
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

AN ALGEBRAIC APPROACH TO APPROXIMATELY
EQUIVARIANT NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Equivariant neural networks incorporate symmetries through group actions, embed-
ding them as an inductive bias to improve performance. Prominent methods learn
an equivariant action on the latent space, or design architectures that are equivariant
by construction. These approaches often deliver strong empirical results but can
involve architecture-specific constraints, large parameter counts, and high compu-
tational cost. We challenge the paradigm of complex equivariant architectures with
a parameter-free approach grounded in representation theory. We prove that for an
equivariant encoder over a finite group, the latent space must almost surely contain
one copy of the regular representation for each linearly independent data orbit,
which we explore with a number of empirical studies. Leveraging this foundational
algebraic insight, we impose the regular representation as an inductive bias via an
auxiliary loss, adding no learnable parameters. Our extensive evaluation shows that
this method matches or outperforms specialized models in several cases, even those
for infinite groups. We further validate our choice of the regular representation
through an ablation study, showing it consistently outperforms defining and trivial
representation baselines.

1 INTRODUCTION

DE

X Y

αX αYρZ

Z

Figure 1: Generic architecture with input set X ,
latent space Z and output set Y , carrying group
actions αX , αY on the input and output spaces,
and potentially a representation ρZ on the latent
space.

When we consider the problem of designing a
neural network to solve a given task, we com-
monly observe the existence of a symmetry
group G that acts naturally on the training data.1
We illustrate a generic architecture in Figure 1,
which we interpret broadly: E may be any sort
of feature extractor, such as in an encoder or
classifier; and D may be any final component
that produces outputs from latent representa-
tions, such as a classifier head or decoder. On
the input and output sets, the actions αX , αY
transform the corresponding data, which we may
want to be respected by our neural network.

However, for certain tasks we can expect only approximate equivariance, where a transformation of
the input vector corresponds inexactly, or nondeterministically, to a transformation of the outputs.
This most general setup is typical of many real-world tasks, where we may encounter approximate
scale-invariance or rotation-equivariance of turbulent dynamics (Holmes, 2012; Holl et al., 2020),
and approximate reflection-invariance of pathologies in medical images (Yang et al., 2023).

A rich body of work in machine learning aims to learn a group representation ρZ that acts linearly on
the latent space, satisfying a suitable equivariance property. This can be attractive, as it may reduce a
complex nonlinear action on the training set to an easily-computable linear function. Furthermore, this
approach has been shown to yield improved performance for invariant, equivariant, or approximately
equivariant tasks (see Section 2 for a brief survey). However, the performance benefits of many of

1We give a formal definition of a group action on a vector space (group representation) in Section 3.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

these state-of-the-art methods often come at the cost of high model complexity, increased training
times, and significantly elevated parameter counts compared to their non-equivariant counterparts.

Our research is guided by the following question: for a known finite symmetry group, can we
leverage a theoretically-principled understanding of the latent algebraic structure to achieve
the benefits of (approximate) equivariance, without the parameter and architectural costs of
current methods? Our core theoretical contribution is a proof that for any equivariant encoder
the latent space must contain the regular representation almost surely. Based on this finding, we
propose a new, lightweight training regime: we fix the latent representation to be a multiple of the
regular representation, and enforce this algebraic prior with an auxiliary loss. This approach yields
strong performance on a variety of invariant, equivariant, and approximately-equivariant tasks. We
summarize our main contributions as follows.

• We present a new lightweight method with no additional learnable parameters for training
neural networks to solve invariant, equivariant and approximately-equivariant tasks, where a
finite group acts on the training set with a known action.

• We provide a theoretical characterization of latent space representations under data aug-
mentation and an equivariant encoder, showing that the regular representation must appear
almost surely. Building on this insight, we empirically validate that neural networks tend to
learn a linear action aligned with this structure.

• We show that our method is competitive with or exceeds state-of-the-art in a range of bench-
marks, despite having only a single tunable hyper-parameter, and no additional learnable
parameters, while alternative approaches typically have large learnable parameter demands
(in some cases 5-20 times baseline) to achieve competitive performance.

2 RELATED WORK

A wide variety of methods have been developed to train neural networks to solve tasks in the presence
of invariance, equivariance, or approximate equivariance. We give a brief summary here of those
methods which are most relevant for our present work.

One of the most studied bodies of work derive from Convolutional Neural Networks (CNNs), which
of course have strict translation invariance in their traditional form (LeCun & Bengio, 1998; Shorten &
Khoshgoftaar, 2019). Cohen & Welling (2016) employ the framework of steerable functions (Hel-Or
& Teo, 1998) to construct a rotation-equivariant Steerable CNN architecture (SCNN), which strictly
respects both translation and rotation equivariance; this was later generalised to develop a theory
of general E(2)-equivariant steerable CNNs (E2CNN), which allow the degree of equivariance to
be controlled by explicit choices of irreducible representation of the symmetry group (Weiler &
Cesa, 2019). Such a network can avoid learning redundant rotated copies of the same filters. A
similar method is that of Mobius Convolutions (MC) (Mitchel et al., 2022). Wang et al. (2022) use
steerable filters to obtain convolution layers with approximate translation symmetry and without
rotation symmetry (RSteer), and with approximate translation and rotation symmetry (RGroup).
These authors relax the strict weight tying of E2CNNs, replacing single kernels with weighted linear
combinations of a kernel family, with coefficients that are not required to be rotation- or translation-
invariant. A third approach named Probabilistic Steerable CNNs (PSCNN) was proposed recently
by Veefkind & Cesa (2024), which allows SCNNs to determine the optimal equivariance strength at
each layer as a learnable parameter. While equivariant architectures may allow reduced parameter
counts due to weight-tying, in practice many of these architectures require considerable additional
parameter counts to achieve competitive performance (see parameter counts in Section 6).

We also discuss a family of approaches which are not based around the CNN architecture. Residual
Pathway Priors (RPP) (Finzi et al., 2021), is a model where each layer is doubled, yielding a first
layer with strong inductive biases, and a second layer which is less constrained, with final output is
obtained as the sum of these layers. Another architecture is Lift Expansion (LIFT), which factorizes
the input space into equivariant and non-equivariant subspaces, and applies different architectures to
each (Wang et al., 2021).

A number of previous studies have considered group representations on the latent space, sometimes
governed via an equivariance term in the loss function. An early approach by (Welling & Cohen, 2014)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

shows how geometrical transformations can be encoded on the latent space via SO(3) representations
on the latent space, while (Worrall et al., 2017) demonstrate disentanglement phenomena with similar
methods. Dupont et al. (2020) propose a parameter-free method to learn equivariant neural implicit
representations for view synthesis; while similar to our method in some respects, such as fixing the
latent representation, their work strongly leverages the defining representation of the infinite group
O(3), is limited to latent spaces with the same geometrical structure as the input space, and does not
apply to arbitrary latent encodings. Jin et al. (2024) present a similar method which learns non-linear
group actions on the latent space using additional learnable parameters, augmented by an optional
attention mechanism. In Neural Isometries (NIso) (Mitchel et al., 2024), the authors propose to learn
an action on the latent space via its eigenbasis; in contrast, in our model the group acts linearly on
the latent space with a fixed representation, and with no additional parameters needed. Recent work
of (Bökman et al., 2024) considers learned latent representations for a fixed group to solve certain
geometrical tasks. Other approaches that do not require the symmetry group to be known beforehand
include Neural Fourier Transforms (NFT) (Koyama et al., 2024), which seeks to learn a suitable
latent space transformation, and other work (Shakerinava et al., 2022; Winter et al., 2024).

While our work builds on these approaches, our contribution is distinct: by assuming a known
symmetry, we leverage representation theory to identify the regular representation as a theoretically-
motivated latent structure, which enables our simple pipeline without additional learnable parameters.
Although our approach requires fixing a group structure, our experimental results show that this ap-
proach can often achieve superior performance compared to models without this constraint, including
models specifically adapted for continuous symmetries.

3 BACKGROUND ON GROUP REPRESENTATIONS

We review essential aspects of group representation theory for our work. We consider a finite group G
and work over a base field K, assumed to be R or C. The results presented are standard, for which we
recommend canonical texts such as Fulton & Harris (2004) and James & Liebeck (2001). A glossary
of notation and further background on group actions are available in Appendix B and C.

Regular representation. For the case of a finite group, the regular representation ρreg is defined
as the linearisation of the action of G on itself. Explicitly, we first define K[G] as having elements
given by linear combinations of group elements

∑
i cigi weighted by coefficients ci ∈ K. Then ρreg

is defined as a representation on K[G] as follows: ρreg(g)(
∑

i cigi) =
∑

i ci(ggi). By construction
we have dim(ρreg) = |G|, the size of the group. A representation ρ on the vector space Kn is
a permutation representation when for all g ∈ G, the matrix ρ(g) is a permutation matrix. By
construction, the regular representation is a permutation representation.

Irreducibility. Given vector spaces V and V ′ we can form their direct sum V ⊕ V ′, with elements
which are ordered pairs of elements (v, v′) of V and V ′ respectively. Given a representation ρ
on V , and ρ′ on V ′, we can form their direct sum ρ ⊕ ρ′ acting on the vector space V ⊕ V ′, as
defined as (ρ⊕ ρ′)(g)(v, v′) := (ρ(g)(v), ρ′(g)(v′)). For an integer n, we can similarly define the
n-fold multiple of ρ, written n · ρ, as ρ ⊕ ρ ⊕ · · · ⊕ ρ. If ρ = ρ′ ⊕ ρ′′, we say that ρ′ and ρ′′ are
subrepresentations of ρ.

A representation is irreducible, also called an irrep, if it is not isomorphic to a direct sum of other
representations, except for itself or the zero representation. A finite group has finitely many irreps up
to isomorphism, and the regular representation is the direct sum of irreps, with each irrep taken with
multiplicity given by its dimension. For example, the group S3 has just the trivial (dim 1), sign (dim
2) and standard (dim 2) irreps (with the same for D3 as they are isomorphic groups); and the cyclic
group Cn has n irreducible representations (all dim 1) over C, one for each nth root of unity.

Orthogonality of representations. For a fixed group G, we may ask whether a representation ρ
contains an irreducible representation ρ′ as a direct summand, and if so with what multiplicity. This
can be determined using the formula for inner product of representations:

⟨ρ, ρ′⟩ = 1
|G|

∑
g∈G Tr(ρ(g))Tr(ρ′(g))

Given the knowledge of all irreducible representations of a finite group, this method allows us to
determine their multiplicities as subrepresentations of ρ.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Illustration of our theory for an equivariant encoder E and G = C2 = {1, a}, with αX
acting by horizontal flips. If E(Ox), E(Ox′) are full rank and linearly independent, Z must contain
a separate copy of the regular representation ρreg for each with probability 1.

