):2013-2031, 2020.

Gerard M Baudet. Asynchronous iterative methods for multiprocessors. Journal of the ACM
(JACM), 25(2):226-244, 1978.

Guillaume Bellec, David Kappel, Wolfgang Maass, and Robert Legenstein. Deep rewiring: Training
very sparse deep networks. arXiv preprint arXiv:1711.05136, 2017.

Dimitri Bertsekas and John Tsitsiklis. Parallel and distributed computation: numerical methods.
Athena Scientific, 2015.

Bapi Chatterjee, Vyacheslav Kungurtsev, and Dan Alistarh. Scaling the wild: Decentralizing
hogwild!-style shared-memory sgd, 2022. URL https://arxiv.org/abs/2203.06638.

Mathieu Even, Anastasia Koloskova, and Laurent Massoulie. Asynchronous SGD on Graphs: A
Unified Framework for Asynchronous Decentralized and Federated Optimization. In Proceedings
of The 27th International Conference on Artificial Intelligence and Statistics, pp. 64-72. PMLR,
April 2024. URL https://proceedings.mlr.press/v238/even24a.html.

Aidan N. Gomez, Oscar Key, Kuba Perlin, Stephen Gou, Nick Frosst, Jeff Dean, and Yarin Gal.
Interlocking backpropagation: improving depthwise model-parallelism. J. Mach. Learn. Res., 23
(1), jan 2022. ISSN 1532-4435.

10

https://arxiv.org/abs/1610.02132
https://arxiv.org/abs/1610.02132
https://arxiv.org/abs/2203.06638
https://proceedings.mlr.press/v238/even24a.html

Under review as a conference paper at ICLR 2025

Zhouyuan Huo, Bin Gu, gian Yang, and Heng Huang. Decoupled parallel backpropagation with
convergence guarantee. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th In-
ternational Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pp. 2098-2106. PMLR, 10-15 Jul 2018. URL https://proceedings.mlr.
press/v80/huol8a.html.

Alexander Isenko, Ruben Mayer, Jeffrey Jedele, and Hans-Arno Jacobsen. Where is my training
bottleneck? hidden trade-offs in deep learning preprocessing pipelines. In Proceedings of the
2022 International Conference on Management of Data, pp. 1825-1839, 2022.

Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves, David
Silver, and Koray Kavukcuoglu. Decoupled Neural Interfaces using Synthetic Gradients.
arXiv:1608.05343 [cs], August 2016. URL http://arxiv.org/abs/1608.05343.

David Kappel, Khaleelulla Khan Nazeer, Cabrel Teguemne Fokam, Christian Mayr, and Anand
Subramoney. Block-local learning with probabilistic latent representations, 2023.

Janis Keuper and Franz-Josef Preundt. Distributed training of deep neural networks: Theoretical
and practical limits of parallel scalability. In 2016 2nd workshop on machine learning in HPC
environments (MLHPC), pp. 19-26. IEEE, 2016.

Adarsh Kumar, Kausik Subramanian, Shivaram Venkataraman, and Aditya Akella. Doing more
by doing less: how structured partial backpropagation improves deep learning clusters. In Pro-
ceedings of the 2nd ACM International Workshop on Distributed Machine Learning, pp. 15-21,
2021.

Vyacheslav Kungurtsev, Malcolm Egan, Bapi Chatterjee, and Dan Alistarh. Asynchronous op-
timization methods for efficient training of deep neural networks with guarantees. Proceed-
ings of the AAAI Conference on Artificial Intelligence, 35(9):8209-8216, May 2021. doi: 10.
1609/aaai.v35i9.16999. URL https://ojs.aaai.org/index.php/AAAI/article/
view/16999.

Guillaume Leclerc, Andrew Ilyas, Logan Engstrom, Sung Min Park, Hadi Salman, and Alek-
sander Madry. Ffcv: Accelerating training by removing data bottlenecks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12011-12020, 2023.

