

AN ALGEBRAIC APPROACH TO APPROXIMATELY EQUIVARIANT NETWORKS

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

012 Equivariant neural networks incorporate symmetries through group actions, embed-
 013 ding them as an inductive bias to improve performance. Prominent methods learn
 014 an equivariant action on the latent space, or design architectures that are equivariant
 015 by construction. These approaches often deliver strong empirical results but can
 016 involve architecture-specific constraints, large parameter counts, and high compu-
 017 tational cost. We challenge the paradigm of complex equivariant architectures with
 018 a parameter-free approach grounded in representation theory. We prove that for an
 019 equivariant encoder over a finite group, the latent space must almost surely contain
 020 one copy of the regular representation for each linearly independent data orbit,
 021 which we explore with a number of empirical studies. Leveraging this foundational
 022 algebraic insight, we impose the regular representation as an inductive bias via an
 023 auxiliary loss, adding no learnable parameters. Our extensive evaluation shows that
 024 this method matches or outperforms specialized models in several cases, even those
 025 for infinite groups. We further validate our choice of the regular representation
 026 through an ablation study, showing it consistently outperforms defining and trivial
 027 representation baselines.

1 INTRODUCTION

030 When we consider the problem of designing a
 031 neural network to solve a given task, we com-
 032 monly observe the existence of a symmetry
 033 group G that acts naturally on the training data.¹
 034 We illustrate a generic architecture in Figure 1,
 035 which we interpret broadly: E may be any sort
 036 of feature extractor, such as in an encoder or
 037 classifier; and D may be any final component
 038 that produces outputs from latent representa-
 039 tions, such as a classifier head or decoder. On
 040 the input and output sets, the actions $\alpha_{\mathcal{X}}$, $\alpha_{\mathcal{Y}}$
 041 transform the corresponding data, which we may
 042 want to be respected by our neural network.

043 However, for certain tasks we can expect only *approximate equivariance*, where a transformation of
 044 the input vector corresponds inexactly, or nondeterministically, to a transformation of the outputs.
 045 This most general setup is typical of many real-world tasks, where we may encounter approximate
 046 scale-invariance or rotation-equivariance of turbulent dynamics (Holmes, 2012; Holl et al., 2020),
 047 and approximate reflection-invariance of pathologies in medical images (Yang et al., 2023).

048 A rich body of work in machine learning aims to learn a group representation ρ_Z that acts linearly on
 049 the latent space, satisfying a suitable equivariance property. This can be attractive, as it may reduce a
 050 complex nonlinear action on the training set to an easily-computable linear function. Furthermore, this
 051 approach has been shown to yield improved performance for invariant, equivariant, or approximately
 052 equivariant tasks (see Section 2 for a brief survey). However, the performance benefits of many of

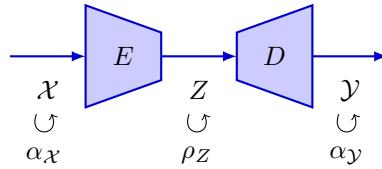


Figure 1: Generic architecture with input set \mathcal{X} , latent space Z and output set \mathcal{Y} , carrying group actions $\alpha_{\mathcal{X}}$, $\alpha_{\mathcal{Y}}$ on the input and output spaces, and potentially a representation ρ_Z on the latent space.

¹We give a formal definition of a group action on a vector space (group representation) in Section 3.

054 these state-of-the-art methods often come at the cost of high model complexity, increased training
 055 times, and significantly elevated parameter counts compared to their non-equivariant counterparts.
 056

057 Our research is guided by the following question: **for a known finite symmetry group, can we**
 058 **leverage a theoretically-principled understanding of the latent algebraic structure to achieve**
 059 **the benefits of (approximate) equivariance, without the parameter and architectural costs of**
 060 **current methods?** Our core theoretical contribution is a proof that for any equivariant encoder
 061 the latent space must contain the regular representation almost surely. Based on this finding, we
 062 propose a new, lightweight training regime: we fix the latent representation to be a multiple of the
 063 regular representation, and enforce this algebraic prior with an auxiliary loss. This approach yields
 064 strong performance on a variety of invariant, equivariant, and approximately-equivariant tasks. We
 065 summarize our main contributions as follows.
 066

- 067 • We present a new lightweight method with no additional learnable parameters for training
 068 neural networks to solve invariant, equivariant and approximately-equivariant tasks, where a
 069 finite group acts on the training set with a known action.
- 070 • We provide a theoretical characterization of latent space representations under data aug-
 071 mentation and an equivariant encoder, showing that the regular representation must appear
 072 almost surely. Building on this insight, we empirically validate that neural networks tend to
 073 learn a linear action aligned with this structure.
- 074 • We show that our method is competitive with or exceeds state-of-the-art in a range of bench-
 075 marks, despite having only a single tunable hyper-parameter, and no additional learnable
 076 parameters, while alternative approaches typically have large learnable parameter demands
 077 (in some cases 5-20 times baseline) **to achieve competitive performance.**

078 2 RELATED WORK

080 A wide variety of methods have been developed to train neural networks to solve tasks in the presence
 081 of invariance, equivariance, or approximate equivariance. We give a brief summary here of those
 082 methods which are most relevant for our present work.
 083

084 One of the most studied bodies of work derive from Convolutional Neural Networks (CNNs), which
 085 of course have strict translation invariance in their traditional form (LeCun & Bengio, 1998; Shorten &
 086 Khoshgoftaar, 2019). Cohen & Welling (2016) employ the framework of steerable functions (Hel-Or
 087 & Teo, 1998) to construct a rotation-equivariant Steerable CNN architecture (**SCNN**), which strictly
 088 respects both translation and rotation equivariance; this was later generalised to develop a theory
 089 of general $E(2)$ -equivariant steerable CNNs (**E2CNN**), which allow the degree of equivariance to
 090 be controlled by explicit choices of irreducible representation of the symmetry group (Weiler &
 091 Cesa, 2019). Such a network can avoid learning redundant rotated copies of the same filters. A
 092 similar method is that of M\"obius Convolutions (**MC**) (Mitchel et al., 2022). Wang et al. (2022) use
 093 steerable filters to obtain convolution layers with approximate translation symmetry and without
 094 rotation symmetry (**RSteer**), and with approximate translation and rotation symmetry (**RGroup**).
 095 These authors relax the strict weight tying of E2CNNs, replacing single kernels with weighted linear
 096 combinations of a kernel family, with coefficients that are not required to be rotation- or translation-
 097 invariant. A third approach named Probabilistic Steerable CNNs (**PSCNN**) was proposed recently
 098 by Veefkind & Cesa (2024), which allows SCNNs to determine the optimal equivariance strength at
 099 each layer as a learnable parameter. **While equivariant architectures may allow reduced parameter**
 100 **counts due to weight-tying, in practice many of these architectures require considerable additional**
 101 **parameter counts to achieve competitive performance (see parameter counts in Section 6).**

102 We also discuss a family of approaches which are not based around the CNN architecture. Residual
 103 Pathway Priors (**RPP**) (Finzi et al., 2021), is a model where each layer is doubled, yielding a first
 104 layer with strong inductive biases, and a second layer which is less constrained, with final output is
 105 obtained as the sum of these layers. Another architecture is Lift Expansion (**LIFT**), which factorizes
 106 the input space into equivariant and non-equivariant subspaces, and applies different architectures to
 107 each (Wang et al., 2021).

108 **A number of previous studies have considered group representations on the latent space, sometimes**
 109 **governed via an equivariance term in the loss function. An early approach by (Welling & Cohen, 2014)**

108 shows how geometrical transformations can be encoded on the latent space via $\text{SO}(3)$ representations
 109 on the latent space, while (Worrall et al., 2017) demonstrate disentanglement phenomena with similar
 110 methods. Dupont et al. (2020) propose a parameter-free method to learn equivariant neural implicit
 111 representations for view synthesis; while similar to our method in some respects, such as fixing the
 112 latent representation, their work strongly leverages the defining representation of the infinite group
 113 $O(3)$, is limited to latent spaces with the same geometrical structure as the input space, and does not
 114 apply to arbitrary latent encodings. Jin et al. (2024) present a similar method which learns non-linear
 115 group actions on the latent space using additional learnable parameters, augmented by an optional
 116 attention mechanism. In Neural Isometries (NIso) (Mitchel et al., 2024), the authors propose to learn
 117 an action on the latent space via its eigenbasis; in contrast, in our model the group acts linearly on
 118 the latent space with a fixed representation, and with no additional parameters needed. **Recent work**
 119 **of (Bökman et al., 2024) considers learned latent representations for a fixed group to solve certain**
 120 **geometrical tasks.** Other approaches that do not require the symmetry group to be known beforehand
 121 include Neural Fourier Transforms (NFT) (Koyama et al., 2024), which seeks to learn a suitable
 122 latent space transformation, and other work (Shakerinava et al., 2022; Winter et al., 2024).

123 While our work builds on these approaches, our contribution is distinct: by assuming a known
 124 symmetry, we leverage representation theory to identify the regular representation as a theoretically-
 125 motivated latent structure, which enables our simple pipeline without additional learnable parameters.
 126 **Although our approach requires fixing a group structure, our experimental results show that this ap-**
 127 **proach can often achieve superior performance compared to models without this constraint, including**
 128 **models specifically adapted for continuous symmetries.**

3 BACKGROUND ON GROUP REPRESENTATIONS

132 We review essential aspects of group representation theory for our work. We consider a finite group G
 133 and work over a base field \mathbb{K} , assumed to be \mathbb{R} or \mathbb{C} . The results presented are standard, for which we
 134 recommend canonical texts such as Fulton & Harris (2004) and James & Liebeck (2001). A glossary
 135 of notation and further background on group actions are available in Appendix B and C.

136 **Regular representation.** For the case of a finite group, the *regular representation* ρ_{reg} is defined
 137 as the linearisation of the action of G on itself. Explicitly, we first define $\mathbb{K}[G]$ as having elements
 138 given by linear combinations of group elements $\sum_i c_i g_i$ weighted by coefficients $c_i \in \mathbb{K}$. Then ρ_{reg}
 139 is defined as a representation on $\mathbb{K}[G]$ as follows: $\rho_{\text{reg}}(g)(\sum_i c_i g_i) = \sum_i c_i (gg_i)$. By construction
 140 we have $\dim(\rho_{\text{reg}}) = |G|$, the size of the group. A representation ρ on the vector space \mathbb{K}^n is
 141 a *permutation representation* when for all $g \in G$, the matrix $\rho(g)$ is a permutation matrix. By
 142 construction, the regular representation is a permutation representation.

143 **Irreducibility.** Given vector spaces V and V' we can form their direct sum $V \oplus V'$, with elements
 144 which are ordered pairs of elements (v, v') of V and V' respectively. Given a representation ρ
 145 on V , and ρ' on V' , we can form their *direct sum* $\rho \oplus \rho'$ acting on the vector space $V \oplus V'$, as
 146 defined as $(\rho \oplus \rho')(g)(v, v') := (\rho(g)(v), \rho'(g)(v'))$. For an integer n , we can similarly define the
 147 *n-fold multiple* of ρ , written $n \cdot \rho$, as $\rho \oplus \rho \oplus \dots \oplus \rho$. If $\rho = \rho' \oplus \rho''$, we say that ρ' and ρ'' are
 148 *subrepresentations* of ρ .

149 A representation is *irreducible*, also called an *irrep*, if it is not isomorphic to a direct sum of other
 150 representations, except for itself or the zero representation. A finite group has finitely many irreps up
 151 to isomorphism, and the regular representation is the direct sum of irreps, with each irrep taken with
 152 multiplicity given by its dimension. For example, the group S_3 has just the trivial (dim 1), sign (dim
 153 2) and standard (dim 2) irreps (with the same for D_3 as they are isomorphic groups); and the cyclic
 154 group C_n has n irreducible representations (all dim 1) over \mathbb{C} , one for each n th root of unity.

155 **Orthogonality of representations.** For a fixed group G , we may ask whether a representation ρ
 156 contains an irreducible representation ρ' as a direct summand, and if so with what multiplicity. This
 157 can be determined using the formula for *inner product of representations*:

$$\langle \rho, \rho' \rangle = \frac{1}{|G|} \sum_{g \in G} \overline{\text{Tr}(\rho(g))} \text{Tr}(\rho'(g))$$

161 Given the knowledge of all irreducible representations of a finite group, this method allows us to
 162 determine their multiplicities as subrepresentations of ρ .

