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ABSTRACT

Equivariant neural networks incorporate symmetries through group actions, embed-
ding them as an inductive bias to improve performance. Prominent methods learn
an equivariant action on the latent space, or design architectures that are equivariant
by construction. These approaches often deliver strong empirical results but can
impose architecture-specific constraints, large parameter counts, and high computa-
tional cost. We challenge the paradigm of complex equivariant architectures with a
parameter-free approach grounded in representation theory. We prove that for an
equivariant encoder over a finite group, the latent space must almost surely contain
one copy of the regular representation for each linearly independent data orbit,
which we explore with a number of empirical studies. Leveraging this foundational
algebraic insight, we impose the regular representation as an inductive bias via an
auxiliary loss, adding no learnable parameters. Our extensive evaluation shows
that this method matches or outperforms specialized models in several cases, even
those for infinite groups. We further validate our choice of the regular represen-
tation through an ablation study, showing it consistently outperforms a defining
representation baseline.

1 INTRODUCTION

DE

X Y

αX αYρZ

Z

Figure 1: Generic architecture with input set X ,
latent space Z and output set Y , carrying group
actions αX , αY on the input and output spaces,
and potentially a representation ρZ on the latent
space.

When we consider the problem of designing a
neural network to solve a given task, we com-
monly observe the existence of a symmetry
group G that acts naturally on the training data.1
We illustrate a generic architecture in Figure 1,
which we interpret broadly: E may be any sort
of feature extractor, such as in an encoder or
classifier; and D may be any final component
that produces outputs from latent representa-
tions, such as a classifier head or decoder. On
the input and output sets, the actions αX , αY
transform the corresponding data, which we may
want to be respected by our neural network.

However, for certain tasks we can expect only approximate equivariance, where a transformation of
the input vector corresponds inexactly, or nondeterministically, to a transformation of the outputs.
This most general setup is typical of many real-world tasks, where we may encounter approximate
scale-invariance or rotation-equivariance of turbulent dynamics (Holmes, 2012; Holl et al., 2020),
and approximate reflection-invariance of pathologies in medical images (Yang et al., 2023).

A rich body of work in machine learning aims to learn a group representation ρZ that acts linearly on
the latent space, satisfying a suitable equivariance property. This can be attractive, as it may reduce a
complex nonlinear action on the training set to an easily-computable linear function. Furthermore, this
approach has been shown to yield improved performance for invariant, equivariant, or approximately
equivariant tasks (see Section 2 for a brief survey). However, the performance benefits of many of

1We give a formal definition of a group action on a vector space (group representation) in Section 3.
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these state-of-the-art methods often come at the cost of high model complexity, increased training
times, and significantly elevated parameter counts compared to their non-equivariant counterparts.

Our research is guided by the following question: for a known finite symmetry group, can we
leverage a theoretically-principled understanding of the latent algebraic structure to achieve
the benefits of (approximate) equivariance, without the parameter and architectural costs of
current methods? Our core theoretical contribution is a proof that for any equivariant encoder
the latent space must contain the regular representation almost surely. Based on this finding, we
propose a new, lightweight training regime: we fix the latent representation to be a multiple of the
regular representation, and enforce this algebraic prior with an auxiliary loss. This approach yields
strong performance on a variety of invariant, equivariant, and approximately-equivariant tasks. We
summarize our main contributions as follows.

• We present a new lightweight method with no additional learnable parameters for training
neural networks to solve invariant, equivariant and approximately-equivariant tasks, where a
finite group acts on the training set with a known action.

• We provide a theoretical characterization of latent space representations under data aug-
mentation and an equivariant encoder, showing that the regular representation must appear
almost surely. Building on this insight, we empirically validate that neural networks tend to
learn a linear action aligned with this structure.

• We show that our method is competitive with or exceeds state-of-the-art in a range of bench-
marks, despite having only a single tunable hyper-parameter, and no additional learnable
parameters, while alternative approaches typically have large learnable parameter demands
(in some cases 5-20 times baseline).

2 RELATED WORK

A wide variety of methods have been developed to train neural networks to solve tasks in the presence
of invariance, equivariance, or approximate equivariance. We give a brief summary here of those
methods which are most relevant for our present work.

One of the most studied bodies of work derive from Convolutional Neural Networks (CNNs), which
of course have strict translation invariance in their traditional form (LeCun & Bengio, 1998; Shorten
& Khoshgoftaar, 2019). Weiler et al. employ the framework of steerable functions (Hel-Or & Teo,
1998) to construct a rotation-equivariant Steerable CNN architecture (SCNN) (Cohen & Welling,
2016), which strictly respects both translation and rotation equivariance; this was later generalised
to develop a theory of general E(2)-equivariant steerable CNNs (E2CNN), which allow the degree
of equivariance to be controlled by explicit choices of irreducible representation of the symmetry
group (Weiler & Cesa, 2019). Such a network can avoid learning redundant rotated copies of the same
filters. A similar method is that of Mobius Convolutions (MC) (Mitchel et al., 2022). Wang, Walters
and Yu, utilise steerable filters to obtain convolution layers with approximate translation symmetry
and without rotation symmetry (RSteer), and with approximate translation and rotation symmetry
(RGroup) (Wang et al., 2022). These authors relax the strict weight tying of E2CNNs, replacing
single kernels with weighted linear combinations of a kernel family, with coefficients that are not
required to be rotation- or translation-invariant. A third approach named Probabilistic Steerable CNNs
(PSCNN) was proposed recently by Veefkind & Cesa (2024), which allows SCNNs to determine
the optimal equivariance strength at each layer as a learnable parameter. All these methods have
demonstrated enhanced performance on a variety of tasks, albeit at the cost of increased training time
and model complexity. They all require a significant increase in the number of learnable parameters
compared to baseline (see parameter comparison in Section 6.)

We also discuss a family of approaches which are not based around the CNN architecture. Residual
Pathway Priors (RPP), due to Finzi et al. (2021), is a model where each layer is effectively doubled,
yielding a first layer with strong inductive biases, and a second layer which is less constrained, with
final output is obtained as the sum of these layers. Another architecture is Lift Expansion (LIFT),
which factorizes the input space into equivariant and non-equivariant subspaces, and applies different
architectures to each (Wang et al., 2021).