4 IDENTIFYING OPTIMAL REPRESENTATIONS

We suppose a network architecture as illustrated in Figure 1 is given, with training elements (xi, yi) ∈
X × Y , and task loss Ltask(D(E(xi)), yi). We now suppose a finite symmetry group G is specified,
which acts by fixed actions αX , αY on the input and output spaces respectively. We are interested
to answer the following question: if we use additional learnable parameters to construct a third
representation ρ̂Z of G on the latent space Z, which we co-train alongside the parameters for E,D
with a suitable loss function, what representation ρ̂Z does the model prefer to learn? We first
provide a theoretical analysis, which we then complement with an empirical exploration.

4.1 THE LATENT SPACE MUST CONTAIN THE REGULAR REPRESENTATION ALMOST SURELY

Adopting the notation above, we denote the G-orbit of a training sample x ∈ X as Ox :=
{αX (g)(x) | g ∈ G}. This contains all G-augmented versions of x, which we call the data or-
bit of x. We suppose x is a single data sample chosen such that all augmented versions are distinct,
i.e. such that αX (g)(x) = αX (h)(x) implies g = h, which is typical for data augmentation. As a
consequence |Ox| = |G|, and we conclude that G acts freely and transitively on Ox (nLab, 2024).
We will be interested in the encodings Eθ(Ox), where Eθ : X → Z is an encoder parameterized by
θ ∈ Θ ⊆ Rp, and with dim(Z) ≥ |G|. If dim(Span(Eθ(Ox))) = |G|, then we say that Eθ(Ox) is
full rank, or otherwise rank deficient. We then show the following (proofs in Appendix E).

Theorem 1 (Informal). For an equivariant encoder Eθ and a training sample x, if Eθ(Ox) is full
rank, then the latent space contains a copy of the regular representation of G.

Theorem 2 (Informal). If Eθ is also real analytic in its inputs and parameters, and trained by
gradient descent, then for each training sample x ∈ X , exactly one of the following holds:

(i) for all possible parameterisations θ ∈ Θ, the vectors Eθ(Ox) are rank deficient.

(ii) with probability 1, the vectors Eθ(Ox) are full rank, and hence the latent space contains
the regular representation.

Analyticity is discussed in Appendix E.1. We discuss the two cases in the statement of Theorem 2.
Case (i) may arise in certain restricted cases—for example, if Eθ is G-invariant by construction—
where no regular representation appears. However, for any training sample x ∈ X , the two scenarios
can be easily distinguished: sample θ ∈ Θ, then check rank deficiency of Eθ(Ox). If rank deficiency
holds, we are in case (i) with probability 1. Otherwise we are in case (ii) with probability 1.
Furthermore, this principle extends across the training set, with each linearly independent full rank
embedded orbit (Appendix E, Definition 4) contributing a separate copy of the regular representation.

Key theoretical insight: To achieve encoder equivariance in the presence of data augmentation, a
sufficiently large latent space must contain a separate copy of the regular representation for each
linearly independent full rank embedded orbit. This is summarized in Figure 2.

The question remains how many copies of the regular representation one obtains in practice, and we
investigate this with the following empirical studies.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.2 EMPIRICAL EXPLORATION

For our empirical investigation, we conduct experiments with the following loss function:

Lopt = Ltask

(
D(E(xi)), yi

)
Task loss. Trains encoder and decoder on the
supervised objective.

+ λt Ltask

(
D(ρ̂Z(g)E(xi)), αY(g)(yi)

)
Latent→Output Equivariance. Encourages
D(ρ̂Z(g)E(x)) to match αY(g)(y).

+ λe MSE
(
ρ̂Z(g)E(xi), E(αX (g)(xi))

)
Input→Latent Equivariance. Encourages
ρ̂Z(g)E(x) to match E(αX (g)x).

+ λa

(
ALGG,d +REGG,d

)
Algebra Loss. Encourages algebraic
properties for ρ̂Z to be a group representation.

x αX (a)(x)

D
(
ρ̂Z(a)E(x)

)
D
(
ρ̂Z(a)2 E(x)

)
Figure 3: Visualisation of
our learned encoder E, de-
coder D and latent action
ρ̂Z on input vector x with
αX swapping fonts. The
algebraic loss correctly en-
forced ρ̂Z(a)

2 = Id.

We give additional insight into the algebra loss in Appendix D. Drawing
insight from Theorems 1 and 2, for experiments involving analytic
encoders, we expect to learn a representation ρ̂Z that contains copies of
the regular representation. The number of copies is lower bounded by
the number of linearly independent embedded data orbits, which must
be empirically determined (details in Appendix F.1). In this section we
describe a number of exploratory studies based on the MNIST (Deng,
2012), TMNIST (Magre & Brown, 2022) and CIFAR10 (Krizhevsky,
2009) datasets, for both autoencoder and classifier tasks, and for the
groups C2, D3 and C4. These show that for an analytic encoder E, when
ρ̂Z is randomly initialized according to N (0,1), the network prefers
to learn a representation which consists entirely of linearly independent
copies of the regular representation. Appendices F.4 and F.5 investigate
alternative layer depths and initialization schemes, respectively.

Non-analytic encoders. While Theorem 1 applies to non-analytic
encoders, Theorem 2 requires analyticity. In deep learning architec-
tures most components are analytic (discussion in Appendix E.1), with
the exception of some common activation functions such as ReLU,
which are piecewise analytic. The Stone-Weierstrass theorem states that
any continuous function can be arbitrarily well approximated on any
bounded domain by an analytic function. We explore the representations learned for non-analytic
encoders in Appendix F.3, where we re-run the exploratory experiments of this section with piecewise-
analytic activations (ReLU), and show that the same conclusions hold: the network prefers to learn a
representation which consists entirely of linearly independent copies of the regular representation.

4.2.1 TMNIST AUTOENCODER, CNN ARCHITECTURE, G = C2

For our first experiment we use the TMNIST dataset, of digits rendered in a variety of typefaces. We
choose a subset of two typefaces only, producing 20 images, augmenting with 180° rotations. For
our group we choose G = C2 presented as {1, a | a2 = 1}. Since this is an autoencoder we have
X = Y , and we choose αX = αY , with the nontrivial element αX (a) = αY(a) acting to flip the
choice of font, with rotation and scaling left invariant. For the algebra loss component (iv) we choose
ALGC2,d = MSE(ρ̂Z(a)

2, Id) where d = dim(Z) = 8.

Table 1: Left (Right) TMNIST (MNIST) analytic autoencoder task, learned representations of C2

(D3) on the latent space. Z is taken as the middle layer, which carries the output of the encoder.

Irrep. counts

Run −1 +1 Alg. loss Eq. loss Orbs

1 3 5 9.9×10-10 1.6×10-3 3
2 4 4 1.1×10-7 1.3×10-3 3
3 3 5 7.4×10-10 1.2×10-4 4
4 4 4 2.3×10-10 9.1×10-5 4
5 4 4 2.9×10-9 1.5×10-3 3

Irrep. counts

Run Triv Sgn Std Alg. loss Eq. loss Orbs.

1 2.98 3.1 5.98 1.1×10-4 1.4×10-2 3
2 3.03 2.98 6.01 5.8×10-3 2.1×10-3 3
3 3.1 2.97 5.70 1.6×10-4 2.7×10-2 3
4 2.96 3.15 5.75 2.3×10-3 3.1×10-3 3
5 2.91 2.99 6.02 7.5×10-2 2.2×10-2 3

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: CIFAR classifier task with analytic encoder, representations of C4 learned on latent space.
Z is taken as the main feature layer before the final classification head.

Irreducible counts

Run +1 +i −1 −i Alg. loss Eq. loss Orbs.

1 4 4 4 4 1.5×10−4 1.8×10−3 4
2 3 4 5 4 7.2×10−5 1.9×10−3 3
3 3 5 3 5 9.4×10−5 1.6×10−3 3
4 4 4 4 4 1.1×10−4 1.9×10−3 4
5 4 4 4 4 8.4×10−5 1.9×10−3 4

Table 1 shows our findings, with each run giving one row of the table, and Figure 3 shows a visualiza-
tion. Low values in the algebra and equivariance loss columns reveal high-quality representations
ρ̂Z , which are strongly equivariant with respect to the representations αX , αY . By mapping the
eigenvalues of ρ̂Z(a) to the nearest value in {−1,+1}, we can determine the corresponding irre-
ducible representation. For the group C2 the regular representation contains one copy of the -1 and
+1 representations, and see that the learned ρ̂Z’s are close to a multiple of the regular representation.
Furthermore, we report the number of linearly independent embedded orbits and, as expected, this
corresponds to the number of copies of the regular representation found (Section 4.1).

4.2.2 MNIST AUTOENCODER, MLP ARCHITECTURE, G = D3

For our second experiment we choose the MNIST dataset of handwritten digits, augmented by
arbitrary rotations. We choose the group G = D3, the group of symmetries of an equilat-
eral triangle with the generators r, s (120-degree rotation, flip) and the following presentation:
{e, r, r2, r3, s, rs | r3 = e, s2 = e, rsrs = e}. We parameterize the linear maps ρ̂Z(r) and ρ̂Z(s)
independently, and define the following algebra loss, where d = dim(Z) = 18, and where summands
correspond to constraints in the presentation: ALGD3,d = MSE(ρ̂Z(r)

3, Id) +MSE(ρ̂Z(s)
2, Id) +

MSE(ρ̂Z(r)ρ̂Z(s)ρ̂Z(r)ρ̂Z(s), Id).

For the nonabelian group D3, we determined the learned representation’s composition using orthogo-
nality of characters (Section 3). The data in Table 1 confirms that the network learns a high-fidelity
multiple of the regular representation, which contains the trivial, sign, and standard irreducible
representations in the ratio 1:1:2. Consistent with the previous experiment, each linearly independent
data orbit contributes one distinct copy of this representation. Furthermore, Figure 4 illustrates the
eigenvalues of the generator ρ̂Z(r) dynamically clustering around the third roots of unity during
training, despite an uneven initialization.

4.2.3 CIFAR10 CLASSIFIER, CNN ARCHITECTURE, G = C4

Figure 4: Eigenvalues of the real-valued matrix ρ̂Z(r)
at different training steps. Beneath each plot we show
counts of eigenvalues nearest to each third root of unity.

This experiment uses the CIFAR10 image
dataset (Krizhevsky, 2009). We choose the
group G = C4 of 90-degree rotations,
with the algebraic loss function ALGC4,d =
MSE

(
ρ̂Z(1)

4, Id
)
, where d = dim(Z) = 16.

For C4 the regular representation contains ex-
actly one copy of the +1, +i, −1 and −i repre-
sentations, and Table 2 shows that the network
learns a representation close to a multiple of
the regular representation. Furthermore, each
linearly independent embedded data orbit con-
tributes a distinct copy of this representation.

