
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ASYNCHRONOUS STOCHASTIC GRADIENT DESCENT
WITH DECOUPLED BACKPROPAGATION AND LAYER-
WISE UPDATES

Anonymous authors
Paper under double-blind review

ABSTRACT

The increasing size of deep learning models has created the need for more efficient
alternatives to the standard error backpropagation algorithm, that make better use
of asynchronous, parallel and distributed computing. One major shortcoming of
backpropagation is the interlocking between the forward phase of the algorithm,
which computes a global loss, and the backward phase where the loss is back-
propagated through all layers to compute the gradients, which are used to update
the network parameters. To address this problem, we propose a method that paral-
lelises SGD updates across the layers of a model by asynchronously updating them
from multiple threads. Furthermore, since we observe that the forward pass is of-
ten much faster than the backward pass, we use separate threads for the forward
and backward pass calculations, which allows us to use a higher ratio of forward
to backward threads than the usual 1:1 ratio, reducing the overall staleness of the
parameters. Thus, our approach performs asynchronous stochastic gradient de-
scent using separate threads for the loss (forward) and gradient (backward) com-
putations and performs layer-wise partial updates to parameters in a distributed
way. We show that this approach yields close to state-of-the-art results while
running up to 2.97× faster than Hogwild! scaled on multiple devices (Locally-
Partitioned-Asynchronous-Parallel SGD). We theoretically prove the convergence
of the algorithm using a novel theoretical framework based on stochastic differ-
ential equations and the drift diffusion process, by modeling the asynchronous
parameter updates as a stochastic process.

1 INTRODUCTION

Scaling up modern deep learning models requires massive resources and training time. Asyn-
chronous parallel and distributed methods for training them using backpropagation play a very
important role in easing the demanding resource requirements for training these models. Back-
propagation (BP) (Werbos, 1982) has established itself as the de facto standard method for learning
in deep neural networks (DNN). Although BP achieves state-of-the-art accuracy on literally all rel-
evant machine learning tasks, it comes with a number of inconvenient properties that prohibit an
efficient implementation at scale.

BP is a two-phase synchronous learning strategy in which the first phase (forward pass) computes the
training loss, L, given the current network parameters and a batch of data. In the second phase, the
gradients are propagated backwards through the network to determine each parameter’s contribution
to the error, using the same weights (transposed) as in the forward pass (see Equation 1). BP suffers
from update locking, where a layer can only be updated after the previous layer has been updated.
Furthermore, the computation of gradients can only be started after the loss has been calculated in
the forward pass.

Moreover, the backward pass usually requires approximately twice as long as the forward pass (Ku-
mar et al., 2021). The bulk of the computational load comes from the number of matrix multiplica-
tions required during each phase. If we consider a DNN with M layers, then at any layer m ≤ M
with pre-activations zm = θmym−1 and post-activations ym = f(zm−1), the computations dur-
ing the forward pass are dominated by one matrix multiplication θmym−1. During the backward

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

pass, the computations at layer m are dominated by two matrix multiplications:

∂L
∂θm

= f
′
(θmym−1)× ym−1

⊤ and
∂L

∂ym−1
= f

′
(θmym−1)× θ⊤

m , (1)

approximately doubling the compute budget required for the backward pass compared to the for-
ward pass. In Eq. 1, θm denotes the network weights at layer m and f ′ the partial derivative with
respect to θm. This imbalance between forward and backward phase further complicates an efficient
parallelization of BP, particularly in heterogeneous settings.

In this work, we propose a new approach to parallelize training of deep networks on non-convex
objective functions by asynchronously performing the forward and backward passes at a layer-wise
granularity in multiple separate threads that make lock-free updates to the parameters in shared
memory. The lock-free updates address the locking problem, performing layer-wise updates mit-
igates the issue of conflicts between parameter updates, and performing the backward pass and
updates using more threads than the forward pass mitigates the staleness problem. Specifically, the
imbalance in execution time between forward and backward passes is taken care of by having twice
as many backward threads than forward threads, breaking the 1:1 ratio of vanilla Backpropagation,
therefore significantly speeding-up the training process.

In summary, the contributions of this paper are as follows:

1. We introduce a novel asynchronous formulation of Backpropagation which allows the for-
ward pass and the backward pass to be executed separately and in parallel, which allows us
to run more backward than forward threads. This approach accounts for the unequal time
required by the forward and backward passes.

2. We propose to asynchronously update the model’s parameters at a layer-wise granularity
without using a locking mechanism which reduces staleness.

3. We give convergence guarantees of the algorithm to a stationary distribution centered
around the local optima of conventional BP.

4. We show that the algorithm can reach state-of-the-art performances while being signifi-
cantly faster than competing asynchronous algorithms.

2 RELATED WORK

Asynchronous stochastic gradient descent (SGD). Asynchronous SGD has a long history, starting
from Baudet (1978); Bertsekas & Tsitsiklis (2015). Hogwild! (Recht et al., 2011) allows multiple
processes to perform SGD without any locking mechanism on shared memory. Kungurtsev et al.
(2021) proposed PASSM and PASSM+, where they partition the model parameters across the work-
ers on the same device to perform SGD on the partitions. Chatterjee et al. (2022) decentralizes
Hogwild! and PASSM+ to allow parameters or their partitions to be located on multiple devices and
perform Local SGD on them. Zheng et al. (2017) compensate the delayed gradients with a gradient
approximation at the current parameters. Unlike these methods, we run multiple backward passes in
parallel on different devices and don’t need any gradient compensation scheme.

Nadiradze et al. (2021) provides a theoretical framework to derive convergence guarantees for a wide
variety of distributed methods. Mishchenko et al. (2022) proposes a method of “virtual iterates” to
provide convergence guarantees independent of delays. More recently, Even et al. (2024) proposed
a unified framework for convergence analysis of distributed algorithms based on the AGRAF frame-
work. There have been lots of other analysis methods proposed for deriving convergence guarantees
for asynchronous distributed SGD (see Assran et al. (2020) for a survey). In our work, we propose an
entirely novel framework based on stochastic differential equations, and provide convergence guar-
antees of the algorithm to a stationary distribution centered around the local optima of conventional
BP.