A number of recent studies employ an equivariance term in the loss function. First we consider
approaches where the symmetry group is known. Dupont et al. (2020) propose a parameter-free
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method to learn equivariant neural implicit representations for view synthesis; while similar to our
method in some respects, such as fixing the latent representation, their work strongly leverages the
defining representation of the infinite group O(3), is limited to latent spaces with the same geometrical
structure as the input space, and does not apply to arbitrary latent encodings. Jin et al. (2024) present
a similar method which learns non-linear group actions on the latent space using additional learnable
parameters, augmented by an optional attention mechanism. In Neural Isometries (NIso) (Mitchel
et al., 2024), the authors propose to learn an action on the latent space via its eigenbasis; in contrast,
in our model the group acts linearly on the latent space with a fixed representation, and with no
additional parameters needed. Other approaches that do not require the symmetry group to be known
beforehand include Neural Fourier Transforms (NFT) (Koyama et al., 2024), which seeks to learn a
suitable latent space transformation, and other work (Shakerinava et al., 2022; Winter et al., 2024).

While our work builds on these approaches, our contribution is distinct: by assuming a known
symmetry, we leverage representation theory (Sections 3 and 4) to identify the regular representation
as a principled and theoretically-motivated latent structure, which enables our simple pipeline without
additional learnable parameters. Although our approach requires fixing a group structure, and only
applies to finite groups, our experimental results show that this approach can often achieve superior
performance compared to models without these constraints.

3 BACKGROUND ON GROUP REPRESENTATIONS

We review essential aspects of group representation theory for our work. We consider a finite group G
and work over a base field K, assumed to be R or C. The results presented are standard, for which we
recommend canonical texts such as Fulton & Harris (2004) and James & Liebeck (2001). A glossary
of notation and further background on group actions are available in Appendix B and C.

Regular representation. For the case of a finite group, the regular representation ρreg is defined
as the linearisation of the action of G on itself. Explicitly, we first define K[G] as having elements
given by linear combinations of group elements

∑
i cigi weighted by coefficients ci ∈ K. Then ρreg

is defined as a representation on K[G] as follows:

ρreg(g)(
∑

i cigi) =
∑

i ci(ggi) (1)

By construction we have dim(ρreg) = |G|, the size of the group. A representation ρ on the vector
space Kn is a permutation representation when for all g ∈ G, the matrix ρ(g) is a permutation matrix.
By construction, the regular representation is a permutation representation.

Irreducibility. Given vector spaces V and V ′ we can form their direct sum V ⊕ V ′, with elements
which are ordered pairs of elements (v, v′) of V and V ′ respectively. Given a representation ρ
on V , and ρ′ on V ′, we can form their direct sum ρ ⊕ ρ′ acting on the vector space V ⊕ V ′, as
defined as (ρ⊕ ρ′)(g)(v, v′) := (ρ(g)(v), ρ′(g)(v′)). For an integer n, we can similarly define the
n-fold multiple of ρ, written n · ρ, as ρ ⊕ ρ ⊕ · · · ⊕ ρ. If ρ = ρ′ ⊕ ρ′′, we say that ρ′ and ρ′′ are
subrepresentations of ρ.

A representation is irreducible, also called an irrep, if it is not isomorphic to a direct sum of other
representations, except for itself and the zero representation. A finite group has finitely many
irreducible representations up to isomorphism, and the regular representation is the direct sum of
irreps, with each irrep taken with multiplicity given by its dimension. For example, the group S3 has
just the trivial (dim 1), sign (dim 2) and standard (dim 2) irreducible representations (with the same
for D3 as they are isomorphic groups); and the cyclic group Cn has n irreducible representations (all
dim 1) over C, one for each nth root of unity.

Orthogonality of representations. For a fixed group G, we may ask whether a representation ρ
contains an irreducible representation ρ′ as a direct summand, and if so with what multiplicity. This
can be determined using the formula for inner product of representations:

⟨ρ, ρ′⟩ = 1
|G|

∑
g∈G Tr(ρ(g))Tr(ρ′(g))

Given the knowledge of all irreducible representations of a finite group, this method allows us to
determine their multiplicities as subrepresentations of ρ.

3
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4 IDENTIFYING OPTIMAL REPRESENTATIONS

We suppose a network architecture as illustrated in Figure 1 is given, with training elements (xi, yi) ∈
X × Y , and task loss Ltask(D(E(xi)), yi). We now suppose a finite symmetry group G is specified,
which acts by fixed actions αX , αY on the input and output spaces respectively. We are interested
to answer the following question: if we use additional learnable parameters to construct a third
representation ρ̂Z of G on the latent space Z, which we co-train alongside the parameters for E,D
with a suitable loss function, what representation ρ̂Z does the model prefer to learn? We first
provide a theoretical analysis, which we then complement with an empirical exploration.

4.1 THE LATENT SPACE MUST CONTAIN THE REGULAR REPRESENTATION ALMOST SURELY

Adopting the notation above, we denote the G-orbit of a training sample x ∈ X as Ox :=
{αX (g)(x) | g ∈ G}. This contains all G-augmented versions of x, which we call the data or-
bit of x. We suppose x is a single data sample chosen such that all augmented versions are distinct,
i.e. such that αX (g)(x) = αX (h)(x) implies g = h, which is typical for data augmentation. As a
consequence |Ox| = |G|, and we conclude that G acts freely and transitively on Ox (nLab, 2024).
Equivalently, we get that the action αX restricted to Ox, written αX |Ox

, is isomorphic to the regular
representation on Ox. We now see that an injective equivariant encoder must preserve this representa-
tion structure when mapping the data orbit into the latent space, forcing the latent representation to
contain the regular representation almost surely (proof in Appendix E).

Theorem 1. Let G be a finite group acting on a set A with action αA, and on a vector space Z with
a representation ρZ , with dim(Z) ≥ |G|. Suppose that the group acts freely and transitively on some
subset S ⊆ A. If E : A → Z is an equivariant function which is injective on S , then Z contains the
regular representation almost surely.2

The degree to which the latent representation faithfully instantiates the group structure depends
critically on the capacity of the latent space dim(Z). When the latent space has capacity less than
the size of the group, a representational collapse is unavoidable, forcing the representation ρZ to
be a quotient of the representation. But when the latent space is large enough, such a quotient is
non-generic, occurring only if the encoder’s parameters are confined to a submanifold of Lebesgue
measure zero. Therefore, a generic encoder with sufficient capacity will learn a representation that
contains the full non-degenerate regular representation as a subspace. This principle extends across
the training set: if the G-orbits Oxi

of multiple samples xi are embedded into linearly independent
subspaces by the encoder, each orbit will contribute a distinct copy of the regular representation.

Key theoretical insight: To achieve encoder equivariance in the presence of data augmentation, a
sufficiently large latent space must contain a separate copy of the regular representation for each
training sample with a linearly independent embedded orbit.

The question remains how many copies of the regular representation one obtains in practice, and we
investigate this with the following empirical studies.