Considering these three experiments together,
we summarize the results of this section follows.

Key empirical insight: To achieve encoder equivariance in the presence of data augmentation,
the network prefers to learn a multiple of the regular representation on the latent space.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5 FIXING THE REGULAR REPRESENTATION

We present a novel parameter-free method to improve performance of neural networks to solve a
variety of invariant, equivariant or approximately equivariant tasks, where a finite group G acts on the
input and output layers with representations ρX and ρY respectively. Inspired by the theoretical and
empirical results of Section 4, instead of learning a representation on the latent space, we now
fix ρZ to be a multiple of the regular representation of G. Specifically, we use n copies where n
is the maximum number of representations allowed by dim Z. When n|G| < dim(Z), we pad by
taking the direct sum with additional copies of the trivial representation, to ensure our representation
on Z has the correct dimension. Our proposed representation is therefore given by:

ρZ := n · ρreg +max(dim(Z)− n|G|, 0) · ρtriv (1)

When the latent space is geometrically structured, for example as a product of features and channels,
we choose an isomorphic form of the regular representation that preserves this structure (examples are
the SMOKE and SHREC experiment in Section 6). We then train according to the following objective
function, where (xi, yi) ∈ X × Y is an element of the training set, g ∈ G is a group element, and
Ltask(xi, yi) is the original task loss function:

1
2 Ltask

(
D(E(xi)), yi

)
Task loss

+ 1
2 Ltask

(
D(E(αX (g)xi)), αY(g)yi

)
Task loss shifted by g

+ λMSE
(
E(αX (g)xi), ρZ(g)E(xi)

)
Equivariance loss from input to latent

When used in a training loop, we select (xi, yi) and g uniformly at random. Here λ is a hyperparameter
expressing the strength of the equivariance loss. We provide a sensitivity analysis for λ in Appendix
H, which shows that model performance is robust across a range of values. Our model has no
additional learned parameters above baseline, since the representation ρZ is now fixed. Our use of
the g-shifted task loss means that our training dataset must be augmented by the action of G. This
can be done either on-the-fly, or pre-computed to speed up training.

6 EXPERIMENTS

We benchmark our method against a variety of state-of-the-art methods for networks with approximate
equivariance, considering four distinct tasks. We compare our results against the models SCNN,
E2CNN, LIFT, RPP, RGroup, RSteer, PSCNN, NIso, NFT and MC, discussed in Section 2. All our
experiments follow the setup of the original papers. Our method trains using a computational budget
and wall-clock time at or below competing models. Since our model relies on data augmentation,
we provide both augmented and unaugmented CNN baselines. Full technical details for all reported
runs, including hyperparameter selection and a sensitivity analysis for our equivariance coupling
strength λ, are reported in Appendix G and H. In the majority of cases our results are improved or
comparable with state-of-the-art, while using fewer learnable parameters and a simpler architecture.
We use Cohen’s d-statistic to compute effect sizes (Hermann et al., 2024, p59), which shows that our
model typically delivers very large performance improvements A discussion of these statistics can
be found in Appendix G.1. For the selection of the layer Z where the equivariance loss is imposed,
for autoencoder tasks this is chosen as the output layer of the encoder, while for classification tasks
we choose the layer before the final classifier head. As an ablation, we also report a comparison
that replaces the regular representation in Equation 1 with the defining representation, the natural
geometric action of the group by permutations (see Appendix C for a formal definition), and the
trivial representation; these results further confirm optimality of the regular representation.

6.1 CLASSIFICATION TASK, DDMNIST, G = C2, C4, D4

Following closely the procedure of (Veefkind & Cesa, 2024) for each of the chosen symmetry groups
C2, C4 and D4, we randomly and independently transform two MNIST images according to the
group. Results are shown in Table 3. Because the transformations are local and independent, we
apply our method using the product group. We also provide a comparison with the defining and trivial
representations as an ablation study. While for the groups C2 and C4 the two representations are
isomorphic, for D4 they are not, with the regular representation being more performant; this provides
further empirical evidence for the optimality of the regular representation. Except for SCNN, we

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

re-trained and re-evaluated all models. Further discussion and effect size analysis can be found in
Appendix G.2. These statistics show a very large effect size for our model over the CNN baseline,
and a large effect size for our model compared to the majority of results for other architectures.

Table 3: DDMNIST test accuracies. Mean over 3 runs; standard deviation in brackets. Parameter
counts shown. Best result in each column is bold, second-best is underlined. For C2, C4 the defining
representation is equivalent to the regular representation and so is omitted.

Model C4 ↑ #Params(M) ↓ C2 ↑ #Params(M) ↓ D4 ↑ #Params(M) ↓
CNN 0.907 (0.004) 0.03 0.938 (0.006) 0.03 0.800 (0.001) 0.03
SCNN 0.484 (0.008) 0.12 0.474 (0.003) 0.03 0.431 (0.010) 0.15
Restriction 0.914 (0.007) 0.12 0.890 (0.007) 0.33 0.837 (0.020) 0.17
RPP 0.908 (0.022) 0.79 0.903 (0.009) 0.08 0.827 (0.020) 1.73
PSCNN 0.909 (0.007) 0.51 0.871 (0.016) 0.04 0.842 (0.011) 1.23

Trivial rep 0.874 (0.004) 0.03 0.938 (0.007) 0.03 0.819 (0.004) 0.03
Defining rep – – 0.838 (0.010) 0.03
Ours (regular) 0.915 (0.004) 0.03 0.947 (0.004) 0.03 0.868 (0.002) 0.03

6.2 CLASSIFICATION TASK, MEDMNIST3D, G = Symcube

We test our method on the Organ, Synapse and Nodule subsets of the MedMNIST3D dataset, using
the same setup as the original authors (Veefkind & Cesa, 2024). We apply the group Symcube of
orientation-preserving symmetries of the cube, which is isomorphic to the permutation group S4.
All results, except for ours and the augmented CNN, are imported from the original authors. Table
4 shows MedMNIST3D accuracies for different models and groups. For Nodule and Synapse, our
method is comparable or outperforms other architectures, while having fewer parameters. The regular
representation consistently outperforms the defining and trivial representations, providing further
empirical evidence for its optimality. For the Organ dataset, canonical orientation is a key feature, and
so the symmetry action conflicts with the task. This may explain our method’s underperformance in
this task (shared by the augmented CNN baseline). Further discussion can be found in Appendix G.3,
which shows our method has very large positive effect sizes for Nodule and Synapse datasets.

Table 4: MedMNIST3D test accuracies. Mean over 3 runs; standard deviation in brackets. Parameter
counts shown. Best result in each column is bold, second-best is underlined.

Group Model Nodule ↑ Synapse ↑ Organ ↑ #Params(M) ↓
N/A CNN 0.873 (0.005) 0.716 (0.008) 0.920 (0.003) 00.19
Aug CNN 0.879 (0.007) 0.761 (0.008) 0.632 (0.005) 00.19
SO(3) SCNN 0.873 (0.002) 0.738 (0.009) 0.607 (0.006) 00.13
SO(3) RPP 0.801 (0.003) 0.695 (0.037) 0.936 (0.002) 18.30
SO(3) PSCNN 0.871 (0.001) 0.770 (0.030) 0.902 (0.006) 04.17
O(3) SCNN 0.868 (0.009) 0.743 (0.004) 0.902 (0.006) 00.19
O(3) RPP 0.810 (0.013) 0.722 (0.023) 0.940 (0.006) 29.30
O(3) PSCNN 0.873 (0.008) 0.769 (0.005) 0.905 (0.004) 03.51

Symcube Trivial rep 0.867 (0.001) 0.743 (0.002) 0.571 (0.002) 00.19
Symcube Defining rep 0.837 (0.013) 0.756 (0.019) 0.560 (0.025) 00.19
Symcube Ours (regular) 0.887 (0.005) 0.770 (0.002) 0.642 (0.056) 00.19

6.3 AUTOREGRESSION TASK, SMOKE, G = C4

We evaluate our method on the SMOKE dataset, generated with PhiFlow (Holl et al., 2020) by Wang
et al. (2022) (see Figure 7 for a visualisation). The task involves predicting future frames of a
simulated smoke velocity field autoregressively. This task is only approximately equivariant to the
symmetry group C4 (90-degree rotations) due to the presence of non-equivariant buoyancy effects.
Full details are provided in the appendix. Table 5(a) shows the test RMSE for each model on the
metrics considered. All reported figures are imported from the original authors (Wang et al., 2022),
except for ours, augmented CNN, and non-augmented CNN, for which we tune the learning rate. Our
method outperforms all models except for PSCNN, which has slightly better scores, with more than

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

12 times the number of parameters. While our method uses the augmented training set, we note from
comparing the two CNN baselines that this gives little advantage for this task. Further details can be
found in Appendix G.4, showing very large positive effect sizes for all models except PSCNN.

6.4 AUTOENCODING TASK, 3D SHAPES, G = Oh

Finally, we test our method on the conformally transformed SHREC ’11 dataset (Lian et al., 2011;
Mitchel et al., 2022), following the pre-training and fine-tuning procedure of Mitchel et al. (2024).
We apply our methodology with Oh augmentations (octahedral symmetries) to pre-train a baseline
autoencoder before fine-tuning the encoder for classification. As this is an autoencoding task, we
symmetrize the equivariance loss to the decoder. NIso’s kernel adds 18k parameters above our model,
which has the same parameter count as the baseline autoencoder (AE). Results are given in Table 5(b).
Our approach achieves 90.45% accuracy, outperforming the group-agnostic method NFT. Our method
also surpasses NIso, a model capable of learning actions of infinite groups, even though our method
uses only a finite subgroup. Further details can be found in Appendix G.5, with effect sizes showing
equivalence between our method and NIso, and very large positive effect size for the other models.

Table 5: Mean over 3 runs; standard deviation in brackets. Parameter counts shown. Best result in
each column is bold, second-best is underlined.

(a) Test RMSE for SMOKE dataset.

Group Model Future ↓ Domain ↓ #Params(M) ↓
N/A CNN 0.81 (0.01) 0.63 (0.00) 0.25
Aug CNN 0.83 (0.03) 0.67 (0.06) 0.25
N/A MLP 1.38 (0.06) 1.34 (0.03) 8.33
C4 E2CNN 1.05 (0.06) 0.76 (0.02) 0.62
C4 RPP 0.96 (0.10) 0.82 (0.01) 4.36
C4 Lift 0.82 (0.01) 0.73 (0.02) 3.32
C4 RGroup 0.82 (0.01) 0.73 (0.02) 1.88
C4 RSteer 0.80 (0.00) 0.67 (0.01) 5.60
C4 PSCNN 0.77 (0.01) 0.57 (0.00) 3.12

C4 Ours 0.78 (0.01) 0.61 (0.01) 0.25

(b) Test accuracy for SHREC ’11 dataset.