Communication-efficient algorithms. One of the bottlenecks when training on multiple devices
or nodes in parallel is the synchronization step. The bigger or deeper the models get, the more time
is consumed by synchronization. PowerSGD computes low-rank approximations of the gradients
using power iteration methods. Poseidon (Zhang et al., 2017) also factorizes gradient matrices
but interleaves their communication with the backward pass. Wen et al. (2017) and Alistarh et al.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

(2017) quantize gradients to make them lightweight for communication. Like Zhang et al. (2017),
we interleave the backward pass with gradients communication but without gradients averaging.

Block local learning. Dividing the network across multiple devices and performing local updates is
a widely recognized approach in distributed learning. The backward passes of the different blocks
can be done simultaneously. The global loss is used to provide feedback only to the output block
while the remaining blocks get learning signals from auxiliary networks which each compute local
targets. Jaderberg et al. (2016) models synthetic gradients through auxiliary networks. Ma et al.
(2024) uses a shallower version of the network itself as the auxiliary network at each layer. Gomez
et al. (2022) allows gradients to flow to k-neighboring blocks. Nøkland & Eidnes (2019) don’t
allow gradients to flow to neighboring blocks, and instead use an auxiliary matching loss and a
local cross-entropy loss to compute the local error. Decoupled Parallel Backpropagation (Huo et al.,
2018) does full Backpropagation but uses stored stale gradients in the blocks to avoid update locking,
therefore needing additional memory buffers. Kappel et al. (2023) take a probabilistic approach by
interpreting layers outputs as parameters of a probability distribution. Auxiliary networks provide
local targets, which are used to train each block individually. Similar to these distributed paradigms,
we mimic the execution of multiple backward passes in parallel by reordering the training sequence
but without splitting the network explicitly during forward and backward propagation across devices
and needing external buffers or architectural complexities.

3 METHODS

Figure 1: Illustration of decoupled backpropagation with separate threads for the forward and back-
ward passes and the layer-wise updates. For each thread, the order of computations for a sample
network with three layers denoted L1, L2 and L3, are shown. Arrows denote dependencies across
threads. Within each thread, the computations for each layer are performed sequentially, whereas
across threads, the dependencies are layer-wise. Interactions for 2 backward threads and a single
forward thread are shown. This asynchronous interaction, along with layer-wise updates, reduces
the staleness of parameters.

3.1 ASYNCHRONOUS FORMULATION OF BACKPROPAGATION

We introduce a new asynchronous stochastic gradient descent method where, instead of performing
the forward and backward phases sequentially, we execute them in parallel and perform layer-wise
parameter updates as soon as the gradients for a given layer are available. The dependencies between
forward and backward phases are illustrated in Figure 1.

Since the gradient computation in the backward pass tends to consume more time than the loss
calculation in the forward pass, we decouple these two into separate threads and use one forward
thread and two backward threads to counterbalance the disproportionate execution time.

Figure 1 illustrates the interaction among threads based on one example. Initially, only the first
forward pass, F (0)

0 , is performed. The resulting loss is then used in the first backward pass B
(1)
0 ,

which starts in parallel to the second forward pass F
(1)
1 . Once F

(1)
1 ends, its loss is used by B

(2)
1

running in parallel to the next forward pass and B
(1)
0 .

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.2 LAYER-WISE UPDATES

Parallelizing the forward and backward passes can speed up training, but it violates several key
assumptions of Backpropagation leading to sub-optimal convergence observed in different studies
(Keuper & Preundt, 2016; Zheng et al., 2017). This happens because the losses and gradients are
often calculated using inconsistent and outdated parameters.

To alleviate this problem, we update the layers as soon as the corresponding gradients are available
from the backward pass. F

(1)
1 receives partial parameter updates from B

(1)
0 as soon as they are

available. Therefore, the parameters used in F
(1)
1 will differ from those used in F

(0)
0 because some

layers of the model would have been already updated by the thread B
(1)
0 . On average, we can expect

that the second half of the layers use a new set of parameters. It is important to note that the updates
happen without any locking mechanism and asynchronous to the backward pass as done by Zhang
et al. (2017).

3.3 SPEED-UP ANALYSIS

Before discussing experimental results, we study the potential speed-up of the asynchronous with
layer-wise updates formulation over standard Backpropagation. To arrive at this result, we make the
following assumptions to estimate the performance gain

• We assume that there are no delays between the end of a forward pass, the beginning of
its corresponding backward pass and the next forward pass. This implies for example that
as soon as F

(0)
0 ends, F (1)

1 and B
(1)
0 begin immediately. Multiples backward threads are

therefore running in parallel.

• Vanilla Backpropagation performs b forward passes. We assume that this number also
corresponds to the number of backward passes and the number of batches of data to be
trained on.

• A forward pass lasts T units of time and a backward pass βT units of time, with a scaling
factor β > 1 (expected to be at around 2 as show in appendix A.3).

The speed-up factor λ observed can be express as the fraction between the estimated time taken
by the standard BP, T1, over the Async version of BP, T2. Due to the sequential nature of BP,
T1 = (1 + β)bT . Similarly, T2 = (b + β)T since the backward pass runs parallel to the forward
pass. The speed-up factor λ is given by:

λ =
(1 + β)b

(b+ β)
.

Considering a large number of batches, b→∞, we have

λ = 1 + β .

Hence, the maximum achievable speedup is expected to be 1 + β, where β is the scaling factor of
the backward pass time. In practice, the speed-up factor λ can be influenced by multiples factors
like data loading which is sometimes a bottleneck (Leclerc et al., 2023; Isenko et al., 2022), or the
system overhead, which reduce the achievable speedup.