4.2 EMPIRICAL EXPLORATION

For our empirical investigation, we conduct experiments with the following loss function:

Lopt = Ltask(D(E(xi)), yi) (i)

+ λt Ltask

(
D(ρ̂Z(g)(E(xi))), αY(g)(yi)

)
(ii)

+ λe MSE
(
ρ̂Z(g)(E(xi)), E(αX (g)(xi))

)
(iii)

+ λa(ALGG,d +REGG,d) (iv)

We motivate this as follows. Component (i) (the task loss) ensures that E, D are appropriately trained
for the underlying task. Component (ii) (the equivariance loss between ρZ and αY ) encourages E,D
to be equivariant with respect to the learned representation ρ̂Z on the latent space and the fixed action
αY on the output space. Component (iii) (the equivariance loss between αX and ρZ) encourages E

2In our case, we can take A as the training set X , S = Ox for suitable x ∈ X , and Z as the latent space.

4
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to be equivariant with respect to the fixed action αX on the input space and the learned representation
ρ̂Z on the latent space. This component uses MSE rather than the task loss function, since it is defined
on feature vectors in the latent space, rather than the output space. Component (iv) (the algebra loss)
is a penalty term which packages together the necessary algebraic properties for ρ̂Z to become a
high-quality representation of G; it includes a first part ALGG,d arising from the group presentation,
and a second regularisation term REGG,d. We give further insight into the algebra loss and additional
details in Appendix D and F.

Suppose we are able to train a good solution with respect to Lopt, which in particular achieves good
scores on component (iv), so that ρ̂Z is a true group-theoretic representation to high accuracy. We
may then use techniques from representation theory to analyze what representation the model has
learned. We explore this in toy settings with the MNIST (Deng, 2012), TMNIST (Magre & Brown,
2022) and CIFAR10 (Krizhevsky, 2009) datasets, for both autoencoder and classifier tasks, and for
the groups C2, D3 and C4. As this procedure is architecture-agnostic, we are able to use both CNN-
and MLP-based architectures.

Drawing insight from Theorem 1, we expect to learn ρ̂Z that contains copies of the regular represen-
tation of the corresponding group. The number of copies is lower bounded by the number of linearly
independent embedded data orbits, which must be empirically determined. In fact, the following
studies demonstrate that the network prefers to learn a representation which consists entirely of
linearly independent copies of the regular representation.

Table 1: Left, TMNIST autoencoder task, learned representations of C2 on latent space. Right,
MNIST autoencoder task, learned representations of D3 on latent space.

Irrep. counts

Run −1 +1 Alg. loss Eq. loss Orbs.

1 4 4 5.7×10-5 4.6×10-3 4
2 3 5 6.7×10-9 6.6×10-6 3
3 4 4 2.7×10-8 2.5×10-5 4
4 4 4 2.3×10-9 4.2×10-6 4
5 3 5 6.0×10-9 1.9×10-5 3

Irrep. counts

Run Triv Sgn Std Alg. loss Eq. loss Orbs.

1 3.01 3.01 5.99 1.2×10-3 1.3×10-2 3
2 2.98 2.98 6.01 6.1×10-4 2.3×10-2 3
3 3.32 3.36 5.66 3.1×10-2 1.4×10-2 3
4 3.03 3.31 5.69 1.4×10-2 1.2×10-2 3
5 2.98 2.98 6.02 8.5×10-4 1.3×10-2 3

4.2.1 TMNIST AUTOENCODER, CNN ARCHITECTURE, G = C2

For our first experiment we use the TMNIST dataset, of digits rendered in a variety of typefaces. We
choose a subset of two typefaces only, producing 20 images, augmenting with 180° rotations. For
our group we choose G = C2 presented as {1, a | a2 = 1}. Since this is an autoencoder we have
X = Y , and we choose αX = αY , with the nontrivial element αX (a) = αY(a) acting to flip the
choice of font, with rotation and scaling left invariant. For the algebra loss component (iv) we choose
ALGC2,d = MSE(ρ̂Z(a)

2, Id) where d = dim(Z) = 8.

We present our findings in Table 1, with each run giving one row of the table, and we give a visualisa-
tion in Figure 2. Low values in the algebra loss and equivariance loss columns show that we learn
high-quality representations ρ̂Z , which are strongly equivariant with respect to the representations
αX , αY . By mapping the eigenvalues of ρ̂Z(a) to the nearest value in {−1,+1}, we can determine
the corresponding irreducible representation. For the group C2 the regular representation contains
exactly one copy of the -1 and +1 representations, and so we see from inspection that our learned
representations are close to a multiple of the regular representation. Furthermore, we report the
number of linearly independent embedded orbits, and observe that as expected this agrees with the
number of copies of the regular representation which are present (see Section 4.1).

4.2.2 MNIST AUTOENCODER, MLP ARCHITECTURE, G = D3

For our second experiment we choose the MNIST dataset of handwritten digits, augmented by
arbitrary rotations. We choose the group G = D3, the group of symmetries of an equilat-
eral triangle with the generators r, s (120-degree rotation, flip) and the following presentation:
{e, r, r2, r3, s, rs | r3 = e, s2 = e, rsrs = e}. We parameterize the linear maps ρ̂Z(r) and ρ̂Z(s)
independently, and define the following algebra loss, where d = dim(Z) = 18, and where summands

5
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x ρX (a)(x) D(E(x)) D
(
ρ̂Z(a)E(x)

)
D
(
ρ̂Z(a)

2 E(x)
)

Figure 2: Visualisation of our learned encoder E, decoder D and latent action ρ̂Z on input vector x
with a non-geometric action. The algebraic loss correctly enforced ρ̂Z(a)

2 = Id.

correspond to constraints in the presentation:

ALGD3,d = MSE(ρ̂Z(r)
3, Id) +MSE(ρ̂Z(s)

2, Id)

+MSE(ρ̂Z(r)ρ̂Z(s)ρ̂Z(r)ρ̂Z(s), Id)

For the nonabelian group D3, we determined the learned representation’s composition using orthogo-
nality of characters (Section 3), as eigenvalues alone are insufficient for identification. The data in
Table 1 confirms that the network learns a high-fidelity multiple of the regular representation, which
contains the trivial, sign, and standard irreducible representations in the ratio 1:1:2. Consistent with
the previous experiment, each linearly independent data orbit contributes one distinct copy of this
representation. Furthermore, Figure 3 illustrates the eigenvalues of the generator ρ̂Z(r) dynamically
clustering around the third roots of unity during training, despite an uneven initialization.

Figure 3: Complex eigenvalues of the real–valued matrix ρ̂Z(r) at different training steps i. Beneath
each plot we show counts of eigenvalues nearest to each third root of unity.

