

# AN ALGEBRAIC APPROACH TO APPROXIMATELY EQUIVARIANT NETWORKS

005 **Anonymous authors**

006 Paper under double-blind review

## ABSTRACT

012 Equivariant neural networks incorporate symmetries through group actions, embed-  
 013 ding them as an inductive bias to improve performance. Prominent methods learn  
 014 an equivariant action on the latent space, or design architectures that are equivariant  
 015 by construction. These approaches often deliver strong empirical results but can  
 016 involve architecture-specific constraints, large parameter counts, and high compu-  
 017 tational cost. We challenge the paradigm of complex equivariant architectures with  
 018 a parameter-free approach grounded in representation theory. We prove that for an  
 019 equivariant encoder over a finite group, the latent space must almost surely contain  
 020 one copy of the regular representation for each linearly independent data orbit,  
 021 which we explore with a number of empirical studies. Leveraging this foundational  
 022 algebraic insight, we impose the regular representation as an inductive bias via an  
 023 auxiliary loss, adding no learnable parameters. Our extensive evaluation shows that  
 024 this method matches or outperforms specialized models in several cases, even those  
 025 for infinite groups. We further validate our choice of the regular representation  
 026 through an ablation study, showing it consistently outperforms defining and trivial  
 027 representation baselines.

## 1 INTRODUCTION

030 When we consider the problem of designing a  
 031 neural network to solve a given task, we com-  
 032 monly observe the existence of a symmetry  
 033 group  $G$  that acts naturally on the training data.<sup>1</sup>  
 034 We illustrate a generic architecture in Figure 1,  
 035 which we interpret broadly:  $E$  may be any sort  
 036 of feature extractor, such as in an encoder or  
 037 classifier; and  $D$  may be any final component  
 038 that produces outputs from latent representa-  
 039 tions, such as a classifier head or decoder. On  
 040 the input and output sets, the actions  $\alpha_{\mathcal{X}}$ ,  $\alpha_{\mathcal{Y}}$   
 041 transform the corresponding data, which we may  
 042 want to be respected by our neural network.

043 However, for certain tasks we can expect only *approximate equivariance*, where a transformation of  
 044 the input vector corresponds inexactly, or nondeterministically, to a transformation of the outputs.  
 045 This most general setup is typical of many real-world tasks, where we may encounter approximate  
 046 scale-invariance or rotation-equivariance of turbulent dynamics (Holmes, 2012; Holl et al., 2020),  
 047 and approximate reflection-invariance of pathologies in medical images (Yang et al., 2023).

048 A rich body of work in machine learning aims to learn a group representation  $\rho_Z$  that acts linearly on  
 049 the latent space, satisfying a suitable equivariance property. This can be attractive, as it may reduce a  
 050 complex nonlinear action on the training set to an easily-computable linear function. Furthermore, this  
 051 approach has been shown to yield improved performance for invariant, equivariant, or approximately  
 052 equivariant tasks (see Section 2 for a brief survey). However, the performance benefits of many of



Figure 1: Generic architecture with input set  $\mathcal{X}$ , latent space  $Z$  and output set  $\mathcal{Y}$ , carrying group actions  $\alpha_{\mathcal{X}}$ ,  $\alpha_{\mathcal{Y}}$  on the input and output spaces, and potentially a representation  $\rho_Z$  on the latent space.

<sup>1</sup>We give a formal definition of a group action on a vector space (group representation) in Section 3.

054 these state-of-the-art methods often come at the cost of high model complexity, increased training  
 055 times, and significantly elevated parameter counts compared to their non-equivariant counterparts.  
 056

057 Our research is guided by the following question: **for a known finite symmetry group, can we**  
 058 **leverage a theoretically-principled understanding of the latent algebraic structure to achieve**  
 059 **the benefits of (approximate) equivariance, without the parameter and architectural costs of**  
 060 **current methods?** Our core theoretical contribution is a proof that for any equivariant encoder  
 061 the latent space must contain the regular representation almost surely. Based on this finding, we  
 062 propose a new, lightweight training regime: we fix the latent representation to be a multiple of the  
 063 regular representation, and enforce this algebraic prior with an auxiliary loss. This approach yields  
 064 strong performance on a variety of invariant, equivariant, and approximately-equivariant tasks. We  
 065 summarize our main contributions as follows.  
 066

- 067 • We present a new lightweight method with no additional learnable parameters for training  
 068 neural networks to solve invariant, equivariant and approximately-equivariant tasks, where a  
 069 finite group acts on the training set with a known action.
- 070 • We provide a theoretical characterization of latent space representations under data aug-  
 071 mentation and an equivariant encoder, showing that the regular representation must appear  
 072 almost surely. Building on this insight, we empirically validate that neural networks tend to  
 073 learn a linear action aligned with this structure.
- 074 • We show that our method is competitive with or exceeds state-of-the-art in a range of bench-  
 075 marks, despite having only a single tunable hyper-parameter, and no additional learnable  
 076 parameters, while alternative approaches typically have large learnable parameter demands  
 077 (in some cases 5-20 times baseline) **to achieve competitive performance.**

## 078 2 RELATED WORK

080 A wide variety of methods have been developed to train neural networks to solve tasks in the presence  
 081 of invariance, equivariance, or approximate equivariance. We give a brief summary here of those  
 082 methods which are most relevant for our present work.  
 083

084 One of the most studied bodies of work derive from Convolutional Neural Networks (CNNs), which  
 085 of course have strict translation invariance in their traditional form (LeCun & Bengio, 1998; Shorten &  
 086 Khoshgoftaar, 2019). Cohen & Welling (2016) employ the framework of steerable functions (Hel-Or  
 087 & Teo, 1998) to construct a rotation-equivariant Steerable CNN architecture (**SCNN**), which strictly  
 088 respects both translation and rotation equivariance; this was later generalised to develop a theory  
 089 of general  $E(2)$ -equivariant steerable CNNs (**E2CNN**), which allow the degree of equivariance to  
 090 be controlled by explicit choices of irreducible representation of the symmetry group (Weiler &  
 091 Cesa, 2019). Such a network can avoid learning redundant rotated copies of the same filters. A  
 092 similar method is that of M\"obius Convolutions (**MC**) (Mitchel et al., 2022). Wang et al. (2022) use  
 093 steerable filters to obtain convolution layers with approximate translation symmetry and without  
 094 rotation symmetry (**RSteer**), and with approximate translation and rotation symmetry (**RGroup**).  
 095 These authors relax the strict weight tying of E2CNNs, replacing single kernels with weighted linear  
 096 combinations of a kernel family, with coefficients that are not required to be rotation- or translation-  
 097 invariant. A third approach named Probabilistic Steerable CNNs (**PSCNN**) was proposed recently  
 098 by Veefkind & Cesa (2024), which allows SCNNs to determine the optimal equivariance strength at  
 099 each layer as a learnable parameter. **While equivariant architectures may allow reduced parameter**  
 100 **counts due to weight-tying, in practice many of these architectures require considerable additional**  
 101 **parameter counts to achieve competitive performance (see parameter counts in Section 6).**

102 We also discuss a family of approaches which are not based around the CNN architecture. Residual  
 103 Pathway Priors (**RPP**) (Finzi et al., 2021), is a model where each layer is doubled, yielding a first  
 104 layer with strong inductive biases, and a second layer which is less constrained, with final output is  
 105 obtained as the sum of these layers. Another architecture is Lift Expansion (**LIFT**), which factorizes  
 106 the input space into equivariant and non-equivariant subspaces, and applies different architectures to  
 107 each (Wang et al., 2021).

108 **A number of previous studies have considered group representations on the latent space, sometimes**  
 109 **governed via an equivariance term in the loss function. An early approach by (Welling & Cohen, 2014)**

108 shows how geometrical transformations can be encoded on the latent space via  $\text{SO}(3)$  representations  
 109 on the latent space, while (Worrall et al., 2017) demonstrate disentanglement phenomena with similar  
 110 methods. Dupont et al. (2020) propose a parameter-free method to learn equivariant neural implicit  
 111 representations for view synthesis; while similar to our method in some respects, such as fixing the  
 112 latent representation, their work strongly leverages the defining representation of the infinite group  
 113  $O(3)$ , is limited to latent spaces with the same geometrical structure as the input space, and does not  
 114 apply to arbitrary latent encodings. Jin et al. (2024) present a similar method which learns non-linear  
 115 group actions on the latent space using additional learnable parameters, augmented by an optional  
 116 attention mechanism. In Neural Isometries (NIso) (Mitchel et al., 2024), the authors propose to learn  
 117 an action on the latent space via its eigenbasis; in contrast, in our model the group acts linearly on  
 118 the latent space with a fixed representation, and with no additional parameters needed. **Recent work**  
 119 **of (Bökman et al., 2024) considers learned latent representations for a fixed group to solve certain**  
 120 **geometrical tasks.** Other approaches that do not require the symmetry group to be known beforehand  
 121 include Neural Fourier Transforms (NFT) (Koyama et al., 2024), which seeks to learn a suitable  
 122 latent space transformation, and other work (Shakerinava et al., 2022; Winter et al., 2024).

123 While our work builds on these approaches, our contribution is distinct: by assuming a known  
 124 symmetry, we leverage representation theory to identify the regular representation as a theoretically-  
 125 motivated latent structure, which enables our simple pipeline without additional learnable parameters.  
 126 **Although our approach requires fixing a group structure, our experimental results show that this ap-**  
 127 **proach can often achieve superior performance compared to models without this constraint, including**  
 128 **models specifically adapted for continuous symmetries.**

### 3 BACKGROUND ON GROUP REPRESENTATIONS

132 We review essential aspects of group representation theory for our work. We consider a finite group  $G$   
 133 and work over a base field  $\mathbb{K}$ , assumed to be  $\mathbb{R}$  or  $\mathbb{C}$ . The results presented are standard, for which we  
 134 recommend canonical texts such as Fulton & Harris (2004) and James & Liebeck (2001). A glossary  
 135 of notation and further background on group actions are available in Appendix B and C.

136 **Regular representation.** For the case of a finite group, the *regular representation*  $\rho_{\text{reg}}$  is defined  
 137 as the linearisation of the action of  $G$  on itself. Explicitly, we first define  $\mathbb{K}[G]$  as having elements  
 138 given by linear combinations of group elements  $\sum_i c_i g_i$  weighted by coefficients  $c_i \in \mathbb{K}$ . Then  $\rho_{\text{reg}}$   
 139 is defined as a representation on  $\mathbb{K}[G]$  as follows:  $\rho_{\text{reg}}(g)(\sum_i c_i g_i) = \sum_i c_i (gg_i)$ . By construction  
 140 we have  $\dim(\rho_{\text{reg}}) = |G|$ , the size of the group. A representation  $\rho$  on the vector space  $\mathbb{K}^n$  is  
 141 a *permutation representation* when for all  $g \in G$ , the matrix  $\rho(g)$  is a permutation matrix. By  
 142 construction, the regular representation is a permutation representation.

143 **Irreducibility.** Given vector spaces  $V$  and  $V'$  we can form their direct sum  $V \oplus V'$ , with elements  
 144 which are ordered pairs of elements  $(v, v')$  of  $V$  and  $V'$  respectively. Given a representation  $\rho$   
 145 on  $V$ , and  $\rho'$  on  $V'$ , we can form their *direct sum*  $\rho \oplus \rho'$  acting on the vector space  $V \oplus V'$ , as  
 146 defined as  $(\rho \oplus \rho')(g)(v, v') := (\rho(g)(v), \rho'(g)(v'))$ . For an integer  $n$ , we can similarly define the  
 147 *n-fold multiple* of  $\rho$ , written  $n \cdot \rho$ , as  $\rho \oplus \rho \oplus \dots \oplus \rho$ . If  $\rho = \rho' \oplus \rho''$ , we say that  $\rho'$  and  $\rho''$  are  
 148 *subrepresentations* of  $\rho$ .

149 A representation is *irreducible*, also called an *irrep*, if it is not isomorphic to a direct sum of other  
 150 representations, except for itself or the zero representation. A finite group has finitely many irreps up  
 151 to isomorphism, and the regular representation is the direct sum of irreps, with each irrep taken with  
 152 multiplicity given by its dimension. For example, the group  $S_3$  has just the trivial (dim 1), sign (dim  
 153 2) and standard (dim 2) irreps (with the same for  $D_3$  as they are isomorphic groups); and the cyclic  
 154 group  $C_n$  has  $n$  irreducible representations (all dim 1) over  $\mathbb{C}$ , one for each  $n$ th root of unity.

155 **Orthogonality of representations.** For a fixed group  $G$ , we may ask whether a representation  $\rho$   
 156 contains an irreducible representation  $\rho'$  as a direct summand, and if so with what multiplicity. This  
 157 can be determined using the formula for *inner product of representations*:

$$\langle \rho, \rho' \rangle = \frac{1}{|G|} \sum_{g \in G} \overline{\text{Tr}(\rho(g))} \text{Tr}(\rho'(g))$$

161 Given the knowledge of all irreducible representations of a finite group, this method allows us to  
 162 determine their multiplicities as subrepresentations of  $\rho$ .



Figure 2: Illustration of our theory for an equivariant encoder  $E$  and  $G = C_2 = \{1, a\}$ , with  $\alpha_{\mathcal{X}}$  acting by horizontal flips. If  $E(\mathcal{O}_x)$ ,  $E(\mathcal{O}_{x'})$  are full rank and linearly independent,  $Z$  must contain a separate copy of the regular representation  $\rho_{\text{reg}}$  for each with probability 1.

#### 4 IDENTIFYING OPTIMAL REPRESENTATIONS

We suppose a network architecture as illustrated in Figure 1 is given, with training elements  $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$ , and task loss  $L_{\text{task}}(D(E(x_i)), y_i)$ . We now suppose a finite symmetry group  $G$  is specified, which acts by fixed actions  $\alpha_{\mathcal{X}}, \alpha_{\mathcal{Y}}$  on the input and output spaces respectively. We are interested to answer the following question: if we use additional learnable parameters to construct a third representation  $\hat{\rho}_Z$  of  $G$  on the latent space  $Z$ , which we co-train alongside the parameters for  $E, D$  with a suitable loss function, **what representation  $\hat{\rho}_Z$  does the model prefer to learn?** We first provide a theoretical analysis, which we then complement with an empirical exploration.

##### 4.1 THE LATENT SPACE MUST CONTAIN THE REGULAR REPRESENTATION ALMOST SURELY

Adopting the notation above, we denote the  $G$ -orbit of a training sample  $x \in \mathcal{X}$  as  $\mathcal{O}_x := \{\alpha_{\mathcal{X}}(g)(x) \mid g \in G\}$ . This contains all  $G$ -augmented versions of  $x$ , which we call the *data orbit* of  $x$ . We suppose  $x$  is a single data sample chosen such that all augmented versions are distinct, i.e. such that  $\alpha_{\mathcal{X}}(g)(x) = \alpha_{\mathcal{X}}(h)(x)$  implies  $g = h$ , which is typical for data augmentation. As a consequence  $|\mathcal{O}_x| = |G|$ , and we conclude that  $G$  acts freely and transitively on  $\mathcal{O}_x$  (nLab, 2024). We will be interested in the encodings  $E_{\theta}(\mathcal{O}_x)$ , where  $E_{\theta} : \mathcal{X} \rightarrow Z$  is an encoder parameterized by  $\theta \in \Theta \subseteq \mathbb{R}^p$ , and with  $\dim(Z) \geq |G|$ . If  $\dim(\text{Span}(E_{\theta}(\mathcal{O}_x))) = |G|$ , then we say that  $E_{\theta}(\mathcal{O}_x)$  is *full rank*, or otherwise *rank deficient*. We then show the following (proofs in Appendix E).

