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Abstract

The notion of algorithmic fairness has been actively explored from various aspects
of fairness, such as counterfactual fairness (CF) and group fairness (GF). However,
the exact relationship between CF and GF remains to be unclear, especially in
image classification tasks; the reason is because we often cannot collect counter-
factual samples regarding a sensitive attribute, essential for evaluating CF, from the
existing images (e.g., a photo of the same person but with different secondary sex
characteristics). In this paper, we construct new image datasets for evaluating CF
by using a high-quality image editing method and carefully labeling with human
annotators. Our datasets, CelebA-CF and LFW-CF, build upon the popular image
GF benchmarks; hence, we can evaluate CF and GF simultaneously. We empiri-
cally observe that CF does not imply GF in image classification, whereas previous
studies on tabular datasets observed the opposite. We theoretically show that it
could be due to the existence of a latent attribute G that is correlated with, but
not caused by, the sensitive attribute (e.g., secondary sex characteristics are highly
correlated with hair length). From this observation, we propose a simple baseline,
Counterfactual Knowledge Distillation (CKD), to mitigate such correlation with
the sensitive attributes. Extensive experimental results on CelebA-CF and LFW-CF
demonstrate that CF-achieving models satisfy GF if we successfully reduce the
reliance on G (e.g., using CKD).

1 Introduction

As machine learning algorithms are deployed in societal computer vision applications such as facial
recognition [39] and job interview [29], concerns have grown regarding their potential to discriminate
against certain individuals and groups. For instance, a face recognition system might exhibit disparate
accuracies across different demographic groups [3], while a job interview algorithm could be biased
based on protective attributes even for the same interviewee [11]. Consequently, algorithmic fairness

in image classifiers has gained significant attention in academic and industrial research communities.

While conceptually apparent, determining a concrete notion of fairness is challenging, leading to
the proposal of several different fairness notions. One prevalent notion is counterfactual fairness

(CF) [23] which seeks consistent predictions when only a sensitive attribute is intervened. Another
important notion is group fairness (GF) [43] that aims to treat different demographic groups equally
to prevent one group unfairly disadvantaged compared to another. Many researchers have focused on
developing separate algorithms to achieve each notion, while understanding the exact relationship
between CF and GF is yet under-explored; e.g., some recent work [1, 35] showed that a model
achieving CF can meet several GF notions only under specific conditions of Structural Causal Models.
⇤Equal contribution.
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Furthermore, previous studies on the relationship between CF and GF have not considered the
setting of image classification due to the absence of evaluation datasets with counterfactual images,
in which only the sensitive attribute is altered from the original images while other attributes not
caused by the sensitive attribute remain unchanged — a data nearly impossible to collect in the real
world. There have been several works generating counterfactual images using generative models
[4, 19, 26, 32, 44, 34, 5], but they have only focused on utilizing generated counterfactual samples for
training rather than evaluation. Moreover, these methods often suffer from low-quality counterfactual
images generated based on VAE [21] or GAN [9]. One notable exception is Liang et al. [24], which
offers an evaluation dataset including counterfactual images. However, their images are all synthetic;
thus, it is still insufficient to evaluate CF due to distribution shifts from real-world images.

In this paper, we construct CF benchmarks for image classification tasks using high-performing
diffusion model-based generative models. Our datasets build upon popular facial benchmark datasets
used for evaluating GF, CelebA and LFW, by altering the sensitive attribute with pre-trained Instruct-
Pix2Pix (IP2P) [2]. We then carefully curate the edited samples by human annotators and verify the
reliability of our datasets as counterfactual samples from additional annotators. Note that our datasets,
CelebA-Counterfactual Face (CelebA-CF) and LFW-Counterfactual Face (LFW-CF), share the same
test samples as the original GF benchmarks, enabling the evaluation of both GF and CF.

Using our datasets, we conduct a primitive study on the relationship between CF and GF in image
classification, e.g., test whether CF implies GF for image classifiers. To that end, we train CF-aware
methods [36, 7] and evaluate them with our datasets using both CF and GF metrics. From the result,
we observe that they achieve CF but fail to satisfy GF, contrary to previous findings that CF can
imply GF [1, 35]. We attribute this failure to Structural Causal Models (SCMs) of image generation.
Specifically, for an image SCM, a latent attribute G is more likely to exist, which could be correlated
with, but not caused by, the sensitive attributes. For example, in the case where the sensitive attribute
is the sex of a person in an image, secondary sex characteristics such as beard and hairline are highly
correlated with hair length, but it does not mean that such characteristics cause the length of hair. In
this scenario, if a model achieving CF relies on the attribute G (e.g., hair length) on its prediction, it
could more severely violate GF in the worst case. Therefore, if we can reduce the dependency on G
of a CF-aware model, we may achieve both CF and GF. Empirically, we find that a model trained
with vanilla cross-entropy loss is more robust to G than a model trained with a CF-aware method.
Motivated by this, we propose a simple baseline, named Counterfactual Knowledge Distillation
(CKD), which distills the robustness to G during the original CF-aware optimization. Finally, our
extensive experiments using CelebA-CF and LFW-CF demonstrate that CF-achieving models satisfy
GF when reducing the reliance on G (e.g., using CKD).

In summary, our contributions are three-fold. Firstly, we construct two new image classification
benchmarks for measuring CF, CelebA-CF and LFW-CF. Secondly, using these datasets, we observe
the disparity between CF and GF in image classifiers and provide a theoretical rationale; a counter-
factually fair classifier may not necessarily achieve GF when an additional latent attribute that is
correlated with the sensitive attribute exists. Finally, we propose a simple baseline, CKD, to reduce
the sensitivity to such latent attributes of a model, resulting in achieving CF and GF simultaneously.