Model Acc. ↑
NIso Mitchel et al. (2024) 90.26 (1.27)
NFT Koyama et al. (2024) 83.24 (2.03)
AE with aug 69.36 (2.81)
MC Mitchel et al. (2022) 86.5

Ours 90.45 (2.1)

7 CONCLUSIONS

Limitations and Future Work. Our theoretical framework is developed for finite groups. However,
we empirically demonstrate that our method can be applied effectively to tasks with continuous
symmetries by selecting a rich finite subgroup; we employ this strategy to show that our model can
outperform NIso, SCNN, RPP and PSCNN, which use continuous groups such as SO(3), O(3) and
the conformal group, on the SHREC ’11 and MedMNIST3D datasets. We expect this strategy could
also be effectively employed to handle large finite groups (such as permutation groups), and in future
work we aim to derive theoretical guarantees on the power of this approach. Our method requires
data augmentation, although this is typically inexpensive when the group action on the input space is
easy to construct, and our ablations with an augmented baseline show that our model delivers benefits
far beyond augmentation. We would also like to explore how our model could enable augmentation
directly in the latent space.

Conclusions. This work investigates an alternative path to building efficient equivariant models,
focusing not on architectural design, but on the enforcement of a principled latent algebraic structure.
We prove that for finite groups, this structure is the regular representation, which must appear almost
surely in the latent space of any equivariant encoder. By enforcing this structure via a parameter-free
auxiliary loss, our method achieves competitive or superior performance to SOTA models, while
requiring in some cases significantly fewer parameters. Furthermore, we empirically show the
optimality of the regular representation via ablations with the defining and trivial representations.
Ultimately, our work suggests that for tasks with inherent (approximate) symmetry, directly enforcing
the correct latent algebraic structure can be a more effective and efficient path to equivariance than
designing complex, highly-parameterized architectures.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Georg Bökman, Johan Edstedt, Michael Felsberg, and Fredrik Kahl. Steerers: A framework for
rotation equivariant keypoint descriptors. In 2024 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 4885–4895. IEEE, 2024. doi: 10.1109/cvpr52733.2024.00467.
URL http://dx.doi.org/10.1109/cvpr52733.2024.00467.

Taco S. Cohen and Max Welling. Steerable CNNs, 2016.

Li Deng. The MNIST database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

Emilien Dupont, Miguel Angel Bautista, Alex Colburn, Aditya Sankar, Carlos Guestrin, Josh
Susskind, and Qi Shan. Equivariant neural rendering, 2020.

Marc Finzi, Gregory Benton, and Andrew G Wilson. Residual pathway priors for soft equivariance
constraints. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems, volume 34, pp. 30037–30049. Cur-
ran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/
paper/2021/file/fc394e9935fbd62c8aedc372464e1965-Paper.pdf.

D.H. Fremlin. Measure Theory. Number v. 1 in Measure theory. Torres Fremlin, 2000. ISBN
9780953812905. URL https://books.google.co.uk/books?id=2_lHYXeEd7YC.

William Fulton and Joe Harris. Representation Theory. Springer New York, 2004. ISBN
9781461209799. doi: 10.1007/978-1-4612-0979-9.

Odd Erik Gundersen, Saeid Shamsaliei, Håkon Sletten Kjærnli, and Helge Langseth. On reporting
robust and trustworthy conclusions from model comparison studies involving neural networks and
randomness. In Proceedings of the 2023 ACM Conference on Reproducibility and Replicability,
ACM REP ’23, pp. 37–61, New York, NY, USA, 2023. Association for Computing Machinery.
ISBN 9798400701764. doi: 10.1145/3589806.3600044. URL https://doi.org/10.1145/
3589806.3600044.

Yacov Hel-Or and Patrick C Teo. Canonical decomposition of steerable functions. Journal of
Mathematical Imaging and Vision, 9:83–95, 1998.

Katherine Hermann, Jennifer Hu, and Michael Mozer. Experimental design and analysis for AI
researchers. Invited tutorial at NeurIPS 2024, 2024. URL https://neurips.cc/virtual/
2024/tutorial/99528.

Philipp Holl, Vladlen Koltun, Kiwon Um, and Nils Thuerey. PhiFlow: A differentiable PDE solving
framework for deep learning via physical simulations. In NeurIPS workshop, volume 2, 2020.

Philip Holmes. Turbulence, coherent structures, dynamical systems and symmetry. Cambridge
University Press, 2012.

Jen-tse Huang, Man Ho Lam, Eric John Li, Shujie Ren, Wenxuan Wang, Wenxiang Jiao,
Zhaopeng Tu, and Michael R. Lyu. Apathetic or empathetic? evaluating llms'emotional
alignments with humans. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Pa-
quet, J. Tomczak, and C. Zhang (eds.), Advances in Neural Information Processing Sys-
tems, volume 37, pp. 97053–97087. Curran Associates, Inc., 2024. doi: 10.52202/
079017-3077. URL https://proceedings.neurips.cc/paper_files/paper/
2024/file/b0049c3f9c53fb06f674ae66c2cf2376-Paper-Conference.pdf.

Gordon James and Martin Liebeck. Representations and Characters of Groups. Cambridge University
Press, 2001. ISBN 9780511814532. doi: 10.1017/cbo9780511814532.

Yinzhu Jin, Aman Shrivastava, and Tom Fletcher. Learning group actions on latent representations.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL
https://openreview.net/forum?id=HGNTcy4eEp.

10

http://dx.doi.org/10.1109/cvpr52733.2024.00467
https://proceedings.neurips.cc/paper_files/paper/2021/file/fc394e9935fbd62c8aedc372464e1965-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/fc394e9935fbd62c8aedc372464e1965-Paper.pdf
https://books.google.co.uk/books?id=2_lHYXeEd7YC
https://doi.org/10.1145/3589806.3600044
https://doi.org/10.1145/3589806.3600044
https://neurips.cc/virtual/2024/tutorial/99528
https://neurips.cc/virtual/2024/tutorial/99528
https://proceedings.neurips.cc/paper_files/paper/2024/file/b0049c3f9c53fb06f674ae66c2cf2376-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/b0049c3f9c53fb06f674ae66c2cf2376-Paper-Conference.pdf
https://openreview.net/forum?id=HGNTcy4eEp

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Archit Karandikar, Nicholas Cain, Dustin Tran, Balaji Lakshminarayanan, Jonathon Shlens,
Michael Curtis Mozer, and Rebecca Roelofs. Soft calibration objectives for neural networks.
In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neu-
ral Information Processing Systems, 2021. URL https://openreview.net/forum?id=
-tVD13hOsQ3.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980.

Masanori Koyama, Kenji Fukumizu, Kohei Hayashi, and Takeru Miyato. Neural Fourier Transform:
A General Approach to Equivariant Representation Learning, February 2024.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009. URL https:
//api.semanticscholar.org/CorpusID:18268744.

Yann LeCun and Yoshua Bengio. Convolutional networks for images, speech, and time series, pp.
255–258. MIT Press, Cambridge, MA, USA, 1998. ISBN 0262511029.

Z. Lian, A. Godil, B. Bustos, M. Daoudi, J. Hermans, S. Kawamura, Y. Kurita, G. Lavoué, H. V.
Nguyen, R. Ohbuchi, Y. Ohkita, Y. Ohishi, F. Porikli, M. Reuter, I. Sipiran, D. Smeets, P. Suetens,
H. Tabia, and D. Vandermeulen. SHREC’11 track: Shape retrieval on non-rigid 3D watertight
meshes. In Proceedings of the 4th Eurographics Conference on 3D Object Retrieval, 3DOR ’11,
pp. 79–88, Goslar, DEU, April 2011. Eurographics Association. ISBN 978-3-905674-31-6.

Nimish Magre and Nicholas Brown. Typography-MNIST (TMNIST): an MNIST-style image dataset
to categorize glyphs and font-styles, 2022.

Brando Miranda, Patrick Yu, Saumya Goyal, Yu-Xiong Wang, and Sanmi Koyejo. Is pre-training
truly better than meta-learning?, 2025. URL https://arxiv.org/abs/2306.13841.

Thomas W. Mitchel, Noam Aigerman, Vladimir G. Kim, and Michael Kazhdan. Möbius Convolutions
for Spherical CNNs, May 2022.

Thomas W. Mitchel, Michael Taylor, and Vincent Sitzmann. Neural Isometries: Taming Transforma-
tions for Equivariant ML, October 2024.

Giorgos Nikolaou, Tommaso Mencattini, Donato Crisostomi, Andrea Santilli, Yannis Panagakis,
and Emanuele Rodolà. Language models are injective and hence invertible, 2025. URL https:
//arxiv.org/abs/2510.15511.

nLab. Free action, 2024. URL https://ncatlab.org/nlab/show/free+action. Ac-
cessed: 2025-08-02.

Mehran Shakerinava, Arnab Kumar Mondal, and Siamak Ravanbakhsh. Structuring Representations
Using Group Invariants. In Advances in Neural Information Processing Systems, October 2022.

Christopher Shorten and Taghi M. Khoshgoftaar. A survey on image data augmentation for deep
learning. Journal of Big Data, 6:60, 2019. doi: 10.1186/s40537-019-0197-0.

Lars Veefkind and Gabriele Cesa. A probabilistic approach to learning the degree of equivariance in
steerable CNNs. In 41st International Conference on Machine Learning (ICML 2024), 2024. URL
https://openreview.net/forum?id=49vHLSxjzy.

Dian Wang, Robin Walters, Xupeng Zhu, and Robert Platt. Equivariant Q learning in spatial action
spaces. In 5th Annual Conference on Robot Learning, 2021. URL https://openreview.
net/forum?id=IScz42A3iCI.

Rui Wang, Robin Walters, and Rose Yu. Approximately equivariant networks for imperfectly
symmetric dynamics. In International Conference on Machine Learning, pp. 23078–23091.
PMLR, 2022.

Maurice Weiler and Gabriele Cesa. General E(2)-Equivariant Steerable CNNs. In Conference on
Neural Information Processing Systems (NeurIPS), 2019.

11

https://openreview.net/forum?id=-tVD13hOsQ3
https://openreview.net/forum?id=-tVD13hOsQ3
https://arxiv.org/abs/1412.6980
https://api.semanticscholar.org/CorpusID:18268744
https://api.semanticscholar.org/CorpusID:18268744
https://arxiv.org/abs/2306.13841
https://arxiv.org/abs/2510.15511
https://arxiv.org/abs/2510.15511
https://ncatlab.org/nlab/show/free+action
https://openreview.net/forum?id=49vHLSxjzy
https://openreview.net/forum?id=IScz42A3iCI
https://openreview.net/forum?id=IScz42A3iCI

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Max Welling and Taco S. Cohen. Transformation properties of learned visual representations. In
Proceedings of ICLR 2015, 2014.