**Theorem 1 (Informal).** *For an equivariant encoder  $E_{\theta}$  and a training sample  $x$ , if  $E_{\theta}(\mathcal{O}_x)$  is full rank, then the latent space contains a copy of the regular representation of  $G$ .*

**Theorem 2 (Informal).** *If  $E_{\theta}$  is also real analytic in its inputs and parameters, and trained by gradient descent, then for each training sample  $x \in \mathcal{X}$ , exactly one of the following holds:*

- (i) *for all possible parameterisations  $\theta \in \Theta$ , the vectors  $E_{\theta}(\mathcal{O}_x)$  are rank deficient.*
- (ii) *with probability 1, the vectors  $E_{\theta}(\mathcal{O}_x)$  are full rank, and hence the latent space contains the regular representation.*

Analyticity is discussed in Appendix E.1. We discuss the two cases in the statement of Theorem 2. Case (i) may arise in certain restricted cases—for example, if  $E_{\theta}$  is  $G$ -invariant by construction—where no regular representation appears. However, for any training sample  $x \in \mathcal{X}$ , the two scenarios can be easily distinguished: sample  $\theta \in \Theta$ , then check rank deficiency of  $E_{\theta}(\mathcal{O}_x)$ . If rank deficiency holds, we are in case (i) with probability 1. Otherwise we are in case (ii) with probability 1. Furthermore, this principle extends across the training set, with each linearly independent full rank embedded orbit (Appendix E, Definition 4) contributing a separate copy of the regular representation.

**Key theoretical insight:** To achieve encoder equivariance in the presence of data augmentation, a sufficiently large latent space must contain a separate copy of the regular representation for each linearly independent full rank embedded orbit. This is summarized in Figure 2.

The question remains how many copies of the regular representation one obtains in practice, and we investigate this with the following empirical studies.

216 4.2 EMPIRICAL EXPLORATION  
217218 For our empirical investigation, we conduct experiments with the following loss function:  
219

220 
$$L_{\text{opt}} = L_{\text{task}}(D(E(x_i)), y_i)$$
  
221  
222 
$$+ \lambda_t L_{\text{task}}(D(\hat{\rho}_Z(g)E(x_i)), \alpha_{\mathcal{Y}}(g)(y_i))$$
  
223  
224 
$$+ \lambda_e \text{MSE}(\hat{\rho}_Z(g)E(x_i), E(\alpha_{\mathcal{X}}(g)(x_i)))$$
  
225  
226 
$$+ \lambda_a (\text{ALG}_{G,d} + \text{REG}_{G,d})$$

227 **Task loss.** Trains encoder and decoder on the  
228 supervised objective.  
229230 **Latent  $\rightarrow$  Output Equivariance.** Encourages  
231  $D(\hat{\rho}_Z(g)E(x))$  to match  $\alpha_{\mathcal{Y}}(g)(y)$ .  
232233 **Input  $\rightarrow$  Latent Equivariance.** Encourages  
234  $\hat{\rho}_Z(g)E(x)$  to match  $E(\alpha_{\mathcal{X}}(g)x)$ .  
235236 **Algebra Loss.** Encourages algebraic  
237 properties for  $\hat{\rho}_Z$  to be a group representation.  
238239 We give additional insight into the algebra loss in Appendix D. Drawing  
240 insight from Theorems 1 and 2, for experiments involving analytic  
241 encoders, we expect to learn a representation  $\hat{\rho}_Z$  that contains copies of  
242 the regular representation. The number of copies is lower bounded by  
243 the number of linearly independent embedded data orbits, which must  
244 be empirically determined (details in Appendix F.1). In this section we  
245 describe a number of exploratory studies based on the MNIST (Deng,  
246 2012), TMNIST (Magre & Brown, 2022) and CIFAR10 (Krizhevsky,  
247 2009) datasets, for both autoencoder and classifier tasks, and for the  
248 groups  $C_2$ ,  $D_3$  and  $C_4$ . These show that for an analytic encoder  $E$ , when  
249  $\hat{\rho}_Z$  is randomly initialized according to  $\mathcal{N}(\mathbf{0}, \mathbf{1})$ , the network prefers  
250 to learn a representation which consists *entirely* of linearly independent  
251 copies of the regular representation. Appendices F.4 and F.5 investigate  
252 alternative layer depths and initialization schemes, respectively.  
253254 **Non-analytic encoders.** While Theorem 1 applies to non-analytic  
255 encoders, Theorem 2 requires analyticity. In deep learning architectures  
256 most components are analytic (discussion in Appendix E.1), with  
257 the exception of some common activation functions such as ReLU,  
258 which are piecewise analytic. The Stone-Weierstrass theorem states that  
259 any continuous function can be arbitrarily well approximated on any  
260 bounded domain by an analytic function. We explore the representations learned for non-analytic  
261 encoders in Appendix F.3, where we re-run the exploratory experiments of this section with piecewise-  
262 analytic activations (ReLU), and show that the same conclusions hold: the network prefers to learn a  
263 representation which consists entirely of linearly independent copies of the regular representation.  
264265 4.2.1 TMNIST AUTOENCODER, CNN ARCHITECTURE,  $G = C_2$   
266267 For our first experiment we use the TMNIST dataset, of digits rendered in a variety of typefaces. We  
268 choose a subset of two typefaces only, producing 20 images, augmenting with 180° rotations. For  
269 our group we choose  $G = C_2$  presented as  $\{1, a \mid a^2 = 1\}$ . Since this is an autoencoder we have  
270  $\mathcal{X} = \mathcal{Y}$ , and we choose  $\alpha_{\mathcal{X}} = \alpha_{\mathcal{Y}}$ , with the nontrivial element  $\alpha_{\mathcal{X}}(a) = \alpha_{\mathcal{Y}}(a)$  acting to flip the  
271 choice of font, with rotation and scaling left invariant. For the algebra loss component (iv) we choose  
272  $\text{ALG}_{C_2,d} = \text{MSE}(\hat{\rho}_Z(a)^2, \mathbf{I}_d)$  where  $d = \dim(Z) = 8$ .  
273274  
275  
276  
277  
278  
279  
280  
281  
282  
283  
284  
285  
286  
287  
288  
289  
290  
291  
292  
293  
294  
295  
296  
297  
298  
299  
300  
301  
302  
303  
304  
305  
306  
307  
308  
309  
310  
311  
312  
313  
314  
315  
316  
317  
318  
319  
320  
321  
322  
323  
324  
325  
326  
327  
328  
329  
330  
331  
332  
333  
334  
335  
336  
337  
338  
339  
340  
341  
342  
343  
344  
345  
346  
347  
348  
349  
350  
351  
352  
353  
354  
355  
356  
357  
358  
359  
360  
361  
362  
363  
364  
365  
366  
367  
368  
369  
370  
371  
372  
373  
374  
375  
376  
377  
378  
379  
380  
381  
382  
383  
384  
385  
386  
387  
388  
389  
390  
391  
392  
393  
394  
395  
396  
397  
398  
399  
400  
401  
402  
403  
404  
405  
406  
407  
408  
409  
410  
411  
412  
413  
414  
415  
416  
417  
418  
419  
420  
421  
422  
423  
424  
425  
426  
427  
428  
429  
430  
431  
432  
433  
434  
435  
436  
437  
438  
439  
440  
441  
442  
443  
444  
445  
446  
447  
448  
449  
450  
451  
452  
453  
454  
455  
456  
457  
458  
459  
460  
461  
462  
463  
464  
465  
466  
467  
468  
469  
470  
471  
472  
473  
474  
475  
476  
477  
478  
479  
480  
481  
482  
483  
484  
485  
486  
487  
488  
489  
490  
491  
492  
493  
494  
495  
496  
497  
498  
499  
500  
501  
502  
503  
504  
505  
506  
507  
508  
509  
510  
511  
512  
513  
514  
515  
516  
517  
518  
519  
520  
521  
522  
523  
524  
525  
526  
527  
528  
529  
530  
531  
532  
533  
534  
535  
536  
537  
538  
539  
540  
541  
542  
543  
544  
545  
546  
547  
548  
549  
550  
551  
552  
553  
554  
555  
556  
557  
558  
559  
560  
561  
562  
563  
564  
565  
566  
567  
568  
569  
570  
571  
572  
573  
574  
575  
576  
577  
578  
579  
580  
581  
582  
583  
584  
585  
586  
587  
588  
589  
590  
591  
592  
593  
594  
595  
596  
597  
598  
599  
600  
601  
602  
603  
604  
605  
606  
607  
608  
609  
610  
611  
612  
613  
614  
615  
616  
617  
618  
619  
620  
621  
622  
623  
624  
625  
626  
627  
628  
629  
630  
631  
632  
633  
634  
635  
636  
637  
638  
639  
640  
641  
642  
643  
644  
645  
646  
647  
648  
649  
650  
651  
652  
653  
654  
655  
656  
657  
658  
659  
660  
661  
662  
663  
664  
665  
666  
667  
668  
669  
670  
671  
672  
673  
674  
675  
676  
677  
678  
679  
680  
681  
682  
683  
684  
685  
686  
687  
688  
689  
690  
691  
692  
693  
694  
695  
696  
697  
698  
699  
700  
701  
702  
703  
704  
705  
706  
707  
708  
709  
710  
711  
712  
713  
714  
715  
716  
717  
718  
719  
720  
721  
722  
723  
724  
725  
726  
727  
728  
729  
730  
731  
732  
733  
734  
735  
736  
737  
738  
739  
740  
741  
742  
743  
744  
745  
746  
747  
748  
749  
750  
751  
752  
753  
754  
755  
756  
757  
758  
759  
759  
760  
761  
762  
763  
764  
765  
766  
767  
768  
769  
770  
771  
772  
773  
774  
775  
776  
777  
778  
779  
779  
780  
781  
782  
783  
784  
785  
786  
787  
788  
789  
789  
790  
791  
792  
793  
794  
795  
796  
797  
798  
799  
800  
801  
802  
803  
804  
805  
806  
807  
808  
809  
809  
810  
811  
812  
813  
814  
815  
816  
817  
818  
819  
819  
820  
821  
822  
823  
824  
825  
826  
827  
828  
829  
829  
830  
831  
832  
833  
834  
835  
836  
837  
838  
839  
839  
840  
841  
842  
843  
844  
845  
846  
847  
848  
849  
849  
850  
851  
852  
853  
854  
855  
856  
857  
858  
859  
859  
860  
861  
862  
863  
864  
865  
866  
867  
868  
869  
869  
870  
871  
872  
873  
874  
875  
876  
877  
878  
879  
879  
880  
881  
882  
883  
884  
885  
886  
887  
888  
889  
889  
890  
891  
892  
893  
894  
895  
896  
897  
898  
899  
900  
901  
902  
903  
904  
905  
906  
907  
908  
909  
909  
910  
911  
912  
913  
914  
915  
916  
917  
918  
919  
919  
920  
921  
922  
923  
924  
925  
926  
927  
928  
929  
929  
930  
931  
932  
933  
934  
935  
936  
937  
938  
939  
939  
940  
941  
942  
943  
944  
945  
946  
947  
948  
949  
949  
950  
951  
952  
953  
954  
955  
956  
957  
958  
959  
959  
960  
961  
962  
963  
964  
965  
966  
967  
968  
969  
969  
970  
971  
972  
973  
974  
975  
976  
977  
978  
979  
979  
980  
981  
982  
983  
984  
985  
986  
987  
988  
989  
989  
990  
991  
992  
993  
994  
995  
996  
997  
998  
999  
1000  
1001  
1002  
1003  
1004  
1005  
1006  
1007  
1008  
1009  
1009  
1010  
1011  
1012  
1013  
1014  
1015  
1016  
1017  
1018  
1019  
1019  
1020  
1021  
1022  
1023  
1024  
1025  
1026  
1027  
1028  
1029  
1029  
1030  
1031  
1032  
1033  
1034  
1035  
1036  
1037  
1038  
1039  
1039  
1040  
1041  
1042  
1043  
1044  
1045  
1046  
1047  
1048  
1049  
1049  
1050  
1051  
1052  
1053  
1054  
1055  
1056  
1057  
1058  
1059  
1059  
1060  
1061  
1062  
1063  
1064  
1065  
1066  
1067  
1068  
1069  
1069  
1070  
1071  
1072  
1073  
1074  
1075  
1076  
1077  
1078  
1079  
1079  
1080  
1081  
1082  
1083  
1084  
1085  
1086  
1087  
1088  
1089  
1089  
1090  
1091  
1092  
1093  
1094  
1095  
1096  
1097  
1098  
1099  
1099  
1100  
1101  
1102  
1103  
1104  
1105  
1106  
1107  
1108  
1109  
1109  
1110  
1111  
1112  
1113  
1114  
1115  
1116  
1117  
1118  
1119  
1119  
1120  
1121  
1122  
1123  
1124  
1125  
1126  
1127  
1128  
1129  
1129  
1130  
1131  
1132  
1133  
1134  
1135  
1136  
1137  
1138  
1139  
1139  
1140  
1141  
1142  
1143  
1144  
1145  
1146  
1147  
1148  
1149  
1149  
1150  
1151  
1152  
1153  
1154  
1155  
1156  
1157  
1158  
1159  
1159  
1160  
1161  
1162  
1163  
1164  
1165  
1166  
1167  
1168  
1169  
1169  
1170  
1171  
1172  
1173  
1174  
1175  
1176  
1177  
1178  
1178  
1179  
1180  
1181  
1182  
1183  
1184  
1185  
1186  
1187  
1188  
1189  
1189  
1190  
1191  
1192  
1193  
1194  
1195  
1196  
1197  
1198  
1198  
1199  
1199  
1200  
1201  
1202  
1203  
1204  
1205  
1206  
1207  
1208  
1209  
1209  
1210  
1211  
1212  
1213  
1214  
1215  
1216  
1217  
1218  
1219  
1219  
1220  
1221  
1222  
1223  
1224  
1225  
1226  
1227  
1228  
1229  
1230  
1231  
1232  
1233  
1234  
1235  
1236  
1237  
1238  
1239  
1240  
1241  
1242  
1243  
1244  
1245  
1246  
1247  
1248  
1249  
1250  
1251  
1252  
1253  
1254  
1255  
1256  
1257  
1258  
1259  
1260  
1261  
1262  
1263  
1264  
1265  
1266  
1267  
1268  
1269  
1270  
1271  
1272  
1273  
1274  
1275  
1276  
1277  
1278  
1279  
1280  
1281  
1282  
1283  
1284  
1285  
1286  
1287  
1288  
1289  
1289  
1290  
1291  
1292  
1293  
1294  
1295  
1296  
1297  
1298  
1299  
1299  
1300  
1301  
1302  
1303  
1304  
1305  
1306  
1307  
1308  
1309  
1309  
1310  
1311  
1312  
1313  
1314  
1315  
1316  
1317  
1318  
1319  
1319  
1320  
1321  
1322  
1323  
1324  
1325  
1326  
1327  
1328  
1329  
1329  
1330  
1331  
1332  
1333  
1334  
1335  
1336  
1337  
1338  
1339  
1339  
1340  
1341  
1342  
1343  
1344  
1345  
1346  
1347  
1348  
1349  
1349  
1350  
1351  
1352  
1353  
1354  
1355  
1356  
1357  
1358  
1359  
1359  
1360  
1361  
1362  
1363  
1364  
1365  
1366  
1367  
1368  
1369  
1369  
1370  
1371  
1372  
1373  
1374  
1375  
1376  
1377  
1378  
1378  
1379  
1380  
1381  
1382  
1383  
1384  
1385  
1386  
1387  
1388  
1388  
1389  
1390  
1391  
1392  
1393  
1394  
1395  
1396  
1397  
1398  
1398  
1399  
1399  
1400  
1401  
1402  
1403  
1404  
1405  
1406  
1407  
1408  
1409  
1409  
1410  
1411  
1412  
1413  
1414  
1415  
1416  
1417  
1418  
1419  
1419  
1420  
1421  
1422  
1423  
1424  
1425  
1426  
1427  
1428  
1429  
1429  
1430  
1431  
1432  
1433  
1434  
1435  
1436  
1437  
1438  
1439  
1439  
1440  
1441  
1442  
1443  
1444  
1445  
1446  
1447  
1448  
1449  
1449  
1450  
1451  
1452  
1453  
1454  
1455  
1456  
1457  
1458  
1459  
1459  
1460  
1461  
1462  
1463  
1464  
1465  
1466  
1467  
1468  
1469  
1469  
1470  
1471  
1472  
1473  
1474  
1475  
1476  
1477  
1478  
1478  
1479  
1480  
1481  
1482  
1483  
1484  
1485  
1486  
1487  
1488  
1488  
1489  
1490  
1491  
1492  
1493  
1494  
1495  
1496  
1497  
1498  
1498  
1499  
1499  
1500  
1501  
1502  
1503  
1504  
1505  
1506  
1507  
1508  
1509  
1509  
1510  
1511  
1512  
1513  
1514  
1515  
1516  
1517  
1518  
1519  
1519  
1520  
1521  
1522  
1523  
1524  
1525  
1526  
1527  
1528  
1529  
1529  
1530  
1531  
1532  
1533  
1534  
1535  
1536  
1537  
1538  
1539  
1539  
1540  
1541  
1542  
1543  
1544  
1545  
1546  
1547  
1548  
1549  
1549  
1550  
1551  
1552  
1553  
1554  
1555  
1556  
1557  
1558  
1559  
1559  
1560  
1561  
1562  
1563  
1564  
1565  
1566  
1567  
1568  
1569  
1569  
1570  
1571  
1572  
1573  
1574  
1575  
1576  
1577  
1578  
1578  
1579  
1580  
1581  
1582  
1583  
1584  
1585  
1586  
1587  
1588  
1588  
1589  
1590  
1591  
1592  
1593  
1594  
1595  
1596  
1597  
1598  
1598  
1599  
1599  
1600  
1601  
1602  
1603  
1604  
1605  
1606  
1607  
1608  
1609  
1609  
1610  
1611  
1612  
1613  
1614  
1615  
1616  
1617  
1618  
1619  
1619  
1620  
1621  
1622  
1623  
1624  
1625  
1626  
1627  
1628  
1629  
1629  
1630  
1631  
1632  
1633  
1634  
1635  
1636  
1637  
1638  
1639  
1639  
1640  
1641  
1642  
1643  
1644  
1645  
1646  
1647  
1648  
1649  
1649  
1650  
1651  
1652  
1653  
1654  
1655  
1656  
1657  
1658  
1659  
1659  
1660  
1661  
1662  
1663  
1664  
1665  
1666  
1667  
1668  
1669  
1669  
1670  
1671  
1672  
1673  
1674  
1675  
1676  
1677  
1678  
1678  
1679  
1680  
1681  
1682  
1683  
1684  
1685  
1686  
1687  
1688  
1688  
1689  
1690  
1691  
1692  
1693  
1694  
1695  
1696  
1697  
1698  
1698  
1699  
1699  
1700  
1701  
1702  
1703  
1704  
1705  
1706  
1707  
1708  
1709  
1709  
1710  
1711  
1712  
1713  
1714  
1715  
1716  
1717  
1718  
1719  
1719  
1720  
1721  
1722  
1723  
1724  
1725  
1726  
1727  
1728  
1729  
1729  
1730  
1731  
1732  
1733  
1734  
1735  
1736  
1737  
1738  
1739  
1739  
1740  
1741  
1742  
1743  
1744  
1745  
1746  
1747  
1748  
1749  
1749  
1750  
1751  
1752  
1753  
1754  
1755  
1756  
1757  
1758  
1759  
1759  
1760  
1761  
1762  
1763  
1764  
1765  
1766  
1767  
1768  
1769  
1769  
1770  
1771  
1772  
1773  
1774  
1775  
1776  
1777  
1778  
1778  
1779  
1780  
1781  
1782  
1783  
1784  
1785  
1786  
1787  
1788  
1788  
1789  
1790  
1791  
1792  
1793  
1794  
1795  
1796  
1797  
1798  
1798  
1799  
1799  
1800  
1801  
1802  
1803  
1804  
1805  
1806  
1807  
1808  
1809  
1809  
1810  
1811  
1812  
1813  
1814  
1815  
1816  
1817  
1818  
1819  
1819  
1820  
1821  
1822  
1823  
1824  
1825  
1826  
1827  
1828  
1829  
1829  
1830  
1831  
1832  
1833  
1834  
1835  
1836  
1837  
1838  
1839  
1839  
1840  
1841  
1842  
1843  
1844  
1845  
1846  
1847  
1848  
1849  
1849  
1850  
1851  
1852  
1853  
1854  
1855  
1856  
1857  
1858  
1859  
1859  
1860  
1861  
1862  
1863  
1864  
1865  
1866  
1867  
1868  
1869  
1869  
1870  
1871  
1872  
1873  
1874  
1875  
1876  
1877  
1878  
1878  
1879  
1880  
1881  
1882  
1883  
1884  
1885  
1886  
1887  
1888  
1888  
1889  
1890  
1891  
1892  
1893  
1894  
1895<br