4.2.3 CIFAR10 CLASSIFIER, CNN ARCHITECTURE, G = C4

This experiment uses the CIFAR10 image dataset (Krizhevsky, 2009). We choose the group G = C4

of 90-degree rotations, with the algebraic loss function ALGC4,d = MSE
(
ρ̂Z(1)

4, Id
)
, where

d = dim(Z) = 16. For C4 the regular representation contains exactly one copy of the +1, +i, −1
and −i representations, and the results in Table 2 show that the network learns a representation which
is close to a multiple of the regular representation. Furthermore, each linearly independent embedded
data orbit contributes a distinct copy of this representation.

Table 2: CIFAR classifier task, representations of C4 learned on latent space.

Irreducible counts

Run +1 +i −1 −i Alg. loss Eq. loss Orbs.

1 4 4 4 4 1.5×10−4 1.8×10−3 4
2 3 4 5 4 7.2×10−5 1.9×10−3 3
3 3 5 3 5 9.4×10−5 1.6×10−3 3
4 4 4 4 4 1.1×10−4 1.9×10−3 4
5 4 4 4 4 8.4×10−5 1.9×10−3 4

Considering these three experiments together, we summarize the results of this section follows.

Key empirical insight: To achieve encoder equivariance in the presence of data augmentation,
the network prefers to learn a multiple of the regular representation on the latent space.

6
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5 METHOD

We present a novel parameter-free method to improve performance of neural networks to solve a
variety of invariant, equivariant or approximately equivariant tasks, where a finite group G acts on the
input and output layers with representations ρX and ρY respectively. Inspired by the theoretical and
empirical results of Section 4, instead of learning a representation on the latent space, we now
fix ρZ to be a multiple of the regular representation of G. Specifically, we use n copies where n
is the maximum number of representations allowed by dim Z. When n|G| < dim(Z), we pad by
taking the direct sum with additional copies of the trivial representation, to ensure our representation
on Z has the correct dimension. Our proposed representation is therefore given by:

ρZ := n · ρreg +max(dim(Z)− n|G|, 0) · ρtriv (2)

When the latent space is geometrically structured, for example as a product of features and channels,
we choose an isomorphic form of the regular representation that preserves this structure (examples are
the SMOKE and SHREC experiment in Section 6). We then train according to the following objective
function, where (xi, yi) ∈ X × Y is an element of the training set, g ∈ G is a group element, and
Ltask(xi, yi) is the original task loss function:

1
2 Ltask

(
D(E(xi)), yi

)
Task loss

+ 1
2 Ltask

(
D(E(αX (g)xi)), αY(g)yi

)
Task loss shifted by g

+ λMSE
(
E(αX (g)xi), ρZ(g)E(xi)

)
Equivariance loss from input to latent

When used in a training loop, we select (xi, yi) and g uniformly at random. Here λ is a hyperparameter
expressing the strength of the equivariance loss. We provide a sensitivity analysis for λ in Appendix
H, which shows that model performance is robust across a range of values. Our model has no
additional learned parameters above baseline, since the representation ρZ is now fixed. Our use of
the g-shifted task loss means that our training dataset must be augmented by the action of G. This
can be done either on-the-fly, or pre-computed to speed up training.

6 EXPERIMENTS

We benchmark our method against a variety of state-of-the-art methods for networks with approximate
equivariance, considering four distinct tasks. We compare our results against the models SCNN,
E2CNN, LIFT, RPP, RGroup, RSteer, PSCNN, NIso, NFT and MC, discussed in Section 2. All our
experiments follow the setup of the original papers as far as possible. Notably, our method trains using
a computational budget and wall-clock time at or below that of competing models. To ensure a fair
comparison given our reliance on data augmentation, we provide both augmented and unaugmented
CNN baselines. Full technical details for all reported runs, including hyperparameter selection and a
sensitivity analysis for our equivariance coupling strength λ, are reported in the technical appendix.
In the majority of cases our results are improved or comparable with state-of-the-art, while using
fewer parameters and a simpler architecture.

For two experiments, as an ablation, we also report a comparison that replaces the regular represen-
tation in Equation 2 with the defining representation, the natural geometric action of the group by
permutations (see Appendix C for a formal definition). The results further demonstrate the optimality
of the regular representation. Further details can be found in the Appendix.

6.1 CLASSIFICATION TASK, DDMNIST, G = C2, C4, D4

Following closely the procedure of (Veefkind & Cesa, 2024), for each of the chosen symmetry groups
C2, C4 and D4, we randomly and independently transform two MNIST images according to the
group. Results are shown in Table 3. Because the transformations are local and independent, we
apply our method using the product group. While for the groups C2 and C4 the regular and defining
representation are isomorphic, for D4 they are not, with the regular representation being more
performant; this provides further empirical evidence for the optimality of the regular representation.
Except for SCNN, we re-trained and re-evaluated all models. Further discussion is in the appendix.

7
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Table 3: Higher is better. DDMNIST test accuracies. Mean over 3 runs; standard deviation in brackets.
Parameter counts shown. Best result in each column is bold, second-best is underlined. For C2, C4

the defining representation is equivalent to the regular representation and so is omitted.

Model C4 Par M C2 Par M D4 Par M

CNN 0.907 (0.004) 0.03 0.938 (0.006) 0.03 0.800 (0.001) 0.03
SCNN 0.484 (0.008) 0.12 0.474 (0.003) 0.03 0.431 (0.010) 0.15
Restriction 0.914 (0.007) 0.12 0.890 (0.007) 0.33 0.837 (0.020) 0.17
RPP 0.908 (0.022) 0.79 0.903 (0.009) 0.08 0.827 (0.020) 1.73
PSCNN 0.909 (0.007) 0.51 0.871 (0.016) 0.04 0.842 (0.011) 1.23

Defining rep n/a n/a 0.838 (0.010) 0.03
Ours (regular) 0.915 (0.004) 0.03 0.947 (0.004) 0.03 0.868 (0.002) 0.03

6.2 CLASSIFICATION TASK, MEDMNIST3D, G = Symcube

We test our method on the Organ, Synapse and Nodule subsets of the MedMNIST3D dataset, using
the same setup as the original authors (Veefkind & Cesa, 2024). We apply the group Symcube of
orientation-preserving symmetries of the cube, which is isomorphic to the permutation group S4. All
results, except for ours and the augmented CNN, are imported from the original authors. Table 4
shows classification accuracies on MedMNIST3D for different models and groups. For Nodule and
Synapse, our method is comparable or outperforms other architectures, while having fewer parameters.
We also note that the regular representation consistently outperforms the defining representation,
providing further empirical evidence for its optimality. For the Organ dataset, canonical orientation is
a key feature, and so the symmetry action to some extent conflicts with the task. This may explain
our method’s underperformance in this task (shared by the augmented CNN baseline).

Table 4: Higher is better. MedMNIST3D test accuracies. Mean over 3 runs; standard deviation in
brackets. Parameter counts shown. Best result in each column is bold, second-best is underlined.