3.4 STALENESS ANALYSIS

Here, we demonstrate the advantage of applying layer-wise updates (LU) compared to block updates
(BU). BU refers to performing updates only after the entire backward pass is complete, a technique
used in various previous asynchronous learning algorithms, e.g. (Recht et al., 2011; Chatterjee et al.,
2022; Zheng et al., 2017). We use the same notation as in section 3.3.

To express this formally, we define the relative staleness τ of BU compared to LU as the time delay
between when the gradients become available and when they are used to update the model weights.
The intuition behind this lies in the fact that the more the updates are postponed, the more likely the
gradients will become stale. The staleness will only increase with time and accumulate across the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

layers. Assuming that the time required to compute the gradients for each layer is uniform and equal
to βT

M , the relative staleness is expressed as τ = βT (M−1)
2 .

To see this, we use that by definition, the staleness increases as we approach the output layer. At any
layer m, the layer-wise staleness τm = βT

M m. Averaging over the layers, we have

τ =

M∑
m=1

τm =
βT

M

M∑
m=1

m = βT
(M − 1)

2

Clearly, τ increases with the network’s depth and the time required to perform one backward pass.
Thus, the speedup is expected to scale approximately linearly with the network depth, showing the
advantage of LU over BU for large M .

3.5 ALGORITHM

The Async BP algorithm is illustrated in Figure 1 and described in Algorithm listing 1. The al-
gorithm consists of two components: a single forward thread and multiple backward threads. All
threads work independently and asynchronously without any locking mechanism.

The forward thread is solely responsible for computing the loss Li(θ
u,xi,yi), given the current

mini batch of data (xi,yi) ∈ D and the latest set of updated weights θu. Since the algorithm
works asynchronously, the weights θu can be updated by any backward thread even while forward
pass progresses. Once the forward pass is done, Li is sent to one of the backward threads and the
forward thread moves to the next batch of data.

In parallel, a backward thread k receives a loss Lj and performs the backward pass. At each layer
m, the gradients G(θv

m,k) =
∂Lj

∂θv
m,k

are computed, after which θv
m,k is immediately used to update

the forward thread parameters. Note that the backward thread here can potentially calculate the
gradients for different values of parameters θv

m,k than the ones used for the forward pass θu. In
Section 5 and appendix B we show that this algorithm closely approximates conventional stochastic
gradient descent, if asynchronous parameter updates arrive sufficiently frequently.

Algorithm 1 Async BP with decoupled partial updates
Forward thread

Given: Data: (xi, yi) ∈ D, latest up-to-date parameters: θu

Compute Li(θ
u, xi, yi)

send(Li) // send loss to a backward thread

Backward Thread k (running in parallel to the forward thread)

Given: Loss: Lj , learning rate: η

for layer m ∈ [M,1] do

Compute G(θvm,k)

θv+1
m,k ← θvm,k − η.G

θm ← θv+1
m,k // asynchronously update forward thread

end for

4 RESULTS

We evaluate our method on three vision tasks, CIFAR-10, CIFAR-100 and Imagenet, and on one
sequence modeling task: IMDb sentiment analysis. We use Resnet18 and Resnet50 architectures for
vision tasks and a LSTM network for sequence modelling. These networks are trained on a machine
with 3 NVIDIA A100 80GB PCIe GPUs with two AMD EPYC CPUs sockets of 64 cores each. The
experiment code is based on the C++ frontend of Torch (Paszke et al., 2019) - Libtorch.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

The Performance of these tasks is compared to Locally-Asynchronous-Parallel SGD (LAPSGD)
and Locally-Partitioned-Asynchronous-Parallel SGD (LPPSGD) (Chatterjee et al., 2022). These
methods extend the well-known Hogwild! algorithm and Partitioned Asynchronous Stochastic Sub-
gradient (PASSM+) to multiple devices, respectively.

We record the achieved accuracy on the tasks and the wall-clock time to reach a target accuracy
(TTA). If not stated otherwise, this accuracy is chosen to be the best accuracy achieved by the worst
performing algorithm. We used the code made available by Chatterjee et al. (2022) which uses
Pytorch Distributed Data-Parallel API.

4.1 ASYNCHNOUS TRAINING OF VISION TASKS

We follow the training protocol of LAPSGD and LPPSGD and chose the number of processes per
GPU to be 1 since the GPU utilization was close to 100%. We trained them with a batch size of
128 per-rank. We used Stochastic gradient descent (SGD) for both Async BU and LU, with an
initial learning rate of 0.005 for 5 epochs and 0.015 after the warm-up phase, a momentum of 0.9
and a weight decay of 5 × 110−2. We use a cosine annealing schedule with a Tmax of 110. We
trained Resnet-50 on Imagenet-1K task (Table 5) for a total of 250 epochs with the same learning
rate but with a cosine schedule with Tmax of 250 and weight decay of 3.5 × 110−2 . Although,
the simulations were run with cosine annealing scheduler, implying the ideal number of training
epochs, early stopping was applied, i.e. training was stopped if no improvement of the accuracy was
achieved for 30 epochs.

As shown below, Async LU achieves the highest accuracies while Async BU converges the fastest
in terms of time to reach the target accuracy. The CIFAR-10 and CIFAR-100 results are presented
in Tables 1, 2 and Tables 3, 4 respectively. In Tables 1 and 3, the time to target accuracy (TTA) is
chosen to be the time taken to achieved the best accuracy reached by the worst algorithm. Whereas
in Tables 2 and 4, it represents taken by an algorithm achieve its best accuracy. Async BU achieves a
speed-up of up to 2.97× over LPPSGD on CIFAR100 (see Table 3). The poor performance of both
LAPSGD and LPPSGD can be explained by the influence of staleness, thus requiring large number
of training epochs.

We also achieved promising results on the ImageNet-1k dataset (see Table 5). Async LU achieved
73% accuracy ×3 faster than Backpropagation on single GPU, showing potential of ideal linear
scaling. An extensive comparison of Async LU with multi-GPU Backpropagation (Data Distributed
Parallel) is provided in appendix A.2.