270 Table 2: CIFAR classifier task with analytic encoder, representations of  $C_4$  learned on latent space.  
 271  $Z$  is taken as the main feature layer before the final classification head.

| Run | Irreducible counts |      |    |      | Alg. loss            | Eq. loss             | Orbs. |
|-----|--------------------|------|----|------|----------------------|----------------------|-------|
|     | +1                 | $+i$ | -1 | $-i$ |                      |                      |       |
| 1   | 4                  | 4    | 4  | 4    | $1.5 \times 10^{-4}$ | $1.8 \times 10^{-3}$ | 4     |
| 2   | 3                  | 4    | 5  | 4    | $7.2 \times 10^{-5}$ | $1.9 \times 10^{-3}$ | 3     |
| 3   | 3                  | 5    | 3  | 5    | $9.4 \times 10^{-5}$ | $1.6 \times 10^{-3}$ | 3     |
| 4   | 4                  | 4    | 4  | 4    | $1.1 \times 10^{-4}$ | $1.9 \times 10^{-3}$ | 4     |
| 5   | 4                  | 4    | 4  | 4    | $8.4 \times 10^{-5}$ | $1.9 \times 10^{-3}$ | 4     |

280 Table 1 shows our findings, with each run giving one row of the table, and Figure 3 shows a visualization.  
 281 Low values in the algebra and equivariance loss columns reveal high-quality representations  
 282  $\hat{\rho}_Z$ , which are strongly equivariant with respect to the representations  $\alpha_X, \alpha_Y$ . By mapping the  
 283 eigenvalues of  $\hat{\rho}_Z(a)$  to the nearest value in  $\{-1, +1\}$ , we can determine the corresponding irreducible  
 284 representation. For the group  $C_2$  the regular representation contains one copy of the -1 and  
 285 +1 representations, and see that the learned  $\hat{\rho}_Z$ 's are close to a multiple of the regular representation.  
 286 Furthermore, we report the number of linearly independent embedded orbits and, as expected, this  
 287 corresponds to the number of copies of the regular representation found (Section 4.1).  
 288

#### 289 4.2.2 MNIST AUTOENCODER, MLP ARCHITECTURE, $G = D_3$

290 For our second experiment we choose the MNIST dataset of handwritten digits, augmented by  
 291 arbitrary rotations. We choose the group  $G = D_3$ , the group of symmetries of an equilateral  
 292 triangle with the generators  $r, s$  (120-degree rotation, flip) and the following presentation:  
 293  $\{e, r, r^2, r^3, s, rs \mid r^3 = e, s^2 = e, rsrs = e\}$ . We parameterize the linear maps  $\hat{\rho}_Z(r)$  and  $\hat{\rho}_Z(s)$   
 294 independently, and define the following algebra loss, where  $d = \dim(Z) = 18$ , and where summands  
 295 correspond to constraints in the presentation:  $\text{ALG}_{D_3, d} = \text{MSE}(\hat{\rho}_Z(r)^3, I_d) + \text{MSE}(\hat{\rho}_Z(s)^2, I_d) +$   
 296  $\text{MSE}(\hat{\rho}_Z(r)\hat{\rho}_Z(s)\hat{\rho}_Z(r)\hat{\rho}_Z(s), I_d)$ .  
 297

298 For the nonabelian group  $D_3$ , we determined the learned representation's composition using orthogonality  
 299 of characters (Section 3). The data in Table 1 confirms that the network learns a high-fidelity  
 300 multiple of the regular representation, which contains the trivial, sign, and standard irreducible  
 301 representations in the ratio 1:1:2. Consistent with the previous experiment, each linearly independent  
 302 data orbit contributes one distinct copy of this representation. Furthermore, Figure 4 illustrates the  
 303 eigenvalues of the generator  $\hat{\rho}_Z(r)$  dynamically clustering around the third roots of unity during  
 304 training, despite an uneven initialization.

#### 305 4.2.3 CIFAR10 CLASSIFIER, CNN ARCHITECTURE, $G = C_4$

306 This experiment uses the CIFAR10 image  
 307 dataset (Krizhevsky, 2009). We choose the  
 308 group  $G = C_4$  of 90-degree rotations,  
 309 with the algebraic loss function  $\text{ALG}_{C_4, d} =$   
 310  $\text{MSE}(\hat{\rho}_Z(1)^4, I_d)$ , where  $d = \dim(Z) = 16$ .  
 311 For  $C_4$  the regular representation contains ex-  
 312 actly one copy of the  $+1, +i, -1$  and  $-i$  repre-  
 313 sentations, and Table 2 shows that the network  
 314 learns a representation close to a multiple of  
 315 the regular representation. Furthermore, each  
 316 linearly independent embedded data orbit con-  
 317 tributes a distinct copy of this representation.  
 318

319 Considering these three experiments together,  
 320 we summarize the results of this section follows.  
 321

322 **Key empirical insight:** To achieve encoder equivariance in the presence of data augmentation,  
 323 the network prefers to learn a multiple of the regular representation on the latent space.



324 Figure 4: Eigenvalues of the real-valued matrix  $\hat{\rho}_Z(r)$   
 325 at different training steps. Beneath each plot we show  
 326 counts of eigenvalues nearest to each third root of unity.

324 5 FIXING THE REGULAR REPRESENTATION  
325

326 We present a novel parameter-free method to improve performance of neural networks to solve a  
327 variety of invariant, equivariant or approximately equivariant tasks, where a finite group  $G$  acts on the  
328 input and output layers with representations  $\rho_{\mathcal{X}}$  and  $\rho_{\mathcal{Y}}$  respectively. Inspired by the theoretical and  
329 empirical results of Section 4, **instead of learning a representation on the latent space, we now**  
330 **fix  $\rho_Z$  to be a multiple of the regular representation of  $G$ .** Specifically, we use  $n$  copies where  $n$   
331 is the maximum number of representations allowed by  $\dim Z$ . When  $n|G| < \dim(Z)$ , we pad by  
332 taking the direct sum with additional copies of the trivial representation, to ensure our representation  
333 on  $Z$  has the correct dimension. Our proposed representation is therefore given by:

$$334 \quad \rho_Z := n \cdot \rho_{\text{reg}} + \max(\dim(Z) - n|G|, 0) \cdot \rho_{\text{triv}} \quad (1)$$

335 When the latent space is geometrically structured, for example as a product of features and channels,  
336 we choose an isomorphic form of the regular representation that preserves this structure (examples are  
337 the SMOKE and SHREC experiment in Section 6). We then train according to the following objective  
338 function, where  $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$  is an element of the training set,  $g \in G$  is a group element, and  
339  $L_{\text{task}}(x_i, y_i)$  is the original task loss function:

$$\begin{aligned} 340 \quad & \frac{1}{2} L_{\text{task}}(D(E(x_i)), y_i) && \text{Task loss} \\ 341 \quad & + \frac{1}{2} L_{\text{task}}(D(E(\alpha_{\mathcal{X}}(g)x_i)), \alpha_{\mathcal{Y}}(g)y_i) && \text{Task loss shifted by } g \\ 342 \quad & + \lambda \text{MSE}(E(\alpha_{\mathcal{X}}(g)x_i), \rho_Z(g)E(x_i)) && \text{Equivariance loss from input to latent} \end{aligned}$$

343 When used in a training loop, we select  $(x_i, y_i)$  and  $g$  uniformly at random. Here  $\lambda$  is a hyperparameter  
344 expressing the strength of the equivariance loss. We provide a sensitivity analysis for  $\lambda$  in Appendix  
345 H, which shows that model performance is robust across a range of values. Our model has no  
346 additional learned parameters above baseline, since the representation  $\rho_Z$  is now fixed. Our use of  
347 the  $g$ -shifted task loss means that our training dataset must be augmented by the action of  $G$ . This  
348 can be done either on-the-fly, or pre-computed to speed up training.

351 6 EXPERIMENTS  
352

353 We benchmark our method against a variety of state-of-the-art methods for networks with approximate  
354 equivariance, considering four distinct tasks. We compare our results against the models SCNN,  
355 E2CNN, LIFT, RPP, RGroup, RSteer, PSCNN, NIso, NFT and MC, discussed in Section 2. All our  
356 experiments follow the setup of the original papers. Our method trains using a computational budget  
357 and wall-clock time at or below competing models. Since our model relies on data augmentation,  
358 we provide both augmented and unaugmented CNN baselines. Full technical details for all reported  
359 runs, including hyperparameter selection and a sensitivity analysis for our equivariance coupling  
360 strength  $\lambda$ , are reported in Appendix G and H. In the majority of cases our results are improved or  
361 comparable with state-of-the-art, while using fewer learnable parameters and a simpler architecture.  
362 We use Cohen’s *d*-statistic to compute effect sizes (Hermann et al., 2024, p59), which shows that our  
363 model typically delivers very large performance improvements. A discussion of these statistics can  
364 be found in Appendix G.1. For the selection of the layer  $Z$  where the equivariance loss is imposed,  
365 for autoencoder tasks this is chosen as the output layer of the encoder, while for classification tasks  
366 we choose the layer before the final classifier head. As an ablation, we also report a comparison  
367 that replaces the regular representation in Equation 1 with the *defining representation*, the natural  
368 geometric action of the group by permutations (see Appendix C for a formal definition), and the  
369 *trivial representation*; these results further confirm optimality of the regular representation.