Chenxiang Ma, Jibin Wu, Chenyang Si, and Kay Chen Tan. Scaling supervised local learning with
augmented auxiliary networks. arXiv preprint arXiv:2402.17318, 2024.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Dekang Lin, Yuji Matsumoto, and
Rada Mihalcea (eds.), Proceedings of the 49th Annual Meeting of the Association for Compu-
tational Linguistics: Human Language Technologies, pp. 142—150, Portland, Oregon, USA, June
2011. Association for Computational Linguistics. URL https://aclanthology.org/
P11-1015.

Konstantin Mishchenko, Francis Bach, Mathieu Even, and Blake Woodworth. Asynchronous SGD
Beats Minibatch SGD Under Arbitrary Delays, June 2022. URL http://arxiv.org/abs/
2206.07638.

Giorgi Nadiradze, Ilia Markov, Bapi Chatterjee, Vyacheslav Kungurtsev, and Dan Alistarh. Elastic
Consistency: A Practical Consistency Model for Distributed Stochastic Gradient Descent. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 35(10):9037-9045, May 2021. ISSN
2374-3468. doi: 10.1609/aaai.v35i10.17092. URL https://ojs.aaai.org/index.
php/AAAI/article/view/17092.

Arild Ngkland and Lars Hiller Eidnes. Training neural networks with local error signals. In Inter-
national conference on machine learning, pp. 4839-4850. PMLR, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep

11

https://proceedings.mlr.press/v80/huo18a.html
https://proceedings.mlr.press/v80/huo18a.html
http://arxiv.org/abs/1608.05343
https://ojs.aaai.org/index.php/AAAI/article/view/16999
https://ojs.aaai.org/index.php/AAAI/article/view/16999
https://aclanthology.org/P11-1015
https://aclanthology.org/P11-1015
http://arxiv.org/abs/2206.07638
http://arxiv.org/abs/2206.07638
https://ojs.aaai.org/index.php/AAAI/article/view/17092
https://ojs.aaai.org/index.php/AAAI/article/view/17092

Under review as a conference paper at ICLR 2025

learning library. In Advances in Neural Information Processing Systems 32, pp. 8024-8035. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/
paper/2019/file/bdbca288fee7£92f2bfa9£7012727740-Paper.pdf.

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild!: A lock-free approach to
parallelizing stochastic gradient descent. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and
K.Q. Weinberger (eds.), Advances in Neural Information Processing Systems, volume 24. Cur-
ran Associates, Inc., 2011. URL https://proceedings.neurips.cc/paper_files/
paper/2011/file/218al0aefdldladbe65601lccoddcl520e—Paper.pdf.

Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Terngrad:
Ternary gradients to reduce communication in distributed deep learning, 2017. URL https:
//arxiv.org/abs/1705.07878.

Paul Werbos. Applications of advances in nonlinear sensitivity analysis. System Modeling and
Optimization, pp. 762-770, 1982.

Hao Zhang, Zeyu Zheng, Shizhen Xu, Wei Dai, Qirong Ho, Xiaodan Liang, Zhiting Hu, Jin-
liang Wei, Pengtao Xie, and Eric P. Xing. Poseidon: An efficient communication archi-
tecture for distributed deep learning on GPU clusters. In 2017 USENIX Annual Technical
Conference (USENIX ATC 17), pp. 181-193, Santa Clara, CA, July 2017. USENIX Asso-
ciation. ISBN 978-1-931971-38-6. URL https://www.usenix.org/conference/
atcl7/technical-sessions/presentation/zhang.

Shuxin Zheng, Qi Meng, Taifeng Wang, Wei Chen, Nenghai Yu, Zhi-Ming Ma, and Tie-Yan Liu.
Asynchronous stochastic gradient descent with delay compensation. In International conference
on machine learning, pp. 4120-4129. PMLR, 2017.