Although Async BU converges quicker than Async LU, it reaches lower accuracy. This is particu-
larly visible on CIFAR100, a harder task than CIFAR10 (see Figures 2 and 3). Overall, Async BU
showed a good balance between convergence speed and reduction of staleness.

Table 1: Comparison of Async LU, Async BU, LAPSGD and LPPSGD based on time to reach
accuracy (TTA): 87% for ResNet18 and 89% for ResNet50, and the number of epochs to reach the
target for 3 runs on CIFAR10.

Network architecture Training method TTA (in seconds) Epochs
mean ± std mean ± std

ResNet-18 Async LU 223.8 ± 28 65 ± 10

Async BU 173.4 ± 2 64 ± 2

LAPSGD 706.3 ± 13 104 ± 2

LPPSGD 461.0 ± 7 86 ± 1

ResNet-50 Async LU 737.9 ± 24 86 ± 6

Async BU 700.6 ± 20 86 ± 1

LAPSGD 999.5 ± 38 117 ± 3

LPPSGD 863.4 ± 35 119 ± 1

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Comparison of Async LU, Async BU, LAPSGD, and LPPSGD based on best accuracy,
time to reach accuracy (TTA), and epoch at the accuracy is achieved for 3 runs on CIFAR10.

Network architecture Training method Best accuracy TTA (in seconds) Epochs
mean ± std mean ± std mean ± std

ResNet-18 SGD 93.7 ± 0.16 ± 114 ± 1

Async LU 93.7 ± 0.28 380.7 ± 33 114 ± 9

Async BU 92.7 ± 0.16 308.5 ± 14 115 ± 2

LAPSGD 88.2 ± 0.43 799.5 ± 20 118 ± 2

LPPSGD 87.8 ± 0.09 523.4 ± 15 97 ± 1

ResNet-50 SGD 94.1 ± 0.20 ± 99 ± 5

Async LU 93.9 ± 0.10 1038.8 ± 61 121 ± 6

Async BU 93.2 ± 0.25 953.7 ± 73 116 ± 8

LAPSGD 89.7 ± 0.27 1098.9 ± 30 117 ± 3

LPPSGD 89.3 ± 0.43 888.4 ± 37 119 ± 1

Table 3: Comparison of Async LU, Async BU, LAPSGD and LPPSGD based on time to reach
accuracy (TTA): 60% for ResNet18 and 63% for ResNet50, and the number of epochs to reach the
target for 3 runs on CIFAR100.

Network architecture Training method TTA (in seconds) Epochs
mean ± std mean ± std

ResNet-18 Async LU 226.4 ± 10 69 ± 7

Async BU 155.4 ± 10 57 ± 4

LAPSGD 667.1 ± 8 99 ± 2

LPPSGD 672.9 ± 11 100 ± 2

ResNet-50 Async LU 622.7 ± 32 70 ± 5

Async BU 641.8 ± 16 81 ± 3

LAPSGD 1006.6 ± 13 107 ± 1

LPPSGD 1016.0 ± 6 107 ± 1

4.2 ASYNCHRONOUS TRAINING OF SEQUENCE MODELLING TASK

For demonstrating Async BP training on sequence modelling, we evaluated an LSTM networks on
the IMDb dataset (Maas et al., 2011). Sentiment analysis is the task of classifying the polarity of
a given text. We used a 2-Layer LSTM network with 256 hidden dimensions to evaluate this task.
We trained the network until convergence using the Adam optimizer with an initial learning rate of
1× 10−2. Results are shown in Table 6.

We observe that although both Async LU and Async BU achieve the same accuracy, performing
layer-wise updates reduces the training time and number of steps to convergence almost by half (see
Figure 4 in Appendix A) highlighting again the importance of this strategy.

5 THEORETICAL ANALYSIS OF CONVERGENCE

Here, we theoretically analyse the convergence behavior of the algorithm outlined above. For the
theoretical analysis, we consider the general case of multiple threads, acting on the parameter set θ,
such that the threads interact asynchronously and can work on outdated versions of the parameters.
We model the evolution of the learning algorithm as a continuous-time stochastic process (Bellec
et al., 2017) to simplify the analysis. This assumption is justified by the fact that learning rates are
typically small, and therefore the evolution of network parameters is nearly continuous.

In the model studied here, the stochastic interaction between threads is modelled as noise induced by
random interference of network parameters. To arrive at this model, we use the fact that the dynam-
ics of conventional stochastic gradient descent (SGD) can be modelled as the system of stochastic

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 4: Comparison of Async LU, Async BU, LAPSGD and LPPSGD based on best accuracy, time
to reach accuracy (TTA), and epoch at the accuracy is achieved for 3 runs on CIFAR100.

Network architecture Training method Best accuracy TTA (in seconds) Epochs
mean ± std mean ± std mean ± std

ResNet-18 SGD 73.7 ± 0.08 ± 99 ± 4

Async LU 73.9 ± 0.38 339.0 ± 10 114 ± 9

Async BU 71.8 ± 0.08 277.2 ± 17 103 ± 5

LAPSGD 61.3 ± 0.23 762.5 ± 15 114 ± 3

LPPSGD 61.0 ± 0.17 742.0 ± 19 110 ± 2

ResNet-50 SGD 76.8 ± 0.44 ± 104 ± 1

Async LU 76.2 ± 0.57 1071.0 ± 80 122 ± 6

Async BU 73.7 ± 0.23 956.2 ± 28 123 ± 4

LAPSGD 63.7 ± 0.33 1110.1 ± 27 118 ± 3

LPPSGD 63.5 ± 0.10 1122.1 ± 24 119 ± 2

Table 5: Classification accuracy (% correct) for Async LU (3 GPUs) and vanilla backpropagation
(single GPU) on the ImageNet task.

Network architecture training method test-accuracy train-accuracy TTA (in 1000 seconds)

ResNet-50 Async LU 73.42 93.08 134.24
BP (single GPU) 73.40 91.90 403.77

differential equations that determine the dynamics of the parameter vector θ

dθk = −η ∂

∂θk
L(θ)dt +

η σSGD√
2

dWk , (2)

with learning rate η and where dWk are stochastic changes of the Wiener processes.