Group Model Nodule Synapse Organ Par M

N/A CNN 0.873 (0.005) 0.716 (0.008) 0.920 (0.003) 00.19
Aug CNN 0.879 (0.007) 0.761 (0.008) 0.632 (0.005) 00.19
SO(3) SCNN 0.873 (0.002) 0.738 (0.009) 0.607 (0.006) 00.13
SO(3) RPP 0.801 (0.003) 0.695 (0.037) 0.936 (0.002) 18.30
SO(3) PSCNN 0.871 (0.001) 0.770 (0.030) 0.902 (0.006) 04.17
O(3) SCNN 0.868 (0.009) 0.743 (0.004) 0.902 (0.006) 00.19
O(3) RPP 0.810 (0.013) 0.722 (0.023) 0.940 (0.006) 29.30
O(3) PSCNN 0.873 (0.008) 0.769 (0.005) 0.905 (0.004) 03.51

Symcube Defining rep 0.837 (0.013) 0.756 (0.019) 0.560 (0.025) 00.19
Symcube Ours (regular) 0.887 (0.005) 0.770 (0.002) 0.642 (0.056) 00.19

6.3 AUTOREGRESSION TASK, SMOKE, G = C4

We evaluate our method on the SMOKE dataset, generated with PhiFlow (Holl et al., 2020) by Wang
et al. (2022) (see Figure 6 for a visualisation). The task involves predicting future frames of a
simulated smoke velocity field autoregressively. This task is only approximately equivariant to the
symmetry group C4 (90-degree rotations) due to the presence of non-equivariant buoyancy effects.
Full details are provided in the appendix. Table 5(a) shows the test RMSE for each model on the
metrics considered. All reported figures are imported from the original authors (Wang et al., 2022),
except for ours, augmented CNN, and non-augmented CNN, for which we tune the learning rate. Our
method outperforms all models except for PSCNN, which has slightly better scores, with more than
12 times the number of parameters. While our method uses the augmented training set, we note from
comparing the two CNN baselines that this gives little advantage for this task.
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Table 5: Mean over 3 runs; standard deviation in brackets. Parameter counts shown. Best result in
each column is bold, second-best is underlined.

(a) Lower is better. Test RMSE for SMOKE dataset.

Group Model Future Domain Par M

N/A CNN 0.81 (0.01) 0.63 (0.00) 0.25
Aug CNN 0.83 (0.03) 0.67 (0.06) 0.25
N/A MLP 1.38 (0.06) 1.34 (0.03) 8.33
C4 E2CNN 1.05 (0.06) 0.76 (0.02) 0.62
C4 RPP 0.96 (0.10) 0.82 (0.01) 4.36
C4 Lift 0.82 (0.01) 0.73 (0.02) 3.32
C4 RGroup 0.82 (0.01) 0.73 (0.02) 1.88
C4 RSteer 0.80 (0.00) 0.67 (0.01) 5.60
C4 PSCNN 0.77 (0.01) 0.57 (0.00) 3.12

C4 Ours 0.78 (0.01) 0.61 (0.01) 0.25

(b) Higher is better. Test accuracy
for SHREC ’11 dataset.

Model Acc.

NIso Mitchel et al. (2024) 90.26 (1.27)
NFT Koyama et al. (2024) 83.24 (2.03)
AE with aug 69.36 (2.81)
MC Mitchel et al. (2022) 86.5

Ours 90.45 (2.1)

6.4 AUTOENCODING TASK, 3D SHAPES, G = Oh

Finally, we test our method on the conformally transformed SHREC ’11 dataset (Lian et al., 2011;
Mitchel et al., 2022), following the pre-training and fine-tuning procedure of Mitchel et al. (2024).
We use our parameter-free methodology with Oh augmentations (octahedral symmetries) to pre-train
a baseline autoencoder before fine-tuning the encoder for classification. As this is an autoencoding
task, we symmetrize the equivariance loss to the decoder. While we did not have access to the
other models, we could check that NIso’s kernel adds 18k parameters above our model, which has
the same parameter count as the baseline autoencoder (AE). Results are given in Table 5(b). Our
approach achieves 90.45% accuracy, outperforming the group-agnostic method NFT. Our method
also surpasses NIso, a model capable of learning actions of infinite groups, even though our method
uses only a finite subgroup.

7 CONCLUSIONS

Limitations and Future Work. Our theoretical framework is developed for finite groups, and a
direct extension to infinite groups is a non-trivial challenge for future work. However, we empirically
demonstrate that this theoretical limitation does not necessarily restrict the practical applicability
of our method to tasks with continuous symmetries, noting that our method outperforms NIso, a
state-of-the-art model capable of handling infinite groups, on the SHREC ’11 dataset which involves
continuous conformal transformations (Section 6.4). This strategy of employing a subgroup also
directly addresses another potential limitation: tasks involving large finite groups, such as permutation
groups, whose order may exceed the available latent space dimension. Our method requires data
augmentation, although this is typically inexpensive when the group action on the input space is easy
to construct, as for our demonstration tasks. We would also like to explore how our methodology
could enable data augmentation in the latent space, while requiring augmentation of only a subset of
the data at training time.

Conclusions. This work investigates an alternative path to building efficient equivariant models,
focusing not on architectural design, but on the enforcement of a principled latent algebraic structure.
We prove that for finite groups, this structure is the regular representation, which must appear almost
surely in the latent space of any equivariant encoder. By enforcing this structure via a parameter-free
auxiliary loss, our method achieves competitive or superior performance to state-of-the-art models,
while requiring in some cases significantly fewer parameters. Furthermore, we empirically show the
optimality of the regular representation by comparing it with the defining permutation representation.
Ultimately, our work suggests that for tasks with inherent (approximate) symmetry, directly enforcing
the correct latent algebraic structure can be a more effective and efficient path to equivariance than
designing complex, highly-parameterized architectures.

Code of Ethics and Reproducibility Statement. We acknowledge and adhere to ICLR’s code
of ethics. We provide full reproducibility details in the appendix, which includes a link to our code
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containing exact commands to reproduce our results. Full mathematical details are also given in the
appendix.
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A CODE

The code to run all the experiments in this paper is available at the following location:

• https://anonymous.4open.science/r/parameter-free-approximate-equivariance-3352/

In the README file, we provide instructions to run the code and reproduce the results.

B NOTATION

Here we provide a comprehensive list of symbols and notational conventions used throughout the
paper.

GENERAL MATHEMATICAL OBJECTS

G A finite group.

g, h Elements of the group G, e.g., g ∈ G.

K The base field, assumed to be either the real numbers R or the complex numbers C.

S,A General sets, denoted by calligraphic letters.

V,W General vector spaces, denoted by uppercase Roman letters.

v, w Elements (vectors) of a vector space, e.g., v ∈ V .