12

https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/218a0aefd1d1a4be65601cc6ddc1520e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/218a0aefd1d1a4be65601cc6ddc1520e-Paper.pdf
https://arxiv.org/abs/1705.07878
https://arxiv.org/abs/1705.07878
https://www.usenix.org/conference/atc17/technical-sessions/presentation/zhang
https://www.usenix.org/conference/atc17/technical-sessions/presentation/zhang

Under review as a conference paper at ICLR 2025

A ADDITIONAL RESULTS

A.1 LEARNING CURVES

Here, we provide additional details to the results provided in the main text. Figures 3 and 4 show the
learning dynamics of Asynchrounous Backpropagation with blocks updates (Async BU) and with
layer-wise updates (Async LU) on CIFAR10 and IMDb respectively. The difference in convergence
speed and accuracy observed with CIFAR100 2 is less noticeable on CIFAR10, probably because it
is a simpler task. However, we clearly see the advantage of Async LU on the IMDb, where it not
only converges faster but also to similar accuracy.

Figures 5 and 6 compare the training curses of sequential SGD with Async LU respectively. We
observed that Async LU needs more epochs to converge, ~15 epochs more. When trained to a
larger dataset (Figures 7 and 8), we can see that both Async LU and SGD seem to converge within
the same number of epochs while Async LU scales almost linearly with the number of GPUs. We
should take these results carefully given that accuracies are plots against the number of epochs and
not the time since both are trained on different numbers of GPUs. Appendix A.2 gives a comparison
with equal number of GPUs.

0.951 — Async LU - : 0.95 :
—— Async BU ‘,,,///,;f”‘f
0.90 0.90 L /J
; Ny
> p. I ——=* “‘r‘
© 0.85 # " 0.85 ==
3 A=~ f V'LL’
b (| . [ff,/
0.80 . 0.80 i
f If
. g
0751 (i 0.75 ‘J, f
il IH|
, ‘ [fc
0.70 - 0.70 -
0 100 200 300 400 500 0 20 40 60 80 100 120 140
Duration (seconds) Epochs
0.95 0.95
— - e
0.90 0.90 - f/
L7
> =
3085 0.85 ==
3 b, i
g T
0.80 0.80 [
If
!
0.75 0.75 ‘J, f
[if
0.70 0.70 Il
0 100 200 300 400 500 0 20 40 60 80 100 120 140
Duration (seconds) Epochs

Figure 3: testing curves of Asynchronous SGD with layer-wise updates (Async LU) and Block
updates (Async BU) for ResNet18 (top plots) and ResNet50 (bottom plots) on the CIFAR10 dataset.

A.2 SPEED-UP COMPARISON WITH MULTI-GPU BACKPROPAGATION

Here we do a comparison of Asynchronous Backpropagation with layer-wise updates (Async LU)
and multi-GPU Data Distributed Parallel(DDP) both trained on 3 GPUs residing on the same ma-
chine (described in section 4) to achieve their accuracies. Since Async LU uses only one forward
pass, we set its batch size to be 128 and that of BP to 3x higher (384). Async LU was imple-
mented on the c++ library of Pytorch, Libtorch, while multi-GPU SGD is implemented using Py-
torch DataDistributedParallel (DDP) API. The hyperparameters used are the same as described in
section 4.

To make the comparison fair across implementation platforms, the relative speed-up is calculated
with respect to their single GPU implementation respectively.

13

Under review as a conference paper at ICLR 2025

0.86 0.86
0.84 / / [0.84
[/
|
0.82 “ 0.82
|/
> 0.80 Ht i 0.80
g I
30781 || 0.78
ot [l
< I/
0761 || 0.76
| 1t
I
0.741 0.74
|
[
0724 H — AsynclU 0.72
[—— Async BU
0.70 . 0.70
0 25 50 75 100 125 150 175 200 5 10 15 20 25 30 35
Epochs

Duration (seconds)

Figure 4: testing curves of Asynchronous SGD with layer-wise updates (Async LU) and Block
updates (Async BU) on the IMDb dataset.

1.05 1.05
—— Async LU
1.00{ — SGD T)‘\ 1.00
A oo
0.95 Lo i 0.95
0.90 0.90
0.85 0.85
0.80 0.80
0.75 0.75
0.70 0.70
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Epochs

Epochs

Figure 5: training curves of Asynchronous SGD with layer-wise updates (Async LU) on 3 GPUs
and Single GPU SGD on CIFAR-10 dataset on ResNet18 (left) and ResNet50 (right).