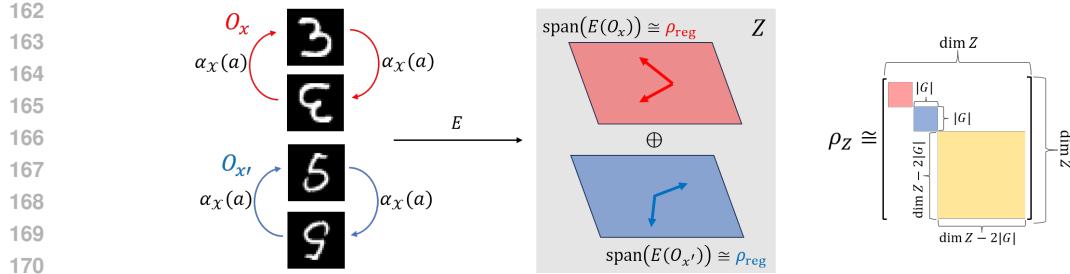


Figure 2: Illustration of our theory for an equivariant encoder E and $G = C_2 = \{1, a\}$, with $\alpha_{\mathcal{X}}$ acting by horizontal flips. If $E(\mathcal{O}_x)$, $E(\mathcal{O}_{x'})$ are full rank and linearly independent, Z must contain a separate copy of the regular representation ρ_{reg} for each with probability 1.

4 IDENTIFYING OPTIMAL REPRESENTATIONS

We suppose a network architecture as illustrated in Figure 1 is given, with training elements $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, and task loss $L_{\text{task}}(D(E(x_i)), y_i)$. We now suppose a finite symmetry group G is specified, which acts by fixed actions $\alpha_{\mathcal{X}}, \alpha_{\mathcal{Y}}$ on the input and output spaces respectively. We are interested to answer the following question: if we use additional learnable parameters to construct a third representation $\hat{\rho}_Z$ of G on the latent space Z , which we co-train alongside the parameters for E, D with a suitable loss function, **what representation $\hat{\rho}_Z$ does the model prefer to learn?** We first provide a theoretical analysis, which we then complement with an empirical exploration.

4.1 THE LATENT SPACE MUST CONTAIN THE REGULAR REPRESENTATION ALMOST SURELY

Adopting the notation above, we denote the G -orbit of a training sample $x \in \mathcal{X}$ as $\mathcal{O}_x := \{\alpha_{\mathcal{X}}(g)(x) \mid g \in G\}$. This contains all G -augmented versions of x , which we call the *data orbit* of x . We suppose x is a single data sample chosen such that all augmented versions are distinct, i.e. such that $\alpha_{\mathcal{X}}(g)(x) = \alpha_{\mathcal{X}}(h)(x)$ implies $g = h$, which is typical for data augmentation. As a consequence $|\mathcal{O}_x| = |G|$, and we conclude that G acts freely and transitively on \mathcal{O}_x (nLab, 2024). We will be interested in the encodings $E_{\theta}(\mathcal{O}_x)$, where $E_{\theta} : \mathcal{X} \rightarrow Z$ is an encoder parameterized by $\theta \in \Theta \subseteq \mathbb{R}^p$, and with $\dim(Z) \geq |G|$. If $\dim(\text{Span}(E_{\theta}(\mathcal{O}_x))) = |G|$, then we say that $E_{\theta}(\mathcal{O}_x)$ is *full rank*, or otherwise *rank deficient*. We then show the following (proofs in Appendix E).

Theorem 1 (Informal). *For an equivariant encoder E_{θ} and a training sample x , if $E_{\theta}(\mathcal{O}_x)$ is full rank, then the latent space contains a copy of the regular representation of G .*

Theorem 2 (Informal). *If E_{θ} is also real analytic in its inputs and parameters, and trained by gradient descent, then for each training sample $x \in \mathcal{X}$, exactly one of the following holds:*

- (i) *for all possible parameterisations $\theta \in \Theta$, the vectors $E_{\theta}(\mathcal{O}_x)$ are rank deficient.*
- (ii) *with probability 1, the vectors $E_{\theta}(\mathcal{O}_x)$ are full rank, and hence the latent space contains the regular representation.*

Analyticity is discussed in Appendix E.1. We discuss the two cases in the statement of Theorem 2. Case (i) may arise in certain restricted cases—for example, if E_{θ} is G -invariant by construction—where no regular representation appears. However, for any training sample $x \in \mathcal{X}$, the two scenarios can be easily distinguished: sample $\theta \in \Theta$, then check rank deficiency of $E_{\theta}(\mathcal{O}_x)$. If rank deficiency holds, we are in case (i) with probability 1. Otherwise we are in case (ii) with probability 1. Furthermore, this principle extends across the training set, with each linearly independent full rank embedded orbit (Appendix E, Definition 4) contributing a separate copy of the regular representation.

Key theoretical insight: To achieve encoder equivariance in the presence of data augmentation, a sufficiently large latent space must contain a separate copy of the regular representation for each linearly independent full rank embedded orbit. This is summarized in Figure 2.

The question remains how many copies of the regular representation one obtains in practice, and we investigate this with the following empirical studies.

216 4.2 EMPIRICAL EXPLORATION
217218 For our empirical investigation, we conduct experiments with the following loss function:
219

220
$$L_{\text{opt}} = L_{\text{task}}(D(E(x_i)), y_i)$$

221
222
$$+ \lambda_t L_{\text{task}}(D(\hat{\rho}_Z(g)E(x_i)), \alpha_{\mathcal{Y}}(g)(y_i))$$

223
224
$$+ \lambda_e \text{MSE}(\hat{\rho}_Z(g)E(x_i), E(\alpha_{\mathcal{X}}(g)(x_i)))$$

225
226
$$+ \lambda_a (\text{ALG}_{G,d} + \text{REG}_{G,d})$$

227 **Task loss.** Trains encoder and decoder on the
228 supervised objective.
229230 **Latent \rightarrow Output Equivariance.** Encourages
231 $D(\hat{\rho}_Z(g)E(x))$ to match $\alpha_{\mathcal{Y}}(g)(y)$.
232233 **Input \rightarrow Latent Equivariance.** Encourages
234 $\hat{\rho}_Z(g)E(x)$ to match $E(\alpha_{\mathcal{X}}(g)x)$.
235236 **Algebra Loss.** Encourages algebraic
237 properties for $\hat{\rho}_Z$ to be a group representation.
238239 We give additional insight into the algebra loss in Appendix D. Drawing
240 insight from Theorems 1 and 2, for experiments involving analytic
241 encoders, we expect to learn a representation $\hat{\rho}_Z$ that contains copies of
242 the regular representation. The number of copies is lower bounded by
243 the number of linearly independent embedded data orbits, which must
244 be empirically determined (details in Appendix F.1). In this section we
245 describe a number of exploratory studies based on the MNIST (Deng,
246 2012), TMNIST (Magre & Brown, 2022) and CIFAR10 (Krizhevsky,
247 2009) datasets, for both autoencoder and classifier tasks, and for the
248 groups C_2 , D_3 and C_4 . These show that for an analytic encoder E , when
249 $\hat{\rho}_Z$ is randomly initialized according to $\mathcal{N}(\mathbf{0}, \mathbf{1})$, the network prefers
250 to learn a representation which consists *entirely* of linearly independent
251 copies of the regular representation. Appendices F.4 and F.5 investigate
252 alternative layer depths and initialization schemes, respectively.
253254 **Non-analytic encoders.** While Theorem 1 applies to non-analytic
255 encoders, Theorem 2 requires analyticity. In deep learning architectures
256 most components are analytic (discussion in Appendix E.1), with
257 the exception of some common activation functions such as ReLU,
258 which are piecewise analytic. The Stone-Weierstrass theorem states that
259 any continuous function can be arbitrarily well approximated on any
260 bounded domain by an analytic function. We explore the representations learned for non-analytic
261 encoders in Appendix F.3, where we re-run the exploratory experiments of this section with piecewise-
262 analytic activations (ReLU), and show that the same conclusions hold: the network prefers to learn a
263 representation which consists entirely of linearly independent copies of the regular representation.
264265 4.2.1 TMNIST AUTOENCODER, CNN ARCHITECTURE, $G = C_2$
266267 For our first experiment we use the TMNIST dataset, of digits rendered in a variety of typefaces. We
268 choose a subset of two typefaces only, producing 20 images, augmenting with 180° rotations. For
269 our group we choose $G = C_2$ presented as $\{1, a \mid a^2 = 1\}$. Since this is an autoencoder we have
270 $\mathcal{X} = \mathcal{Y}$, and we choose $\alpha_{\mathcal{X}} = \alpha_{\mathcal{Y}}$, with the nontrivial element $\alpha_{\mathcal{X}}(a) = \alpha_{\mathcal{Y}}(a)$ acting to flip the
271 choice of font, with rotation and scaling left invariant. For the algebra loss component (iv) we choose
272 $\text{ALG}_{C_2,d} = \text{MSE}(\hat{\rho}_Z(a)^2, \mathbf{I}_d)$ where $d = \dim(Z) = 8$.
273274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1888
1889
1890
1891
1892
1893
1894
1895<br

270 Table 2: CIFAR classifier task with analytic encoder, representations of C_4 learned on latent space.
 271 Z is taken as the main feature layer before the final classification head.

Run	Irreducible counts				Alg. loss	Eq. loss	Orbs.
	+1	$+i$	-1	$-i$			
1	4	4	4	4	1.5×10^{-4}	1.8×10^{-3}	4
2	3	4	5	4	7.2×10^{-5}	1.9×10^{-3}	3
3	3	5	3	5	9.4×10^{-5}	1.6×10^{-3}	3
4	4	4	4	4	1.1×10^{-4}	1.9×10^{-3}	4
5	4	4	4	4	8.4×10^{-5}	1.9×10^{-3}	4

280 Table 1 shows our findings, with each run giving one row of the table, and Figure 3 shows a visualization.
 281 Low values in the algebra and equivariance loss columns reveal high-quality representations
 282 $\hat{\rho}_Z$, which are strongly equivariant with respect to the representations α_X, α_Y . By mapping the
 283 eigenvalues of $\hat{\rho}_Z(a)$ to the nearest value in $\{-1, +1\}$, we can determine the corresponding irreducible
 284 representation. For the group C_2 the regular representation contains one copy of the -1 and
 285 +1 representations, and see that the learned $\hat{\rho}_Z$'s are close to a multiple of the regular representation.
 286 Furthermore, we report the number of linearly independent embedded orbits and, as expected, this
 287 corresponds to the number of copies of the regular representation found (Section 4.1).
 288

289 4.2.2 MNIST AUTOENCODER, MLP ARCHITECTURE, $G = D_3$

290 For our second experiment we choose the MNIST dataset of handwritten digits, augmented by
 291 arbitrary rotations. We choose the group $G = D_3$, the group of symmetries of an equilateral
 292 triangle with the generators r, s (120-degree rotation, flip) and the following presentation:
 293 $\{e, r, r^2, r^3, s, rs \mid r^3 = e, s^2 = e, rsrs = e\}$. We parameterize the linear maps $\hat{\rho}_Z(r)$ and $\hat{\rho}_Z(s)$
 294 independently, and define the following algebra loss, where $d = \dim(Z) = 18$, and where summands
 295 correspond to constraints in the presentation: $\text{ALG}_{D_3, d} = \text{MSE}(\hat{\rho}_Z(r)^3, I_d) + \text{MSE}(\hat{\rho}_Z(s)^2, I_d) +$
 296 $\text{MSE}(\hat{\rho}_Z(r)\hat{\rho}_Z(s)\hat{\rho}_Z(r)\hat{\rho}_Z(s), I_d)$.
 297

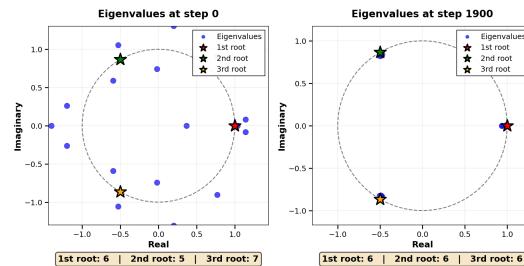
298 For the nonabelian group D_3 , we determined the learned representation's composition using orthogonality
 299 of characters (Section 3). The data in Table 1 confirms that the network learns a high-fidelity
 300 multiple of the regular representation, which contains the trivial, sign, and standard irreducible
 301 representations in the ratio 1:1:2. Consistent with the previous experiment, each linearly independent
 302 data orbit contributes one distinct copy of this representation. Furthermore, Figure 4 illustrates the
 303 eigenvalues of the generator $\hat{\rho}_Z(r)$ dynamically clustering around the third roots of unity during
 304 training, despite an uneven initialization.