Eq. 2 describes the dynamics of a single parameter θk. The dynamics is determined by the gradient
of the loss function L, and the noise induced by using small mini-batches modelled here as idealized
Wiener process with amplitude σSGD. Because of this noise, SGD does not strictly converge to a
local optimum but maintains a stationary distribution p∗(θk) ∝ e−

1
ηL(θk), that assigns most of the

probability mass to parameter vectors that reside close to local optima (Bellec et al., 2017).

In the concurrent variant of SGD studied here, however, the dynamics is determined by perturbed
gradients for different stale parameters. When updating the network using the described asyn-
chronous approach without locking, we potentially introduce noise in the form of partially stale
parameters or from one thread overwriting the updates of another. This noise will introduce a de-
viation from the ideal parameter vector θ. We model this deviation as additive Gaussian noise
ξ ∼ N (0, σSTALE) to the current parameter vector with variance σSTALE. To approximate the noisy
loss function, we use a first-order Taylor expansion around the noise-free parameters:

L(θ + ξ) = L(θ) +∇θL(θ)⊤ξ +O(σ2)

≈ L(θ) +∇θL(θ)⊤ξ ,
(3)

and thus the gradient can be approximated as

∇θL(θ + ξ,X,Y) ≈ ∇θL(θ) +∇2
θL(θ)⊤ξ . (4)

Based on this, we can express the update rule as a Stochastic Differential Equation (SDE) and model
the various noise terms using a Wiener Process W . The noise sources in the learning dynamics
come from two main sources, (1) noise caused by stochastic gradient descent, and (2) noise caused
by learning with outdated parameters. We model the former as additive noise with amplitude σSTALE
and the latter using the Taylor approximation Eq. (4). Using this, we can write the approximate
dynamics of the parameter vector θ as the stochastic differential equation

dθk = µk(θ, t) +
√

Dk(θ) dWk , (5)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 6: Comparison of Async LU, Async BU based on best accuracy, time to reach accuracy (TTA),
and epoch at the accuracy is achieved for 3 runs on IMDb

Network architecture best accuracy TTA(in seconds) epoch
mean±std mean±std mean±std

LSTM Async LU 85.15±0.15 49.3±9.46 6±1
Async BU 85.06±0.59 83.41±12.56 12±2

Figure 2: Learning curves of Asynchronous SGD with layer-wise updates (Async LU) and Block
updates (Async BU) on the CIFAR100 dataset. 3 independent runs are shown for each class.

with

µk(θ) = −η
∂

∂θk
L(θ)

Dk(θ) =
η2σ2

SGD

2
+

η2σ2
STALE

2

∑
l

∂2

∂θk∂θl
L(θ) ,

(6)

where µk is the drift and Dk the diffusion of the SDE.

In Appendix B we study the stationary distribution of this parameter dynamics. We show that the
stationary distribution is a close approximation to p∗ of SGD, which is perfectly recovered if σSTALE
is small compared to σSGD, i.e. if the effect of staleness is small compared to the noise induced by
minibatch sampling.

6 DISCUSSION

In this work, we introduced a novel asynchronous approach to train deep neural networks that de-
couples the forward and backward passes and performs layer-wise parameter updates. Our method
addresses key limitations of standard backpropagation by allowing parallel execution of forward and
backward passes and mitigating update locking through asynchronous layer-wise updates.

The experimental results demonstrate that our approach can achieve comparable or better accuracy
than synchronous backpropagation and other asynchronous methods across multiple vision and lan-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

guage tasks, while providing significant speedups in training time. On CIFAR-10 and CIFAR-100,
we observed speedups of up to 2.97× compared to asynchronous SGD covering a broad range of
paradigms. The method also showed promising results on a sentiment analysis task and the Ima-
geNet classification task where it reached close to ideal scaling.

Our theoretical analysis, based on modeling the learning dynamics as a continuous-time stochastic
process, provides convergence guarantees and shows that the algorithm converges to a stationary
distribution closely approximating that of standard SGD under certain conditions. This offers a
solid foundation for understanding the behavior of our asynchronous approach.

While our implementation using C++ and LibTorch demonstrated the potential of this method, we
also identified some limitations related to GPU resource allocation in SIMT architectures. Future
work could explore optimizing the implementation for more efficient GPU utilization, or investigat-
ing hybrid CPU-GPU approaches to fully leverage the benefits of asynchronous execution.

Overall, this work presents a promising direction for scaling up deep learning through asynchronous,
decoupled updates. The approach has the potential to enable more efficient training of large-scale
models, particularly in distributed and heterogeneous computing environments. Further research
could explore extensions to even larger models, additional tasks, and more diverse hardware setups
to fully realize the potential of this asynchronous training paradigm.

REPRODUCIBILITY

We ensure that the results presented in this paper are easily reproducible using just the information
provided in the main text as well as the supplement. Details of the models used in our simulations
are presented in the main paper and further elaborated in the supplement. We provide additional
details and statistics over multiple runs in the supplement section A.4. We use publicly available
libraries and datasets in our simulations. We will further provide the source code to the reviewers
and ACs in an anonymous repository once the discussion forums are opened. This included code
will also contain “readme” texts to facilitate easy reproducibility. The theoretical analysis provided
in section 5 is derived in the supplement.

REFERENCES

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd:
Communication-efficient sgd via gradient quantization and encoding, 2017. URL https:
//arxiv.org/abs/1610.02132.

Mahmoud Assran, Arda Aytekin, Hamid Reza Feyzmahdavian, Mikael Johansson, and Michael G
Rabbat. Advances in asynchronous parallel and distributed optimization. Proceedings of the
IEEE, 108(11):2013–2031, 2020.

Gerard M Baudet. Asynchronous iterative methods for multiprocessors. Journal of the ACM
(JACM), 25(2):226–244, 1978.

Guillaume Bellec, David Kappel, Wolfgang Maass, and Robert Legenstein. Deep rewiring: Training
very sparse deep networks. arXiv preprint arXiv:1711.05136, 2017.