In this Settings, DDP should clearly be at advantage since it uses a bigger batch size, all the GPUs
are on the same machine and we optimized DDP loading process by persisting the data on the GPUs,
reducing considerably the communication bottleneck, hence making the synchronization step faster.
What we however observe is that Async LU achieves comparable relative speed-up over a single
GPU compared to DDP on both CIFAR10 and CIFAR100. This shows the effectiveness of our
asynchronous formulation (figure 1). We can expect Async LU to have greater advantage in a multi-
node or heterogeneous setting because the synchronization barrier becomes problem.

Table 7: Comparison of Async LU and DDP both trained on 3GPUs based on their relative speed-up
to single GPU implemention for 3 runs on CIFAR10

Network architecture Training method Relative speed-up

mean =+ std

ResNet-18 Async LU 1.86 £ 021
DDP 1.90 % 0.08

ResNet-50 Async LU 2.02 £ 0.10
DDP 2.38 £ 0.19

A.3 TIME MEASUREMENTS

Here we provide the results of a small-scale experiment on the timing measurement of forward and
backward passes for CIFAR-100 with batch size 128 in table 9. As expected, a single backward
pass requires ~ 2x than that of a single forward pass. Extensive experiments on this is provided by

Kumar et al. (2021)

14

Under review as a conference paper at ICLR 2025

1.07 — AsynclU 1.0
— sGD / \

0.8 0.8

0.7 0.7
0.6 0.6

0.5 0.5

0.4

0.4
60 80 100 120 140 0 20 40 60 80 100 120 140 160

Epoch Epochs

Figure 6: training curves of Asynchronous SGD with layer-wise updates (Async LU) on 3 GPUs
and Single GPU SGD on the CIFAR-100 dataset on ResNet18 (left) and ResNet50 (right).

1.04 — Async LU 1.0
— sGD
0.9 VZENN 0.9
/ \
v
0.8 7 08
g
s =1
0.7 — §0.7 /
0.6 4,//”"/ 0.6 /
e -~
e
0.5 = - osl
[[
/
0.4 ! 0.4
0 50 100 150 200 250 0 50 100 150 200 250 300 350 400
Epoch duration

Figure 7: training curves of Asynchronous SGD with layer-wise updates (Async LU) on 3 GPUs
and Single GPU SGD on the ImageNet dataset.

A.4 HYPERPARAMETERS FOR THE EXPERIMENTS

Hyperparameters used in training experiments presented in section 4 are documented in table 10

B CONVERGENCE PROOF

Here we provide the proof that the stochastic parameter dynamics, Eq. (5) of the main text, converges
to a stationary distribution p*(0) given by

p*(g) = %exp (; hk(0)>, with hk(e) = l/;i((ae)) d@ — In |Dk(0)| +C. @)

The proof is analogous to the derivation given in Bellec et al. (2017), and relies on stochastic calculus
to determine the parameter dynamics in the infinite time limit. Since the dynamics include a noise
term, the exact value of the parameters 0(t) at a particular point in time ¢ > 0 cannot be determined,
but we can describe the distribution of parameters using the Fokker-Planck formalism, i.e. we
describe the parameter distribution at time ¢ by a time-varying function pgp (6, t).

To arrive at an analytical solution for the stationary distribution, p*(0) we make the adiabatic as-
sumption that noise in the parameters only has local effects, such that the diffusion due to noise in
any parameter 6; has negligible influence on dynamics in 0y, i.e. a%jDk(B) = 0,Vj # k. Using
this assumption, it can be shown that, for the dynamics (6), prp (6, t) converges to a unique station-
ary distribution in the limit of large ¢ and small noise osrarr. To prove the convergence to the
stationary distribution, we show that it is kept invariant by the set of SDEs Eq. (6) and that it can be

15

Under review as a conference paper at ICLR 2025

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

—— Async LU
— SGD

Accuracy

0.45 }

100 150
Epoch

200

250 0 50 100 150 200 250 300 350 400
duration

Figure 8: testing curves of Asynchronous SGD with layer-wise updates (Async LU) on 3 GPUs and
Single GPU SGD on the ImageNet dataset.