305 4.2.3 CIFAR10 CLASSIFIER, CNN ARCHITECTURE, $G = C_4$

306 This experiment uses the CIFAR10 image
 307 dataset (Krizhevsky, 2009). We choose the
 308 group $G = C_4$ of 90-degree rotations,
 309 with the algebraic loss function $\text{ALG}_{C_4, d} =$
 310 $\text{MSE}(\hat{\rho}_Z(1)^4, I_d)$, where $d = \dim(Z) = 16$.
 311 For C_4 the regular representation contains ex-
 312 actly one copy of the $+1, +i, -1$ and $-i$ repre-
 313 sentations, and Table 2 shows that the network
 314 learns a representation close to a multiple of
 315 the regular representation. Furthermore, each
 316 linearly independent embedded data orbit con-
 317 tributes a distinct copy of this representation.
 318

319 Considering these three experiments together,
 320 we summarize the results of this section follows.
 321

322 **Key empirical insight:** To achieve encoder equivariance in the presence of data augmentation,
 323 the network prefers to learn a multiple of the regular representation on the latent space.



324 Figure 4: Eigenvalues of the real-valued matrix $\hat{\rho}_Z(r)$
 325 at different training steps. Beneath each plot we show
 326 counts of eigenvalues nearest to each third root of unity.

324 5 FIXING THE REGULAR REPRESENTATION
325

326 We present a novel parameter-free method to improve performance of neural networks to solve a
327 variety of invariant, equivariant or approximately equivariant tasks, where a finite group G acts on the
328 input and output layers with representations $\rho_{\mathcal{X}}$ and $\rho_{\mathcal{Y}}$ respectively. Inspired by the theoretical and
329 empirical results of Section 4, **instead of learning a representation on the latent space, we now**
330 **fix ρ_Z to be a multiple of the regular representation of G .** Specifically, we use n copies where n
331 is the maximum number of representations allowed by $\dim Z$. When $n|G| < \dim(Z)$, we pad by
332 taking the direct sum with additional copies of the trivial representation, to ensure our representation
333 on Z has the correct dimension. Our proposed representation is therefore given by:

$$334 \quad \rho_Z := n \cdot \rho_{\text{reg}} + \max(\dim(Z) - n|G|, 0) \cdot \rho_{\text{triv}} \quad (1)$$

335 When the latent space is geometrically structured, for example as a product of features and channels,
336 we choose an isomorphic form of the regular representation that preserves this structure (examples are
337 the SMOKE and SHREC experiment in Section 6). We then train according to the following objective
338 function, where $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$ is an element of the training set, $g \in G$ is a group element, and
339 $L_{\text{task}}(x_i, y_i)$ is the original task loss function:

$$\begin{aligned} 340 \quad & \frac{1}{2} L_{\text{task}}(D(E(x_i)), y_i) && \text{Task loss} \\ 341 \quad & + \frac{1}{2} L_{\text{task}}(D(E(\alpha_{\mathcal{X}}(g)x_i)), \alpha_{\mathcal{Y}}(g)y_i) && \text{Task loss shifted by } g \\ 342 \quad & + \lambda \text{MSE}(E(\alpha_{\mathcal{X}}(g)x_i), \rho_Z(g)E(x_i)) && \text{Equivariance loss from input to latent} \end{aligned}$$

343 When used in a training loop, we select (x_i, y_i) and g uniformly at random. Here λ is a hyperparameter
344 expressing the strength of the equivariance loss. We provide a sensitivity analysis for λ in Appendix
345 H, which shows that model performance is robust across a range of values. Our model has no
346 additional learned parameters above baseline, since the representation ρ_Z is now fixed. Our use of
347 the g -shifted task loss means that our training dataset must be augmented by the action of G . This
348 can be done either on-the-fly, or pre-computed to speed up training.

351 6 EXPERIMENTS
352

353 We benchmark our method against a variety of state-of-the-art methods for networks with approximate
354 equivariance, considering four distinct tasks. We compare our results against the models SCNN,
355 E2CNN, LIFT, RPP, RGroup, RSteer, PSCNN, NIso, NFT and MC, discussed in Section 2. All our
356 experiments follow the setup of the original papers. Our method trains using a computational budget
357 and wall-clock time at or below competing models. Since our model relies on data augmentation,
358 we provide both augmented and unaugmented CNN baselines. Full technical details for all reported
359 runs, including hyperparameter selection and a sensitivity analysis for our equivariance coupling
360 strength λ , are reported in Appendix G and H. In the majority of cases our results are improved or
361 comparable with state-of-the-art, while using fewer learnable parameters and a simpler architecture.
362 We use Cohen’s *d*-statistic to compute effect sizes (Hermann et al., 2024, p59), which shows that our
363 model typically delivers very large performance improvements. A discussion of these statistics can
364 be found in Appendix G.1. For the selection of the layer Z where the equivariance loss is imposed,
365 for autoencoder tasks this is chosen as the output layer of the encoder, while for classification tasks
366 we choose the layer before the final classifier head. As an ablation, we also report a comparison
367 that replaces the regular representation in Equation 1 with the *defining representation*, the natural
368 geometric action of the group by permutations (see Appendix C for a formal definition), and the
369 *trivial representation*; these results further confirm optimality of the regular representation.

370 6.1 CLASSIFICATION TASK, DDMNIST, $G = C_2, C_4, D_4$
371

372 Following closely the procedure of (Veefkind & Cesa, 2024) for each of the chosen symmetry groups
373 C_2 , C_4 and D_4 , we randomly and independently transform two MNIST images according to the
374 group. Results are shown in Table 3. Because the transformations are local and independent, we
375 apply our method using the product group. We also provide a comparison with the defining and trivial
376 representations as an ablation study. While for the groups C_2 and C_4 the two representations are
377 isomorphic, for D_4 they are not, with the regular representation being more performant; this provides
further empirical evidence for the optimality of the regular representation. Except for SCNN, we

378 re-trained and re-evaluated all models. Further discussion and effect size analysis can be found in
 379 Appendix G.2. These statistics show a very large effect size for our model over the CNN baseline,
 380 and a large effect size for our model compared to the majority of results for other architectures.
 381

382 Table 3: DDMNIST test accuracies. Mean over 3 runs; standard deviation in brackets. Parameter
 383 counts shown. Best result in each column is bold, second-best is underlined. For C_2, C_4 the defining
 384 representation is equivalent to the regular representation and so is omitted.

Model	$C_4 \uparrow$	#Params(M) \downarrow	$C_2 \uparrow$	#Params(M) \downarrow	$D_4 \uparrow$	#Params(M) \downarrow
CNN	0.907 (0.004)	0.03	<u>0.938</u> (0.006)	0.03	0.800 (0.001)	0.03
SCNN	0.484 (0.008)	<u>0.12</u>	<u>0.474</u> (0.003)	0.03	0.431 (0.010)	<u>0.15</u>
Restriction	<u>0.914</u> (0.007)	<u>0.12</u>	0.890 (0.007)	0.33	0.837 (0.020)	<u>0.17</u>
RPP	<u>0.908</u> (0.022)	0.79	0.903 (0.009)	0.08	0.827 (0.020)	1.73
PSCNN	0.909 (0.007)	0.51	0.871 (0.016)	0.04	<u>0.842</u> (0.011)	1.23
Trivial rep	0.874 (0.004)	0.03	0.938 (0.007)	0.03	0.819 (0.004)	0.03
Defining rep	—	—	—	—	0.838 (0.010)	0.03
Ours (regular)	0.915 (0.004)	0.03	0.947 (0.004)	0.03	0.868 (0.002)	0.03

395 6.2 CLASSIFICATION TASK, MEDMNIST3D, $G = \text{Sym}_{\text{cube}}$

396 We test our method on the Organ, Synapse and Nodule subsets of the MedMNIST3D dataset, using
 397 the same setup as the original authors (Veefkind & Cesa, 2024). We apply the group Sym_{cube} of
 398 orientation-preserving symmetries of the cube, which is isomorphic to the permutation group S_4 .
 399 All results, except for ours and the augmented CNN, are imported from the original authors. Table
 400 4 shows MedMNIST3D accuracies for different models and groups. For Nodule and Synapse, our
 401 method is comparable or outperforms other architectures, while having fewer parameters. The regular
 402 representation consistently outperforms the defining and trivial representations, providing further
 403 empirical evidence for its optimality. For the Organ dataset, canonical orientation is a key feature, and
 404 so the symmetry action conflicts with the task. This may explain our method’s underperformance in
 405 this task (shared by the augmented CNN baseline). Further discussion can be found in Appendix G.3,
 406 which shows our method has very large positive effect sizes for Nodule and Synapse datasets.
 407

408 Table 4: MedMNIST3D test accuracies. Mean over 3 runs; standard deviation in brackets. Parameter
 409 counts shown. Best result in each column is bold, second-best is underlined.

Group	Model	Nodule \uparrow	Synapse \uparrow	Organ \uparrow	#Params(M) \downarrow
N/A	CNN	0.873 (0.005)	0.716 (0.008)	0.920 (0.003)	<u>00.19</u>
Aug	CNN	<u>0.879</u> (0.007)	0.761 (0.008)	0.632 (0.005)	<u>00.19</u>
SO(3)	SCNN	0.873 (0.002)	0.738 (0.009)	0.607 (0.006)	00.13
SO(3)	RPP	0.801 (0.003)	0.695 (0.037)	<u>0.936</u> (0.002)	18.30
SO(3)	PSCNN	0.871 (0.001)	0.770 (0.030)	0.902 (0.006)	04.17
O(3)	SCNN	0.868 (0.009)	0.743 (0.004)	0.902 (0.006)	<u>00.19</u>
O(3)	RPP	0.810 (0.013)	0.722 (0.023)	0.940 (0.006)	29.30
O(3)	PSCNN	0.873 (0.008)	<u>0.769</u> (0.005)	0.905 (0.004)	03.51
Sym_{cube}	Trivial rep	0.867 (0.001)	0.743 (0.002)	0.571 (0.002)	<u>00.19</u>
Sym_{cube}	Defining rep	0.837 (0.013)	<u>0.756</u> (0.019)	0.560 (0.025)	<u>00.19</u>
Sym_{cube}	Ours (regular)	0.887 (0.005)	0.770 (0.002)	0.642 (0.056)	<u>00.19</u>

423 6.3 AUTOREGRESSION TASK, SMOKE, $G = C_4$

424 We evaluate our method on the SMOKE dataset, generated with PhiFlow (Holl et al., 2020) by Wang
 425 et al. (2022) (see Figure 7 for a visualisation). The task involves predicting future frames of a
 426 simulated smoke velocity field autoregressively. This task is only approximately equivariant to the
 427 symmetry group C_4 (90-degree rotations) due to the presence of non-equivariant buoyancy effects.
 428 Full details are provided in the appendix. Table 5(a) shows the test RMSE for each model on the
 429 metrics considered. All reported figures are imported from the original authors (Wang et al., 2022),
 430 except for ours, augmented CNN, and non-augmented CNN, for which we tune the learning rate. Our
 431 method outperforms all models except for PSCNN, which has slightly better scores, with more than

12 times the number of parameters. While our method uses the augmented training set, we note from comparing the two CNN baselines that this gives little advantage for this task. [Further details can be found in Appendix G.4, showing very large positive effect sizes for all models except PSCNN.](#)

6.4 AUTOENCODING TASK, 3D SHAPES, $G = O_h$

Finally, we test our method on the conformally transformed SHREC '11 dataset (Lian et al., 2011; Mitchel et al., 2022), following the pre-training and fine-tuning procedure of Mitchel et al. (2024). We apply our methodology with O_h augmentations (octahedral symmetries) to pre-train a baseline autoencoder before fine-tuning the encoder for classification. As this is an autoencoding task, we symmetrize the equivariance loss to the decoder. NIso's kernel adds 18k parameters above our model, which has the same parameter count as the baseline autoencoder (AE). Results are given in Table 5(b). Our approach achieves 90.45% accuracy, outperforming the group-agnostic method NFT. Our method also surpasses NIso, a model capable of learning actions of infinite groups, even though our method uses only a finite subgroup. [Further details can be found in Appendix G.5, with effect sizes showing equivalence between our method and NIso, and very large positive effect size for the other models.](#)

Table 5: Mean over 3 runs; standard deviation in brackets. Parameter counts shown. Best result in each column is bold, second-best is underlined.

(a) Test RMSE for SMOKE dataset.

Group	Model	Future \downarrow	Domain \downarrow	#Params(M) \downarrow
N/A	CNN	0.81 (0.01)	0.63 (0.00)	0.25
Aug	CNN	0.83 (0.03)	0.67 (0.06)	0.25
N/A	MLP	1.38 (0.06)	1.34 (0.03)	8.33
C4	E2CNN	1.05 (0.06)	0.76 (0.02)	<u>0.62</u>
C4	RPP	0.96 (0.10)	0.82 (0.01)	4.36
C4	Lift	0.82 (0.01)	0.73 (0.02)	3.32
C4	RGroup	0.82 (0.01)	0.73 (0.02)	1.88
C4	RSteer	0.80 (0.00)	0.67 (0.01)	5.60
C4	PSCNN	0.77 (0.01)	0.57 (0.00)	3.12
C4	Ours	<u>0.78</u> (0.01)	<u>0.61</u> (0.01)	0.25

(b) Test accuracy for SHREC '11 dataset.