Robin Winter, Marco Bertolini, Tuan Le, Frank Noé, and Djork-Arné Clevert. Unsupervised Learning
of Group Invariant and Equivariant Representations, April 2024.

Daniel E. Worrall, Stephan J. Garbin, Daniyar Turmukhambetov, and Gabriel J. Brostow. Interpretable
transformations with encoder-decoder networks. In 2017 IEEE International Conference on
Computer Vision (ICCV), pp. 5737–5746, 2017. doi: 10.1109/iccv.2017.611. URL http:
//dx.doi.org/10.1109/iccv.2017.611.

Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter Pfister, and
Bingbing Ni. Medmnist v2 - a large-scale lightweight benchmark for 2d and 3d biomedical
image classification. Scientific Data, 10(1), January 2023. ISSN 2052-4463. doi: 10.1038/
s41597-022-01721-8.

12

http://dx.doi.org/10.1109/iccv.2017.611
http://dx.doi.org/10.1109/iccv.2017.611

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A CODE

The code to run all the experiments in this paper is available at the following location:

• https://anonymous.4open.science/r/parameter-free-approximate-equivariance-3352/

In the README file, we provide instructions to run the code and reproduce the results.

B NOTATION

Here we provide a comprehensive list of symbols and notational conventions used throughout the
paper.

GENERAL MATHEMATICAL OBJECTS

G A finite group.

g, h Elements of the group G, e.g., g ∈ G.

K The base field, assumed to be either the real numbers R or the complex numbers C.

S,A General sets, denoted by calligraphic letters.

V,W General vector spaces, denoted by uppercase Roman letters.

v, w Elements (vectors) of a vector space, e.g., v ∈ V .

GROUP THEORY

α A group action on a set. The action of g ∈ G on an element s ∈ S is written as α(g, s)

ρV A group representation on the vector space V , which is a linear group action on V .

ρV (g) The invertible linear map associated with the group element g ∈ G. The action of g on a
vector v ∈ V is written as ρV (g)(v).

MACHINE LEARNING CONTEXT

X The input set.

x A single input data point, x ∈ X .

Y The output or label set.

y A single output or label, y ∈ Y .

Z The latent space, viewed as a vector space (e.g., Z = Rd).

z A latent vector, z ∈ Z.

E An encoder network.

D A decoder network.

ρ̂Z A learnable representation on the latent space Z.

C GROUP ACTIONS AND REPRESENTATIONS

Groups. A group G is a set equipped with an associative and unital binary operation, such that
every element has a unique inverse. Important families of groups include the following. The dihedral
group Dn is the group of symmetries of the regular polygon with n sides, which we use in this paper
for n ≥ 3. The cyclic group Cn is the groups of integers {0, . . . , n − 1} with addition modulo n.
The permutation group Sn is the group of permutations of an n-element set. We may define groups
by presentations, which give generators and relations for the product; for example, the group C2 can
be defined by the presentation {1, a | a2 = 1}. For any two groups G,H , we write G ×H for the
product group, whose elements are ordered pairs of elements of G and H respectively.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Group representations. A representation ρ of a finite group G on a vector space V is a choice of
linear maps ρ(g) : V → V for all elements g ∈ G, with the property that ρ(e) = idV for the identity
element e ∈ G, and such that ρ(g)ρ(g′) = ρ(gg′) for all pairs of elements g, g′ ∈ G. We define the
dimension of ρ to be dim(V), the dimension of the vector space V . There is a notion of equivalence
of representations: given representations ρ on V , and ρ′ on V ′, they are isomorphic when there is
an invertible linear map L : V → V ′ such that Lρ(g) = ρ′(g)L for all g ∈ G. Given a subgroup
G ⊆ G′, a representation of G′ yields a restricted representation on G in an obvious way.

Defining representations. The concept of a defining representation is relevant for our ablation
studies. While the term is context-dependent, it typically refers to a group’s most natural or defining
low-dimensional representation. For the permutation group Sn this is the linearisation of its permuta-
tion action on the n-element set; that is, the n-dimensional representation given by its action on Kn

by permuting the basis vectors. For the dihedral group Dn (n ≥ 3), the defining representation is
the linearisation of its action on the n-element set of vertices. For the group Symcube of orientation-
preserving symmetries of the cube, the defining representation is the linearisation of its action on the
8-element set of vertices of the cube. We select these defining representations as a baseline as they
provide a rich, geometrically intuitive alternative to the more abstract regular representation.

Group actions. A group may also have an action λ on a set S , a choice of functions λ(g) : S → S
for all elements g ∈ G, such that λ(e) = idS and λ(g)λ(g′) = λ(gg′). Such an action yields a
representation of G on K[S] by linearisation, the free K-vector space generated by S.

Some simple examples of representations include the zero representation on the zero-dimensional
vector space, and the trivial representation ρtriv on the 1-dimensional vector space K, where
ρtriv(g) = idK for all g ∈ G.

D INSIGHT INTO THE ALGEBRA LOSS

To give further insight into component (iv), suppose our goal is to learn a representation ρ̂Z of the
group C2, which has group presentation {1, a | a2 = 1}. Then ρ̂Z should satisfy ρ̂Z(1) = id and
ρ̂Z(a

2) = (ρZ(a))
2 = id. To achieve this, we fix the parameter ρ̂Z(1) = id, and choose ALGC2,d

and REGC2,d as follows, where d = dim(Z), the matrix Id is the identity of size d× d:

ALGC2,d = MSE
(
ρ̂Z(a)

2, Id
)

REGC2,d = MSE
(
ρ̂Z(a), ρ̂Z(a)

−1
)
.

We note that when ALGC2,d equals zero then ρ̂Z(a)
2 = Id, and hence REGC2,d will equal zero. In

this sense, the regularisation term is algebraically redundant, but is found to improve training.

E PROOFS

We first introduce some basic definitions
Definition 3. Let V be a vector space, and W,W ′ ⊆ V be subspaces of V . W and W ′ are linearly
independent if W ∩W ′ = 0.
Definition 4. Let G act on a set X via the group action αX . The orbit of x ∈ X is the set
Ox = {αX (g)(x) | g ∈ G}. Given a vector space Z and a function E : X → Z, we call
the set E(Ox) = {E(αX (g)(x) | g ∈ G} the embedded orbit of x along E. Two embedded
orbits E(Ox), E(Ox′) are linearly independent if their spans are linearly independent, that is if
Span(Eθ(Ox)) ∩ Span(Eθ(Ox′)) = {0}.

The proof of Lemma 7 adapts the argument in Nikolaou et al. (2025), which uses measure-theoretic
properties of analytic functions to demonstrate that transformers are almost everywhere injective.
Although our focus here is not on transformers, most of their results require only real analyticity, and
thus can be easily adapted to our case. Intuitively, a measure µ on a set X quantifies the ‘size’ or
‘volume’ of subsets within X (see e.g., Fremlin (2000) for a foundational treatment). In the context of
Rp, the Lebesgue measure λ corresponds to the standard notion of Euclidean volume (e.g., it assigns
the unit hypercube a measure of 1).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Notation. If f : X → X is a function, we will write f◦T to indicate the consecutive application of
f for T times. If Θ is a set equipped with a measure µ, we will write θ ∼ Θ to indicate that θ is a
random draw of an element of Θ according to the measure µ.

The following are well-known mathematical results and definitions.
Proposition 5. Let U ⊆ Rm be open and connected, and let f : U → Rn be an analytic function.
If f is not identically zero, then its zero set Z(f) := {x ∈ U | f(x) = 0} = f−1(0) has Lebesgue
measure zero in Rm, i.e. λ(Z(f)) = 0.
Definition 6. Let µ, ν be Borel measures on Rp. We say that µ is absolutely continuous with respect
to ν, written µ ≪ ν, if for every Borel set U we have

ν(U) = 0 =⇒ µ(U) = 0 (2)

Since the Lebesgue measure λ is the standard notion of Euclidean volume, then we can intuitively
understand that µ ≪ λ just when the measure µ assigns zero measure to every set with zero Euclidean
volume. In this way, measures µ with µ ≪ λ may behave in ways that accord with our intuition. Any
standard sampling measure µ used to generate initial parameters for a neural network (e.g. from the
normal or uniform distributions) will be likely to satisfy this property.

The following critical lemma underlies our theoretical results, and we can explain it intuitively as
follows. If we have some set of parameters W ⊆ Θ for our neural network which is measure zero,
then of course if we initialise the network with some parameters θ at random, the probability that
θ ∈ W is zero. But we then ask, if we update the parameters by gradient descent for finitely many
steps, what is the probability that the optimised parameters are within the set W?
Lemma 7. Let Eθ be a parametrized function that is analytic for all parameters θ ∈ Θ ⊆ Rp.
Assume that the parameters are randomly initialized according to a distribution µ that is absolutely
continuous with respect to the Lebesgue measure on Rp, i.e. θ0 ∼ µ with µ ≪ λ. Furthermore,
assume an analytic loss function L, and that the parameters are updated via gradient descent,
i.e. θt+1 := Φ(θt) := θt − η∇L(θt), with η ∈ (0, 1).

Let W ⊆ Θ with λ(W) = 0. Then, for all T ∈ N, µ({θ0 |Φ◦T (θ0) ∈ W}) = 0.

Proof. The proof uses standard analytic and measure-theoretic tools, and is an adaptation of the
argument in the proof of (Nikolaou et al., 2025, Theorem C.1). Let W ⊆ Θ with λ(W) = 0.
First, we apply (Nikolaou et al., 2025, Lemma C.6), that λ(Φ−1(W)) = 0. (Note that in this
paper, Lemma C.6 assumes the context of a transformer; however the proof only uses analyticity
of the components, and thus the result holds in our case). Then, because µ ≪ λ, it follows that
µ({θ0 |Φ(θ0) ∈ W}) = µ(Φ−1(W)) = 0. By applying the same argument T times, we find
µ({θ0 |Φ◦T (θ0) ∈ W}) = 0.

Theorem 1. Let G be a finite group acting on a set A with action αA, and on a vector space Z with a
representation ρZ , with dim(Z) ≥ |G|. Suppose that the group acts freely and transitively on some
subset S ⊆ A. If E : A → Z is an equivariant function and E(S) is full rank, then Z contains the
regular representation almost surely.