GROUP THEORY

α A group action on a set. The action of g ∈ G on an element s ∈ S is written as α(g, s)

ρV A group representation on the vector space V , which is a linear group action on V .

ρV (g) The invertible linear map associated with the group element g ∈ G. The action of g on a
vector v ∈ V is written as ρV (g)(v).

MACHINE LEARNING CONTEXT

X The input set.

x A single input data point, x ∈ X .

Y The output or label set.

y A single output or label, y ∈ Y .

Z The latent space, viewed as a vector space (e.g., Z = Rd).

z A latent vector, z ∈ Z.

E An encoder network.

D A decoder network.

ρ̂Z A learnable representation on the latent space Z.

C GROUP ACTIONS AND REPRESENTATIONS

Groups. A group G is a set equipped with an associative and unital binary operation, such that
every element has a unique inverse. Important families of groups include the following. The dihedral
group Dn is the group of symmetries of the regular polygon with n sides, which we use in this paper
for n ≥ 3. The cyclic group Cn is the groups of integers {0, . . . , n − 1} with addition modulo n.
The permutation group Sn is the group of permutations of an n-element set. We may define groups
by presentations, which give generators and relations for the product; for example, the group C2 can
be defined by the presentation {1, a | a2 = 1}. For any two groups G,H , we write G ×H for the
product group, whose elements are ordered pairs of elements of G and H respectively.
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Group representations. A representation ρ of a finite group G on a vector space V is a choice of
linear maps ρ(g) : V → V for all elements g ∈ G, with the property that ρ(e) = idV for the identity
element e ∈ G, and such that ρ(g)ρ(g′) = ρ(gg′) for all pairs of elements g, g′ ∈ G. We define the
dimension of ρ to be dim(V ), the dimension of the vector space V . There is a notion of equivalence
of representations: given representations ρ on V , and ρ′ on V ′, they are isomorphic when there is
an invertible linear map L : V → V ′ such that Lρ(g) = ρ′(g)L for all g ∈ G. Given a subgroup
G ⊆ G′, a representation of G′ yields a restricted representation on G in an obvious way.

Defining representations. The concept of a defining representation is relevant for our ablation
studies. While the term is context-dependent, it typically refers to a group’s most natural or defining
low-dimensional representation. For the permutation group Sn this is the linearisation of its permuta-
tion action on the n-element set; that is, the n-dimensional representation given by its action on Kn

by permuting the basis vectors. For the dihedral group Dn (n ≥ 3), the defining representation is
the linearisation of its action on the n-element set of vertices. For the group Symcube of orientation-
preserving symmetries of the cube, the defining representation is the linearisation of its action on the
8-element set of vertices of the cube. We select these defining representations as a baseline as they
provide a rich, geometrically intuitive alternative to the more abstract regular representation.

Group actions. A group may also have an action λ on a set S , a choice of functions λ(g) : S → S
for all elements g ∈ G, such that λ(e) = idS and λ(g)λ(g′) = λ(gg′). Such an action yields a
representation of G on K[S] by linearisation, the free K-vector space generated by S.

Some simple examples of representations include the zero representation on the zero-dimensional
vector space, and the trivial representation ρtriv on the 1-dimensional vector space K, where
ρtriv(g) = idK for all g ∈ G.

D INSIGHT INTO THE ALGEBRA LOSS

To give further insight into component (iv), suppose our goal is to learn a representation ρ̂Z of the
group C2, which has group presentation {1, a | a2 = 1}. Then ρ̂Z should satisfy ρ̂Z(1) = id and
ρ̂Z(a)ρ̂Z(a) = id. To achieve this, we fix the parameter ρ̂Z(a) = id, and choose ALGC2,d and
REGC2,d as follows, where d = dim(Z), the matrix Id is the identity of size d× d:

ALGC2,d = MSE
(
ρ̂Z(a)

2, Id
)

REGC2,d = MSE
(
ρ̂Z(a), ρ̂Z(a)

−1
)
.

We note that when ALGC2,d equals zero then ρ̂Z(a)
2 = Id, and hence REGC2,d will equal zero. In

this sense, the regularisation term is algebraically redundant, but is found to improve training.

E PROOFS

Theorem 1. Let G be a finite group acting on a set A with action αA, and on a vector space Z with a
representation ρZ , with dim(Z) ≥ |G|. Suppose that the group acts freely and transitively on some
subset S ⊆ A. If E : A → Z is an equivariant function which is injective on S , then Z contains the
regular representation almost surely.

Proof. Let R[S] denote the vector space of all formal linear combinations of S with coefficients in
R. Because αA|S is free and transitive it must be equivalent to the action of G on itself, and hence
its linearisation R[S] carries the structure of the regular representation. We write this representation
explicitly as ρR[S](g)(

∑
s ass) :=

∑
s asαA(g)(s). Now, we can define the linear map Ẽ : R[S] →

Z by (
∑

s ass) 7→
∑

s asE(s). Because E : A → Z is equivariant, we conclude that Ẽ : R[S] → Z

is equivariant. Denote V := Im(Ẽ) = SpanR{E(s) | s ∈ S}, which is a linear subspace of Z of
dimension at most |G|. By the first isomorphism theorem for representations (Fulton & Harris,
2004), we have V ∼= R[S]/Ker(Ẽ). Hence we have shown that Z contains a subspace V which is
isomorphic to a quotient to the regular representation.

We must now show that Z contains the regular representation almost surely, i.e. that Ker(Ẽ) is trivial
almost surely. The linear function Ẽ is fully specified by its action on the basis S , i.e. {E(s) | s ∈ S}.
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(i) (ii) (iii) (iv)

Figure 4: Examples of our augmented training dataset for the TMNIST experiment, from the chosen
fonts ‘Bahianita-Regular’ (i), (iii) and ‘IBMPlexSans-MediumItalic’ (ii), (iv).

Since E is injective on S, the set {E(s)|s ∈ S} has cardinality |G|. Furthermore, because V
has dimension at most G, we may embed each of the E(s) into ys ∈ R|G|. Therefore, in matrix
representation, Ẽ is obtained by collecting the vectors {ys | s ∈ S} in a |G| × d matrix M . The
condition for the kernel to be trivial is detM = 0, which has Lebesgue measure 0 in R|G|×|G|

(almost all matrices are invertible). Furthermore, we note that when dimZ = |G|, it follows that Z
must be isomorphic to the regular representation.

F EXPLORATORY EXPERIMENTS

Here we give details of the exploratory experiments we describe in Section 4. These use the TMNIST,
MNIST and CIFAR10 datasets to determine the optimal representation on the latent space. Sections
F.1, F.2 and F.3 provide details of the architectures and regularisation terms used for each of these
experiments. In all runs, we use the Adam optimiser Kingma & Ba (2017) with default parameters
(β1, β2) = (0.9, 0.999), and report additional hyperparameters in Table 6. These were chosen through
a manual tuning process.