Model	Acc. \uparrow
NIso Mitchel et al. (2024)	90.26 (1.27)
NFT Koyama et al. (2024)	83.24 (2.03)
AE with aug	69.36 (2.81)
MC Mitchel et al. (2022)	86.5
Ours	90.45 (2.1)

7 CONCLUSIONS

Limitations and Future Work. Our theoretical framework is developed for finite groups. However, we empirically demonstrate that our method can be applied effectively to tasks with continuous symmetries by selecting a rich finite subgroup; we employ this strategy to show that our model can outperform NIso, SCNN, RPP and PSCNN, which use continuous groups such as $SO(3)$, $O(3)$ and the conformal group, on the SHREC '11 and MedMNIST3D datasets. We expect this strategy could also be effectively employed to handle large finite groups (such as permutation groups), and in future work we aim to derive theoretical guarantees on the power of this approach. Our method requires data augmentation, although this is typically inexpensive when the group action on the input space is easy to construct, and our ablations with an augmented baseline show that our model delivers benefits far beyond augmentation. We would also like to explore how our model could enable augmentation directly in the latent space.

Conclusions. This work investigates an alternative path to building efficient equivariant models, focusing not on architectural design, but on the enforcement of a principled latent algebraic structure. We prove that for finite groups, this structure is the regular representation, which must appear almost surely in the latent space of any equivariant encoder. By enforcing this structure via a parameter-free auxiliary loss, our method achieves competitive or superior performance to SOTA models, while requiring in some cases significantly fewer parameters. Furthermore, we empirically show the optimality of the regular representation via ablations with the defining and trivial representations. Ultimately, our work suggests that for tasks with inherent (approximate) symmetry, directly enforcing the correct latent algebraic structure can be a more effective and efficient path to equivariance than designing complex, highly-parameterized architectures.

486 REFERENCES
487

488 Georg Bökman, Johan Edstedt, Michael Felsberg, and Fredrik Kahl. Steerers: A framework for
489 rotation equivariant keypoint descriptors. In *2024 IEEE/CVF Conference on Computer Vision and*
490 *Pattern Recognition (CVPR)*, pp. 4885–4895. IEEE, 2024. doi: 10.1109/cvpr52733.2024.00467.
491 URL <http://dx.doi.org/10.1109/cvpr52733.2024.00467>.

492 Taco S. Cohen and Max Welling. Steerable CNNs, 2016.
493

494 Li Deng. The MNIST database of handwritten digit images for machine learning research. *IEEE*
495 *Signal Processing Magazine*, 29(6):141–142, 2012.

496 Emilien Dupont, Miguel Angel Bautista, Alex Colburn, Aditya Sankar, Carlos Guestrin, Josh
497 Susskind, and Qi Shan. Equivariant neural rendering, 2020.

498 Marc Finzi, Gregory Benton, and Andrew G Wilson. Residual pathway priors for soft equivariance
499 constraints. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan
500 (eds.), *Advances in Neural Information Processing Systems*, volume 34, pp. 30037–30049. Cur-
501 ran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/fc394e9935fdb62c8aecd372464e1965-Paper.pdf.

502 D.H. Fremlin. *Measure Theory*. Number v. 1 in Measure theory. Torres Fremlin, 2000. ISBN
503 9780953812905. URL https://books.google.co.uk/books?id=2_1HYXeEd7YC.

504 William Fulton and Joe Harris. *Representation Theory*. Springer New York, 2004. ISBN
505 9781461209799. doi: 10.1007/978-1-4612-0979-9.

506 Odd Erik Gundersen, Saeid Shamsaliei, Håkon Sletten Kjærnli, and Helge Langseth. On reporting
507 robust and trustworthy conclusions from model comparison studies involving neural networks and
508 randomness. In *Proceedings of the 2023 ACM Conference on Reproducibility and Replicability*,
509 ACM REP '23, pp. 37–61, New York, NY, USA, 2023. Association for Computing Machinery.
ISBN 9798400701764. doi: 10.1145/3589806.3600044. URL <https://doi.org/10.1145/3589806.3600044>.

510 Yacov Hel-Or and Patrick C Teo. Canonical decomposition of steerable functions. *Journal of*
511 *Mathematical Imaging and Vision*, 9:83–95, 1998.

512 Katherine Hermann, Jennifer Hu, and Michael Mozer. Experimental design and analysis for AI
513 researchers. Invited tutorial at NeurIPS 2024, 2024. URL <https://neurips.cc/virtual/2024/tutorial/99528>.

514 Philipp Holl, Vladlen Koltun, Kiwon Um, and Nils Thuerey. PhiFlow: A differentiable PDE solving
515 framework for deep learning via physical simulations. In *NeurIPS workshop*, volume 2, 2020.

516 Philip Holmes. *Turbulence, coherent structures, dynamical systems and symmetry*. Cambridge
517 University Press, 2012.

518 Jen-tse Huang, Man Ho Lam, Eric John Li, Shujie Ren, Wenzuan Wang, Wenxiang Jiao,
519 Zhaopeng Tu, and Michael R. Lyu. Apathetic or empathetic? evaluating llms' emotional
520 alignments with humans. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Pa-
521 quet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural Information Processing Sys-*
522 *tems*, volume 37, pp. 97053–97087. Curran Associates, Inc., 2024. doi: 10.52202/079017-3077.
523 URL https://proceedings.neurips.cc/paper_files/paper/2024/file/b0049c3f9c53fb06f674ae66c2cf2376-Paper-Conference.pdf.

524 Gordon James and Martin Liebeck. *Representations and Characters of Groups*. Cambridge University
525 Press, 2001. ISBN 9780511814532. doi: 10.1017/cbo9780511814532.

526 Yinzhu Jin, Aman Shrivastava, and Tom Fletcher. Learning group actions on latent representations.
527 In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL
528 <https://openreview.net/forum?id=HGNTcy4eEp>.

540 Archit Karandikar, Nicholas Cain, Dustin Tran, Balaji Lakshminarayanan, Jonathon Shlens,
 541 Michael Curtis Mozer, and Rebecca Roelofs. Soft calibration objectives for neural networks.
 542 In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), *Advances in Neu-
 543 ral Information Processing Systems*, 2021. URL <https://openreview.net/forum?id=-tVD13hOsQ3>.

545 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
 546 <https://arxiv.org/abs/1412.6980>.

548 Masanori Koyama, Kenji Fukumizu, Kohei Hayashi, and Takeru Miyato. Neural Fourier Transform:
 549 A General Approach to Equivariant Representation Learning, February 2024.

550 Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009. URL <https://api.semanticscholar.org/CorpusID:18268744>.

553 Yann LeCun and Yoshua Bengio. *Convolutional networks for images, speech, and time series*, pp.
 554 255–258. MIT Press, Cambridge, MA, USA, 1998. ISBN 0262511029.

556 Z. Lian, A. Godil, B. Bustos, M. Daoudi, J. Hermans, S. Kawamura, Y. Kurita, G. Lavoué, H. V.
 557 Nguyen, R. Ohbuchi, Y. Ohkita, Y. Ohishi, F. Porikli, M. Reuter, I. Sipiran, D. Smeets, P. Suetens,
 558 H. Tabia, and D. Vandermeulen. SHREC’11 track: Shape retrieval on non-rigid 3D watertight
 559 meshes. In *Proceedings of the 4th Eurographics Conference on 3D Object Retrieval*, 3DOR ’11,
 560 pp. 79–88, Goslar, DEU, April 2011. Eurographics Association. ISBN 978-3-905674-31-6.

561 Nimish Magre and Nicholas Brown. Typography-MNIST (TMNIST): an MNIST-style image dataset
 562 to categorize glyphs and font-styles, 2022.

563 Brando Miranda, Patrick Yu, Saumya Goyal, Yu-Xiong Wang, and Sanmi Koyejo. Is pre-training
 564 truly better than meta-learning?, 2025. URL <https://arxiv.org/abs/2306.13841>.

566 Thomas W. Mitchel, Noam Aigerman, Vladimir G. Kim, and Michael Kazhdan. Möbius Convolutions
 567 for Spherical CNNs, May 2022.

569 Thomas W. Mitchel, Michael Taylor, and Vincent Sitzmann. Neural Isometries: Taming Transforma-
 570 tions for Equivariant ML, October 2024.

571 Giorgos Nikolaou, Tommaso Mencattini, Donato Crisostomi, Andrea Santilli, Yannis Panagakis,
 572 and Emanuele Rodolà. Language models are injective and hence invertible, 2025. URL <https://arxiv.org/abs/2510.15511>.

575 nLab. Free action, 2024. URL <https://ncatlab.org/nlab/show/free+action>. Ac-
 576 cessed: 2025-08-02.

577 Mehran Shakerinava, Arnab Kumar Mondal, and Siamak Ravanbakhsh. Structuring Representations
 578 Using Group Invariants. In *Advances in Neural Information Processing Systems*, October 2022.

580 Christopher Shorten and Taghi M. Khoshgoftaar. A survey on image data augmentation for deep
 581 learning. *Journal of Big Data*, 6:60, 2019. doi: 10.1186/s40537-019-0197-0.

582 Lars Veerkind and Gabriele Cesa. A probabilistic approach to learning the degree of equivariance in
 583 steerable CNNs. In *41st International Conference on Machine Learning (ICML 2024)*, 2024. URL
 584 <https://openreview.net/forum?id=49vHLSxjzy>.

586 Dian Wang, Robin Walters, Xupeng Zhu, and Robert Platt. Equivariant Q learning in spatial action
 587 spaces. In *5th Annual Conference on Robot Learning*, 2021. URL <https://openreview.net/forum?id=IScz42A3iCI>.

589 Rui Wang, Robin Walters, and Rose Yu. Approximately equivariant networks for imperfectly
 590 symmetric dynamics. In *International Conference on Machine Learning*, pp. 23078–23091.
 591 PMLR, 2022.

593 Maurice Weiler and Gabriele Cesa. General E(2)-Equivariant Steerable CNNs. In *Conference on
 594 Neural Information Processing Systems (NeurIPS)*, 2019.

594 Max Welling and Taco S. Cohen. Transformation properties of learned visual representations. In
595 *Proceedings of ICLR 2015*, 2014.
596

597 Robin Winter, Marco Bertolini, Tuan Le, Frank Noé, and Djork-Arné Clevert. Unsupervised Learning
598 of Group Invariant and Equivariant Representations, April 2024.
599

600 Daniel E. Worrall, Stephan J. Garbin, Daniyar Turmukhambetov, and Gabriel J. Brostow. Interpretable
601 transformations with encoder-decoder networks. In *2017 IEEE International Conference on*
602 *Computer Vision (ICCV)*, pp. 5737–5746, 2017. doi: 10.1109/iccv.2017.611. URL <http://dx.doi.org/10.1109/iccv.2017.611>.
603

604 Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter Pfister, and
605 Bingbing Ni. Medmnist v2 - a large-scale lightweight benchmark for 2d and 3d biomedical
606 image classification. *Scientific Data*, 10(1), January 2023. ISSN 2052-4463. doi: 10.1038/
607 s41597-022-01721-8.
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

648 **A CODE**649
650 The code to run all the experiments in this paper is available at the following location:
651652 • <https://anonymous.4open.science/r/parameter-free-approximate-equivariance-3352/>
653654 In the README file, we provide instructions to run the code and reproduce the results.
655656 **B NOTATION**
657658 Here we provide a comprehensive list of symbols and notational conventions used throughout the
659 paper.
660661 **GENERAL MATHEMATICAL OBJECTS**
662663 G A finite group.
664665 g, h Elements of the group G , e.g., $g \in G$.
666667 \mathbb{K} The base field, assumed to be either the real numbers \mathbb{R} or the complex numbers \mathbb{C} .
668669 \mathcal{S}, \mathcal{A} General sets, denoted by calligraphic letters.
670671 V, W General vector spaces, denoted by uppercase Roman letters.
672673 v, w Elements (vectors) of a vector space, e.g., $v \in V$.
674675 **GROUP THEORY**
676677 α A group action on a set. The action of $g \in G$ on an element $s \in \mathcal{S}$ is written as $\alpha(g, s)$
678679 ρ_V A group representation on the vector space V , which is a linear group action on V .
680681 $\rho_V(g)$ The invertible linear map associated with the group element $g \in G$. The action of g on a
682 vector $v \in V$ is written as $\rho_V(g)(v)$.
683684 **MACHINE LEARNING CONTEXT**
685686 \mathcal{X} The input set.
687688 x A single input data point, $x \in \mathcal{X}$.
689690 \mathcal{Y} The output or label set.
691692 y A single output or label, $y \in \mathcal{Y}$.
693694 Z The latent space, viewed as a vector space (e.g., $Z = \mathbb{R}^d$).
695696 z A latent vector, $z \in Z$.
697698 E An encoder network.
699700 D A decoder network.
701702 $\hat{\rho}_Z$ A *learnable* representation on the latent space Z .
703704 **C GROUP ACTIONS AND REPRESENTATIONS**
705706 **Groups.** A group G is a set equipped with an associative and unital binary operation, such that
707 every element has a unique inverse. Important families of groups include the following. The dihedral
708 group D_n is the group of symmetries of the regular polygon with n sides, which we use in this paper
709 for $n \geq 3$. The cyclic group C_n is the groups of integers $\{0, \dots, n-1\}$ with addition modulo n .
710 The permutation group S_n is the group of permutations of an n -element set. We may define groups
711 by presentations, which give generators and relations for the product; for example, the group C_2 can
712 be defined by the presentation $\{1, a \mid a^2 = 1\}$. For any two groups G, H , we write $G \times H$ for the
713 product group, whose elements are ordered pairs of elements of G and H respectively.
714

Group representations. A *representation* ρ of a finite group G on a vector space V is a choice of linear maps $\rho(g) : V \rightarrow V$ for all elements $g \in G$, with the property that $\rho(e) = \text{id}_V$ for the identity element $e \in G$, and such that $\rho(g)\rho(g') = \rho(gg')$ for all pairs of elements $g, g' \in G$. We define the *dimension* of ρ to be $\dim(V)$, the dimension of the vector space V . There is a notion of equivalence of representations: given representations ρ on V , and ρ' on V' , they are *isomorphic* when there is an invertible linear map $L : V \rightarrow V'$ such that $L\rho(g) = \rho'(g)L$ for all $g \in G$. Given a subgroup $G \subseteq G'$, a representation of G' yields a *restricted representation* on G in an obvious way.