Proof. Let R[S] denote the vector space of all formal linear combinations of S with coefficients in
R. Because αA|S is free and transitive it must be equivalent to the action of G on itself, and hence
its linearization R[S] carries the structure of the regular representation. We write this representation
explicitly as ρR[S](g)(

∑
s ass) :=

∑
s asαA(g)(s). Now, we can define the linear map ẼS :

R[S] → Z by (
∑

s ass) 7→
∑

s asE(s). Because E : A → Z is equivariant, we conclude that
ẼS : R[S] → Z is equivariant. Denote V := Im(ẼS) = SpanR{E(s) | s ∈ S}, which is a linear
subspace of Z of dimension at most |G|. By the first isomorphism theorem for representations (Fulton
& Harris, 2004), we have V ∼= R[S]/Ker(ẼS). Finally, by assumption we have that E(S) is full
rank, implying that Ker(ẼS) is trivial and that V is isomorphic to the regular representation R[S].
Furthermore, we note that when dimZ = |G|, it follows that Z must be isomorphic to the regular
representation itself.

We now combine Lemma 7 and Theorem 1 to obtain guarantees on the existence of regular represen-
tations in the latent space.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Theorem 2. Let G be a finite group, X ⊆ Rn an open and connected set, Z a vector space with
dim(Z) ≥ |G|, and Eθ : X → Z a function which is analytic on its domain X for all parameter
values θ ∈ Θ ⊆ Rp. Let G act on a set A ⊆ X with action αA, and on Z with a representation ρZ .
Suppose that αA is free and transitive on some S ⊆ A. Furthermore, suppose that the parameters are
randomly initialized and updated by gradient descent with respect to an analytic loss function L:

θ0 ∼ µ, µ ≪ λ the Lebesgue measure on Rp

θt+1 := Φ(θt) := θt − η∇L(θt) with η ∈ (0, 1)

yielding an equivariant analytic function. Then, either Z contains the regular representation almost
surely, or Eθ(S) is rank deficient for all possible parameterizations θ ∈ Θ.

Proof. Adopting the setup from the proof of Theorem 1, we must now show that Z contains the
regular representation almost surely, i.e. that Ker(ẼS

θ) is trivial almost surely or constantly zero
for all θ ∈ Θ and S ⊆ A on which αA acts transitively. The linear function ẼS

θ is fully specified
by its action on the basis S, i.e. {Eθ(s) | s ∈ S}. Because V has dimension at most G, we may
embed each of the Eθ(s) into ys ∈ R|G|. Therefore, in matrix representation, ẼS

θ is obtained by
collecting the vectors {ys | s ∈ S} in a |G| × |G| matrix MS

θ . The condition for the kernel to be
trivial is detMS

θ ̸= 0. Now, detMS
θ is an analytic function, as each entry of MS

θ is analytic by
analyticity of ES

θ , and the determinant is a polynomial and hence analytic. Therefore, we get that
the set W := {θ ∈ Θ | detMS

θ = 0} has measure zero with respect to µ by Proposition 5 and
absolute continuity of µ ≪ λ, or it is constantly zero for all θ ∈ Θ. By Lemma 7, we then get that
µ({θ0 ∈ Θ |Φ◦T (θ0) ∈ W}) = 0, meaning that detM ̸= 0 with probability 1.

E.1 THE ANALYTICITY CONDITION

We remark that, as observed by Nikolaou et al. (2025), most standard modules used in neu-
ral network, such as linear layers, layer norm, skip connections, convolutions, attention, and
others are analytic. The same holds for many commonly used activation functions, such as
tanh, sigmoid, softplus, softmax, SiLU, GELU, SwiGLU. Therefore, the analytic condition does
not heavily restrict our analysis. For example, Nikolaou et al. (2025) highlight that decoder-
only transformers are analytic. However, others activation functions are only piece-wise analytic,
e.g. ReLU, LeakyReLU, ELU. For this reason, we repeat the TMNIST and MNIST experiments
from Section 4.2 with non-analytic encoders to empirically test whether our conclusions hold for this
class of networks. We find this to be the case, and we discuss it in Appendix F.3.

F EXPLORATORY EXPERIMENTS

This section is organized as follows:

• Section F.1 describes how we extract the embedded orbits and check their linear indepen-
dence to get the number of linearly independent orbits.

• Section F.2 contains further details for the exploratory experiments, including hyperparame-
ters and regularization terms for the algebra loss.

• Section F.3 repeats the TMNIST and MNIST experiments from Section 4.2 but for non-
analytic encoders.

• Section F.4 repeats the TMNIST experiment from Section 4.2 by varying the depth of the
layer considered as Z.

• Section F.5 repeats the TMNIST experiment from Section 4.2 by changing the initialization
scheme for the learnable group action ρ̂Z .

F.1 EXTRACTING EMBEDDED ORBITS AND CHECKING THEIR LINEAR INDEPENDENCE

We describe how we extract the embedded orbits and how we compute their linear independence.
Let E : X → Z denote the encoder, and G = {g1, . . . , gn} the finite group considered. First, we
compute the embedded orbit as E(Ox) = {ρ̂Z(gi)(E(x))}i∈{1,...,n} ⊆ Z with |E(Ox)| = |G|.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

(i) (ii) (iii) (iv)

Figure 5: Examples of our augmented training dataset for the TMNIST experiment, from the chosen
fonts ‘Bahianita-Regular’ (i), (iii) and ‘IBMPlexSans-MediumItalic’ (ii), (iv).

Then, given embedded orbits E(Ox1
), . . . , E(Oxm

), we collect all vectors in their union in a matrix
K ∈ Rm|G|×d. These orbits are linearly independent if the matrix K is full rank, which is computed
by checking that all its singular values are non-zero.

Each number in the ‘Orbits’ columns in the Tables from Sections 4.2 and Appendix F.3, F.4 and F.5
is the maximum number of linearly independent orbits found by randomly sampling combinations of
training samples x ∈ X . For each run, we sample 500 different combinations.

F.2 FURTHER DETAILS FOR THE EXPLORATORY EXPERIMENTS

Here we give details of the exploratory experiments we describe in Section 4. These use the TMNIST,
MNIST and CIFAR10 datasets to determine the optimal representation on the latent space. Sections
F.2.1, F.2.2 and F.2.3 provide details of the architectures and regularisation terms used for each
of these experiments. In all runs, we use the Adam optimiser Kingma & Ba (2017) with default
parameters (β1, β2) = (0.9, 0.999), and report additional hyperparameters in Table 6. These were
chosen through a manual tuning process.

F.2.1 TMNIST AUTOENCODER, G = C2

This experiment uses the TMNIST dataset Magre & Brown (2022) of digits rendered in a variety of
typefaces. We select a data subset corresponding to just two typefaces ‘IBMPlexSans-MediumItalic’
and ‘Bahianita-Regular’, and augment with 180° rotations. We give some examples of our augmented
dataset in Figure 5. The group we use here is C2 = {1, a | a2 = 1} and, for a data point x, we
define the group action ρX (a)(x) to be the data point with the font swapped, but the rotation and
scaling unchanged. In particular, with reference to images Figure 5(i)–(iv), we have ρX (a)(i) = (ii),
ρX (a)(ii) = (i), ρX (a)(iii) = (iv) and ρX (a)(iv) = (iii). For this experiment we set Ltask =
MSE, and we use a simple CNN autoencoder with hyperparameters given in Table 6. The architectural
details can be found on the provided repository.

Table 6: Hyperparameters for exploratory experiments.

Experiment Latent dim. λa λt λe LR Batch Size

TMNIST C2 8 1.0 0.5 1 0.003 64
MNIST D3 18 0.5 0.495 0.005 0.003 64
CIFAR10 C4 16 1.0 25 0.25 0.003 64

We use the following regularization term:

REGC2,d = MSE(ρ̂Z(a), ρ̂Z(a)
−1) (3)

Here ρ̂Z(a)
−1 is computed with ρ̂Z(a)

−1 = torch.linalg.solve(ρ̂Z(a), Id) for efficiency
and numerical stability. We found empirically that this regularization helps to stabilize the training of
ρ̂Z(a), allowing us to achieve lower values for the algebra loss.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

F.2.2 MNIST AUTOENCODER, G = D3

This experiment uses the MNIST dataset Deng (2012) of handwritten digits. The group considered
is D3 = {e, r, r2, r3, s, rs | r3 = e, s2 = e, rsrs = e}, and on the input space we define the group
action such that ρX (r)(x) is the counterclockwise rotation of x by 120 degrees, and ρX (s)(x) is the
image generated by flipping x about the vertical axis. For this experiment, we set Ltask = MSE, and
use a simple MLP autoencoder with hyperparameters given in Table 6. The architectural details can
be found on the provided repository.

We use the following regularization term:
REGD3,d = −0.995 MSE(ρ̂Z(r)ρ̂Z(s)ρ̂Z(r)ρ̂Z(s), Id) (4)

We determined empirically that this regularization dampens the interaction between the matrices
ρ̂Z(r) and ρ̂Z(s) in a way that improves training. Low final values of the algebra loss reported in
Table 1 give evidence that we still obtain a high-quality representation despite this damping.

F.2.3 CIFAR10 CLASSIFIER, G = C4

This experiment uses the CIFAR10 dataset Krizhevsky (2009) of 32x32 images organised in 10
classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck. The group considered
is the cyclic group of size four C4 of addition on the set {0, 1, 2, 3} modulo 4. The element 1 is a
generator for this group, and for an input vector x, we define the group action such that ρX (1)(x) is
the rotation of x by 90 degrees counterclockwise. For this experiment we set Ltask = CrossEntropy,
and use a simple CNN classifier with hyperparameters given in Table 6. The architectural details can
be found on the provided repository.

The regularization term used is the following:
REGC4,d = MSE(ρ̂Z(1)

3, ρ̂Z(1)
−1) (5)

Here, ρ̂Z(1)−1 is computed with ρ̂Z(1)
−1 = torch.linalg.solve(ρ̂Z(1), Id) for efficiency

and numerical stability. We determined empirically that this regularization helps to stabilize the
training of ρ̂Z(1) and the behavior of its inverse.

F.3 EXPLORATORY EXPERIMENTS FOR NON-ANALYTIC ENCODERS

In this section, we repeat the same experiments for TMNIST C2 and MNIST D3 from Section 4.2
but for non-analytic encoders. In particular, we use the same architecture but we replace the tanh
activation function with ReLU. Table 7 shows similar results as the fully analytic encoders (Table 1),
suggesting empirically that the optimization process avoids any potentially degenerate regions.

Table 7: Piece-wise analytic encoder experiments. Left, TMNIST autoencoder task, learned repre-
sentations of C2 on latent space. Right, MNIST autoencoder task, learned representations of D3 on
latent space.

Irrep. counts

Run −1 +1 Alg. loss Eq. loss Orbs.

1 4 4 5.7×10-5 4.6×10-3 4
2 3 5 6.7×10-9 6.6×10-6 3
3 4 4 2.7×10-8 2.5×10-5 4
4 4 4 2.3×10-9 4.2×10-6 4
5 3 5 6.0×10-9 1.9×10-5 3

Irrep. counts

Run Triv Sgn Std Alg. loss Eq. loss Orbs.