370 6.1 CLASSIFICATION TASK, DDMNIST,  $G = C_2, C_4, D_4$   
371

372 Following closely the procedure of (Veefkind & Cesa, 2024) for each of the chosen symmetry groups  
373  $C_2$ ,  $C_4$  and  $D_4$ , we randomly and independently transform two MNIST images according to the  
374 group. Results are shown in Table 3. Because the transformations are local and independent, we  
375 apply our method using the product group. We also provide a comparison with the defining and trivial  
376 representations as an ablation study. While for the groups  $C_2$  and  $C_4$  the two representations are  
377 isomorphic, for  $D_4$  they are not, with the regular representation being more performant; this provides  
further empirical evidence for the optimality of the regular representation. Except for SCNN, we

378 re-trained and re-evaluated all models. Further discussion and effect size analysis can be found in  
 379 Appendix G.2. These statistics show a very large effect size for our model over the CNN baseline,  
 380 and a large effect size for our model compared to the majority of results for other architectures.  
 381

382 Table 3: DDMNIST test accuracies. Mean over 3 runs; standard deviation in brackets. Parameter  
 383 counts shown. Best result in each column is bold, second-best is underlined. For  $C_2, C_4$  the defining  
 384 representation is equivalent to the regular representation and so is omitted.

| Model          | $C_4 \uparrow$       | #Params(M) $\downarrow$ | $C_2 \uparrow$       | #Params(M) $\downarrow$ | $D_4 \uparrow$       | #Params(M) $\downarrow$ |
|----------------|----------------------|-------------------------|----------------------|-------------------------|----------------------|-------------------------|
| CNN            | 0.907 (0.004)        | <b>0.03</b>             | <u>0.938</u> (0.006) | <b>0.03</b>             | 0.800 (0.001)        | <b>0.03</b>             |
| SCNN           | 0.484 (0.008)        | <u>0.12</u>             | <u>0.474</u> (0.003) | <b>0.03</b>             | 0.431 (0.010)        | <u>0.15</u>             |
| Restriction    | <u>0.914</u> (0.007) | <u>0.12</u>             | 0.890 (0.007)        | 0.33                    | 0.837 (0.020)        | <u>0.17</u>             |
| RPP            | <u>0.908</u> (0.022) | 0.79                    | 0.903 (0.009)        | 0.08                    | 0.827 (0.020)        | 1.73                    |
| PSCNN          | 0.909 (0.007)        | 0.51                    | 0.871 (0.016)        | 0.04                    | <u>0.842</u> (0.011) | 1.23                    |
| Trivial rep    | 0.874 (0.004)        | <b>0.03</b>             | 0.938 (0.007)        | <b>0.03</b>             | 0.819 (0.004)        | <b>0.03</b>             |
| Defining rep   | —                    | —                       | —                    | —                       | 0.838 (0.010)        | <b>0.03</b>             |
| Ours (regular) | <b>0.915</b> (0.004) | <b>0.03</b>             | <b>0.947</b> (0.004) | <b>0.03</b>             | <b>0.868</b> (0.002) | <b>0.03</b>             |

## 395 6.2 CLASSIFICATION TASK, MEDMNIST3D, $G = \text{Sym}_{\text{cube}}$

396 We test our method on the Organ, Synapse and Nodule subsets of the MedMNIST3D dataset, using  
 397 the same setup as the original authors (Veefkind & Cesa, 2024). We apply the group  $\text{Sym}_{\text{cube}}$  of  
 398 orientation-preserving symmetries of the cube, which is isomorphic to the permutation group  $S_4$ .  
 399 All results, except for ours and the augmented CNN, are imported from the original authors. Table  
 400 4 shows MedMNIST3D accuracies for different models and groups. For Nodule and Synapse, our  
 401 method is comparable or outperforms other architectures, while having fewer parameters. The regular  
 402 representation consistently outperforms the defining and trivial representations, providing further  
 403 empirical evidence for its optimality. For the Organ dataset, canonical orientation is a key feature, and  
 404 so the symmetry action conflicts with the task. This may explain our method’s underperformance in  
 405 this task (shared by the augmented CNN baseline). Further discussion can be found in Appendix G.3,  
 406 which shows our method has very large positive effect sizes for Nodule and Synapse datasets.  
 407

408 Table 4: MedMNIST3D test accuracies. Mean over 3 runs; standard deviation in brackets. Parameter  
 409 counts shown. Best result in each column is bold, second-best is underlined.

| Group                      | Model          | Nodule $\uparrow$    | Synapse $\uparrow$   | Organ $\uparrow$     | #Params(M) $\downarrow$ |
|----------------------------|----------------|----------------------|----------------------|----------------------|-------------------------|
| N/A                        | CNN            | 0.873 (0.005)        | 0.716 (0.008)        | 0.920 (0.003)        | <u>00.19</u>            |
| Aug                        | CNN            | <u>0.879</u> (0.007) | 0.761 (0.008)        | 0.632 (0.005)        | <u>00.19</u>            |
| SO(3)                      | SCNN           | 0.873 (0.002)        | 0.738 (0.009)        | 0.607 (0.006)        | <b>00.13</b>            |
| SO(3)                      | RPP            | 0.801 (0.003)        | 0.695 (0.037)        | <u>0.936</u> (0.002) | 18.30                   |
| SO(3)                      | PSCNN          | 0.871 (0.001)        | <b>0.770</b> (0.030) | 0.902 (0.006)        | 04.17                   |
| O(3)                       | SCNN           | 0.868 (0.009)        | 0.743 (0.004)        | 0.902 (0.006)        | <u>00.19</u>            |
| O(3)                       | RPP            | 0.810 (0.013)        | 0.722 (0.023)        | <b>0.940</b> (0.006) | 29.30                   |
| O(3)                       | PSCNN          | 0.873 (0.008)        | <u>0.769</u> (0.005) | 0.905 (0.004)        | 03.51                   |
| $\text{Sym}_{\text{cube}}$ | Trivial rep    | 0.867 (0.001)        | 0.743 (0.002)        | 0.571 (0.002)        | <u>00.19</u>            |
| $\text{Sym}_{\text{cube}}$ | Defining rep   | 0.837 (0.013)        | <u>0.756</u> (0.019) | 0.560 (0.025)        | <u>00.19</u>            |
| $\text{Sym}_{\text{cube}}$ | Ours (regular) | <b>0.887</b> (0.005) | <b>0.770</b> (0.002) | 0.642 (0.056)        | <u>00.19</u>            |

## 423 6.3 AUTOREGRESSION TASK, SMOKE, $G = C_4$

424 We evaluate our method on the SMOKE dataset, generated with PhiFlow (Holl et al., 2020) by Wang  
 425 et al. (2022) (see Figure 7 for a visualisation). The task involves predicting future frames of a  
 426 simulated smoke velocity field autoregressively. This task is only approximately equivariant to the  
 427 symmetry group  $C_4$  (90-degree rotations) due to the presence of non-equivariant buoyancy effects.  
 428 Full details are provided in the appendix. Table 5(a) shows the test RMSE for each model on the  
 429 metrics considered. All reported figures are imported from the original authors (Wang et al., 2022),  
 430 except for ours, augmented CNN, and non-augmented CNN, for which we tune the learning rate. Our  
 431 method outperforms all models except for PSCNN, which has slightly better scores, with more than

12 times the number of parameters. While our method uses the augmented training set, we note from comparing the two CNN baselines that this gives little advantage for this task. [Further details can be found in Appendix G.4, showing very large positive effect sizes for all models except PSCNN.](#)

#### 6.4 AUTOENCODING TASK, 3D SHAPES, $G = O_h$

Finally, we test our method on the conformally transformed SHREC '11 dataset (Lian et al., 2011; Mitchel et al., 2022), following the pre-training and fine-tuning procedure of Mitchel et al. (2024). We apply our methodology with  $O_h$  augmentations (octahedral symmetries) to pre-train a baseline autoencoder before fine-tuning the encoder for classification. As this is an autoencoding task, we symmetrize the equivariance loss to the decoder. NIso's kernel adds 18k parameters above our model, which has the same parameter count as the baseline autoencoder (AE). Results are given in Table 5(b). Our approach achieves 90.45% accuracy, outperforming the group-agnostic method NFT. Our method also surpasses NIso, a model capable of learning actions of infinite groups, even though our method uses only a finite subgroup. [Further details can be found in Appendix G.5, with effect sizes showing equivalence between our method and NIso, and very large positive effect size for the other models.](#)

Table 5: Mean over 3 runs; standard deviation in brackets. Parameter counts shown. Best result in each column is bold, second-best is underlined.

(a) Test RMSE for SMOKE dataset.

| Group | Model  | Future $\downarrow$ | Domain $\downarrow$ | #Params(M) $\downarrow$ |
|-------|--------|---------------------|---------------------|-------------------------|
| N/A   | CNN    | 0.81 (0.01)         | 0.63 (0.00)         | <b>0.25</b>             |
| Aug   | CNN    | 0.83 (0.03)         | 0.67 (0.06)         | <b>0.25</b>             |
| N/A   | MLP    | 1.38 (0.06)         | 1.34 (0.03)         | 8.33                    |
| C4    | E2CNN  | 1.05 (0.06)         | 0.76 (0.02)         | <u>0.62</u>             |
| C4    | RPP    | 0.96 (0.10)         | 0.82 (0.01)         | 4.36                    |
| C4    | Lift   | 0.82 (0.01)         | 0.73 (0.02)         | 3.32                    |
| C4    | RGroup | 0.82 (0.01)         | 0.73 (0.02)         | 1.88                    |
| C4    | RSteer | 0.80 (0.00)         | 0.67 (0.01)         | 5.60                    |
| C4    | PSCNN  | <b>0.77</b> (0.01)  | <b>0.57</b> (0.00)  | 3.12                    |
| C4    | Ours   | <u>0.78</u> (0.01)  | <u>0.61</u> (0.01)  | <b>0.25</b>             |

(b) Test accuracy for SHREC '11 dataset.

| Model                      | Acc. $\uparrow$     |
|----------------------------|---------------------|
| NIso Mitchel et al. (2024) | <b>90.26</b> (1.27) |
| NFT Koyama et al. (2024)   | 83.24 (2.03)        |
| AE with aug                | 69.36 (2.81)        |
| MC Mitchel et al. (2022)   | 86.5                |
| Ours                       | <b>90.45</b> (2.1)  |

## 7 CONCLUSIONS

**Limitations and Future Work.** Our theoretical framework is developed for finite groups. However, we empirically demonstrate that our method can be applied effectively to tasks with continuous symmetries by selecting a rich finite subgroup; we employ this strategy to show that our model can outperform NIso, SCNN, RPP and PSCNN, which use continuous groups such as  $SO(3)$ ,  $O(3)$  and the conformal group, on the SHREC '11 and MedMNIST3D datasets. We expect this strategy could also be effectively employed to handle large finite groups (such as permutation groups), and in future work we aim to derive theoretical guarantees on the power of this approach. Our method requires data augmentation, although this is typically inexpensive when the group action on the input space is easy to construct, and our ablations with an augmented baseline show that our model delivers benefits far beyond augmentation. We would also like to explore how our model could enable augmentation directly in the latent space.

**Conclusions.** This work investigates an alternative path to building efficient equivariant models, focusing not on architectural design, but on the enforcement of a principled latent algebraic structure. We prove that for finite groups, this structure is the regular representation, which must appear almost surely in the latent space of any equivariant encoder. By enforcing this structure via a parameter-free auxiliary loss, our method achieves competitive or superior performance to SOTA models, while requiring in some cases significantly fewer parameters. Furthermore, we empirically show the optimality of the regular representation via ablations with the defining and trivial representations. Ultimately, our work suggests that for tasks with inherent (approximate) symmetry, directly enforcing the correct latent algebraic structure can be a more effective and efficient path to equivariance than designing complex, highly-parameterized architectures.

486 REFERENCES  
487

488 Georg Bökman, Johan Edstedt, Michael Felsberg, and Fredrik Kahl. Steerers: A framework for  
489 rotation equivariant keypoint descriptors. In *2024 IEEE/CVF Conference on Computer Vision and*  
490 *Pattern Recognition (CVPR)*, pp. 4885–4895. IEEE, 2024. doi: 10.1109/cvpr52733.2024.00467.  
491 URL <http://dx.doi.org/10.1109/cvpr52733.2024.00467>.

492 Taco S. Cohen and Max Welling. Steerable CNNs, 2016.  
493

494 Li Deng. The MNIST database of handwritten digit images for machine learning research. *IEEE*  
495 *Signal Processing Magazine*, 29(6):141–142, 2012.

496 Emilien Dupont, Miguel Angel Bautista, Alex Colburn, Aditya Sankar, Carlos Guestrin, Josh  
497 Susskind, and Qi Shan. Equivariant neural rendering, 2020.

498 Marc Finzi, Gregory Benton, and Andrew G Wilson. Residual pathway priors for soft equivariance  
499 constraints. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan  
500 (eds.), *Advances in Neural Information Processing Systems*, volume 34, pp. 30037–30049. Cur-  
501 ran Associates, Inc., 2021. URL [https://proceedings.neurips.cc/paper\\_files/paper/2021/file/fc394e9935fdb62c8aecd372464e1965-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2021/file/fc394e9935fdb62c8aecd372464e1965-Paper.pdf).

502 D.H. Fremlin. *Measure Theory*. Number v. 1 in Measure theory. Torres Fremlin, 2000. ISBN  
503 9780953812905. URL [https://books.google.co.uk/books?id=2\\_1HYXeEd7YC](https://books.google.co.uk/books?id=2_1HYXeEd7YC).

504 William Fulton and Joe Harris. *Representation Theory*. Springer New York, 2004. ISBN  
505 9781461209799. doi: 10.1007/978-1-4612-0979-9.

506 Odd Erik Gundersen, Saeid Shamsaliei, Håkon Sletten Kjærnli, and Helge Langseth. On reporting  
507 robust and trustworthy conclusions from model comparison studies involving neural networks and  
508 randomness. In *Proceedings of the 2023 ACM Conference on Reproducibility and Replicability*,  
509 ACM REP '23, pp. 37–61, New York, NY, USA, 2023. Association for Computing Machinery.  
ISBN 9798400701764. doi: 10.1145/3589806.3600044. URL <https://doi.org/10.1145/3589806.3600044>.

510 Yacov Hel-Or and Patrick C Teo. Canonical decomposition of steerable functions. *Journal of*  
511 *Mathematical Imaging and Vision*, 9:83–95, 1998.

512 Katherine Hermann, Jennifer Hu, and Michael Mozer. Experimental design and analysis for AI  
513 researchers. Invited tutorial at NeurIPS 2024, 2024. URL <https://neurips.cc/virtual/2024/tutorial/99528>.

514 Philipp Holl, Vladlen Koltun, Kiwon Um, and Nils Thuerey. PhiFlow: A differentiable PDE solving  
515 framework for deep learning via physical simulations. In *NeurIPS workshop*, volume 2, 2020.

516 Philip Holmes. *Turbulence, coherent structures, dynamical systems and symmetry*. Cambridge  
517 University Press, 2012.

518 Jen-tse Huang, Man Ho Lam, Eric John Li, Shujie Ren, Wenzuan Wang, Wenxiang Jiao,  
519 Zhaopeng Tu, and Michael R. Lyu. Apathetic or empathetic? evaluating llms' emotional  
520 alignments with humans. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Pa-  
521 quet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural Information Processing Sys-*  
522 *tems*, volume 37, pp. 97053–97087. Curran Associates, Inc., 2024. doi: 10.52202/079017-3077.  
523 URL [https://proceedings.neurips.cc/paper\\_files/paper/2024/file/b0049c3f9c53fb06f674ae66c2cf2376-Paper-Conference.pdf](https://proceedings.neurips.cc/paper_files/paper/2024/file/b0049c3f9c53fb06f674ae66c2cf2376-Paper-Conference.pdf).

524 Gordon James and Martin Liebeck. *Representations and Characters of Groups*. Cambridge University  
525 Press, 2001. ISBN 9780511814532. doi: 10.1017/cbo9780511814532.

526 Yinzhu Jin, Aman Shrivastava, and Tom Fletcher. Learning group actions on latent representations.  
527 In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL  
528 <https://openreview.net/forum?id=HGNTcy4eEp>.

540 Archit Karandikar, Nicholas Cain, Dustin Tran, Balaji Lakshminarayanan, Jonathon Shlens,  
 541 Michael Curtis Mozer, and Rebecca Roelofs. Soft calibration objectives for neural networks.  
 542 In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), *Advances in Neu-  
 543 ral Information Processing Systems*, 2021. URL <https://openreview.net/forum?id=-tVD13hOsQ3>.

545 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL  
 546 <https://arxiv.org/abs/1412.6980>.

548 Masanori Koyama, Kenji Fukumizu, Kohei Hayashi, and Takeru Miyato. Neural Fourier Transform:  
 549 A General Approach to Equivariant Representation Learning, February 2024.