Defining representations. The concept of a defining representation is relevant for our ablation studies. While the term is context-dependent, it typically refers to a group’s most natural or defining low-dimensional representation. For the permutation group S_n this is the linearisation of its permutation action on the n -element set; that is, the n -dimensional representation given by its action on \mathbb{K}^n by permuting the basis vectors. For the dihedral group D_n ($n \geq 3$), the defining representation is the linearisation of its action on the n -element set of vertices. For the group Sym_{cube} of orientation-preserving symmetries of the cube, the defining representation is the linearisation of its action on the 8-element set of vertices of the cube. We select these defining representations as a baseline as they provide a rich, geometrically intuitive alternative to the more abstract regular representation.

Group actions. A group may also have an *action* λ on a set \mathcal{S} , a choice of functions $\lambda(g) : \mathcal{S} \rightarrow \mathcal{S}$ for all elements $g \in G$, such that $\lambda(e) = \text{id}_{\mathcal{S}}$ and $\lambda(g)\lambda(g') = \lambda(gg')$. Such an action yields a representation of G on $\mathbb{K}[\mathcal{S}]$ by linearisation, the *free \mathbb{K} -vector space* generated by \mathcal{S} .

Some simple examples of representations include the *zero representation* on the zero-dimensional vector space, and the *trivial representation* ρ_{triv} on the 1-dimensional vector space \mathbb{K} , where $\rho_{\text{triv}}(g) = \text{id}_{\mathbb{K}}$ for all $g \in G$.

D INSIGHT INTO THE ALGEBRA LOSS

To give further insight into component (iv), suppose our goal is to learn a representation $\widehat{\rho}_Z$ of the group C_2 , which has group presentation $\{1, a \mid a^2 = 1\}$. Then $\widehat{\rho}_Z$ should satisfy $\widehat{\rho}_Z(1) = \text{id}$ and $\widehat{\rho}_Z(a^2) = (\rho_Z(a))^2 = \text{id}$. To achieve this, we fix the parameter $\widehat{\rho}_Z(1) = \text{id}$, and choose $\text{ALG}_{C_2,d}$ and $\text{REG}_{C_2,d}$ as follows, where $d = \dim(Z)$, the matrix I_d is the identity of size $d \times d$:

$$\begin{aligned} \text{ALG}_{C_2,d} &= \text{MSE}(\widehat{\rho}_Z(a)^2, I_d) \\ \text{REG}_{C_2,d} &= \text{MSE}(\widehat{\rho}_Z(a), \widehat{\rho}_Z(a)^{-1}). \end{aligned}$$

We note that when $\text{ALG}_{C_2,d}$ equals zero then $\widehat{\rho}_Z(a)^2 = I_d$, and hence $\text{REG}_{C_2,d}$ will equal zero. In this sense, the regularisation term is algebraically redundant, but is found to improve training.

E PROOFS

We first introduce some basic definitions

Definition 3. Let V be a vector space, and $W, W' \subseteq V$ be subspaces of V . W and W' are *linearly independent* if $W \cap W' = 0$.

Definition 4. Let G act on a set \mathcal{X} via the group action $\alpha_{\mathcal{X}}$. The *orbit* of $x \in \mathcal{X}$ is the set $\mathcal{O}_x = \{\alpha_{\mathcal{X}}(g)(x) \mid g \in G\}$. Given a vector space Z and a function $E : \mathcal{X} \rightarrow Z$, we call the set $E(\mathcal{O}_x) = \{E(\alpha_{\mathcal{X}}(g)(x) \mid g \in G\}$ the *embedded orbit* of x along E . Two embedded orbits $E(\mathcal{O}_x), E(\mathcal{O}_{x'})$ are *linearly independent* if their spans are linearly independent, that is if $\text{Span}(E_{\theta}(\mathcal{O}_x)) \cap \text{Span}(E_{\theta}(\mathcal{O}_{x'})) = \{0\}$.

The proof of Lemma 7 adapts the argument in Nikolaou et al. (2025), which uses measure-theoretic properties of analytic functions to demonstrate that transformers are almost everywhere injective. Although our focus here is not on transformers, most of their results require only real analyticity, and thus can be easily adapted to our case. Intuitively, a measure μ on a set X quantifies the ‘size’ or ‘volume’ of subsets within X (see e.g., Fremlin (2000) for a foundational treatment). In the context of \mathbb{R}^p , the Lebesgue measure λ corresponds to the standard notion of Euclidean volume (e.g., it assigns the unit hypercube a measure of 1).

756 **Notation.** If $f : X \rightarrow X$ is a function, we will write $f^{\circ T}$ to indicate the consecutive application of
 757 f for T times. If Θ is a set equipped with a measure μ , we will write $\theta \sim \Theta$ to indicate that θ is a
 758 random draw of an element of Θ according to the measure μ .

759 The following are well-known mathematical results and definitions.

760 **Proposition 5.** Let $U \subseteq \mathbb{R}^m$ be open and connected, and let $f : U \rightarrow \mathbb{R}^n$ be an analytic function.
 761 If f is not identically zero, then its zero set $Z(f) := \{x \in U \mid f(x) = 0\} = f^{-1}(0)$ has Lebesgue
 762 measure zero in \mathbb{R}^m , i.e. $\lambda(Z(f)) = 0$.

763 **Definition 6.** Let μ, ν be Borel measures on \mathbb{R}^p . We say that μ is *absolutely continuous* with respect
 764 to ν , written $\mu \ll \nu$, if for every Borel set U we have

$$766 \quad \nu(U) = 0 \implies \mu(U) = 0 \quad (2)$$

767 Since the Lebesgue measure λ is the standard notion of Euclidean volume, then we can intuitively
 768 understand that $\mu \ll \lambda$ just when the measure μ assigns zero measure to every set with zero Euclidean
 769 volume. In this way, measures μ with $\mu \ll \lambda$ may behave in ways that accord with our intuition. Any
 770 standard sampling measure μ used to generate initial parameters for a neural network (e.g. from the
 771 normal or uniform distributions) will be likely to satisfy this property.

772 The following critical lemma underlies our theoretical results, and we can explain it intuitively as
 773 follows. If we have some set of parameters $\mathcal{W} \subseteq \Theta$ for our neural network which is measure zero,
 774 then of course if we initialise the network with some parameters θ at random, the probability that
 775 $\theta \in \mathcal{W}$ is zero. But we then ask, if we update the parameters by gradient descent for finitely many
 776 steps, what is the probability that the optimised parameters are within the set \mathcal{W} ?

777 **Lemma 7.** Let E_θ be a parametrized function that is analytic for all parameters $\theta \in \Theta \subseteq \mathbb{R}^p$.
 778 Assume that the parameters are randomly initialized according to a distribution μ that is absolutely
 779 continuous with respect to the Lebesgue measure on \mathbb{R}^p , i.e. $\theta_0 \sim \mu$ with $\mu \ll \lambda$. Furthermore,
 780 assume an analytic loss function \mathcal{L} , and that the parameters are updated via gradient descent,
 781 i.e. $\theta_{t+1} := \Phi(\theta_t) := \theta_t - \eta \nabla \mathcal{L}(\theta_t)$, with $\eta \in (0, 1)$.

782 Let $\mathcal{W} \subseteq \Theta$ with $\lambda(\mathcal{W}) = 0$. Then, for all $T \in \mathbb{N}$, $\mu(\{\theta_0 \mid \Phi^{\circ T}(\theta_0) \in \mathcal{W}\}) = 0$.

783 *Proof.* The proof uses standard analytic and measure-theoretic tools, and is an adaptation of the
 784 argument in the proof of (Nikolaou et al., 2025, Theorem C.1). Let $\mathcal{W} \subseteq \Theta$ with $\lambda(\mathcal{W}) = 0$.
 785 First, we apply (Nikolaou et al., 2025, Lemma C.6), that $\lambda(\Phi^{-1}(\mathcal{W})) = 0$. (Note that in this
 786 paper, Lemma C.6 assumes the context of a transformer; however the proof only uses analyticity
 787 of the components, and thus the result holds in our case). Then, because $\mu \ll \lambda$, it follows that
 788 $\mu(\{\theta_0 \mid \Phi(\theta_0) \in \mathcal{W}\}) = \mu(\Phi^{-1}(\mathcal{W})) = 0$. By applying the same argument T times, we find
 789 $\mu(\{\theta_0 \mid \Phi^{\circ T}(\theta_0) \in \mathcal{W}\}) = 0$. \square

790 **Theorem 1.** Let G be a finite group acting on a set \mathcal{A} with action $\alpha_{\mathcal{A}}$, and on a vector space Z with a
 791 representation ρ_Z , with $\dim(Z) \geq |G|$. Suppose that the group acts freely and transitively on some
 792 subset $\mathcal{S} \subseteq \mathcal{A}$. If $E : \mathcal{A} \rightarrow Z$ is an equivariant function and $E(\mathcal{S})$ is full rank, then Z contains the
 793 regular representation almost surely.

794 *Proof.* Let $\mathbb{R}[\mathcal{S}]$ denote the vector space of all formal linear combinations of \mathcal{S} with coefficients in
 795 \mathbb{R} . Because $\alpha_{\mathcal{A}}|_{\mathcal{S}}$ is free and transitive it must be equivalent to the action of G on itself, and hence
 796 its linearization $\mathbb{R}[\mathcal{S}]$ carries the structure of the regular representation. We write this representation
 797 explicitly as $\rho_{\mathbb{R}[\mathcal{S}]}(g)(\sum_s a_s s) := \sum_s a_s \alpha_{\mathcal{A}}(g)(s)$. Now, we can define the linear map $\tilde{E}^{\mathcal{S}} : \mathbb{R}[\mathcal{S}] \rightarrow Z$ by $(\sum_s a_s s) \mapsto \sum_s a_s E(s)$. Because $E : \mathcal{A} \rightarrow Z$ is equivariant, we conclude that
 798 $\tilde{E}^{\mathcal{S}} : \mathbb{R}[\mathcal{S}] \rightarrow Z$ is equivariant. Denote $V := \text{Im}(\tilde{E}^{\mathcal{S}}) = \text{Span}_{\mathbb{R}}\{E(s) \mid s \in \mathcal{S}\}$, which is a linear
 799 subspace of Z of dimension at most $|G|$. By the first isomorphism theorem for representations (Fulton
 800 & Harris, 2004), we have $V \cong \mathbb{R}[\mathcal{S}] / \text{Ker}(\tilde{E}^{\mathcal{S}})$. Finally, by assumption we have that $E(\mathcal{S})$ is full
 801 rank, implying that $\text{Ker}(\tilde{E}^{\mathcal{S}})$ is trivial and that V is isomorphic to the regular representation $\mathbb{R}[\mathcal{S}]$.
 802 Furthermore, we note that when $\dim Z = |G|$, it follows that Z must be isomorphic to the regular
 803 representation itself. \square

804 We now combine Lemma 7 and Theorem 1 to obtain guarantees on the existence of regular representations
 805 in the latent space.