Dimitri Bertsekas and John Tsitsiklis. Parallel and distributed computation: numerical methods.
Athena Scientific, 2015.

Bapi Chatterjee, Vyacheslav Kungurtsev, and Dan Alistarh. Scaling the wild: Decentralizing
hogwild!-style shared-memory sgd, 2022. URL https://arxiv.org/abs/2203.06638.

Mathieu Even, Anastasia Koloskova, and Laurent Massoulie. Asynchronous SGD on Graphs: A
Unified Framework for Asynchronous Decentralized and Federated Optimization. In Proceedings
of The 27th International Conference on Artificial Intelligence and Statistics, pp. 64–72. PMLR,
April 2024. URL https://proceedings.mlr.press/v238/even24a.html.

Aidan N. Gomez, Oscar Key, Kuba Perlin, Stephen Gou, Nick Frosst, Jeff Dean, and Yarin Gal.
Interlocking backpropagation: improving depthwise model-parallelism. J. Mach. Learn. Res., 23
(1), jan 2022. ISSN 1532-4435.

10

https://arxiv.org/abs/1610.02132
https://arxiv.org/abs/1610.02132
https://arxiv.org/abs/2203.06638
https://proceedings.mlr.press/v238/even24a.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Zhouyuan Huo, Bin Gu, qian Yang, and Heng Huang. Decoupled parallel backpropagation with
convergence guarantee. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th In-
ternational Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pp. 2098–2106. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.
press/v80/huo18a.html.

Alexander Isenko, Ruben Mayer, Jeffrey Jedele, and Hans-Arno Jacobsen. Where is my training
bottleneck? hidden trade-offs in deep learning preprocessing pipelines. In Proceedings of the
2022 International Conference on Management of Data, pp. 1825–1839, 2022.

Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves, David
Silver, and Koray Kavukcuoglu. Decoupled Neural Interfaces using Synthetic Gradients.
arXiv:1608.05343 [cs], August 2016. URL http://arxiv.org/abs/1608.05343.

David Kappel, Khaleelulla Khan Nazeer, Cabrel Teguemne Fokam, Christian Mayr, and Anand
Subramoney. Block-local learning with probabilistic latent representations, 2023.

Janis Keuper and Franz-Josef Preundt. Distributed training of deep neural networks: Theoretical
and practical limits of parallel scalability. In 2016 2nd workshop on machine learning in HPC
environments (MLHPC), pp. 19–26. IEEE, 2016.

Adarsh Kumar, Kausik Subramanian, Shivaram Venkataraman, and Aditya Akella. Doing more
by doing less: how structured partial backpropagation improves deep learning clusters. In Pro-
ceedings of the 2nd ACM International Workshop on Distributed Machine Learning, pp. 15–21,
2021.

Vyacheslav Kungurtsev, Malcolm Egan, Bapi Chatterjee, and Dan Alistarh. Asynchronous op-
timization methods for efficient training of deep neural networks with guarantees. Proceed-
ings of the AAAI Conference on Artificial Intelligence, 35(9):8209–8216, May 2021. doi: 10.
1609/aaai.v35i9.16999. URL https://ojs.aaai.org/index.php/AAAI/article/
view/16999.

Guillaume Leclerc, Andrew Ilyas, Logan Engstrom, Sung Min Park, Hadi Salman, and Alek-
sander Madry. Ffcv: Accelerating training by removing data bottlenecks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12011–12020, 2023.

Chenxiang Ma, Jibin Wu, Chenyang Si, and Kay Chen Tan. Scaling supervised local learning with
augmented auxiliary networks. arXiv preprint arXiv:2402.17318, 2024.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Dekang Lin, Yuji Matsumoto, and
Rada Mihalcea (eds.), Proceedings of the 49th Annual Meeting of the Association for Compu-
tational Linguistics: Human Language Technologies, pp. 142–150, Portland, Oregon, USA, June
2011. Association for Computational Linguistics. URL https://aclanthology.org/
P11-1015.

Konstantin Mishchenko, Francis Bach, Mathieu Even, and Blake Woodworth. Asynchronous SGD
Beats Minibatch SGD Under Arbitrary Delays, June 2022. URL http://arxiv.org/abs/
2206.07638.

Giorgi Nadiradze, Ilia Markov, Bapi Chatterjee, Vyacheslav Kungurtsev, and Dan Alistarh. Elastic
Consistency: A Practical Consistency Model for Distributed Stochastic Gradient Descent. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 35(10):9037–9045, May 2021. ISSN
2374-3468. doi: 10.1609/aaai.v35i10.17092. URL https://ojs.aaai.org/index.
php/AAAI/article/view/17092.

Arild Nøkland and Lars Hiller Eidnes. Training neural networks with local error signals. In Inter-
national conference on machine learning, pp. 4839–4850. PMLR, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep

11

https://proceedings.mlr.press/v80/huo18a.html
https://proceedings.mlr.press/v80/huo18a.html
http://arxiv.org/abs/1608.05343
https://ojs.aaai.org/index.php/AAAI/article/view/16999
https://ojs.aaai.org/index.php/AAAI/article/view/16999
https://aclanthology.org/P11-1015
https://aclanthology.org/P11-1015
http://arxiv.org/abs/2206.07638
http://arxiv.org/abs/2206.07638
https://ojs.aaai.org/index.php/AAAI/article/view/17092
https://ojs.aaai.org/index.php/AAAI/article/view/17092

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

learning library. In Advances in Neural Information Processing Systems 32, pp. 8024–8035. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/
paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild!: A lock-free approach to
parallelizing stochastic gradient descent. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and
K.Q. Weinberger (eds.), Advances in Neural Information Processing Systems, volume 24. Cur-
ran Associates, Inc., 2011. URL https://proceedings.neurips.cc/paper_files/
paper/2011/file/218a0aefd1d1a4be65601cc6ddc1520e-Paper.pdf.

Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Terngrad:
Ternary gradients to reduce communication in distributed deep learning, 2017. URL https:
//arxiv.org/abs/1705.07878.

Paul Werbos. Applications of advances in nonlinear sensitivity analysis. System Modeling and
Optimization, pp. 762–770, 1982.

Hao Zhang, Zeyu Zheng, Shizhen Xu, Wei Dai, Qirong Ho, Xiaodan Liang, Zhiting Hu, Jin-
liang Wei, Pengtao Xie, and Eric P. Xing. Poseidon: An efficient communication archi-
tecture for distributed deep learning on GPU clusters. In 2017 USENIX Annual Technical
Conference (USENIX ATC 17), pp. 181–193, Santa Clara, CA, July 2017. USENIX Asso-
ciation. ISBN 978-1-931971-38-6. URL https://www.usenix.org/conference/
atc17/technical-sessions/presentation/zhang.

Shuxin Zheng, Qi Meng, Taifeng Wang, Wei Chen, Nenghai Yu, Zhi-Ming Ma, and Tie-Yan Liu.
Asynchronous stochastic gradient descent with delay compensation. In International conference
on machine learning, pp. 4120–4129. PMLR, 2017.

12

https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/218a0aefd1d1a4be65601cc6ddc1520e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/218a0aefd1d1a4be65601cc6ddc1520e-Paper.pdf
https://arxiv.org/abs/1705.07878
https://arxiv.org/abs/1705.07878
https://www.usenix.org/conference/atc17/technical-sessions/presentation/zhang
https://www.usenix.org/conference/atc17/technical-sessions/presentation/zhang

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A ADDITIONAL RESULTS

A.1 LEARNING CURVES

Here, we provide additional details to the results provided in the main text. Figures 3 and 4 show the
learning dynamics of Asynchrounous Backpropagation with blocks updates (Async BU) and with
layer-wise updates (Async LU) on CIFAR10 and IMDb respectively. The difference in convergence
speed and accuracy observed with CIFAR100 2 is less noticeable on CIFAR10, probably because it
is a simpler task. However, we clearly see the advantage of Async LU on the IMDb, where it not
only converges faster but also to similar accuracy.

Figures 5 and 6 compare the training curses of sequential SGD with Async LU respectively. We
observed that Async LU needs more epochs to converge, ∼15 epochs more. When trained to a
larger dataset (Figures 7 and 8), we can see that both Async LU and SGD seem to converge within
the same number of epochs while Async LU scales almost linearly with the number of GPUs. We
should take these results carefully given that accuracies are plots against the number of epochs and
not the time since both are trained on different numbers of GPUs. Appendix A.2 gives a comparison
with equal number of GPUs.

Figure 3: testing curves of Asynchronous SGD with layer-wise updates (Async LU) and Block
updates (Async BU) for ResNet18 (top plots) and ResNet50 (bottom plots) on the CIFAR10 dataset.

A.2 SPEED-UP COMPARISON WITH MULTI-GPU BACKPROPAGATION

Here we do a comparison of Asynchronous Backpropagation with layer-wise updates (Async LU)
and multi-GPU Data Distributed Parallel(DDP) both trained on 3 GPUs residing on the same ma-
chine (described in section 4) to achieve their accuracies. Since Async LU uses only one forward
pass, we set its batch size to be 128 and that of BP to 3× higher (384). Async LU was imple-
mented on the c++ library of Pytorch, Libtorch, while multi-GPU SGD is implemented using Py-
torch DataDistributedParallel (DDP) API. The hyperparameters used are the same as described in
section 4.
To make the comparison fair across implementation platforms, the relative speed-up is calculated
with respect to their single GPU implementation respectively.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Figure 4: testing curves of Asynchronous SGD with layer-wise updates (Async LU) and Block
updates (Async BU) on the IMDb dataset.

Figure 5: training curves of Asynchronous SGD with layer-wise updates (Async LU) on 3 GPUs
and Single GPU SGD on CIFAR-10 dataset on ResNet18 (left) and ResNet50 (right).

In this Settings, DDP should clearly be at advantage since it uses a bigger batch size, all the GPUs
are on the same machine and we optimized DDP loading process by persisting the data on the GPUs,
reducing considerably the communication bottleneck, hence making the synchronization step faster.
What we however observe is that Async LU achieves comparable relative speed-up over a single
GPU compared to DDP on both CIFAR10 and CIFAR100. This shows the effectiveness of our
asynchronous formulation (figure 1). We can expect Async LU to have greater advantage in a multi-
node or heterogeneous setting because the synchronization barrier becomes problem.

Table 7: Comparison of Async LU and DDP both trained on 3GPUs based on their relative speed-up
to single GPU implemention for 3 runs on CIFAR10

Network architecture Training method Relative speed-up
mean ± std

ResNet-18 Async LU 1.86 ± 0.21

DDP 1.90 ± 0.08

ResNet-50 Async LU 2.02 ± 0.10

DDP 2.38 ± 0.19

A.3 TIME MEASUREMENTS

Here we provide the results of a small-scale experiment on the timing measurement of forward and
backward passes for CIFAR-100 with batch size 128 in table 9. As expected, a single backward
pass requires ∼ 2× than that of a single forward pass. Extensive experiments on this is provided by
Kumar et al. (2021)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 6: training curves of Asynchronous SGD with layer-wise updates (Async LU) on 3 GPUs
and Single GPU SGD on the CIFAR-100 dataset on ResNet18 (left) and ResNet50 (right).

Figure 7: training curves of Asynchronous SGD with layer-wise updates (Async LU) on 3 GPUs
and Single GPU SGD on the ImageNet dataset.