550 Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009. URL <https://api.semanticscholar.org/CorpusID:18268744>.

553 Yann LeCun and Yoshua Bengio. *Convolutional networks for images, speech, and time series*, pp.  
 554 255–258. MIT Press, Cambridge, MA, USA, 1998. ISBN 0262511029.

556 Z. Lian, A. Godil, B. Bustos, M. Daoudi, J. Hermans, S. Kawamura, Y. Kurita, G. Lavoué, H. V.  
 557 Nguyen, R. Ohbuchi, Y. Ohkita, Y. Ohishi, F. Porikli, M. Reuter, I. Sipiran, D. Smeets, P. Suetens,  
 558 H. Tabia, and D. Vandermeulen. SHREC’11 track: Shape retrieval on non-rigid 3D watertight  
 559 meshes. In *Proceedings of the 4th Eurographics Conference on 3D Object Retrieval*, 3DOR ’11,  
 560 pp. 79–88, Goslar, DEU, April 2011. Eurographics Association. ISBN 978-3-905674-31-6.

561 Nimish Magre and Nicholas Brown. Typography-MNIST (TMNIST): an MNIST-style image dataset  
 562 to categorize glyphs and font-styles, 2022.

563 Brando Miranda, Patrick Yu, Saumya Goyal, Yu-Xiong Wang, and Sanmi Koyejo. Is pre-training  
 564 truly better than meta-learning?, 2025. URL <https://arxiv.org/abs/2306.13841>.

566 Thomas W. Mitchel, Noam Aigerman, Vladimir G. Kim, and Michael Kazhdan. Möbius Convolutions  
 567 for Spherical CNNs, May 2022.

569 Thomas W. Mitchel, Michael Taylor, and Vincent Sitzmann. Neural Isometries: Taming Transforma-  
 570 tions for Equivariant ML, October 2024.

571 Giorgos Nikolaou, Tommaso Mencattini, Donato Crisostomi, Andrea Santilli, Yannis Panagakis,  
 572 and Emanuele Rodolà. Language models are injective and hence invertible, 2025. URL <https://arxiv.org/abs/2510.15511>.

575 nLab. Free action, 2024. URL <https://ncatlab.org/nlab/show/free+action>. Ac-  
 576 cessed: 2025-08-02.

577 Mehran Shakerinava, Arnab Kumar Mondal, and Siamak Ravanbakhsh. Structuring Representations  
 578 Using Group Invariants. In *Advances in Neural Information Processing Systems*, October 2022.

580 Christopher Shorten and Taghi M. Khoshgoftaar. A survey on image data augmentation for deep  
 581 learning. *Journal of Big Data*, 6:60, 2019. doi: 10.1186/s40537-019-0197-0.

582 Lars Veerkind and Gabriele Cesa. A probabilistic approach to learning the degree of equivariance in  
 583 steerable CNNs. In *41st International Conference on Machine Learning (ICML 2024)*, 2024. URL  
 584 <https://openreview.net/forum?id=49vHLSxjzy>.

586 Dian Wang, Robin Walters, Xupeng Zhu, and Robert Platt. Equivariant  $Q$  learning in spatial action  
 587 spaces. In *5th Annual Conference on Robot Learning*, 2021. URL <https://openreview.net/forum?id=IScz42A3iCI>.

589 Rui Wang, Robin Walters, and Rose Yu. Approximately equivariant networks for imperfectly  
 590 symmetric dynamics. In *International Conference on Machine Learning*, pp. 23078–23091.  
 591 PMLR, 2022.

593 Maurice Weiler and Gabriele Cesa. General E(2)-Equivariant Steerable CNNs. In *Conference on  
 594 Neural Information Processing Systems (NeurIPS)*, 2019.

594 Max Welling and Taco S. Cohen. Transformation properties of learned visual representations. In  
595 *Proceedings of ICLR 2015*, 2014.  
596

597 Robin Winter, Marco Bertolini, Tuan Le, Frank Noé, and Djork-Arné Clevert. Unsupervised Learning  
598 of Group Invariant and Equivariant Representations, April 2024.  
599

600 Daniel E. Worrall, Stephan J. Garbin, Daniyar Turmukhambetov, and Gabriel J. Brostow. Interpretable  
601 transformations with encoder-decoder networks. In *2017 IEEE International Conference on*  
602 *Computer Vision (ICCV)*, pp. 5737–5746, 2017. doi: 10.1109/iccv.2017.611. URL <http://dx.doi.org/10.1109/iccv.2017.611>.  
603

604 Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter Pfister, and  
605 Bingbing Ni. Medmnist v2 - a large-scale lightweight benchmark for 2d and 3d biomedical  
606 image classification. *Scientific Data*, 10(1), January 2023. ISSN 2052-4463. doi: 10.1038/  
607 s41597-022-01721-8.  
608  
609  
610  
611  
612  
613  
614  
615  
616  
617  
618  
619  
620  
621  
622  
623  
624  
625  
626  
627  
628  
629  
630  
631  
632  
633  
634  
635  
636  
637  
638  
639  
640  
641  
642  
643  
644  
645  
646  
647

648 **A CODE**649  
650 The code to run all the experiments in this paper is available at the following location:  
651652 • <https://anonymous.4open.science/r/parameter-free-approximate-equivariance-3352/>  
653654 In the README file, we provide instructions to run the code and reproduce the results.  
655656 **B NOTATION**  
657658 Here we provide a comprehensive list of symbols and notational conventions used throughout the  
659 paper.  
660661 **GENERAL MATHEMATICAL OBJECTS**  
662663  $G$  A finite group.  
664665  $g, h$  Elements of the group  $G$ , e.g.,  $g \in G$ .  
666667  $\mathbb{K}$  The base field, assumed to be either the real numbers  $\mathbb{R}$  or the complex numbers  $\mathbb{C}$ .  
668669  $\mathcal{S}, \mathcal{A}$  General sets, denoted by calligraphic letters.  
670671  $V, W$  General vector spaces, denoted by uppercase Roman letters.  
672673  $v, w$  Elements (vectors) of a vector space, e.g.,  $v \in V$ .  
674675 **GROUP THEORY**  
676677  $\alpha$  A group action on a set. The action of  $g \in G$  on an element  $s \in \mathcal{S}$  is written as  $\alpha(g, s)$   
678679  $\rho_V$  A group representation on the vector space  $V$ , which is a linear group action on  $V$ .  
680681  $\rho_V(g)$  The invertible linear map associated with the group element  $g \in G$ . The action of  $g$  on a  
682 vector  $v \in V$  is written as  $\rho_V(g)(v)$ .  
683684 **MACHINE LEARNING CONTEXT**  
685686  $\mathcal{X}$  The input set.  
687688  $x$  A single input data point,  $x \in \mathcal{X}$ .  
689690  $\mathcal{Y}$  The output or label set.  
691692  $y$  A single output or label,  $y \in \mathcal{Y}$ .  
693694  $Z$  The latent space, viewed as a vector space (e.g.,  $Z = \mathbb{R}^d$ ).  
695696  $z$  A latent vector,  $z \in Z$ .  
697698  $E$  An encoder network.  
699700  $D$  A decoder network.  
701702  $\hat{\rho}_Z$  A *learnable* representation on the latent space  $Z$ .  
703704 **C GROUP ACTIONS AND REPRESENTATIONS**  
705706 **Groups.** A group  $G$  is a set equipped with an associative and unital binary operation, such that  
707 every element has a unique inverse. Important families of groups include the following. The dihedral  
708 group  $D_n$  is the group of symmetries of the regular polygon with  $n$  sides, which we use in this paper  
709 for  $n \geq 3$ . The cyclic group  $C_n$  is the groups of integers  $\{0, \dots, n-1\}$  with addition modulo  $n$ .  
710 The permutation group  $S_n$  is the group of permutations of an  $n$ -element set. We may define groups  
711 by presentations, which give generators and relations for the product; for example, the group  $C_2$  can  
712 be defined by the presentation  $\{1, a \mid a^2 = 1\}$ . For any two groups  $G, H$ , we write  $G \times H$  for the  
713 product group, whose elements are ordered pairs of elements of  $G$  and  $H$  respectively.  
714

**Group representations.** A *representation*  $\rho$  of a finite group  $G$  on a vector space  $V$  is a choice of linear maps  $\rho(g) : V \rightarrow V$  for all elements  $g \in G$ , with the property that  $\rho(e) = \text{id}_V$  for the identity element  $e \in G$ , and such that  $\rho(g)\rho(g') = \rho(gg')$  for all pairs of elements  $g, g' \in G$ . We define the *dimension* of  $\rho$  to be  $\dim(V)$ , the dimension of the vector space  $V$ . There is a notion of equivalence of representations: given representations  $\rho$  on  $V$ , and  $\rho'$  on  $V'$ , they are *isomorphic* when there is an invertible linear map  $L : V \rightarrow V'$  such that  $L\rho(g) = \rho'(g)L$  for all  $g \in G$ . Given a subgroup  $G \subseteq G'$ , a representation of  $G'$  yields a *restricted representation* on  $G$  in an obvious way.

**Defining representations.** The concept of a defining representation is relevant for our ablation studies. While the term is context-dependent, it typically refers to a group’s most natural or defining low-dimensional representation. For the permutation group  $S_n$  this is the linearisation of its permutation action on the  $n$ -element set; that is, the  $n$ -dimensional representation given by its action on  $\mathbb{K}^n$  by permuting the basis vectors. For the dihedral group  $D_n$  ( $n \geq 3$ ), the defining representation is the linearisation of its action on the  $n$ -element set of vertices. For the group  $\text{Sym}_{\text{cube}}$  of orientation-preserving symmetries of the cube, the defining representation is the linearisation of its action on the 8-element set of vertices of the cube. We select these defining representations as a baseline as they provide a rich, geometrically intuitive alternative to the more abstract regular representation.

**Group actions.** A group may also have an *action*  $\lambda$  on a set  $\mathcal{S}$ , a choice of functions  $\lambda(g) : \mathcal{S} \rightarrow \mathcal{S}$  for all elements  $g \in G$ , such that  $\lambda(e) = \text{id}_{\mathcal{S}}$  and  $\lambda(g)\lambda(g') = \lambda(gg')$ . Such an action yields a representation of  $G$  on  $\mathbb{K}[\mathcal{S}]$  by linearisation, the *free  $\mathbb{K}$ -vector space* generated by  $\mathcal{S}$ .

Some simple examples of representations include the *zero representation* on the zero-dimensional vector space, and the *trivial representation*  $\rho_{\text{triv}}$  on the 1-dimensional vector space  $\mathbb{K}$ , where  $\rho_{\text{triv}}(g) = \text{id}_{\mathbb{K}}$  for all  $g \in G$ .

## D INSIGHT INTO THE ALGEBRA LOSS

To give further insight into component (iv), suppose our goal is to learn a representation  $\widehat{\rho}_Z$  of the group  $C_2$ , which has group presentation  $\{1, a \mid a^2 = 1\}$ . Then  $\widehat{\rho}_Z$  should satisfy  $\widehat{\rho}_Z(1) = \text{id}$  and  $\widehat{\rho}_Z(a^2) = (\rho_Z(a))^2 = \text{id}$ . To achieve this, we fix the parameter  $\widehat{\rho}_Z(1) = \text{id}$ , and choose  $\text{ALG}_{C_2,d}$  and  $\text{REG}_{C_2,d}$  as follows, where  $d = \dim(Z)$ , the matrix  $I_d$  is the identity of size  $d \times d$ :

$$\begin{aligned} \text{ALG}_{C_2,d} &= \text{MSE}(\widehat{\rho}_Z(a)^2, I_d) \\ \text{REG}_{C_2,d} &= \text{MSE}(\widehat{\rho}_Z(a), \widehat{\rho}_Z(a)^{-1}). \end{aligned}$$

We note that when  $\text{ALG}_{C_2,d}$  equals zero then  $\widehat{\rho}_Z(a)^2 = I_d$ , and hence  $\text{REG}_{C_2,d}$  will equal zero. In this sense, the regularisation term is algebraically redundant, but is found to improve training.

## E PROOFS

We first introduce some basic definitions

**Definition 3.** Let  $V$  be a vector space, and  $W, W' \subseteq V$  be subspaces of  $V$ .  $W$  and  $W'$  are *linearly independent* if  $W \cap W' = 0$ .

**Definition 4.** Let  $G$  act on a set  $\mathcal{X}$  via the group action  $\alpha_{\mathcal{X}}$ . The *orbit* of  $x \in \mathcal{X}$  is the set  $\mathcal{O}_x = \{\alpha_{\mathcal{X}}(g)(x) \mid g \in G\}$ . Given a vector space  $Z$  and a function  $E : \mathcal{X} \rightarrow Z$ , we call the set  $E(\mathcal{O}_x) = \{E(\alpha_{\mathcal{X}}(g)(x) \mid g \in G\}$  the *embedded orbit* of  $x$  along  $E$ . Two embedded orbits  $E(\mathcal{O}_x), E(\mathcal{O}_{x'})$  are *linearly independent* if their spans are linearly independent, that is if  $\text{Span}(E_{\theta}(\mathcal{O}_x)) \cap \text{Span}(E_{\theta}(\mathcal{O}_{x'})) = \{0\}$ .

The proof of Lemma 7 adapts the argument in Nikolaou et al. (2025), which uses measure-theoretic properties of analytic functions to demonstrate that transformers are almost everywhere injective. Although our focus here is not on transformers, most of their results require only real analyticity, and thus can be easily adapted to our case. Intuitively, a measure  $\mu$  on a set  $X$  quantifies the ‘size’ or ‘volume’ of subsets within  $X$  (see e.g., Fremlin (2000) for a foundational treatment). In the context of  $\mathbb{R}^p$ , the Lebesgue measure  $\lambda$  corresponds to the standard notion of Euclidean volume (e.g., it assigns the unit hypercube a measure of 1).

756 **Notation.** If  $f : X \rightarrow X$  is a function, we will write  $f^{\circ T}$  to indicate the consecutive application of  
 757  $f$  for  $T$  times. If  $\Theta$  is a set equipped with a measure  $\mu$ , we will write  $\theta \sim \Theta$  to indicate that  $\theta$  is a  
 758 random draw of an element of  $\Theta$  according to the measure  $\mu$ .

759 The following are well-known mathematical results and definitions.

760 **Proposition 5.** Let  $U \subseteq \mathbb{R}^m$  be open and connected, and let  $f : U \rightarrow \mathbb{R}^n$  be an analytic function.  
 761 If  $f$  is not identically zero, then its zero set  $Z(f) := \{x \in U \mid f(x) = 0\} = f^{-1}(0)$  has Lebesgue  
 762 measure zero in  $\mathbb{R}^m$ , i.e.  $\lambda(Z(f)) = 0$ .

763 **Definition 6.** Let  $\mu, \nu$  be Borel measures on  $\mathbb{R}^p$ . We say that  $\mu$  is *absolutely continuous* with respect  
 764 to  $\nu$ , written  $\mu \ll \nu$ , if for every Borel set  $U$  we have

$$766 \quad \nu(U) = 0 \implies \mu(U) = 0 \quad (2)$$

767 Since the Lebesgue measure  $\lambda$  is the standard notion of Euclidean volume, then we can intuitively  
 768 understand that  $\mu \ll \lambda$  just when the measure  $\mu$  assigns zero measure to every set with zero Euclidean  
 769 volume. In this way, measures  $\mu$  with  $\mu \ll \lambda$  may behave in ways that accord with our intuition. Any  
 770 standard sampling measure  $\mu$  used to generate initial parameters for a neural network (e.g. from the  
 771 normal or uniform distributions) will be likely to satisfy this property.