F.1 TMNIST AUTOENCODER, G = C2

This experiment uses the TMNIST dataset Magre & Brown (2022) of digits rendered in a variety of
typefaces. We select a data subset corresponding to just two typefaces ‘IBMPlexSans-MediumItalic’
and ‘Bahianita-Regular’, and augment with 180° rotations. We give some examples of our augmented
dataset in Figure 4. The group we use here is C2 = {1, a | a2 = 1} and, for a data point x, we
define the group action ρX (a)(x) to be the data point with the font swapped, but the rotation and
scaling unchanged. In particular, with reference to images Figure 4(i)–(iv), we have ρX (a)(i) = (ii),
ρX (a)(ii) = (i), ρX (a)(iii) = (iv) and ρX (a)(iv) = (iii). For this experiment we set Ltask =
MSE, and we use a simple CNN autoencoder with hyperparameters given in Table 6. The architectural
details can be found on the provided repository.

Experiment Latent dim. λa λt λe LR Batch Size

TMNIST C2 6 1.0 0.5 1 0.003 64
MNIST D3 18 0.5 0.495 0.005 0.003 64
CIFAR10 C4 16 1.0 25 0.25 0.003 64

Table 6: Hyperparameters for exploratory experiments.

We use the following regularisation term:

REGC2,d = MSE(ρ̂Z(a), ρ̂Z(a)
−1) (3)

Here ρ̂Z(a)
−1 is computed with ρ̂Z(a)

−1 = torch.linalg.solve(ρ̂Z(a), Id) for efficiency
and numerical stability. We found empirically that this regularisation helps to stabilise the training of
ρ̂Z(a), allowing us to achieve lower values for the algebra loss.
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F.2 MNIST AUTOENCODER, G = D3

This experiment uses the MNIST dataset Deng (2012) of handwritten digits. The group considered
is D3 = {e, r, r2, r3, s, rs | r3 = e, s2 = e, rsrs = e}, and on the input space we define the group
action such that ρX (r)(x) is the counterclockwise rotation of x by 60 degrees, and ρX (s)(x) is the
image generated by flipping x about the vertical axis. For this experiment, we set Ltask = MSE, and
use a simple MLP autoencoder with hyperparameters given in Table 6. The architectural details can
be found on the provided repository.

We use the following regularisation term:

REGD3,d = −0.995 MSE(ρ̂Z(r)ρ̂Z(s)ρ̂Z(r)ρ̂Z(s), Id) (4)

We determined empirically that this regularisation dampens the interaction between the matrices
ρ̂Z(r) and ρ̂Z(s) in a way that improves training. Low final values of the algebra loss reported in
Table 1 give evidence that we still obtain a high-quality representation despite this damping.

F.3 CIFAR10 CLASSIFIER, G = C4

This experiment uses the CIFAR10 dataset Krizhevsky (2009) of 32x32 images organised in 10
classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck. The group considered
is the cyclic group of size four C4 of addition on the set {0, 1, 2, 3} modulo 4. The element 1 is a
generator for this group, and for an input vector x, we define the group action such that ρX (1)(x) is
the rotation of x by 90 degrees counterclockwise. For this experiment we set Ltask = CrossEntropy,
and use a simple CNN classifier with hyperparameters given in Table 6. The architectural details can
be found on the provided repository.

The regularisation term used is the following:

REGC4,d = MSE(ρ̂Z(1)
3, ρ̂Z(1)

−1) (5)

Here, ρ̂Z(1)−1 is computed with ρ̂Z(1)
−1 = torch.linalg.solve(ρ̂Z(1), Id) for efficiency

and numerical stability. We determined empirically that this regularisation helps to stabilise the
training of ρ̂Z(1) and the behaviour of its inverse.

G MAIN EXPERIMENTS

Here we give details of the main experiments we describe in Section 6, which test our model of
Section 5 on tasks using the DDMNIST, MedMNIST, SMOKE and SHREC‘11 datasets. Sections
G.1, G.2, G.3 and G.4 provide details of the datasets, architectures and hyperparameters that we
use. In all runs we use the Adam optimiser Kingma & Ba (2017) with default parameters (β1, β2) =
(0.9, 0.999), with weight decay set to 0 for DDMNIST and MedMNIST, and set to 4 × 10−4 for
SMOKE.

G.1 DDMNIST EXPERIMENTS

Data preparation. We follow closely the setup of the originators Veefkind and Cesa Veefkind &
Cesa (2024). To generate this dataset, pairs of MNIST 28x28 images are chosen uniformly at random,
and independently augmented according to the corresponding group action for G ∈ {C4, C2, D4}
as per Table 7. We give an example in Figure 5. To ensure comparability of our results with the
original paper, for G ∈ {C4, D4} we follow their method of introducing interpolation artefacts by
rotating each digit image by a random angle θ ∈ [0, 2π), and then rotating it back by −θ; for G = C2

these interpolation artefacts are not added, in line with the original paper. Finally, the two images are
concatenated horizontally, and padded so that the final image is 56× 56. In this way, we obtain a
dataset of 10,000 images with labels in the set {(0, 0), (0, 1), . . . , (9, 9)}.

Architecture. We use the same CNN architecture as in Veefkind and Cesa Veefkind & Cesa (2024),
except that the final convolutional layer has an increased number of filters, from 48 to 66. We make
this change so that we can fit a copy of the regular representation of D4 × D4. To ensure a fair
comparison, the results reported in Table 3, including those for SCNN, RPP, etc, are those obtained
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Group Type Generators Size

C4 Cyclic 90° rotation 4
C2 Dihedral Horizontal reflection 2
D4 Dihedral Horizontal reflection

and 90° rotation
8

Table 7: Symmetry groups and their actions on DDMNIST.

Before augmentation After augmentation

Figure 5: Examples of training data for the DDMNIST experiment with G = D4. The left figure
shows concatenated MNIST digits, and the right figure shows the result after a random augmentation.
In this instance, the left digit is augmented with a reflection about the vertical axis, and the right digit
is augmented with a clockwise 90-degree rotation.

with the increased number of filters, which we found marginally improved performance. Furthermore,
we use a different learning rate for the CNN model, as we found that this increased performance and
ensured a more meaningful baseline comparison. The CNN architectural details can be found on the
provided repository.

Hyperparameters. We report the hyperparameters used for the CNN and our model for the DDM-
NIST experiments in Table 8. These hyperparameters were chosen after a grid search with the
following values: learning rate ∈ {0.001, 0.005, 0.0001, 0.0005, 0.00001, 0.00005}, and equivari-
ance coupling strength λ ∈ {0.5, 1, 1.5, 2}. All other hyperparameters match those used by Veefkind
and Cesa.