A.4 HYPERPARAMETERS FOR THE EXPERIMENTS

Hyperparameters used in training experiments presented in section 4 are documented in table 10

B CONVERGENCE PROOF

Here we provide the proof that the stochastic parameter dynamics, Eq. (5) of the main text, converges
to a stationary distribution p∗(θ) given by

p∗(θ) =
1

Z
exp

(∑
k

hk(θ)

)
, with hk(θ) =

∫
µk(θ)

Dk(θ)
dθ − ln |Dk(θ)|+ C . (7)

The proof is analogous to the derivation given in Bellec et al. (2017), and relies on stochastic calculus
to determine the parameter dynamics in the infinite time limit. Since the dynamics include a noise
term, the exact value of the parameters θ(t) at a particular point in time t > 0 cannot be determined,
but we can describe the distribution of parameters using the Fokker-Planck formalism, i.e. we
describe the parameter distribution at time t by a time-varying function pFP(θ, t).

To arrive at an analytical solution for the stationary distribution, p∗(θ) we make the adiabatic as-
sumption that noise in the parameters only has local effects, such that the diffusion due to noise in
any parameter θj has negligible influence on dynamics in θk, i.e. ∂

∂θj
Dk(θ) = 0,∀j ̸= k. Using

this assumption, it can be shown that, for the dynamics (6), pFP(θ, t) converges to a unique station-
ary distribution in the limit of large t and small noise σSTALE . To prove the convergence to the
stationary distribution, we show that it is kept invariant by the set of SDEs Eq. (6) and that it can be

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 8: testing curves of Asynchronous SGD with layer-wise updates (Async LU) on 3 GPUs and
Single GPU SGD on the ImageNet dataset.

Table 8: Comparison of Async LU and DDP both trained on 3GPUs based on their relative speed-up
to single GPU implemention for 3 runs on CIFAR100

Network architecture Training method Relative speed-up
mean ± std

ResNet-18 Async LU 1.83 ± 0.06

DDP 1.86 ± 0.21

ResNet-50 Async LU 2.02 ± 0.13

DDP 2.30 ± 0.13

reached from any initial condition. Eq. 6 implies a Fokker-Planck equation given by

∂

∂t
pFP(θ, t) =−

∑
k

∂

∂θk
[µk(θ, t)pFP(θ, t)] +

∂2

∂θ2k
[Dk(θ, t)pFP(θ, t)] (8)

We show that, under the assumptions outlined above, the stochastic parameter dynamics Eq. (6) of
the main text, converges to the stationary distribution p∗(θ) (Eq. (7)).

To arrive at this result, we plug in the assumed stationary distribution into Eq. (8) and show the
equilibrium ∂

∂tpFP(θ, t) = 0, i.e.

∂

∂t
pFP(θ, t) = −

∑
k

∂

∂θk
[µk(θ)pFP(θ, t)]

+
∂2

∂θ2k
[Dk(θ)pFP(θ, t)] = 0

↔ −
∑
k

∂

∂θk
[µk(θ)pFP(θ, t)]

+
∂

∂θk

[(
∂

∂θk
Dk(θ)

)
pFP(θ, t)

]
+

∂

∂θk

[
Dk(θ)

(
∂

∂θk
hk(θ)

)
pFP(θ, t)

]
,

(9)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 9: Timing measurement of forward and backward passes for CIFAR-100 with batch size 128.
Averaged over all batches for 15 epochs.

Network architecture Forward pass (s) Backward pass (s)
mean ± std mean ± std

ResNet-18 0.0049 ± 1E-04 0.0102 ± 1E-04

ResNet-50 0.0166 ± 5E-05 0.0299 ± 4E-05

Table 10

CIFAR-100 CIFAR-10 Imagenet IMDb

hyperparameter Resnet-18 Resnet-50 Resnet-18 Resnet-50 Resnet-50 LSTM
batch size 128 128 128 128 250 75
lr 0.015 0.015 0.015 0.015 0.015 0.001
momentum 0.9 0.9 0.9 0.9 0.9 0.9
T max 100 120 105 120 250 150
warm up epochs 5 5 3 5 5 0
warm up lr 0.005 0.005 0.005 0.005 0.0035 -
weight decay 0.005 0.005 0.005 0.005 0.0035 0

where we used the simplifying assumption, ∂
∂θj

Dk(θ) = 0,∀j ̸= k, as outlined above. Next, using
∂

∂θj
hk(θ) =

1
Dk(θ,t)

(
µk(θ, t)− ∂

∂θj
Dk(θ, t)

)
, we get

∂

∂t
pFP(θ, t) = 0 ↔ −

∑
k

∂

∂θk
[µk(θ, t)pFP(θ, t)]

+
∂

∂θk

[(
∂

∂θk
Dk(θ, t)

)
pFP(θ, t)

]
+

∂

∂θk

[(
µk(θ, t)−

∂

∂θk
Dk(θ, t)

)
pFP(θ, t)

]
= 0

(10)

This shows that the simplified dynamics, Eq. 6, leave the stationary distribution (7) unchanged.

This stationary distribution p∗(θ) is a close approximation to SGD. To see this, we study the maxima
of the distribution, by taking the derivative

∂

∂θk
hk(θ) =

µk(θ)

Dk(θ)
− ∂

∂θk
ln |Dk(θ)| , (11)

which by inserting (6) can be written as

∂

∂θk
hk(θ) = −

1

η

∇θL(θ) + σ2
STALE∇3

θL(θ)
σ2

SGD + σ2
STALE∇2

θL(θ)
(12)

If σSTALE is small compared to σSGD we recover the cannonical results for SGD ∂
∂θk

hk(θ) ≈
− 1

η
∇θL(θ)
σ2

SGD
, where smaller learning rates η make the probability of reaching local optima more

peaked. Distortion of local optima, which manifests in the second term in the nominator, only de-
pend on third derivatives, which can be expected to be small for most neural network architectures
with well-behaved non-linearities.

17

	Introduction
	Related Work
	Methods
	Asynchronous formulation of Backpropagation
	Layer-wise updates
	Speed-up analysis
	Staleness Analysis
	Algorithm

	Results
	Asynchnous training of vision tasks
	Asynchronous training of sequence modelling task

	Theoretical analysis of convergence
	Discussion
	Additional results
	Learning curves
	Speed-up comparison with Multi-GPU Backpropagation
	Time measurements
	Hyperparameters for the experiments

	Convergence Proof