772 The following critical lemma underlies our theoretical results, and we can explain it intuitively as  
 773 follows. If we have some set of parameters  $\mathcal{W} \subseteq \Theta$  for our neural network which is measure zero,  
 774 then of course if we initialise the network with some parameters  $\theta$  at random, the probability that  
 775  $\theta \in \mathcal{W}$  is zero. But we then ask, if we update the parameters by gradient descent for finitely many  
 776 steps, what is the probability that the optimised parameters are within the set  $\mathcal{W}$ ?

777 **Lemma 7.** Let  $E_\theta$  be a parametrized function that is analytic for all parameters  $\theta \in \Theta \subseteq \mathbb{R}^p$ .  
 778 Assume that the parameters are randomly initialized according to a distribution  $\mu$  that is absolutely  
 779 continuous with respect to the Lebesgue measure on  $\mathbb{R}^p$ , i.e.  $\theta_0 \sim \mu$  with  $\mu \ll \lambda$ . Furthermore,  
 780 assume an analytic loss function  $\mathcal{L}$ , and that the parameters are updated via gradient descent,  
 781 i.e.  $\theta_{t+1} := \Phi(\theta_t) := \theta_t - \eta \nabla \mathcal{L}(\theta_t)$ , with  $\eta \in (0, 1)$ .

782 Let  $\mathcal{W} \subseteq \Theta$  with  $\lambda(\mathcal{W}) = 0$ . Then, for all  $T \in \mathbb{N}$ ,  $\mu(\{\theta_0 \mid \Phi^{\circ T}(\theta_0) \in \mathcal{W}\}) = 0$ .

783 *Proof.* The proof uses standard analytic and measure-theoretic tools, and is an adaptation of the  
 784 argument in the proof of (Nikolaou et al., 2025, Theorem C.1). Let  $\mathcal{W} \subseteq \Theta$  with  $\lambda(\mathcal{W}) = 0$ .  
 785 First, we apply (Nikolaou et al., 2025, Lemma C.6), that  $\lambda(\Phi^{-1}(\mathcal{W})) = 0$ . (Note that in this  
 786 paper, Lemma C.6 assumes the context of a transformer; however the proof only uses analyticity  
 787 of the components, and thus the result holds in our case). Then, because  $\mu \ll \lambda$ , it follows that  
 788  $\mu(\{\theta_0 \mid \Phi(\theta_0) \in \mathcal{W}\}) = \mu(\Phi^{-1}(\mathcal{W})) = 0$ . By applying the same argument  $T$  times, we find  
 789  $\mu(\{\theta_0 \mid \Phi^{\circ T}(\theta_0) \in \mathcal{W}\}) = 0$ .  $\square$

790 **Theorem 1.** Let  $G$  be a finite group acting on a set  $\mathcal{A}$  with action  $\alpha_{\mathcal{A}}$ , and on a vector space  $Z$  with a  
 791 representation  $\rho_Z$ , with  $\dim(Z) \geq |G|$ . Suppose that the group acts freely and transitively on some  
 792 subset  $\mathcal{S} \subseteq \mathcal{A}$ . If  $E : \mathcal{A} \rightarrow Z$  is an equivariant function and  $E(\mathcal{S})$  is full rank, then  $Z$  contains the  
 793 regular representation almost surely.

794 *Proof.* Let  $\mathbb{R}[\mathcal{S}]$  denote the vector space of all formal linear combinations of  $\mathcal{S}$  with coefficients in  
 795  $\mathbb{R}$ . Because  $\alpha_{\mathcal{A}}|_{\mathcal{S}}$  is free and transitive it must be equivalent to the action of  $G$  on itself, and hence  
 796 its linearization  $\mathbb{R}[\mathcal{S}]$  carries the structure of the regular representation. We write this representation  
 797 explicitly as  $\rho_{\mathbb{R}[\mathcal{S}]}(g)(\sum_s a_s s) := \sum_s a_s \alpha_{\mathcal{A}}(g)(s)$ . Now, we can define the linear map  $\tilde{E}^{\mathcal{S}} : \mathbb{R}[\mathcal{S}] \rightarrow Z$  by  $(\sum_s a_s s) \mapsto \sum_s a_s E(s)$ . Because  $E : \mathcal{A} \rightarrow Z$  is equivariant, we conclude that  
 798  $\tilde{E}^{\mathcal{S}} : \mathbb{R}[\mathcal{S}] \rightarrow Z$  is equivariant. Denote  $V := \text{Im}(\tilde{E}^{\mathcal{S}}) = \text{Span}_{\mathbb{R}}\{E(s) \mid s \in \mathcal{S}\}$ , which is a linear  
 799 subspace of  $Z$  of dimension at most  $|G|$ . By the first isomorphism theorem for representations (Fulton  
 800 & Harris, 2004), we have  $V \cong \mathbb{R}[\mathcal{S}] / \text{Ker}(\tilde{E}^{\mathcal{S}})$ . Finally, by assumption we have that  $E(\mathcal{S})$  is full  
 801 rank, implying that  $\text{Ker}(\tilde{E}^{\mathcal{S}})$  is trivial and that  $V$  is isomorphic to the regular representation  $\mathbb{R}[\mathcal{S}]$ .  
 802 Furthermore, we note that when  $\dim Z = |G|$ , it follows that  $Z$  must be isomorphic to the regular  
 803 representation itself.  $\square$

804 We now combine Lemma 7 and Theorem 1 to obtain guarantees on the existence of regular representations  
 805 in the latent space.

810  
 811 **Theorem 2.** Let  $G$  be a finite group,  $\mathcal{X} \subseteq \mathbb{R}^n$  an open and connected set,  $Z$  a vector space with  
 812  $\dim(Z) \geq |G|$ , and  $E_\theta : \mathcal{X} \rightarrow Z$  a function which is analytic on its domain  $\mathcal{X}$  for all parameter  
 813 values  $\theta \in \Theta \subseteq \mathbb{R}^p$ . Let  $G$  act on a set  $\mathcal{A} \subseteq \mathcal{X}$  with action  $\alpha_{\mathcal{A}}$ , and on  $Z$  with a representation  $\rho_Z$ .  
 814 Suppose that  $\alpha_{\mathcal{A}}$  is free and transitive on some  $\mathcal{S} \subseteq \mathcal{A}$ . Furthermore, suppose that the parameters are  
 815 randomly initialized and updated by gradient descent with respect to an analytic loss function  $\mathcal{L}$ :

$$\theta_0 \sim \mu, \mu \ll \lambda \text{ the Lebesgue measure on } \mathbb{R}^p$$

$$\theta_{t+1} := \Phi(\theta_t) := \theta_t - \eta \nabla \mathcal{L}(\theta_t) \text{ with } \eta \in (0, 1)$$

816 yielding an equivariant analytic function. Then, either  $Z$  contains the regular representation almost  
 817 surely, or  $E_\theta(\mathcal{S})$  is rank deficient for all possible parameterizations  $\theta \in \Theta$ .  
 818

819 *Proof.* Adopting the setup from the proof of Theorem 1, we must now show that  $Z$  contains the  
 820 regular representation almost surely, i.e. that  $\text{Ker}(\tilde{E}_\theta^{\mathcal{S}})$  is trivial almost surely or constantly zero  
 821 for all  $\theta \in \Theta$  and  $\mathcal{S} \subseteq \mathcal{A}$  on which  $\alpha_{\mathcal{A}}$  acts transitively. The linear function  $\tilde{E}_\theta^{\mathcal{S}}$  is fully specified  
 822 by its action on the basis  $\mathcal{S}$ , i.e.  $\{E_\theta(s) \mid s \in \mathcal{S}\}$ . Because  $V$  has dimension at most  $|G|$ , we may  
 823 embed each of the  $E_\theta(s)$  into  $y_s \in \mathbb{R}^{|G|}$ . Therefore, in matrix representation,  $\tilde{E}_\theta^{\mathcal{S}}$  is obtained by  
 824 collecting the vectors  $\{y_s \mid s \in \mathcal{S}\}$  in a  $|G| \times |G|$  matrix  $M_\theta^{\mathcal{S}}$ . The condition for the kernel to be  
 825 trivial is  $\det M_\theta^{\mathcal{S}} \neq 0$ . Now,  $\det M_\theta^{\mathcal{S}}$  is an analytic function, as each entry of  $M_\theta^{\mathcal{S}}$  is analytic by  
 826 analyticity of  $E_\theta^{\mathcal{S}}$ , and the determinant is a polynomial and hence analytic. Therefore, we get that  
 827 the set  $\mathcal{W} := \{\theta \in \Theta \mid \det M_\theta^{\mathcal{S}} = 0\}$  has measure zero with respect to  $\mu$  by Proposition 5 and  
 828 absolute continuity of  $\mu \ll \lambda$ , or it is constantly zero for all  $\theta \in \Theta$ . By Lemma 7, we then get that  
 829  $\mu(\{\theta_0 \in \Theta \mid \Phi^{\circ T}(\theta_0) \in \mathcal{W}\}) = 0$ , meaning that  $\det M \neq 0$  with probability 1.  $\square$   
 830

### 831 E.1 THE ANALYTICITY CONDITION

832 We remark that, as observed by Nikolaou et al. (2025), most standard modules used in neu-  
 833 ral network, such as linear layers, layer norm, skip connections, convolutions, attention, and  
 834 others are analytic. The same holds for many commonly used activation functions, such as  
 835 tanh, sigmoid, softplus, softmax, SiLU, GELU, SwiGLU. Therefore, the analytic condition does  
 836 not heavily restrict our analysis. For example, Nikolaou et al. (2025) highlight that decoder-  
 837 only transformers are analytic. However, others activation functions are only piece-wise analytic,  
 838 e.g. ReLU, LeakyReLU, ELU. For this reason, we repeat the TMNIST and MNIST experiments  
 839 from Section 4.2 with non-analytic encoders to empirically test whether our conclusions hold for this  
 840 class of networks. We find this to be the case, and we discuss it in Appendix F.3.  
 841

## 842 F EXPLORATORY EXPERIMENTS

843 This section is organized as follows:

- 844 • Section F.1 describes how we extract the embedded orbits and check their linear indepen-  
 845 dence to get the number of linearly independent orbits.
- 846 • Section F.2 contains further details for the exploratory experiments, including hyperparam-  
 847 eters and regularization terms for the algebra loss.
- 848 • Section F.3 repeats the TMNIST and MNIST experiments from Section 4.2 but for non-  
 849 analytic encoders.
- 850 • Section F.4 repeats the TMNIST experiment from Section 4.2 by varying the depth of the  
 851 layer considered as  $Z$ .
- 852 • Section F.5 repeats the TMNIST experiment from Section 4.2 by changing the initialization  
 853 scheme for the learnable group action  $\hat{\rho}_Z$ .

### 854 F.1 EXTRACTING EMBEDDED ORBITS AND CHECKING THEIR LINEAR INDEPENDENCE

855 We describe how we extract the embedded orbits and how we compute their linear independence.  
 856 Let  $E : \mathcal{X} \rightarrow Z$  denote the encoder, and  $G = \{g_1, \dots, g_n\}$  the finite group considered. First, we  
 857 compute the embedded orbit as  $E(\mathcal{O}_x) = \{\hat{\rho}_Z(g_i)(E(x))\}_{i \in \{1, \dots, n\}} \subseteq Z$  with  $|E(\mathcal{O}_x)| = |G|$ .  
 858



Figure 5: Examples of our augmented training dataset for the TMNIST experiment, from the chosen fonts ‘Bahianita-Regular’ (i), (iii) and ‘IBMPlexSans-MediumItalic’ (ii), (iv).

Then, given embedded orbits  $E(\mathcal{O}_{x_1}), \dots, E(\mathcal{O}_{x_m})$ , we collect all vectors in their union in a matrix  $K \in \mathbb{R}^{m|G| \times d}$ . These orbits are linearly independent if the matrix  $K$  is full rank, which is computed by checking that all its singular values are non-zero.

Each number in the ‘Orbits’ columns in the Tables from Sections 4.2 and Appendix F.3, F.4 and F.5 is the maximum number of linearly independent orbits found by randomly sampling combinations of training samples  $x \in \mathcal{X}$ . For each run, we sample 500 different combinations.

## F.2 FURTHER DETAILS FOR THE EXPLORATORY EXPERIMENTS

Here we give details of the exploratory experiments we describe in Section 4. These use the TMNIST, MNIST and CIFAR10 datasets to determine the optimal representation on the latent space. Sections F.2.1, F.2.2 and F.2.3 provide details of the architectures and regularisation terms used for each of these experiments. In all runs, we use the Adam optimiser Kingma & Ba (2017) with default parameters  $(\beta_1, \beta_2) = (0.9, 0.999)$ , and report additional hyperparameters in Table 6. These were chosen through a manual tuning process.

### F.2.1 TMNIST AUTOENCODER, $G = C_2$

This experiment uses the TMNIST dataset Magre & Brown (2022) of digits rendered in a variety of typefaces. We select a data subset corresponding to just two typefaces ‘IBMPlexSans-MediumItalic’ and ‘Bahianita-Regular’, and augment with  $180^\circ$  rotations. We give some examples of our augmented dataset in Figure 5. The group we use here is  $C_2 = \{1, a \mid a^2 = 1\}$  and, for a data point  $x$ , we define the group action  $\rho_{\mathcal{X}}(a)(x)$  to be the data point with the font swapped, but the rotation and scaling unchanged. In particular, with reference to images Figure 5(i)–(iv), we have  $\rho_{\mathcal{X}}(a)(i) = (ii)$ ,  $\rho_{\mathcal{X}}(a)(ii) = (i)$ ,  $\rho_{\mathcal{X}}(a)(iii) = (iv)$  and  $\rho_{\mathcal{X}}(a)(iv) = (iii)$ . For this experiment we set  $L_{\text{task}} = \text{MSE}$ , and we use a simple CNN autoencoder with hyperparameters given in Table 6. The architectural details can be found on the provided repository.

Table 6: Hyperparameters for exploratory experiments.

| Experiment    | Latent dim. | $\lambda_a$ | $\lambda_t$ | $\lambda_e$ | LR    | Batch Size |
|---------------|-------------|-------------|-------------|-------------|-------|------------|
| TMNIST $C_2$  | 8           | 1.0         | 0.5         | 1           | 0.003 | 64         |
| MNIST $D_3$   | 18          | 0.5         | 0.495       | 0.005       | 0.003 | 64         |
| CIFAR10 $C_4$ | 16          | 1.0         | 25          | 0.25        | 0.003 | 64         |

We use the following regularization term:

$$\text{REG}_{C_2,d} = \text{MSE}(\hat{\rho}_Z(a), \hat{\rho}_Z(a)^{-1}) \quad (3)$$

Here  $\hat{\rho}_Z(a)^{-1}$  is computed with  $\hat{\rho}_Z(a)^{-1} = \text{torch.linalg.solve}(\hat{\rho}_Z(a), \text{I}_d)$  for efficiency and numerical stability. We found empirically that this regularization helps to stabilize the training of  $\hat{\rho}_Z(a)$ , allowing us to achieve lower values for the algebra loss.

918 F.2.2 MNIST AUTOENCODER,  $G = D_3$   
919

920 This experiment uses the MNIST dataset Deng (2012) of handwritten digits. The group considered  
921 is  $D_3 = \{e, r, r^2, r^3, s, rs \mid r^3 = e, s^2 = e, rsrs = e\}$ , and on the input space we define the group  
922 action such that  $\rho_{\mathcal{X}}(r)(x)$  is the counterclockwise rotation of  $x$  by 120 degrees, and  $\rho_{\mathcal{X}}(s)(x)$  is the  
923 image generated by flipping  $x$  about the vertical axis. For this experiment, we set  $L_{\text{task}} = \text{MSE}$ , and  
924 use a simple MLP autoencoder with hyperparameters given in Table 6. The architectural details can  
925 be found on the provided repository.