Table 8: Comparison of Async LU and DDP both trained on 3GPUs based on their relative speed-up
to single GPU implemention for 3 runs on CIFAR100

Network architecture Training method Relative speed-up

mean =+ std

ResNet-18 Async LU 1.83 % 0.06
DDP 1.86 + 021

ResNet-50 Async LU 2.02£013
DDP 230 %013

reached from any initial condition. Eq. 6 implies a Fokker-Planck equation given by

2

0 0
pr 0 t 892 [Dk(H t)pr(H t)]

ot ®)

0
Zaj 16, t)prp (0, t)] +
p

We show that, under the assumptions outlined above, the stochastic parameter dynamics Eq. (6) of
the main text, converges to the stationary distribution p*(8) (Eq. (7)).

To arrive at this result, we plug in the assumed stationary distribution into Eq. (8) and show the
equilibrium %ppp(@, t) =0,ie.

10}
- _%2871%
2

+a—9i[

b =3 o u(O)prr (0.0)
k
o [/ 0
+ aiﬂk [(angk
+ aik [Dk(e) (£hk(0)) pFP(aat)] :

16

QPFP (0,1) [11:(0)prp (0, 1)]

ot
Dk (e)ppp(a, t)] = O

€))

©) per(0.1)

Under review as a conference paper at ICLR 2025

Table 9: Timing measurement of forward and backward passes for CIFAR-100 with batch size 128.
Averaged over all batches for 15 epochs.

Network architecture ~ Forward pass (s) Backward pass (s)

mean =+ std mean =+ std
ResNet-18 0.0049 =+ 1E-04 0.0102 =+ 1E-04
ResNet-50 0.0166 =+ sE-05 0.0299 =+ 4E-05
Table 10
CIFAR-100 CIFAR-10 Imagenet IMDb

hyperparameter ~ Resnet-18 Resnet-50 Resnet-18 Resnet-50 Resnet-50 LSTM
batch_size 128 128 128 128 250 75
Ir 0.015 0.015 0.015 0.015 0.015 0.001
momentum 0.9 0.9 0.9 0.9 0.9 0.9
T_max 100 120 105 120 250 150
warm_up_epochs 5 5 3 5 5 0
warm_up Ir 0.005 0.005 0.005 0.005 0.0035 -
weight_decay 0.005 0.005 0.005 0.005 0.0035 0

where we used the simplifying assumption, %Dk (0) = 0,Vj # k, as outlined above. Next, using

251k (8) = ptamy (1k(8,6) — 55 Di(8,1)), we get
9 ep(08) = 0 —Zi[(0, t)prp(6,1)]
athP) - - 80k He\0, 1)prp(Y,

0 0
10
+ 20, Kaeka(O,t)> pr(O,t)} (10)

+ % Kuk(&t) — aika(@,t)) pFP(a’t)] =0

This shows that the simplified dynamics, Eq. 6, leave the stationary distribution (7) unchanged.

This stationary distribution p*(8) is a close approximation to SGD. To see this, we study the maxima
of the distribution, by taking the derivative

%hk(e) = gii‘j,)) - %lnwk(e)l 7 (11)
which by inserting (6) can be written as
0 1VeL(0 o2 e VaL(0
WO = G O]
If ostaLg is small compared to osgp we recover the cannonical results for SGD %hk(e) s
f%%gie), where smaller learning rates n make the probability of reaching local optima more

peaked. Distortion of local optima, which manifests in the second term in the nominator, only de-
pend on third derivatives, which can be expected to be small for most neural network architectures
with well-behaved non-linearities.

17

	Introduction
	Related Work
	Methods
	Asynchronous formulation of Backpropagation
	Layer-wise updates
	Speed-up analysis
	Staleness Analysis
	Algorithm

	Results
	Asynchnous training of vision tasks
	Asynchronous training of sequence modelling task

	Theoretical analysis of convergence
	Discussion
	Additional results
	Learning curves
	Speed-up comparison with Multi-GPU Backpropagation
	Time measurements
	Hyperparameters for the experiments

	Convergence Proof