1 3.01 3.01 5.99 1.2×10-3 1.3×10-2 3
2 2.98 2.98 6.01 6.1×10-4 2.3×10-2 3
3 3.32 3.36 5.66 3.1×10-2 1.4×10-2 3
4 3.03 3.31 5.69 1.4×10-2 1.2×10-2 3
5 2.98 2.98 6.02 8.5×10-4 1.3×10-2 3

F.4 EXPLORATORY EXPERIMENTS AT DIFFERENT LAYER DEPTHS

In this section, we repeat the TMNIST experiment from Section 4.2 for different layer depths. In
the original experiment, we choose to study equivariance with respect to the layer Z chosen as the
central hidden layer (the output layer of the encoder). Table 8 shows the results of choosing Z as the
first or last hidden layer. The results are similar to those in Section 4.2: each linearly independent
embedded orbit corresponds to a copy of the regular representation, and the network tends to learn a
multiple of it.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 8: TMNIST experiment with Z at different depths. Left: Z is taken as the first hidden layer;
Right: Z is taken as the final hidden layer.

Irrep. counts

Run −1 +1 Alg. loss Eq. loss Orbs.

1 3 5 4.9×10-10 1.1×10-4 3
2 3 5 4.2×10-9 1.6×10-4 3
3 4 4 1.0×10-10 6.2×10-5 4
4 4 4 2.3×10-6 3.0×10-5 4
5 3 5 9.0×10-10 1.2×10-4 3

Irrep. counts

Run −1 +1 Alg. loss Eq. loss Orbs.

1 3 5 6.8×10-9 4.5×10-4 3
2 4 4 9.3×10-10 3.7×10-4 4
3 3 5 1.8×10-8 4.5×10-4 3
4 4 4 6.9×10-10 4.6×10-4 4
5 4 4 2.3×10-8 4.4×10-4 4

F.5 EXPLORATORY EXPERIMENT WITH DIFFERENT INITIALIZATION

In this section, we repeat the TMNIST experiment from Section 4.2 but with a different initialization
scheme. While Table 1 shows results for ρ̂Z initialized according to a normal distribution N (0, Id),
Table 9 shows results for the same experiment with ρ̂Z initialized close to the identity as Id+N (0, Id).

The results confirm Theorem 1, as each linearly independent embedded orbit contributes one copy
of the regular representation. However, the network typically does not learn a representation that
consists entirely of a multiple of the regular representation. We observe that the trivial representation,
corresponding to the eigenvalue +1 of ρ̂Z is over-represented. We hypothesize that the strong
priming given by the initialization prevents a full exploration of the parameter space. To establish the
practical advantage of the regular representation, we provide ablations with the trivial representation
in controlled settings (Sections 6.1 and 6.2).

Table 9: TMNIST experiment with ρ̂Z initialized close to the identity.

Irrep. counts

Run −1 +1 Alg. loss Eq. loss Orbs.

1 2 6 3.1×10-5 2.9×10-4 2
2 2 6 9.5×10-4 0.3×10-4 2
3 2 6 9.5×10-4 1.6×10-4 2
4 2 6 4.6×10-5 1.8×10-4 2
5 2 6 2.4×10-5 9.1×10-5 2

G MAIN EXPERIMENTS

Here we give details of the main experiments we describe in Section 6, which test our model of
Section 5 on tasks using the DDMNIST, MedMNIST, SMOKE and SHREC‘11 datasets. Section
G.1 discusses Cohen’s d-statistic, which we use to assess the effect size of our intervention. Sections
G.2, G.3, G.4 and G.5 provide details of the datasets, architectures and hyperparameters that we
use, together with an effect size analysis. In all runs we use the Adam optimizer Kingma & Ba
(2017) with default parameters (β1, β2) = (0.9, 0.999), with weight decay set to 0 for DDMNIST
and MedMNIST, and set to 4× 10−4 for SMOKE.

G.1 COHEN’S d-STATISTIC

Cohen’s d-statistic is a widely-adopted metric (Miranda et al., 2025; Huang et al., 2024; Gundersen
et al., 2023; Karandikar et al., 2021; Hermann et al., 2024) to assess effect size, i.e. the meaningfulness
of the difference between distributions. In particular, Cohen’s d quantifies the difference between
two distributions in standard deviation units. Commonly used thresholds in machine learning are the
following (Hermann et al., 2024):

• |d| < 0.5, small effect

• 0.5 ≤ |d| < 0.8, medium effect

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

• 0.8 ≤ |d| < 1.2, large effect

• 1.2 ≤ |d|, very large effect

Suppose we are given n1 and n2 observations of two distributions, with means x1 and x2, and
standard deviations s1 and s2 respectively. Cohen’s d is then defined as follows:

d =
x1 − x2

s
, s =

√
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
(6)

To assess the effect size of our model, we choose x1 to be the mean result of our model on a particular
task, and x2 to be the mean result of a benchmark model. When reported in the tables below, we
choose the sign of the effect value so that a positive value indicates our model performed better.

G.2 DDMNIST EXPERIMENTS

Data preparation. We follow closely the setup of the originators Veefkind and Cesa Veefkind &
Cesa (2024). To generate this dataset, pairs of MNIST 28x28 images are chosen uniformly at random,
and independently augmented according to the corresponding group action for G ∈ {C4, C2, D4}
as per Table 10. We give an example in Figure 6. To ensure comparability of our results with the
original paper, for G ∈ {C4, D4} we follow their method of introducing interpolation artefacts by
rotating each digit image by a random angle θ ∈ [0, 2π), and then rotating it back by −θ; for G = C2

these interpolation artefacts are not added, in line with the original paper. Finally, the two images are
concatenated horizontally, and padded so that the final image is 56× 56. In this way, we obtain a
dataset of 10,000 images with labels in the set {(0, 0), (0, 1), . . . , (9, 9)}.

Table 10: Symmetry groups and their actions on DDMNIST.

Group Type Generators Size

C4 Cyclic 90° rotation 4
C2 Dihedral Horizontal reflection 2
D4 Dihedral Horizontal reflection

and 90° rotation
8

Before augmentation After augmentation

Figure 6: Examples of training data for the DDMNIST experiment with G = D4. The left figure
shows concatenated MNIST digits, and the right figure shows the result after a random augmentation.
In this instance, the left digit is augmented with a reflection about the vertical axis, and the right digit
is augmented with a clockwise 90-degree rotation.

Architecture. We use the same CNN architecture as in Veefkind and Cesa Veefkind & Cesa (2024),
except that the final convolutional layer has an increased number of filters, from 48 to 66. We make
this change so that we can fit a copy of the regular representation of D4 × D4. To ensure a fair
comparison, the results reported in Table 3, including those for SCNN, RPP, etc, are those obtained
with the increased number of filters, which we found marginally improved performance. Furthermore,
we use a different learning rate for the CNN model, as we found that this increased performance and
ensured a more meaningful baseline comparison. The CNN architectural details can be found on the
provided repository.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Hyperparameters. We report the hyperparameters used for the CNN and our model for the DDM-
NIST experiments in Table 11. These hyperparameters were chosen after a grid search with the
following values: learning rate ∈ {0.001, 0.005, 0.0001, 0.0005, 0.00001, 0.00005}, and equivari-
ance coupling strength λ ∈ {0.5, 1, 1.5, 2}. All other hyperparameters match those used by Veefkind
and Cesa.

Table 11: Hyperparameters for DDMNIST experiments.

C4 C2 D4

LR λ LR λ LR λ

CNN 0.0005 - 0.001 - 0.0005 -
Standard rep - - - - 0.0005 1
Ours (regular) 0.001 2 0.001 1 0.0005 1

Effect size analysis. We report the effect size of our intervention in Table 12. For each model, the
‘Effect’ column reports the Cohen d-value, comparing that model against ‘Ours’ with the regular
representation. We observe that, for each model considered, there is at least one task where the
difference with our model is very large according to Cohen’s d statistic (Appendix G.1).

Table 12: DDMNIST test accuracies and effect sizes. Mean over 3 runs; standard deviation in
brackets. Best result in each column is bold, second-best is underlined. For C2, C4 the defining
representation is equivalent to the regular representation and so is omitted. Effect values compare
to ‘Ours (regular)’, and a positive value means ours performed better. The annotations *, **, ***
indicate medium, large and very large effect sizes respectively.

Model C4 ↑ Effect C2 ↑ Effect D4 ↑ Effect

CNN 0.907 (0.004) 2.0*** 0.938 (0.006) 1.8*** 0.800 (0.001) 43.0***
SCNN 0.484 (0.008) 68.2*** 0.474 (0.003) 133.8*** 0.431 (0.010) 60.6***
Restriction 0.914 (0.007) 0.2 0.890 (0.007) 10.0*** 0.837 (0.020) 2.2***
RPP 0.908 (0.022) 0.4 0.903 (0.009) 6.3*** 0.827 (0.020) 2.9***
PSCNN 0.909 (0.007) 1.1** 0.871 (0.016) 6.5*** 0.842 (0.011) 3.3***

Trivial rep 0.874 (0.004) 10.0*** 0.938 (0.007) 1.6*** 0.819 (0.004) 15.5***
Defining rep – – 0.838 (0.010) 4.2***
Ours (regular) 0.915 (0.004) 0.947 (0.004) 0.868 (0.002)

G.3 MEDMNIST EXPERIMENTS

Data preparation. For this experiment, we use three subsets of the MedMNIST dataset Yang
et al. (2023), in line with Veefkind and Cesa Veefkind & Cesa (2024): Nodule3D, Synapse3D and
Organ3D, each containing 3D images of size 28x28x28. Nodule3D is a public lung nodule dataset,
containing 3D images from thoracic CT scans; for this dataset, the task is to classify each nodule as
benign or malignant. Synapse3D contains 3D images obtained from an adult rat with a multi-beam
scanning electron microscope; the task is to classify whether a synapse is excitatory or inhibitory.
Organ3D is a classification task for a 3D images of human body organs, with the following labels:
liver, right kidney, left kidney, right femur, left femur, bladder, heart, right lung, left lung, spleen and
pancreas.

For augmentations, we choose the octahedral group of orientation-preserving rotational symmetries of
the cube, which is isomorphic to the permutation group S4. We define its action ρX (g) on a 3D image
x by applying the corresponding rotational symmetry of the cube. Specifically, we parameterise g as
a tuple (l, θ) where l = (x, y, z) specifies a rotation axis and θ specifies the rotation angle about the
axis l to obtain 24 rotation matrices each with size 3× 3, one for each of the 24 elements of S4. In
summary, we have rotation matrices corresponding to the following tuples:

Identity (1) (l, 0) for any l.
Coord-axis (9) (l, θ) for l ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and θ ∈ {π

2 , π,
3π
2 }.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Edge-mid (6) (l, θ) for l ∈ {(1, 1, 0), (1,−1, 0), (1, 0, 1), (1, 0,−1), (0, 1, 1), (0, 1,−1)}
and θ = π.