926 We use the following regularization term:

$$927 \text{REG}_{D_3,d} = -0.995 \text{MSE}(\hat{\rho}_Z(r)\hat{\rho}_Z(s)\hat{\rho}_Z(r)\hat{\rho}_Z(s), \mathbf{I}_d) \quad (4)$$

928 We determined empirically that this regularization dampens the interaction between the matrices  
929  $\hat{\rho}_Z(r)$  and  $\hat{\rho}_Z(s)$  in a way that improves training. Low final values of the algebra loss reported in  
930 Table 1 give evidence that we still obtain a high-quality representation despite this damping.

931 F.2.3 CIFAR10 CLASSIFIER,  $G = C_4$   
932

933 This experiment uses the CIFAR10 dataset Krizhevsky (2009) of 32x32 images organised in 10  
934 classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck. The group considered  
935 is the cyclic group of size four  $C_4$  of addition on the set  $\{0, 1, 2, 3\}$  modulo 4. The element 1 is a  
936 generator for this group, and for an input vector  $x$ , we define the group action such that  $\rho_{\mathcal{X}}(1)(x)$  is  
937 the rotation of  $x$  by 90 degrees counterclockwise. For this experiment we set  $L_{\text{task}} = \text{CrossEntropy}$ ,  
938 and use a simple CNN classifier with hyperparameters given in Table 6. The architectural details can  
939 be found on the provided repository.

940 The regularization term used is the following:

$$941 \text{REG}_{C_4,d} = \text{MSE}(\hat{\rho}_Z(1)^3, \hat{\rho}_Z(1)^{-1}) \quad (5)$$

942 Here,  $\hat{\rho}_Z(1)^{-1}$  is computed with  $\hat{\rho}_Z(1)^{-1} = \text{torch.linalg.solve}(\hat{\rho}_Z(1), \mathbf{I}_d)$  for efficiency  
943 and numerical stability. We determined empirically that this regularization helps to stabilize the  
944 training of  $\hat{\rho}_Z(1)$  and the behavior of its inverse.

945 F.3 EXPLORATORY EXPERIMENTS FOR NON-ANALYTIC ENCODERS  
946

947 In this section, we repeat the same experiments for TMNIST  $C_2$  and MNIST  $D_3$  from Section 4.2  
948 but for non-analytic encoders. In particular, we use the same architecture but we replace the tanh  
949 activation function with ReLU. Table 7 shows similar results as the fully analytic encoders (Table 1),  
950 suggesting empirically that the optimization process avoids any potentially degenerate regions.

951 Table 7: Piece-wise analytic encoder experiments. Left, TMNIST autoencoder task, learned representations  
952 of  $C_2$  on latent space. Right, MNIST autoencoder task, learned representations of  $D_3$  on  
953 latent space.

| 954 | Run | Irrep. counts |    |                      | Orbs.                | Irrep. counts |      |      | Orbs. |                      |                      |   |
|-----|-----|---------------|----|----------------------|----------------------|---------------|------|------|-------|----------------------|----------------------|---|
|     |     | -1            | +1 | Alg. loss            |                      | Triv          | Sgn  | Std  |       |                      |                      |   |
| 955 | 1   | 4             | 4  | $5.7 \times 10^{-5}$ | $4.6 \times 10^{-3}$ | 4             | 3.01 | 3.01 | 5.99  | $1.2 \times 10^{-3}$ | $1.3 \times 10^{-2}$ | 3 |
| 956 | 2   | 3             | 5  | $6.7 \times 10^{-9}$ | $6.6 \times 10^{-6}$ | 3             | 2.98 | 2.98 | 6.01  | $6.1 \times 10^{-4}$ | $2.3 \times 10^{-2}$ | 3 |
| 957 | 3   | 4             | 4  | $2.7 \times 10^{-8}$ | $2.5 \times 10^{-5}$ | 4             | 3.32 | 3.36 | 5.66  | $3.1 \times 10^{-2}$ | $1.4 \times 10^{-2}$ | 3 |
| 958 | 4   | 4             | 4  | $2.3 \times 10^{-9}$ | $4.2 \times 10^{-6}$ | 4             | 3.03 | 3.31 | 5.69  | $1.4 \times 10^{-2}$ | $1.2 \times 10^{-2}$ | 3 |
| 959 | 5   | 3             | 5  | $6.0 \times 10^{-9}$ | $1.9 \times 10^{-5}$ | 3             | 2.98 | 2.98 | 6.02  | $8.5 \times 10^{-4}$ | $1.3 \times 10^{-2}$ | 3 |

960 F.4 EXPLORATORY EXPERIMENTS AT DIFFERENT LAYER DEPTHS  
961

962 In this section, we repeat the TMNIST experiment from Section 4.2 for different layer depths. In  
963 the original experiment, we choose to study equivariance with respect to the layer  $Z$  chosen as the  
964 central hidden layer (the output layer of the encoder). Table 8 shows the results of choosing  $Z$  as the  
965 first or last hidden layer. The results are similar to those in Section 4.2: each linearly independent  
966 embedded orbit corresponds to a copy of the regular representation, and the network tends to learn a  
967 multiple of it.

972 Table 8: TMNIST experiment with  $Z$  at different depths. Left:  $Z$  is taken as the first hidden layer;  
 973 Right:  $Z$  is taken as the final hidden layer.

| 975 | Irrep. counts |    |    |                       |                      | 976 | Irrep. counts |    |    |                       |                      |       |
|-----|---------------|----|----|-----------------------|----------------------|-----|---------------|----|----|-----------------------|----------------------|-------|
|     | Run           | -1 | +1 | Alg. loss             | Eq. loss             |     | Run           | -1 | +1 | Alg. loss             | Eq. loss             | Orbs. |
| 977 | 1             | 3  | 5  | $4.9 \times 10^{-10}$ | $1.1 \times 10^{-4}$ | 3   | 1             | 3  | 5  | $6.8 \times 10^{-9}$  | $4.5 \times 10^{-4}$ | 3     |
| 978 | 2             | 3  | 5  | $4.2 \times 10^{-9}$  | $1.6 \times 10^{-4}$ | 3   | 2             | 4  | 4  | $9.3 \times 10^{-10}$ | $3.7 \times 10^{-4}$ | 4     |
| 979 | 3             | 4  | 4  | $1.0 \times 10^{-10}$ | $6.2 \times 10^{-5}$ | 4   | 3             | 3  | 5  | $1.8 \times 10^{-8}$  | $4.5 \times 10^{-4}$ | 3     |
| 980 | 4             | 4  | 4  | $2.3 \times 10^{-6}$  | $3.0 \times 10^{-5}$ | 4   | 4             | 4  | 4  | $6.9 \times 10^{-10}$ | $4.6 \times 10^{-4}$ | 4     |
| 981 | 5             | 3  | 5  | $9.0 \times 10^{-10}$ | $1.2 \times 10^{-4}$ | 3   | 5             | 4  | 4  | $2.3 \times 10^{-8}$  | $4.4 \times 10^{-4}$ | 4     |

## 984 F.5 EXPLORATORY EXPERIMENT WITH DIFFERENT INITIALIZATION

985 In this section, we repeat the TMNIST experiment from Section 4.2 but with a different initialization  
 986 scheme. While Table 1 shows results for  $\hat{\rho}_Z$  initialized according to a normal distribution  $\mathcal{N}(\mathbf{0}, \mathbf{I}_d)$ ,  
 987 Table 9 shows results for the same experiment with  $\hat{\rho}_Z$  initialized close to the identity as  $\mathbf{I}_d + \mathcal{N}(\mathbf{0}, \mathbf{I}_d)$ .

988 The results confirm Theorem 1, as each linearly independent embedded orbit contributes one copy  
 989 of the regular representation. However, the network typically does not learn a representation that  
 990 consists entirely of a multiple of the regular representation. We observe that the trivial representation,  
 991 corresponding to the eigenvalue +1 of  $\hat{\rho}_Z$  is over-represented. We hypothesize that the strong  
 992 priming given by the initialization prevents a full exploration of the parameter space. To establish the  
 993 practical advantage of the regular representation, we provide ablations with the trivial representation  
 994 in controlled settings (Sections 6.1 and 6.2).  
 995

996 Table 9: TMNIST experiment with  $\hat{\rho}_Z$  initialized close to the identity.

| 997  | Irrep. counts |    |    |                      |                      | 998 |
|------|---------------|----|----|----------------------|----------------------|-----|
|      | Run           | -1 | +1 | Alg. loss            | Eq. loss             |     |
| 1000 | 1             | 2  | 6  | $3.1 \times 10^{-5}$ | $2.9 \times 10^{-4}$ | 2   |
| 1001 | 2             | 2  | 6  | $9.5 \times 10^{-4}$ | $0.3 \times 10^{-4}$ | 2   |
| 1002 | 3             | 2  | 6  | $9.5 \times 10^{-4}$ | $1.6 \times 10^{-4}$ | 2   |
| 1003 | 4             | 2  | 6  | $4.6 \times 10^{-5}$ | $1.8 \times 10^{-4}$ | 2   |
| 1004 | 5             | 2  | 6  | $2.4 \times 10^{-5}$ | $9.1 \times 10^{-5}$ | 2   |
| 1005 |               |    |    |                      |                      |     |

## 1006 G MAIN EXPERIMENTS

1007 Here we give details of the main experiments we describe in Section 6, which test our model of  
 1008 Section 5 on tasks using the DDMNIST, MedMNIST, SMOKE and SHREC’11 datasets. Section  
 1009 G.1 discusses Cohen’s  $d$ -statistic, which we use to assess the effect size of our intervention. Sections  
 1010 G.2, G.3, G.4 and G.5 provide details of the datasets, architectures and hyperparameters that we  
 1011 use, together with an effect size analysis. In all runs we use the Adam optimizer Kingma & Ba  
 1012 (2017) with default parameters  $(\beta_1, \beta_2) = (0.9, 0.999)$ , with weight decay set to 0 for DDMNIST  
 1013 and MedMNIST, and set to  $4 \times 10^{-4}$  for SMOKE.

### 1014 G.1 COHEN’S $d$ -STATISTIC

1015 Cohen’s  $d$ -statistic is a widely-adopted metric (Miranda et al., 2025; Huang et al., 2024; Gundersen  
 1016 et al., 2023; Karandikar et al., 2021; Hermann et al., 2024) to assess effect size, i.e. the meaningfulness  
 1017 of the difference between distributions. In particular, Cohen’s  $d$  quantifies the difference between  
 1018 two distributions in standard deviation units. Commonly used thresholds in machine learning are the  
 1019 following (Hermann et al., 2024):

- 1020 •  $|d| < 0.5$ , small effect
- 1021 •  $0.5 \leq |d| < 0.8$ , medium effect

1026      •  $0.8 \leq |d| < 1.2$ , large effect  
 1027      •  $1.2 \leq |d|$ , very large effect  
 1028

1029 Suppose we are given  $n_1$  and  $n_2$  observations of two distributions, with means  $\bar{x}_1$  and  $\bar{x}_2$ , and  
 1030 standard deviations  $s_1$  and  $s_2$  respectively. Cohen’s  $d$  is then defined as follows:  
 1031

$$1032 \quad d = \frac{\bar{x}_1 - \bar{x}_2}{s}, \quad s = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}} \quad (6)$$

1033

1034 To assess the effect size of our model, we choose  $\bar{x}_1$  to be the mean result of our model on a particular  
 1035 task, and  $\bar{x}_2$  to be the mean result of a benchmark model. When reported in the tables below, we  
 1036 choose the sign of the effect value so that a positive value indicates our model performed better.  
 1037

1038 **G.2 DDMNIST EXPERIMENTS**

1039 **Data preparation.** We follow closely the setup of the originators Veefkind and Cesa Veefkind &  
 1040 Cesa (2024). To generate this dataset, pairs of MNIST 28x28 images are chosen uniformly at random,  
 1041 and independently augmented according to the corresponding group action for  $G \in \{C_4, C_2, D_4\}$   
 1042 as per Table 10. We give an example in Figure 6. To ensure comparability of our results with the  
 1043 original paper, for  $G \in \{C_4, D_4\}$  we follow their method of introducing interpolation artefacts by  
 1044 rotating each digit image by a random angle  $\theta \in [0, 2\pi)$ , and then rotating it back by  $-\theta$ ; for  $G = C_2$   
 1045 these interpolation artefacts are not added, in line with the original paper. Finally, the two images are  
 1046 concatenated horizontally, and padded so that the final image is  $56 \times 56$ . In this way, we obtain a  
 1047 dataset of 10,000 images with labels in the set  $\{(0, 0), (0, 1), \dots, (9, 9)\}$ .  
 1048

1049 Table 10: Symmetry groups and their actions on DDMNIST.

| Group | Type     | Generators                             | Size |
|-------|----------|----------------------------------------|------|
| $C_4$ | Cyclic   | 90° rotation                           | 4    |
| $C_2$ | Dihedral | Horizontal reflection                  | 2    |
| $D_4$ | Dihedral | Horizontal reflection and 90° rotation | 8    |



1067 Figure 6: Examples of training data for the DDMNIST experiment with  $G = D_4$ . The left figure  
 1068 shows concatenated MNIST digits, and the right figure shows the result after a random augmentation.  
 1069 In this instance, the left digit is augmented with a reflection about the vertical axis, and the right digit  
 1070 is augmented with a clockwise 90-degree rotation.  
 1071

1072 **Architecture.** We use the same CNN architecture as in Veefkind and Cesa Veefkind & Cesa (2024),  
 1073 except that the final convolutional layer has an increased number of filters, from 48 to 66. We make  
 1074 this change so that we can fit a copy of the regular representation of  $D_4 \times D_4$ . To ensure a fair  
 1075 comparison, the results reported in Table 3, including those for SCNN, RPP, etc, are those obtained  
 1076 with the increased number of filters, which we found marginally improved performance. Furthermore,  
 1077 we use a different learning rate for the CNN model, as we found that this increased performance and  
 1078 ensured a more meaningful baseline comparison. The CNN architectural details can be found on the  
 1079 provided repository.

1080  
 1081 **Hyperparameters.** We report the hyperparameters used for the CNN and our model for the DDM-  
 1082 NIST experiments in Table 11. These hyperparameters were chosen after a grid search with the  
 1083 following values: learning rate  $\in \{0.001, 0.005, 0.0001, 0.0005, 0.00001, 0.00005\}$ , and equivari-  
 1084 ance coupling strength  $\lambda \in \{0.5, 1, 1.5, 2\}$ . All other hyperparameters match those used by Veefkind  
 1085 and Cesa.