810
 811 **Theorem 2.** Let G be a finite group, $\mathcal{X} \subseteq \mathbb{R}^n$ an open and connected set, Z a vector space with
 812 $\dim(Z) \geq |G|$, and $E_\theta : \mathcal{X} \rightarrow Z$ a function which is analytic on its domain \mathcal{X} for all parameter
 813 values $\theta \in \Theta \subseteq \mathbb{R}^p$. Let G act on a set $\mathcal{A} \subseteq \mathcal{X}$ with action $\alpha_{\mathcal{A}}$, and on Z with a representation ρ_Z .
 814 Suppose that $\alpha_{\mathcal{A}}$ is free and transitive on some $\mathcal{S} \subseteq \mathcal{A}$. Furthermore, suppose that the parameters are
 815 randomly initialized and updated by gradient descent with respect to an analytic loss function \mathcal{L} :

$$\theta_0 \sim \mu, \mu \ll \lambda \text{ the Lebesgue measure on } \mathbb{R}^p$$

$$\theta_{t+1} := \Phi(\theta_t) := \theta_t - \eta \nabla \mathcal{L}(\theta_t) \text{ with } \eta \in (0, 1)$$

816 yielding an equivariant analytic function. Then, either Z contains the regular representation almost
 817 surely, or $E_\theta(\mathcal{S})$ is rank deficient for all possible parameterizations $\theta \in \Theta$.
 818

819 *Proof.* Adopting the setup from the proof of Theorem 1, we must now show that Z contains the
 820 regular representation almost surely, i.e. that $\text{Ker}(\tilde{E}_\theta^{\mathcal{S}})$ is trivial almost surely or constantly zero
 821 for all $\theta \in \Theta$ and $\mathcal{S} \subseteq \mathcal{A}$ on which $\alpha_{\mathcal{A}}$ acts transitively. The linear function $\tilde{E}_\theta^{\mathcal{S}}$ is fully specified
 822 by its action on the basis \mathcal{S} , i.e. $\{E_\theta(s) \mid s \in \mathcal{S}\}$. Because V has dimension at most $|G|$, we may
 823 embed each of the $E_\theta(s)$ into $y_s \in \mathbb{R}^{|G|}$. Therefore, in matrix representation, $\tilde{E}_\theta^{\mathcal{S}}$ is obtained by
 824 collecting the vectors $\{y_s \mid s \in \mathcal{S}\}$ in a $|G| \times |G|$ matrix $M_\theta^{\mathcal{S}}$. The condition for the kernel to be
 825 trivial is $\det M_\theta^{\mathcal{S}} \neq 0$. Now, $\det M_\theta^{\mathcal{S}}$ is an analytic function, as each entry of $M_\theta^{\mathcal{S}}$ is analytic by
 826 analyticity of $E_\theta^{\mathcal{S}}$, and the determinant is a polynomial and hence analytic. Therefore, we get that
 827 the set $\mathcal{W} := \{\theta \in \Theta \mid \det M_\theta^{\mathcal{S}} = 0\}$ has measure zero with respect to μ by Proposition 5 and
 828 absolute continuity of $\mu \ll \lambda$, or it is constantly zero for all $\theta \in \Theta$. By Lemma 7, we then get that
 829 $\mu(\{\theta_0 \in \Theta \mid \Phi^{\circ T}(\theta_0) \in \mathcal{W}\}) = 0$, meaning that $\det M \neq 0$ with probability 1. \square
 830

831 E.1 THE ANALYTICITY CONDITION

832 We remark that, as observed by Nikolaou et al. (2025), most standard modules used in neu-
 833 ral network, such as linear layers, layer norm, skip connections, convolutions, attention, and
 834 others are analytic. The same holds for many commonly used activation functions, such as
 835 tanh, sigmoid, softplus, softmax, SiLU, GELU, SwiGLU. Therefore, the analytic condition does
 836 not heavily restrict our analysis. For example, Nikolaou et al. (2025) highlight that decoder-
 837 only transformers are analytic. However, others activation functions are only piece-wise analytic,
 838 e.g. ReLU, LeakyReLU, ELU. For this reason, we repeat the TMNIST and MNIST experiments
 839 from Section 4.2 with non-analytic encoders to empirically test whether our conclusions hold for this
 840 class of networks. We find this to be the case, and we discuss it in Appendix F.3.
 841

842 F EXPLORATORY EXPERIMENTS

843 This section is organized as follows:

- 844 • Section F.1 describes how we extract the embedded orbits and check their linear indepen-
 845 dence to get the number of linearly independent orbits.
- 846 • Section F.2 contains further details for the exploratory experiments, including hyperparam-
 847 eters and regularization terms for the algebra loss.
- 848 • Section F.3 repeats the TMNIST and MNIST experiments from Section 4.2 but for non-
 849 analytic encoders.
- 850 • Section F.4 repeats the TMNIST experiment from Section 4.2 by varying the depth of the
 851 layer considered as Z .
- 852 • Section F.5 repeats the TMNIST experiment from Section 4.2 by changing the initialization
 853 scheme for the learnable group action $\hat{\rho}_Z$.

854 F.1 EXTRACTING EMBEDDED ORBITS AND CHECKING THEIR LINEAR INDEPENDENCE

855 We describe how we extract the embedded orbits and how we compute their linear independence.
 856 Let $E : \mathcal{X} \rightarrow Z$ denote the encoder, and $G = \{g_1, \dots, g_n\}$ the finite group considered. First, we
 857 compute the embedded orbit as $E(\mathcal{O}_x) = \{\hat{\rho}_Z(g_i)(E(x))\}_{i \in \{1, \dots, n\}} \subseteq Z$ with $|E(\mathcal{O}_x)| = |G|$.
 858

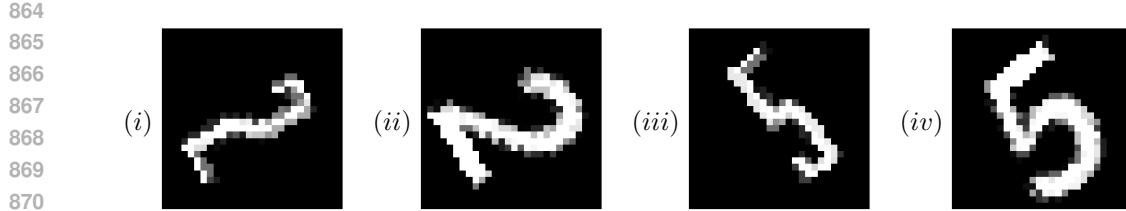


Figure 5: Examples of our augmented training dataset for the TMNIST experiment, from the chosen fonts ‘Bahianita-Regular’ (i), (iii) and ‘IBMPlexSans-MediumItalic’ (ii), (iv).

Then, given embedded orbits $E(\mathcal{O}_{x_1}), \dots, E(\mathcal{O}_{x_m})$, we collect all vectors in their union in a matrix $K \in \mathbb{R}^{m|G| \times d}$. These orbits are linearly independent if the matrix K is full rank, which is computed by checking that all its singular values are non-zero.

Each number in the ‘Orbits’ columns in the Tables from Sections 4.2 and Appendix F.3, F.4 and F.5 is the maximum number of linearly independent orbits found by randomly sampling combinations of training samples $x \in \mathcal{X}$. For each run, we sample 500 different combinations.

F.2 FURTHER DETAILS FOR THE EXPLORATORY EXPERIMENTS

Here we give details of the exploratory experiments we describe in Section 4. These use the TMNIST, MNIST and CIFAR10 datasets to determine the optimal representation on the latent space. Sections F.2.1, F.2.2 and F.2.3 provide details of the architectures and regularisation terms used for each of these experiments. In all runs, we use the Adam optimiser Kingma & Ba (2017) with default parameters $(\beta_1, \beta_2) = (0.9, 0.999)$, and report additional hyperparameters in Table 6. These were chosen through a manual tuning process.

F.2.1 TMNIST AUTOENCODER, $G = C_2$

This experiment uses the TMNIST dataset Magre & Brown (2022) of digits rendered in a variety of typefaces. We select a data subset corresponding to just two typefaces ‘IBMPlexSans-MediumItalic’ and ‘Bahianita-Regular’, and augment with 180° rotations. We give some examples of our augmented dataset in Figure 5. The group we use here is $C_2 = \{1, a \mid a^2 = 1\}$ and, for a data point x , we define the group action $\rho_{\mathcal{X}}(a)(x)$ to be the data point with the font swapped, but the rotation and scaling unchanged. In particular, with reference to images Figure 5(i)–(iv), we have $\rho_{\mathcal{X}}(a)(i) = (ii)$, $\rho_{\mathcal{X}}(a)(ii) = (i)$, $\rho_{\mathcal{X}}(a)(iii) = (iv)$ and $\rho_{\mathcal{X}}(a)(iv) = (iii)$. For this experiment we set $L_{\text{task}} = \text{MSE}$, and we use a simple CNN autoencoder with hyperparameters given in Table 6. The architectural details can be found on the provided repository.

Table 6: Hyperparameters for exploratory experiments.

Experiment	Latent dim.	λ_a	λ_t	λ_e	LR	Batch Size
TMNIST C_2	8	1.0	0.5	1	0.003	64
MNIST D_3	18	0.5	0.495	0.005	0.003	64
CIFAR10 C_4	16	1.0	25	0.25	0.003	64

We use the following regularization term:

$$\text{REG}_{C_2,d} = \text{MSE}(\hat{\rho}_Z(a), \hat{\rho}_Z(a)^{-1}) \quad (3)$$

Here $\hat{\rho}_Z(a)^{-1}$ is computed with $\hat{\rho}_Z(a)^{-1} = \text{torch.linalg.solve}(\hat{\rho}_Z(a), \text{I}_d)$ for efficiency and numerical stability. We found empirically that this regularization helps to stabilize the training of $\hat{\rho}_Z(a)$, allowing us to achieve lower values for the algebra loss.

918 F.2.2 MNIST AUTOENCODER, $G = D_3$
919

920 This experiment uses the MNIST dataset Deng (2012) of handwritten digits. The group considered
921 is $D_3 = \{e, r, r^2, r^3, s, rs \mid r^3 = e, s^2 = e, rsrs = e\}$, and on the input space we define the group
922 action such that $\rho_{\mathcal{X}}(r)(x)$ is the counterclockwise rotation of x by 120 degrees, and $\rho_{\mathcal{X}}(s)(x)$ is the
923 image generated by flipping x about the vertical axis. For this experiment, we set $L_{\text{task}} = \text{MSE}$, and
924 use a simple MLP autoencoder with hyperparameters given in Table 6. The architectural details can
925 be found on the provided repository.

926 We use the following regularization term:

$$927 \text{REG}_{D_3,d} = -0.995 \text{MSE}(\hat{\rho}_Z(r)\hat{\rho}_Z(s)\hat{\rho}_Z(r)\hat{\rho}_Z(s), \mathbf{I}_d) \quad (4)$$

928 We determined empirically that this regularization dampens the interaction between the matrices
929 $\hat{\rho}_Z(r)$ and $\hat{\rho}_Z(s)$ in a way that improves training. Low final values of the algebra loss reported in
930 Table 1 give evidence that we still obtain a high-quality representation despite this damping.

931 F.2.3 CIFAR10 CLASSIFIER, $G = C_4$
932

933 This experiment uses the CIFAR10 dataset Krizhevsky (2009) of 32x32 images organised in 10
934 classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck. The group considered
935 is the cyclic group of size four C_4 of addition on the set $\{0, 1, 2, 3\}$ modulo 4. The element 1 is a
936 generator for this group, and for an input vector x , we define the group action such that $\rho_{\mathcal{X}}(1)(x)$ is
937 the rotation of x by 90 degrees counterclockwise. For this experiment we set $L_{\text{task}} = \text{CrossEntropy}$,
938 and use a simple CNN classifier with hyperparameters given in Table 6. The architectural details can
939 be found on the provided repository.

940 The regularization term used is the following:

$$941 \text{REG}_{C_4,d} = \text{MSE}(\hat{\rho}_Z(1)^3, \hat{\rho}_Z(1)^{-1}) \quad (5)$$

942 Here, $\hat{\rho}_Z(1)^{-1}$ is computed with $\hat{\rho}_Z(1)^{-1} = \text{torch.linalg.solve}(\hat{\rho}_Z(1), \mathbf{I}_d)$ for efficiency
943 and numerical stability. We determined empirically that this regularization helps to stabilize the
944 training of $\hat{\rho}_Z(1)$ and the behavior of its inverse.