C4 C2 D4

LR λ LR λ LR λ

CNN 0.0005 - 0.001 - 0.0005 -
Standard rep - - - - 0.0005 1
Ours (regular) 0.001 2 0.001 1 0.0005 1

Table 8: Hyperparameters for DDMNIST experiments.

G.2 MEDMNIST EXPERIMENTS

Data preparation. For this experiment, we use three subsets of the MedMNIST dataset Yang
et al. (2023), in line with Veefkind and Cesa Veefkind & Cesa (2024): Nodule3D, Synapse3D and
Organ3D, each containing 3D images of size 28x28x28. Nodule3D is a public lung nodule dataset,
containing 3D images from thoracic CT scans; for this dataset, the task is to classify each nodule as
benign or malignant. Synapse3D contains 3D images obtained from an adult rat with a multi-beam
scanning electron microscope; the task is to classify whether a synapse is excitatory or inhibitory.
Organ3D is a classification task for a 3D images of human body organs, with the following labels:
liver, right kidney, left kidney, right femur, left femur, bladder, heart, right lung, left lung, spleen and
pancreas.

For augmentations, we choose the octahedral group of orientation-preserving rotational symmetries of
the cube, which is isomorphic to the permutation group S4. We define its action ρX (g) on a 3D image
x by applying the corresponding rotational symmetry of the cube. Specifically, we parameterise g as
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a tuple (l, θ) where l = (x, y, z) specifies a rotation axis and θ specifies the rotation angle about the
axis l to obtain 24 rotation matrices each with size 3× 3, one for each of the 24 elements of S4. In
summary, we have rotation matrices corresponding to the following tuples:

Identity (1) (l, 0) for any l.
Coord-axis (9) (l, θ) for l ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and θ ∈ {π

2 , π,
3π
2 }.

Edge-mid (6) (l, θ) for l ∈ {(1, 1, 0), (1,−1, 0), (1, 0, 1), (1, 0,−1), (0, 1, 1), (0, 1,−1)}
and θ = π.

Body-diag (8) (l, θ) for l ∈ {(1, 1, 1), (1, 1,−1),
(1,−1, 1), (−1, 1, 1)} and θ ∈ { 2π

3 , 4π
3 }.

Architecture. For these experiments we use the same CNN-based ResNet architecture as Veefkind
and Cesa Veefkind & Cesa (2024). This is formed from seven 3D convolutional layers, formed into
3 blocks with residual connections, along with batch normalisation and pooling. The architectural
details can be found on the provided repository.

Hyperparameters. We report the hyperparameters used for the baseline with S4 augmen-
tations, and for our model in the MedMNIST experiments in Table 9. These hyper-
parameters were chosen after a grid search with the following values: learning rate ∈
{0.001, 0.005, 0.0001, 0.0005, 0.00001, 0.00005}, and equivariance coupling strength λ ∈
{0.5, 1, 1.5, 2}. All other hyperparameters are the same as those used by Veefkind and Cesa.

Nodule3D Synapse3D Organ3D

LR λ LR λ LR λ

CNN (Augmented) 0.00005 - 0.0001 - 0.0001 -
Ours 0.00005 1 0.0001 1 0.0001 2

Table 9: Hyperparameters for MedMNIST experiments.

G.3 SMOKE EXPERIMENTS

Data preparation. Here we use the SMOKE dataset of Wang et al. Wang et al. (2022), which
consists of smoke simulations with varying intial conditions and external forces presented as grids of
(x, y) components of a velocity field (see Figure 6 for a visualisation). The task is to predict the next
6 frames of the simulation given the first 10 frames only. We evaluate each model on two metrics:
Future, where the test set contains future extensions of instances in the training set; and Domain,
where the test and training sets are from different instances.

Figure 6: Approximately equivariant dynamics of smoke plumes Holl et al. (2020).

Architecture. We use the same CNN architecture, train and evaluation setups as in Veefkind and
Cesa Veefkind & Cesa (2024), which they reproduced from Wang et al. Wang et al. (2022). The
architectural details can be found on the provided repository. Because the latent space has the same
geometric structure as the input data, i.e. Z = Rc × Rh × Rw (channels×height×width), we choose
a representation of C4 given by the regular representation in each channel separately.
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Original
velocity field

Rotation without
reorientation

Rotation with
reorientation

Figure 7: Examples of a velocity field and its augmentations with and without reorientation. Rotating
by 90° counterclockwise without reorienting simply moves the spatial grid, but breaks the physical
meaning of the underlying system.

Hyperparameters. For both CNN models, with C4 augmentations and without, and for our
model, we use a learning rate of 0.001. Additionally, for our model, we set λ = 0.005.
These hyperparameters were chosen after a grid search with the following values: learning
rate ∈ {0.001, 0.005, 0.0001, 0.0005}, and equivariance coupling strength λ ∈ {0.005, 0.05, 0.5, 1}.
For all other hyperparameters, we copy the values used by Veefkind and Cesa.

G.4 SHREC ‘11 EXPERIMENTS

Data preparation. We use the SHREC ‘11 dataset Lian et al. (2011); Mitchel et al. (2022) where
each 3D shape is also transformed with conformal transformations. We perform augmentation
according to the group Oh of octahedral symmetries.

Architecture. We use the same architecture as the original authors Mitchel et al. (2024), which is a
ResNet-based autoencoder. Similarly to the smoke experiment, the latent space retains a geometric
structure. Therefore, we choose a representation of Oh given by the regular representation in each
channel separately.

Hyperparameters. Due to computational constraints, we do not perform hyperparameter tuning,
and we keep the same hyperparameters as the original authors Mitchel et al. (2024), except that we
set the batch size to 4. We set λ = 0.5. Additionally, we symmetrize the equivariance loss to the
decoder too, i.e., with λ′ = 0.8,

λ′ ||ρX (g)(x)−D(ρZ(g)(E(x)))||

H SENSITIVITY ANALYSIS

To assess the practical usability of our method, we performed a sensitivity analysis on the hyper-
parameter λ, which controls the strength of the equivariance loss. We evaluated our model on the
DDMNIST D4 task across six different values for λ: {0, 0.05, 0.5, 1, 1.5, 2}, with λ = 0 being the
baseline. The results, reported in Figure 8, show that while peak performance is achieved at λ = 1,
the model maintains high accuracy and low variance across a wide range of values (0.5 to 2.0). This
analysis demonstrates that our method is robust to the specific choice of λ.
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Figure 8: Mean accuracy and standard deviation (over 5 runs) for different values of λ on the
DDMNIST D4 task. λ = 0 is the baseline.
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