Body-diag (8) (l, θ) for l ∈ {(1, 1, 1), (1, 1,−1),
(1,−1, 1), (−1, 1, 1)} and θ ∈ { 2π

3 , 4π
3 }.

Architecture. For these experiments we use the same CNN-based ResNet architecture as Veefkind
and Cesa Veefkind & Cesa (2024). This is formed from seven 3D convolutional layers, formed into
3 blocks with residual connections, along with batch normalisation and pooling. The architectural
details can be found on the provided repository.

Hyperparameters. We report the hyperparameters used for the baseline with S4 augmen-
tations, and for our model in the MedMNIST experiments in Table 13. These hyper-
parameters were chosen after a grid search with the following values: learning rate ∈
{0.001, 0.005, 0.0001, 0.0005, 0.00001, 0.00005}, and equivariance coupling strength λ ∈
{0.5, 1, 1.5, 2}. All other hyperparameters are the same as those used by Veefkind and Cesa.

Table 13: Hyperparameters for MedMNIST experiments.

Nodule3D Synapse3D Organ3D

LR λ LR λ LR λ

CNN (Augmented) 0.00005 - 0.0001 - 0.0001 -
Ours 0.00005 1 0.0001 1 0.0001 2

Effect size analysis. We report the effect size of our intervention in Table 14. For each model,
the ‘Effect’ column reports the Cohen d-value comparing that model against ‘Ours’ with the regular
representation. We observe that, for each model considered, there is at least one task where the
difference with our model is very large according to Cohen’s d statistic (Appendix G.1).

Table 14: MedMNIST3D test accuracies and effect sizes. Mean over 3 runs; standard deviation in
brackets. Parameter counts shown. Best result in each column is bold, second-best is underlined.
Effect values compare to ‘Ours (regular)’, and a positive value means ours performed better. The
annotations *, **, *** indicate medium, large and very large effect sizes respectively.

Group Model Nodule ↑ Effect Synapse ↑ Effect Organ ↑ Effect

N/A CNN 0.873 (0.005) 2.80*** 0.716 (0.008) 9.26*** 0.920 (0.003) -7.01***
Aug CNN 0.879 (0.007) 1.32*** 0.761 (0.008) 1.54*** 0.632 (0.005) 0.25
SO(3) SCNN 0.873 (0.002) 3.68*** 0.738 (0.009) 4.91*** 0.607 (0.006) 0.88**
SO(3) RPP 0.801 (0.003) 20.86*** 0.695 (0.037) 2.86*** 0.936 (0.002) -7.42***
SO(3) PSCNN 0.871 (0.001) 4.44*** 0.770 (0.030) 0.00 0.902 (0.006) -6.53***
O(3) SCNN 0.868 (0.009) 2.61*** 0.743 (0.004) 8.54*** 0.902 (0.006) -6.53***
O(3) RPP 0.810 (0.013) 7.82*** 0.722 (0.023) 2.94*** 0.940 (0.006) -7.48***
O(3) PSCNN 0.873 (0.008) 2.10*** 0.769 (0.005) 0.26 0.905 (0.004) -6.62***

Symcube Trivial rep 0.867 (0.001) 5.55*** 0.743 (0.002) 13.50*** 0.571 (0.002) 1.79***
Symcube Defining rep 0.837 (0.013) 5.08*** 0.756 (0.019) 1.04** 0.560 (0.025) 1.89***
Symcube Ours (regular) 0.887 (0.005) 0.770 (0.002) 0.642 (0.056)

G.4 SMOKE EXPERIMENT

Data preparation. Here we use the SMOKE dataset of Wang et al. Wang et al. (2022), which
consists of smoke simulations with varying intial conditions and external forces presented as grids of
(x, y) components of a velocity field (see Figure 7 for a visualisation). The task is to predict the next
6 frames of the simulation given the first 10 frames only. We evaluate each model on two metrics:
Future, where the test set contains future extensions of instances in the training set; and Domain,
where the test and training sets are from different instances. In line with Wang et al. (2022), we
consider the group C4 acting on the data by 90° rotations and reorientation of the velocity field, as
illustrated in Figure 8.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 7: Approximately equivariant dynamics of smoke plumes Holl et al. (2020).

Original
velocity field

Rotation without
reorientation

Rotation with
reorientation

Figure 8: Examples of a velocity field and its augmentations with and without reorientation. Rotating
by 90° counterclockwise without reorienting simply moves the spatial grid, but breaks the physical
meaning of the underlying system.

Architecture. We use the same CNN architecture, train and evaluation setups as in Veefkind and
Cesa Veefkind & Cesa (2024), which they reproduced from Wang et al. Wang et al. (2022). The
architectural details can be found on the provided repository. Because the latent space has the same
geometric structure as the input data, i.e. Z = Rc × Rh × Rw (channels×height×width), we choose
a representation of C4 given by the regular representation in each channel separately.

Hyperparameters. For both CNN models, with C4 augmentations and without, and for our
model, we use a learning rate of 0.001. Additionally, for our model, we set λ = 0.005.
These hyperparameters were chosen after a grid search with the following values: learning
rate ∈ {0.001, 0.005, 0.0001, 0.0005}, and equivariance coupling strength λ ∈ {0.005, 0.05, 0.5, 1}.
For all other hyperparameters, we copy the values used by Veefkind and Cesa.

Effect size analysis. We report the effect size of our intervention in Table 15. For each model,
the ‘Effect’ column reports the Cohen d-value comparing that model against ‘Ours’ with the regular
representation. We observe that, for each model considered, there is at least one metric where the
difference with our model is very large according to Cohen’s d statistic (Appendix G.1).

G.5 SHREC ‘11 EXPERIMENT

Data preparation. We use the SHREC ‘11 dataset Lian et al. (2011); Mitchel et al. (2022) where
each 3D shape is also transformed with conformal transformations. We perform augmentation
according to the group Oh of octahedral symmetries.

Architecture. We use the same architecture as the original authors Mitchel et al. (2024), which is a
ResNet-based autoencoder. Similarly to the smoke experiment, the latent space retains a geometric
structure. Therefore, we choose a representation of Oh given by the regular representation in each
channel separately.

Hyperparameters. Due to computational constraints, we do not perform hyperparameter tuning,
and we keep the same hyperparameters as the original authors Mitchel et al. (2024), except that we
set the batch size to 4. We set λ = 0.5. Additionally, we symmetrize the equivariance loss to the

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 15: Test RMSE and effect for the SMOKE dataset. Effect values compare to ‘Ours’, and a
positive value means ours performed better. The annotations *, **, *** indicate medium, large and
very large effect sizes respectively.

Group Model Future ↓ Effect Domain ↓ Effect

N/A CNN 0.81 (0.01) 3.0*** 0.63 (0.00) 2.8***
Aug CNN 0.83 (0.03) 2.2*** 0.67 (0.06) 1.4***
N/A MLP 1.38 (0.06) 14.0*** 1.34 (0.03) 32.6***
C4 E2CNN 1.05 (0.06) 6.3*** 0.76 (0.02) 9.5***
C4 RPP 0.96 (0.10) 2.5*** 0.82 (0.01) 21.0***
C4 Lift 0.82 (0.01) 4.0*** 0.73 (0.02) 7.6***
C4 RGroup 0.82 (0.01) 4.0*** 0.73 (0.02) 7.6***
C4 RSteer 0.80 (0.00) 2.8*** 0.67 (0.01) 6.0***
C4 PSCNN 0.77 (0.01) -1.0** 0.57 (0.00) -5.7***

C4 Ours 0.78 (0.01) 0.61 (0.01)

decoder too, i.e., with λ′ = 0.8,

λ′ ||ρX (g)(x)−D(ρZ(g)(E(x)))||

Effect size analysis. We report the effect size of our intervention in Table 16. For each model,
the ‘Effect’ column reports the Cohen d-value comparing that model against ‘Ours’ with the regular
representation. We observe that, for the augmented baseline and NFT, the difference with our model
is very large according to Cohen’s d statistic (Appendix G.1). The same analysis reveals that NIso
and our model are essentially equivalent on this task.

Table 16: Test accuracies and effect for the SHREC ’11 dataset. Effect values compare to ‘Ours’, and
a positive value means ours performed better. The annotations *, **, *** indicate medium, large and
very large effect sizes respectively.

Model Acc. ↑ Effect

NIso Mitchel et al. (2024) 90.26 (1.27) 0.1
NFT Koyama et al. (2024) 83.24 (2.03) 3.5***
AE with aug 69.36 (2.81) 8.5***
MC Mitchel et al. (2022) 86.5 –

Ours 90.45 (2.1)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

H SENSITIVITY ANALYSIS

To assess the practical usability of our method, we performed a sensitivity analysis on the hyper-
parameter λ, which controls the strength of the equivariance loss. We evaluated our model on the
DDMNIST D4 task across six different values for λ: {0, 0.05, 0.5, 1, 1.5, 2}, with λ = 0 being the
baseline. The results, reported in Figure 9, show that while peak performance is achieved at λ = 1,
the model maintains high accuracy and low variance across a wide range of values (0.5 to 2.0). This
analysis demonstrates that our method is robust to the specific choice of λ.

Figure 9: Mean accuracy and standard deviation (over 5 runs) for different values of λ on the
DDMNIST D4 task. λ = 0 is the baseline.

25

	Introduction
	Related Work
	Background on group representations
	Identifying optimal representations
	The latent space must contain the regular representation almost surely
	Empirical exploration
	TMNIST autoencoder, CNN architecture, G = C2
	MNIST autoencoder, MLP architecture, G = D3
	CIFAR10 classifier, CNN architecture, G = C4

	Fixing the regular representation
	Experiments
	Classification Task, DDMNIST, G = C2, C4, D4
	Classification Task, MedMNIST3D, G = Symcube
	Autoregression Task, SMOKE, G = C4
	Autoencoding Task, 3D shapes, G=Oh

	Conclusions
	Code
	Notation
	Group actions and representations
	Insight into the algebra loss
	Proofs
	The analyticity condition

	Exploratory experiments
	Extracting embedded orbits and checking their linear independence
	Further details for the exploratory experiments
	TMNIST autoencoder, G=C2
	MNIST autoencoder, G=D3
	CIFAR10 classifier, G=C4

	Exploratory experiments for non-analytic encoders
	Exploratory experiments at different layer depths
	Exploratory experiment with different initialization

	Main experiments
	Cohen's d-statistic
	DDMNIST experiments
	MedMNIST experiments
	SMOKE experiment
	SHREC `11 experiment

	Sensitivity Analysis