945 F.3 EXPLORATORY EXPERIMENTS FOR NON-ANALYTIC ENCODERS
946

947 In this section, we repeat the same experiments for TMNIST C_2 and MNIST D_3 from Section 4.2
948 but for non-analytic encoders. In particular, we use the same architecture but we replace the tanh
949 activation function with ReLU. Table 7 shows similar results as the fully analytic encoders (Table 1),
950 suggesting empirically that the optimization process avoids any potentially degenerate regions.

951 Table 7: Piece-wise analytic encoder experiments. Left, TMNIST autoencoder task, learned representations
952 of C_2 on latent space. Right, MNIST autoencoder task, learned representations of D_3 on
953 latent space.

954	Run	Irrep. counts			Orbs.	Irrep. counts			Orbs.			
		-1	+1	Alg. loss		Triv	Sgn	Std				
955	1	4	4	5.7×10^{-5}	4.6×10^{-3}	4	3.01	3.01	5.99	1.2×10^{-3}	1.3×10^{-2}	3
956	2	3	5	6.7×10^{-9}	6.6×10^{-6}	3	2.98	2.98	6.01	6.1×10^{-4}	2.3×10^{-2}	3
957	3	4	4	2.7×10^{-8}	2.5×10^{-5}	4	3.32	3.36	5.66	3.1×10^{-2}	1.4×10^{-2}	3
958	4	4	4	2.3×10^{-9}	4.2×10^{-6}	4	3.03	3.31	5.69	1.4×10^{-2}	1.2×10^{-2}	3
959	5	3	5	6.0×10^{-9}	1.9×10^{-5}	3	2.98	2.98	6.02	8.5×10^{-4}	1.3×10^{-2}	3

960 F.4 EXPLORATORY EXPERIMENTS AT DIFFERENT LAYER DEPTHS
961

962 In this section, we repeat the TMNIST experiment from Section 4.2 for different layer depths. In
963 the original experiment, we choose to study equivariance with respect to the layer Z chosen as the
964 central hidden layer (the output layer of the encoder). Table 8 shows the results of choosing Z as the
965 first or last hidden layer. The results are similar to those in Section 4.2: each linearly independent
966 embedded orbit corresponds to a copy of the regular representation, and the network tends to learn a
967 multiple of it.

972 Table 8: TMNIST experiment with Z at different depths. Left: Z is taken as the first hidden layer;
 973 Right: Z is taken as the final hidden layer.

975	Irrep. counts					976	Irrep. counts					
	Run	-1	+1	Alg. loss	Eq. loss		Run	-1	+1	Alg. loss	Eq. loss	Orbs.
977	1	3	5	4.9×10^{-10}	1.1×10^{-4}	3	1	3	5	6.8×10^{-9}	4.5×10^{-4}	3
978	2	3	5	4.2×10^{-9}	1.6×10^{-4}	3	2	4	4	9.3×10^{-10}	3.7×10^{-4}	4
979	3	4	4	1.0×10^{-10}	6.2×10^{-5}	4	3	3	5	1.8×10^{-8}	4.5×10^{-4}	3
980	4	4	4	2.3×10^{-6}	3.0×10^{-5}	4	4	4	4	6.9×10^{-10}	4.6×10^{-4}	4
981	5	3	5	9.0×10^{-10}	1.2×10^{-4}	3	5	4	4	2.3×10^{-8}	4.4×10^{-4}	4

984 F.5 EXPLORATORY EXPERIMENT WITH DIFFERENT INITIALIZATION

985 In this section, we repeat the TMNIST experiment from Section 4.2 but with a different initialization
 986 scheme. While Table 1 shows results for $\hat{\rho}_Z$ initialized according to a normal distribution $\mathcal{N}(\mathbf{0}, \mathbf{I}_d)$,
 987 Table 9 shows results for the same experiment with $\hat{\rho}_Z$ initialized close to the identity as $\mathbf{I}_d + \mathcal{N}(\mathbf{0}, \mathbf{I}_d)$.

988 The results confirm Theorem 1, as each linearly independent embedded orbit contributes one copy
 989 of the regular representation. However, the network typically does not learn a representation that
 990 consists entirely of a multiple of the regular representation. We observe that the trivial representation,
 991 corresponding to the eigenvalue +1 of $\hat{\rho}_Z$ is over-represented. We hypothesize that the strong
 992 priming given by the initialization prevents a full exploration of the parameter space. To establish the
 993 practical advantage of the regular representation, we provide ablations with the trivial representation
 994 in controlled settings (Sections 6.1 and 6.2).
 995

996 Table 9: TMNIST experiment with $\hat{\rho}_Z$ initialized close to the identity.

997	Irrep. counts					998
	Run	-1	+1	Alg. loss	Eq. loss	
1000	1	2	6	3.1×10^{-5}	2.9×10^{-4}	2
1001	2	2	6	9.5×10^{-4}	0.3×10^{-4}	2
1002	3	2	6	9.5×10^{-4}	1.6×10^{-4}	2
1003	4	2	6	4.6×10^{-5}	1.8×10^{-4}	2
1004	5	2	6	2.4×10^{-5}	9.1×10^{-5}	2
1005						

1006 G MAIN EXPERIMENTS

1007 Here we give details of the main experiments we describe in Section 6, which test our model of
 1008 Section 5 on tasks using the DDMNIST, MedMNIST, SMOKE and SHREC’11 datasets. Section
 1009 G.1 discusses Cohen’s d -statistic, which we use to assess the effect size of our intervention. Sections
 1010 G.2, G.3, G.4 and G.5 provide details of the datasets, architectures and hyperparameters that we
 1011 use, together with an effect size analysis. In all runs we use the Adam optimizer Kingma & Ba
 1012 (2017) with default parameters $(\beta_1, \beta_2) = (0.9, 0.999)$, with weight decay set to 0 for DDMNIST
 1013 and MedMNIST, and set to 4×10^{-4} for SMOKE.

1014 G.1 COHEN’S d -STATISTIC

1015 Cohen’s d -statistic is a widely-adopted metric (Miranda et al., 2025; Huang et al., 2024; Gundersen
 1016 et al., 2023; Karandikar et al., 2021; Hermann et al., 2024) to assess effect size, i.e. the meaningfulness
 1017 of the difference between distributions. In particular, Cohen’s d quantifies the difference between
 1018 two distributions in standard deviation units. Commonly used thresholds in machine learning are the
 1019 following (Hermann et al., 2024):

- 1020 • $|d| < 0.5$, small effect
- 1021 • $0.5 \leq |d| < 0.8$, medium effect

1026 • $0.8 \leq |d| < 1.2$, large effect
 1027 • $1.2 \leq |d|$, very large effect
 1028

1029 Suppose we are given n_1 and n_2 observations of two distributions, with means \bar{x}_1 and \bar{x}_2 , and
 1030 standard deviations s_1 and s_2 respectively. Cohen’s d is then defined as follows:
 1031

$$1032 \quad d = \frac{\bar{x}_1 - \bar{x}_2}{s}, \quad s = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}} \quad (6)$$

1033

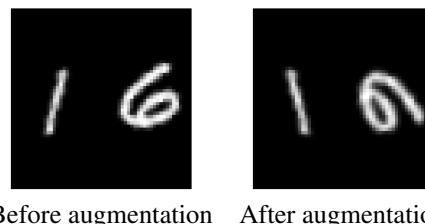
1034 To assess the effect size of our model, we choose \bar{x}_1 to be the mean result of our model on a particular
 1035 task, and \bar{x}_2 to be the mean result of a benchmark model. When reported in the tables below, we
 1036 choose the sign of the effect value so that a positive value indicates our model performed better.
 1037

1038 **G.2 DDMNIST EXPERIMENTS**

1039 **Data preparation.** We follow closely the setup of the originators Veefkind and Cesa Veefkind &
 1040 Cesa (2024). To generate this dataset, pairs of MNIST 28x28 images are chosen uniformly at random,
 1041 and independently augmented according to the corresponding group action for $G \in \{C_4, C_2, D_4\}$
 1042 as per Table 10. We give an example in Figure 6. To ensure comparability of our results with the
 1043 original paper, for $G \in \{C_4, D_4\}$ we follow their method of introducing interpolation artefacts by
 1044 rotating each digit image by a random angle $\theta \in [0, 2\pi)$, and then rotating it back by $-\theta$; for $G = C_2$
 1045 these interpolation artefacts are not added, in line with the original paper. Finally, the two images are
 1046 concatenated horizontally, and padded so that the final image is 56×56 . In this way, we obtain a
 1047 dataset of 10,000 images with labels in the set $\{(0, 0), (0, 1), \dots, (9, 9)\}$.
 1048

1049 Table 10: Symmetry groups and their actions on DDMNIST.

Group	Type	Generators	Size
C_4	Cyclic	90° rotation	4
C_2	Dihedral	Horizontal reflection	2
D_4	Dihedral	Horizontal reflection and 90° rotation	8



1067 Figure 6: Examples of training data for the DDMNIST experiment with $G = D_4$. The left figure
 1068 shows concatenated MNIST digits, and the right figure shows the result after a random augmentation.
 1069 In this instance, the left digit is augmented with a reflection about the vertical axis, and the right digit
 1070 is augmented with a clockwise 90-degree rotation.
 1071

1072 **Architecture.** We use the same CNN architecture as in Veefkind and Cesa Veefkind & Cesa (2024),
 1073 except that the final convolutional layer has an increased number of filters, from 48 to 66. We make
 1074 this change so that we can fit a copy of the regular representation of $D_4 \times D_4$. To ensure a fair
 1075 comparison, the results reported in Table 3, including those for SCNN, RPP, etc, are those obtained
 1076 with the increased number of filters, which we found marginally improved performance. Furthermore,
 1077 we use a different learning rate for the CNN model, as we found that this increased performance and
 1078 ensured a more meaningful baseline comparison. The CNN architectural details can be found on the
 1079 provided repository.

1080
 1081 **Hyperparameters.** We report the hyperparameters used for the CNN and our model for the DDM-
 1082 NIST experiments in Table 11. These hyperparameters were chosen after a grid search with the
 1083 following values: learning rate $\in \{0.001, 0.005, 0.0001, 0.0005, 0.00001, 0.00005\}$, and equivari-
 1084 ance coupling strength $\lambda \in \{0.5, 1, 1.5, 2\}$. All other hyperparameters match those used by Veefkind
 1085 and Cesa.

1086 Table 11: Hyperparameters for DDMNIST experiments.
 1087

	C_4		C_2		D_4	
	LR	λ	LR	λ	LR	λ
CNN	0.0005	-	0.001	-	0.0005	-
Standard rep	-	-	-	-	0.0005	1
Ours (regular)	0.001	2	0.001	1	0.0005	1

1093
 1094 **Effect size analysis.** We report the effect size of our intervention in Table 12. For each model, the
 1095 ‘Effect’ column reports the Cohen d -value, comparing that model against ‘Ours’ with the regular
 1096 representation. We observe that, for each model considered, there is at least one task where the
 1097 difference with our model is very large according to Cohen’s d statistic (Appendix G.1).
 1098

1100 Table 12: DDMNIST test accuracies and effect sizes. Mean over 3 runs; standard deviation in
 1101 brackets. Best result in each column is bold, second-best is underlined. For C_2, C_4 the defining
 1102 representation is equivalent to the regular representation and so is omitted. Effect values compare
 1103 to ‘Ours (regular)’, and a positive value means ours performed better. The annotations *, **, ***
 1104 indicate medium, large and very large effect sizes respectively.

Model	$C_4 \uparrow$	Effect	$C_2 \uparrow$	Effect	$D_4 \uparrow$	Effect
CNN	0.907 (0.004)	2.0***	<u>0.938</u> (0.006)	1.8***	0.800 (0.001)	43.0***
SCNN	0.484 (0.008)	68.2***	<u>0.474</u> (0.003)	133.8***	0.431 (0.010)	60.6***
Restriction	<u>0.914</u> (0.007)	0.2	0.890 (0.007)	10.0***	0.837 (0.020)	2.2***
PPR	0.908 (0.022)	0.4	0.903 (0.009)	6.3***	0.827 (0.020)	2.9***
PSCNN	0.909 (0.007)	1.1**	0.871 (0.016)	6.5***	<u>0.842</u> (0.011)	3.3***
Trivial rep	0.874 (0.004)	10.0***	0.938 (0.007)	1.6***	0.819 (0.004)	15.5***
Defining rep	—	—	—	—	0.838 (0.010)	4.2***
Ours (regular)	0.915 (0.004)	—	0.947 (0.004)	—	0.868 (0.002)	—

1115 G.3 MEDMNIST EXPERIMENTS

1116 **Data preparation.** For this experiment, we use three subsets of the MedMNIST dataset Yang
 1117 et al. (2023), in line with Veefkind and Cesa Veefkind & Cesa (2024): Nodule3D, Synapse3D and
 1118 Organ3D, each containing 3D images of size 28x28x28. Nodule3D is a public lung nodule dataset,
 1119 containing 3D images from thoracic CT scans; for this dataset, the task is to classify each nodule as
 1120 benign or malignant. Synapse3D contains 3D images obtained from an adult rat with a multi-beam
 1121 scanning electron microscope; the task is to classify whether a synapse is excitatory or inhibitory.
 1122 Organ3D is a classification task for 3D images of human body organs, with the following labels:
 1123 liver, right kidney, left kidney, right femur, left femur, bladder, heart, right lung, left lung, spleen and
 1124 pancreas.
 1125

1126 For augmentations, we choose the octahedral group of orientation-preserving rotational symmetries of
 1127 the cube, which is isomorphic to the permutation group S_4 . We define its action $\rho_{\mathcal{X}}(g)$ on a 3D image
 1128 x by applying the corresponding rotational symmetry of the cube. Specifically, we parameterise g as
 1129 a tuple (l, θ) where $l = (x, y, z)$ specifies a rotation axis and θ specifies the rotation angle about the
 1130 axis l to obtain 24 rotation matrices each with size 3×3 , one for each of the 24 elements of S_4 . In
 1131 summary, we have rotation matrices corresponding to the following tuples:

1132 Identity (1) $(l, 0)$ for any l .
 1133 Coord-axis (9) (l, θ) for $l \in \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ and $\theta \in \{\frac{\pi}{2}, \pi, \frac{3\pi}{2}\}$.