1086 Table 11: Hyperparameters for DDMNIST experiments.  
 1087

|                | $C_4$  |           | $C_2$ |           | $D_4$  |           |
|----------------|--------|-----------|-------|-----------|--------|-----------|
|                | LR     | $\lambda$ | LR    | $\lambda$ | LR     | $\lambda$ |
| CNN            | 0.0005 | -         | 0.001 | -         | 0.0005 | -         |
| Standard rep   | -      | -         | -     | -         | 0.0005 | 1         |
| Ours (regular) | 0.001  | 2         | 0.001 | 1         | 0.0005 | 1         |

1093  
 1094 **Effect size analysis.** We report the effect size of our intervention in Table 12. For each model, the  
 1095 ‘Effect’ column reports the Cohen  $d$ -value, comparing that model against ‘Ours’ with the regular  
 1096 representation. We observe that, for each model considered, there is at least one task where the  
 1097 difference with our model is very large according to Cohen’s  $d$  statistic (Appendix G.1).  
 1098

1100 Table 12: DDMNIST test accuracies and effect sizes. Mean over 3 runs; standard deviation in  
 1101 brackets. Best result in each column is bold, second-best is underlined. For  $C_2, C_4$  the defining  
 1102 representation is equivalent to the regular representation and so is omitted. Effect values compare  
 1103 to ‘Ours (regular)’, and a positive value means ours performed better. The annotations \*, \*\*, \*\*\*  
 1104 indicate medium, large and very large effect sizes respectively.

| Model          | $C_4 \uparrow$       | Effect  | $C_2 \uparrow$       | Effect   | $D_4 \uparrow$       | Effect  |
|----------------|----------------------|---------|----------------------|----------|----------------------|---------|
| CNN            | 0.907 (0.004)        | 2.0***  | <u>0.938</u> (0.006) | 1.8***   | 0.800 (0.001)        | 43.0*** |
| SCNN           | 0.484 (0.008)        | 68.2*** | <u>0.474</u> (0.003) | 133.8*** | 0.431 (0.010)        | 60.6*** |
| Restriction    | <u>0.914</u> (0.007) | 0.2     | 0.890 (0.007)        | 10.0***  | 0.837 (0.020)        | 2.2***  |
| PPR            | 0.908 (0.022)        | 0.4     | 0.903 (0.009)        | 6.3***   | 0.827 (0.020)        | 2.9***  |
| PSCNN          | 0.909 (0.007)        | 1.1**   | 0.871 (0.016)        | 6.5***   | <u>0.842</u> (0.011) | 3.3***  |
| Trivial rep    | 0.874 (0.004)        | 10.0*** | 0.938 (0.007)        | 1.6***   | 0.819 (0.004)        | 15.5*** |
| Defining rep   | —                    | —       | —                    | —        | 0.838 (0.010)        | 4.2***  |
| Ours (regular) | <b>0.915</b> (0.004) | —       | <b>0.947</b> (0.004) | —        | <b>0.868</b> (0.002) | —       |

## 1115 G.3 MEDMNIST EXPERIMENTS

1116 **Data preparation.** For this experiment, we use three subsets of the MedMNIST dataset Yang  
 1117 et al. (2023), in line with Veefkind and Cesa Veefkind & Cesa (2024): Nodule3D, Synapse3D and  
 1118 Organ3D, each containing 3D images of size 28x28x28. Nodule3D is a public lung nodule dataset,  
 1119 containing 3D images from thoracic CT scans; for this dataset, the task is to classify each nodule as  
 1120 benign or malignant. Synapse3D contains 3D images obtained from an adult rat with a multi-beam  
 1121 scanning electron microscope; the task is to classify whether a synapse is excitatory or inhibitory.  
 1122 Organ3D is a classification task for 3D images of human body organs, with the following labels:  
 1123 liver, right kidney, left kidney, right femur, left femur, bladder, heart, right lung, left lung, spleen and  
 1124 pancreas.  
 1125

1126 For augmentations, we choose the octahedral group of orientation-preserving rotational symmetries of  
 1127 the cube, which is isomorphic to the permutation group  $S_4$ . We define its action  $\rho_{\mathcal{X}}(g)$  on a 3D image  
 1128  $x$  by applying the corresponding rotational symmetry of the cube. Specifically, we parameterise  $g$  as  
 1129 a tuple  $(l, \theta)$  where  $l = (x, y, z)$  specifies a rotation axis and  $\theta$  specifies the rotation angle about the  
 1130 axis  $l$  to obtain 24 rotation matrices each with size  $3 \times 3$ , one for each of the 24 elements of  $S_4$ . In  
 1131 summary, we have rotation matrices corresponding to the following tuples:

1132 Identity (1)  $(l, 0)$  for any  $l$ .  
 1133 Coord-axis (9)  $(l, \theta)$  for  $l \in \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$  and  $\theta \in \{\frac{\pi}{2}, \pi, \frac{3\pi}{2}\}$ .

1134 Edge-mid (6)  $(l, \theta)$  for  $l \in \{(1, 1, 0), (1, -1, 0), (1, 0, 1), (1, 0, -1), (0, 1, 1), (0, 1, -1)\}$ 1135 and  $\theta = \pi$ .1136 Body-diag (8)  $(l, \theta)$  for  $l \in \{(1, 1, 1), (1, 1, -1),$   
1137  $(1, -1, 1), (-1, 1, 1)\}$  and  $\theta \in \{\frac{2\pi}{3}, \frac{4\pi}{3}\}$ .

1138

1139 **Architecture.** For these experiments we use the same CNN-based ResNet architecture as Veefkind  
1140 and Cesa Veefkind & Cesa (2024). This is formed from seven 3D convolutional layers, formed into  
1141 3 blocks with residual connections, along with batch normalisation and pooling. The architectural  
1142 details can be found on the provided repository.

1143

1144 **Hyperparameters.** We report the hyperparameters used for the baseline with  $S_4$  augmen-  
1145 tations, and for our model in the MedMNIST experiments in Table 13. These hyper-  
1146 parameters were chosen after a grid search with the following values: learning rate  $\in$   
1147  $\{0.001, 0.005, 0.0001, 0.0005, 0.00001, 0.00005\}$ , and equivariance coupling strength  $\lambda \in$   
1148  $\{0.5, 1, 1.5, 2\}$ . All other hyperparameters are the same as those used by Veefkind and Cesa.

1149

Table 13: Hyperparameters for MedMNIST experiments.

|  |                 | Nodule3D |           | Synapse3D |           | Organ3D |           |
|--|-----------------|----------|-----------|-----------|-----------|---------|-----------|
|  |                 | LR       | $\lambda$ | LR        | $\lambda$ | LR      | $\lambda$ |
|  | CNN (Augmented) | 0.00005  | -         | 0.0001    | -         | 0.0001  | -         |
|  | Ours            | 0.00005  | 1         | 0.0001    | 1         | 0.0001  | 2         |

1156

1157

1158 **Effect size analysis.** We report the effect size of our intervention in Table 14. For each model,  
1159 the ‘Effect’ column reports the Cohen  $d$ -value comparing that model against ‘Ours’ with the regular  
1160 representation. We observe that, for each model considered, there is at least one task where the  
1161 difference with our model is very large according to Cohen’s  $d$  statistic (Appendix G.1).

1162

1163 Table 14: MedMNIST3D test accuracies and effect sizes. Mean over 3 runs; standard deviation in  
1164 brackets. Parameter counts shown. Best result in each column is bold, second-best is underlined.  
1165 Effect values compare to ‘Ours (regular)’, and a positive value means ours performed better. The  
1166 annotations \*, \*\*, \*\*\* indicate medium, large and very large effect sizes respectively.

1167

| Group               | Model          | Nodule $\uparrow$    | Effect   | Synapse $\uparrow$   | Effect   | Organ $\uparrow$     | Effect   |
|---------------------|----------------|----------------------|----------|----------------------|----------|----------------------|----------|
| N/A                 | CNN            | 0.873 (0.005)        | 2.80***  | 0.716 (0.008)        | 9.26***  | 0.920 (0.003)        | -7.01*** |
| Aug                 | CNN            | 0.879 (0.007)        | 1.32***  | 0.761 (0.008)        | 1.54***  | 0.632 (0.005)        | 0.25     |
| SO(3)               | SCNN           | 0.873 (0.002)        | 3.68***  | 0.738 (0.009)        | 4.91***  | 0.607 (0.006)        | 0.88**   |
| SO(3)               | RPP            | 0.801 (0.003)        | 20.86*** | 0.695 (0.037)        | 2.86***  | <u>0.936</u> (0.002) | -7.42*** |
| SO(3)               | PSCNN          | 0.871 (0.001)        | 4.44***  | <b>0.770</b> (0.030) | 0.00     | 0.902 (0.006)        | -6.53*** |
| O(3)                | SCNN           | 0.868 (0.009)        | 2.61***  | 0.743 (0.004)        | 8.54***  | 0.902 (0.006)        | -6.53*** |
| O(3)                | RPP            | 0.810 (0.013)        | 7.82***  | 0.722 (0.023)        | 2.94***  | <b>0.940</b> (0.006) | -7.48*** |
| O(3)                | PSCNN          | 0.873 (0.008)        | 2.10***  | <u>0.769</u> (0.005) | 0.26     | 0.905 (0.004)        | -6.62*** |
| Sym <sub>cube</sub> | Trivial rep    | 0.867 (0.001)        | 5.55***  | 0.743 (0.002)        | 13.50*** | 0.571 (0.002)        | 1.79***  |
| Sym <sub>cube</sub> | Defining rep   | 0.837 (0.013)        | 5.08***  | 0.756 (0.019)        | 1.04**   | 0.560 (0.025)        | 1.89***  |
| Sym <sub>cube</sub> | Ours (regular) | <b>0.887</b> (0.005) |          | <b>0.770</b> (0.002) |          | 0.642 (0.056)        |          |

1178

1179

## 1180 G.4 SMOKE EXPERIMENT

1181

1182 **Data preparation.** Here we use the SMOKE dataset of Wang et al. Wang et al. (2022), which  
1183 consists of smoke simulations with varying intial conditions and external forces presented as grids of  
1184  $(x, y)$  components of a velocity field (see Figure 7 for a visualisation). The task is to predict the next  
1185 6 frames of the simulation given the first 10 frames only. We evaluate each model on two metrics:  
1186 Future, where the test set contains future extensions of instances in the training set; and Domain,  
1187 where the test and training sets are from different instances. In line with Wang et al. (2022), we  
1188 consider the group  $C_4$  acting on the data by 90° rotations and reorientation of the velocity field, as  
1189 illustrated in Figure 8.



Figure 7: Approximately equivariant dynamics of smoke plumes Holl et al. (2020).



Figure 8: Examples of a velocity field and its augmentations with and without reorientation. Rotating by 90° counterclockwise without reorienting simply moves the spatial grid, but breaks the physical meaning of the underlying system.

**Architecture.** We use the same CNN architecture, train and evaluation setups as in Veefkind and Cesa Veefkind & Cesa (2024), which they reproduced from Wang et al. Wang et al. (2022). The architectural details can be found on the provided repository. Because the latent space has the same geometric structure as the input data, i.e.  $Z = \mathbb{R}^c \times \mathbb{R}^h \times \mathbb{R}^w$  (channels  $\times$  height  $\times$  width), we choose a representation of  $C_4$  given by the regular representation in each channel separately.

**Hyperparameters.** For both CNN models, with  $C_4$  augmentations and without, and for our model, we use a learning rate of 0.001. Additionally, for our model, we set  $\lambda = 0.005$ . These hyperparameters were chosen after a grid search with the following values: learning rate  $\in \{0.001, 0.005, 0.0001, 0.0005\}$ , and equivariance coupling strength  $\lambda \in \{0.005, 0.05, 0.5, 1\}$ . For all other hyperparameters, we copy the values used by Veefkind and Cesa.

**Effect size analysis.** We report the effect size of our intervention in Table 15. For each model, the ‘Effect’ column reports the Cohen  $d$ -value comparing that model against ‘Ours’ with the regular representation. We observe that, for each model considered, there is at least one metric where the difference with our model is very large according to Cohen’s  $d$  statistic (Appendix G.1).

## G.5 SHREC ‘11 EXPERIMENT

**Data preparation.** We use the SHREC ‘11 dataset Lian et al. (2011); Mitchel et al. (2022) where each 3D shape is also transformed with conformal transformations. We perform augmentation according to the group  $O_h$  of octahedral symmetries.

**Architecture.** We use the same architecture as the original authors Mitchel et al. (2024), which is a ResNet-based autoencoder. Similarly to the smoke experiment, the latent space retains a geometric structure. Therefore, we choose a representation of  $O_h$  given by the regular representation in each channel separately.

**Hyperparameters.** Due to computational constraints, we do not perform hyperparameter tuning, and we keep the same hyperparameters as the original authors Mitchel et al. (2024), except that we set the batch size to 4. We set  $\lambda = 0.5$ . Additionally, we symmetrize the equivariance loss to the

1242 Table 15: Test RMSE and effect for the SMOKE dataset. Effect values compare to ‘Ours’, and a  
 1243 positive value means ours performed better. The annotations \*, \*\*, \*\*\* indicate medium, large and  
 1244 very large effect sizes respectively.

| Group | Model  | Future ↓           | Effect  | Domain ↓           | Effect  |
|-------|--------|--------------------|---------|--------------------|---------|
| N/A   | CNN    | 0.81 (0.01)        | 3.0***  | 0.63 (0.00)        | 2.8***  |
| Aug   | CNN    | 0.83 (0.03)        | 2.2***  | 0.67 (0.06)        | 1.4***  |
| N/A   | MLP    | 1.38 (0.06)        | 14.0*** | 1.34 (0.03)        | 32.6*** |
| C4    | E2CNN  | 1.05 (0.06)        | 6.3***  | 0.76 (0.02)        | 9.5***  |
| C4    | RPP    | 0.96 (0.10)        | 2.5***  | 0.82 (0.01)        | 21.0*** |
| C4    | Lift   | 0.82 (0.01)        | 4.0***  | 0.73 (0.02)        | 7.6***  |
| C4    | RGroup | 0.82 (0.01)        | 4.0***  | 0.73 (0.02)        | 7.6***  |
| C4    | RSteer | 0.80 (0.00)        | 2.8***  | 0.67 (0.01)        | 6.0***  |
| C4    | PSCNN  | <b>0.77</b> (0.01) | -1.0**  | <b>0.57</b> (0.00) | -5.7*** |
| C4    | Ours   | <u>0.78</u> (0.01) |         | <u>0.61</u> (0.01) |         |

1255 decoder too, i.e., with  $\lambda' = 0.8$ ,

$$\lambda' \|\rho_{\mathcal{X}}(g)(x) - D(\rho_Z(g)(E(x)))\|$$

1262 **Effect size analysis.** We report the effect size of our intervention in Table 16. For each model,  
 1263 the ‘Effect’ column reports the Cohen  $d$ -value comparing that model against ‘Ours’ with the regular  
 1264 representation. We observe that, for the augmented baseline and NFT, the difference with our model  
 1265 is very large according to Cohen’s  $d$  statistic (Appendix G.1). The same analysis reveals that NIso  
 1266 and our model are essentially equivalent on this task.

1267 Table 16: Test accuracies and effect for the SHREC ’11 dataset. Effect values compare to ‘Ours’, and  
 1268 a positive value means ours performed better. The annotations \*, \*\*, \*\*\* indicate medium, large and  
 1269 very large effect sizes respectively.

| Model                      | Acc. ↑              | Effect |
|----------------------------|---------------------|--------|
| NIso Mitchel et al. (2024) | <u>90.26</u> (1.27) | 0.1    |
| NFT Koyama et al. (2024)   | 83.24 (2.03)        | 3.5*** |
| AE with aug                | 69.36 (2.81)        | 8.5*** |
| MC Mitchel et al. (2022)   | 86.5                | –      |
| Ours                       | <b>90.45</b> (2.1)  |        |

1296 

## H SENSITIVITY ANALYSIS

1297

1298 To assess the practical usability of our method, we performed a sensitivity analysis on the hyper-
1299 parameter  $\lambda$ , which controls the strength of the equivariance loss. We evaluated our model on the
1300 DDMNIST  $D_4$  task across six different values for  $\lambda$ :  $\{0, 0.05, 0.5, 1, 1.5, 2\}$ , with  $\lambda = 0$  being the
1301 baseline. The results, reported in Figure 9, show that while peak performance is achieved at  $\lambda = 1$ ,
1302 the model maintains high accuracy and low variance across a wide range of values (0.5 to 2.0). This
1303 analysis demonstrates that our method is robust to the specific choice of  $\lambda$ .

1304 Figure 9: Mean accuracy and standard deviation (over 5 runs) for different values of  $\lambda$  on the
1305 DDMNIST  $D_4$  task.  $\lambda = 0$  is the baseline.