1134 Edge-mid (6) (l, θ) for $l \in \{(1, 1, 0), (1, -1, 0), (1, 0, 1), (1, 0, -1), (0, 1, 1), (0, 1, -1)\}$ 1135 and $\theta = \pi$.1136 Body-diag (8) (l, θ) for $l \in \{(1, 1, 1), (1, 1, -1),$
1137 $(1, -1, 1), (-1, 1, 1)\}$ and $\theta \in \{\frac{2\pi}{3}, \frac{4\pi}{3}\}$.

1138

1139 **Architecture.** For these experiments we use the same CNN-based ResNet architecture as Veefkind
1140 and Cesa Veefkind & Cesa (2024). This is formed from seven 3D convolutional layers, formed into
1141 3 blocks with residual connections, along with batch normalisation and pooling. The architectural
1142 details can be found on the provided repository.

1143

1144 **Hyperparameters.** We report the hyperparameters used for the baseline with S_4 augmen-
1145 tations, and for our model in the MedMNIST experiments in Table 13. These hyper-
1146 parameters were chosen after a grid search with the following values: learning rate \in
1147 $\{0.001, 0.005, 0.0001, 0.0005, 0.00001, 0.00005\}$, and equivariance coupling strength $\lambda \in$
1148 $\{0.5, 1, 1.5, 2\}$. All other hyperparameters are the same as those used by Veefkind and Cesa.

1149

Table 13: Hyperparameters for MedMNIST experiments.

		Nodule3D		Synapse3D		Organ3D	
		LR	λ	LR	λ	LR	λ
	CNN (Augmented)	0.00005	-	0.0001	-	0.0001	-
	Ours	0.00005	1	0.0001	1	0.0001	2

1156

1157

1158 **Effect size analysis.** We report the effect size of our intervention in Table 14. For each model,
1159 the ‘Effect’ column reports the Cohen d -value comparing that model against ‘Ours’ with the regular
1160 representation. We observe that, for each model considered, there is at least one task where the
1161 difference with our model is very large according to Cohen’s d statistic (Appendix G.1).

1162

1163 Table 14: MedMNIST3D test accuracies and effect sizes. Mean over 3 runs; standard deviation in
1164 brackets. Parameter counts shown. Best result in each column is bold, second-best is underlined.
1165 Effect values compare to ‘Ours (regular)’, and a positive value means ours performed better. The
1166 annotations *, **, *** indicate medium, large and very large effect sizes respectively.

1167

Group	Model	Nodule \uparrow	Effect	Synapse \uparrow	Effect	Organ \uparrow	Effect
N/A	CNN	0.873 (0.005)	2.80***	0.716 (0.008)	9.26***	0.920 (0.003)	-7.01***
Aug	CNN	0.879 (0.007)	1.32***	0.761 (0.008)	1.54***	0.632 (0.005)	0.25
SO(3)	SCNN	0.873 (0.002)	3.68***	0.738 (0.009)	4.91***	0.607 (0.006)	0.88**
SO(3)	RPP	0.801 (0.003)	20.86***	0.695 (0.037)	2.86***	<u>0.936</u> (0.002)	-7.42***
SO(3)	PSCNN	0.871 (0.001)	4.44***	0.770 (0.030)	0.00	0.902 (0.006)	-6.53***
O(3)	SCNN	0.868 (0.009)	2.61***	0.743 (0.004)	8.54***	0.902 (0.006)	-6.53***
O(3)	RPP	0.810 (0.013)	7.82***	0.722 (0.023)	2.94***	0.940 (0.006)	-7.48***
O(3)	PSCNN	0.873 (0.008)	2.10***	<u>0.769</u> (0.005)	0.26	0.905 (0.004)	-6.62***
Sym _{cube}	Trivial rep	0.867 (0.001)	5.55***	0.743 (0.002)	13.50***	0.571 (0.002)	1.79***
Sym _{cube}	Defining rep	0.837 (0.013)	5.08***	0.756 (0.019)	1.04**	0.560 (0.025)	1.89***
Sym _{cube}	Ours (regular)	0.887 (0.005)		0.770 (0.002)		0.642 (0.056)	

1178

1179

1180 G.4 SMOKE EXPERIMENT

1181

1182 **Data preparation.** Here we use the SMOKE dataset of Wang et al. Wang et al. (2022), which
1183 consists of smoke simulations with varying intial conditions and external forces presented as grids of
1184 (x, y) components of a velocity field (see Figure 7 for a visualisation). The task is to predict the next
1185 6 frames of the simulation given the first 10 frames only. We evaluate each model on two metrics:
1186 Future, where the test set contains future extensions of instances in the training set; and Domain,
1187 where the test and training sets are from different instances. In line with Wang et al. (2022), we
1188 consider the group C_4 acting on the data by 90° rotations and reorientation of the velocity field, as
1189 illustrated in Figure 8.

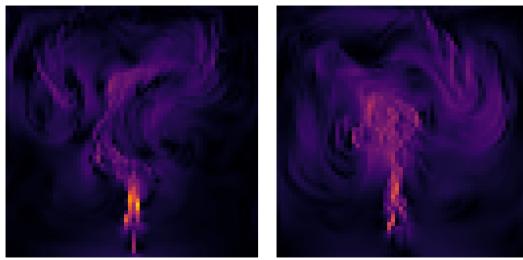


Figure 7: Approximately equivariant dynamics of smoke plumes Holl et al. (2020).

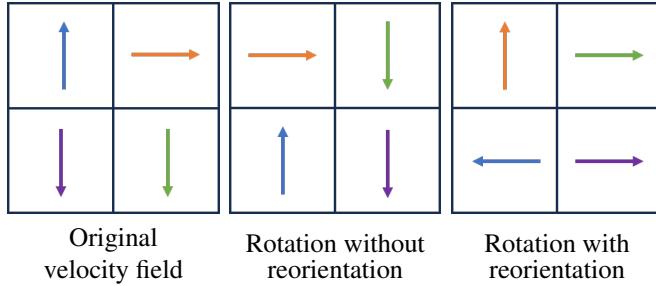


Figure 8: Examples of a velocity field and its augmentations with and without reorientation. Rotating by 90° counterclockwise without reorienting simply moves the spatial grid, but breaks the physical meaning of the underlying system.

Architecture. We use the same CNN architecture, train and evaluation setups as in Veefkind and Cesa Veefkind & Cesa (2024), which they reproduced from Wang et al. Wang et al. (2022). The architectural details can be found on the provided repository. Because the latent space has the same geometric structure as the input data, i.e. $Z = \mathbb{R}^c \times \mathbb{R}^h \times \mathbb{R}^w$ (channels \times height \times width), we choose a representation of C_4 given by the regular representation in each channel separately.

Hyperparameters. For both CNN models, with C_4 augmentations and without, and for our model, we use a learning rate of 0.001. Additionally, for our model, we set $\lambda = 0.005$. These hyperparameters were chosen after a grid search with the following values: learning rate $\in \{0.001, 0.005, 0.0001, 0.0005\}$, and equivariance coupling strength $\lambda \in \{0.005, 0.05, 0.5, 1\}$. For all other hyperparameters, we copy the values used by Veefkind and Cesa.

Effect size analysis. We report the effect size of our intervention in Table 15. For each model, the ‘Effect’ column reports the Cohen d -value comparing that model against ‘Ours’ with the regular representation. We observe that, for each model considered, there is at least one metric where the difference with our model is very large according to Cohen’s d statistic (Appendix G.1).

G.5 SHREC ‘11 EXPERIMENT

Data preparation. We use the SHREC ‘11 dataset Lian et al. (2011); Mitchel et al. (2022) where each 3D shape is also transformed with conformal transformations. We perform augmentation according to the group O_h of octahedral symmetries.

Architecture. We use the same architecture as the original authors Mitchel et al. (2024), which is a ResNet-based autoencoder. Similarly to the smoke experiment, the latent space retains a geometric structure. Therefore, we choose a representation of O_h given by the regular representation in each channel separately.

Hyperparameters. Due to computational constraints, we do not perform hyperparameter tuning, and we keep the same hyperparameters as the original authors Mitchel et al. (2024), except that we set the batch size to 4. We set $\lambda = 0.5$. Additionally, we symmetrize the equivariance loss to the

1242 Table 15: Test RMSE and effect for the SMOKE dataset. Effect values compare to ‘Ours’, and a
 1243 positive value means ours performed better. The annotations *, **, *** indicate medium, large and
 1244 very large effect sizes respectively.

Group	Model	Future ↓	Effect	Domain ↓	Effect
N/A	CNN	0.81 (0.01)	3.0***	0.63 (0.00)	2.8***
Aug	CNN	0.83 (0.03)	2.2***	0.67 (0.06)	1.4***
N/A	MLP	1.38 (0.06)	14.0***	1.34 (0.03)	32.6***
C4	E2CNN	1.05 (0.06)	6.3***	0.76 (0.02)	9.5***
C4	RPP	0.96 (0.10)	2.5***	0.82 (0.01)	21.0***
C4	Lift	0.82 (0.01)	4.0***	0.73 (0.02)	7.6***
C4	RGroup	0.82 (0.01)	4.0***	0.73 (0.02)	7.6***
C4	RSteer	0.80 (0.00)	2.8***	0.67 (0.01)	6.0***
C4	PSCNN	0.77 (0.01)	-1.0**	0.57 (0.00)	-5.7***
C4	Ours	<u>0.78</u> (0.01)		<u>0.61</u> (0.01)	

1255 decoder too, i.e., with $\lambda' = 0.8$,

$$\lambda' \|\rho_{\mathcal{X}}(g)(x) - D(\rho_Z(g)(E(x)))\|$$

1262 **Effect size analysis.** We report the effect size of our intervention in Table 16. For each model,
 1263 the ‘Effect’ column reports the Cohen d -value comparing that model against ‘Ours’ with the regular
 1264 representation. We observe that, for the augmented baseline and NFT, the difference with our model
 1265 is very large according to Cohen’s d statistic (Appendix G.1). The same analysis reveals that NIso
 1266 and our model are essentially equivalent on this task.

1267 Table 16: Test accuracies and effect for the SHREC ’11 dataset. Effect values compare to ‘Ours’, and
 1268 a positive value means ours performed better. The annotations *, **, *** indicate medium, large and
 1269 very large effect sizes respectively.

Model	Acc. ↑	Effect
NIso Mitchel et al. (2024)	<u>90.26</u> (1.27)	0.1
NFT Koyama et al. (2024)	83.24 (2.03)	3.5***
AE with aug	69.36 (2.81)	8.5***
MC Mitchel et al. (2022)	86.5	–
Ours	90.45 (2.1)	

1296

H SENSITIVITY ANALYSIS

1297

1298 To assess the practical usability of our method, we performed a sensitivity analysis on the hyper-
1299 parameter λ , which controls the strength of the equivariance loss. We evaluated our model on the
1300 DDMNIST D_4 task across six different values for λ : $\{0, 0.05, 0.5, 1, 1.5, 2\}$, with $\lambda = 0$ being the
1301 baseline. The results, reported in Figure 9, show that while peak performance is achieved at $\lambda = 1$,
1302 the model maintains high accuracy and low variance across a wide range of values (0.5 to 2.0). This
1303 analysis demonstrates that our method is robust to the specific choice of λ .

1304 Figure 9: Mean accuracy and standard deviation (over 5 runs) for different values of λ on the
1305 DDMNIST D_4 task. $\lambda = 0$ is the baseline.