2 Constructing high-quality counterfactual images

The degree of counterfactual fairness (CF) can be measured by the prediction consistency between
an original sample and its corresponding counterfactual (CTF) sample. For a given sample and a
sensitive attribute, a CTF sample is defined as the one of which the sensitive attribute is altered while
all the other attributes not caused by the sensitive attribute remain the same. However, acquiring
a CTF sample for an image is challenging. For example, if the sex of a person in an image is the
sensitive attribute, obtaining a CTF sample requires changing the secondary sex characteristics of
the person such as beard or hairline, while preserving their identity and the other attributes, which is
impossible in practice. One possible alternative is to generate a virtual face by altering such secondary
sex characteristics of the given identity using a high-quality image editing method.

Several previous approaches [19, 34, 41, 44, 22] have attempted to generate CTF images by VAE or
GAN-based editing methods. However, they have struggled with low image quality or unintended
modifications to non-sensitive attributes, rendering them unreliable for evaluating CF. To address
such issues, we employ IP2P [2], an advanced diffusion model-based image editing method. Notably,
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Figure 1: CelebA-CF examples. The counterfactual (CTF) images regarding the “sex attribute” are shown.

IP2P can generate high-quality CTF samples by simply adjusting the text instructions without any
model retraining.

As the first step, we edit the test images of two popular facial image datasets, CelebA [25] and LFW
[13]. We choose the “sex” of a person in an image as the sensitive attribute3 and edit the sex-related
visual characteristics of facial images using text prompts. We generated 720 CelebA CTF image pairs
and 632 LFW CTF image pairs, where the images are selected to be balanced across groups for both
target and sensitive labels. Here, we treat “blond hair” and “smiling” as the target labels for CelebA
and LFW, respectively. Namely, for example, the CelebA CTF image pairs have a balanced group of
<female, non-blond hair>, . . . , and so on. Figure 1 and A.1 show examples of generated CTF images
together with the originals. Hyperparameter settings are reported in Appendix C.1. Note that while
we adopt the “sex” attribute, our generation process is attribute-agnostic (e.g., age or skin color can
be also used in place of sex) as illustrated in Figure A.2.

Image filtering. Despite the high quality of IP2P, low-quality CTF images can still be generated.
To address this, we employed five human annotators to filter the images, i.e., each image pair was
annotated as either “correct” or “incorrect”. To ensure objective and precise annotation criteria,
we created guidelines as follows. Initially, we compiled a list of 20 masculine and feminine visual
features using GPT-4o and with guidance from experts specialized in fairness, selected nine key
facial attributes representing sex-related visual characteristics: facial hair, Adam’s apple, skin texture,
jawline, chin shape, brow ridge, cheekbone prominence, lip fullness, and hairline. These attributes
were used to establish the criteria for evaluating correct CTF samples. One notable issue is that
most of the feminine-like images in CelebA and LFW datasets include makeups (for instance, many
female celebrities in the CelebA dataset appear to be wearing makeup) and the IP2P model is biased
towards removing makeup when altering feminine features. To prevent images from being filtered
out solely due to changes in makeup, we additionally included makeup in the set of key attributes,
even though it is not a sex characteristic. Finally, the guidelines were created based on these ten
attributes, providing some criteria for correct CTF samples, such as whether the change of some of
the ten attributes was accurate and whether other facial characteristics remained consistent with the
original image. Using these guidelines, we filtered out pairs receiving two or fewer “correct” votes,
resulting in 230 and 144 images for CelebA and LFW, respectively. More details about the human
annotating interface are in Appendix C.2, and additional information on the newly created dataset
can be found in Appendix C.4.

Table 1: Human evaluation of the relia-
bility of our datasets. Accuracies of the
correctly altered sensitive attributes and well-
preserved non-sensitive attributes are shown.

Sensitive Non-Sensitive

CelebA-CF 96.52 95.98
LFW-CF 98.61 93.75

Reliability check. We further verify the quality of our
datasets by additional five human annotators, distinct from
those participated in the filtering process. Those anno-
tators evaluate only the images that remained after the
filtering, based on two criteria: (1) whether the sensitive
attribute was correctly changed and (2) whether the other
non-sensitive attributes were preserved. The annotators
evaluated the images for the sensitive attribute, “sex” and
three non-sensitive attributes, “blond hair”, “gray hair”,
and “smiling”; we chose these three because other attributes can be subjective (e.g., “big nose”) [40]
or had already been filtered (e.g., “wearing hat”). Details of the annotating interface provided to

3The two datasets use the terms “gender” for indicating their sensitive attributes. However, using such
terminology can present some ethical concerns because they can suggest meanings linked to social identities.
Thus, we have decided to use the term “sex” instead, which more accurately refers to biological characteristics.
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the five annotators are in Appendix C.2. Based on the majority vote, we compute the percentage of
CTF samples which met each of the two criteria, i.e., the accuracies for whether the sensitive and
non-sensitive attributes are correctly altered and preserved. Table 1 displays the values for CelebA-CF
and LFW-CF. The non-sensitive accuracy is averaged across three non-sensitive attributes. The
results demonstrate that our CTF samples almost meet the two CTF criteria, suggesting that our
datasets can be reliably utilized to evaluate CF.

Ethical considerations. In our study, we use the term “sex”, not “gender”, to represent the sensitive
attribute with biological traits, because terms such as “gender” might imply associations with social
identities, potentially raising some ethical issues. We also specifically choose ten perceived facial
attributes as the visual features representing the biological sex in facial images. We believe that
these considerations help alleviate various normative harms that arise from dichotomizing gender,
which refers to social identity. However, despite our efforts, the sex-related visual characteristics are
complex and intertwined, making it challenging to fully represent with a binary label. Thus, we urge
practitioners to use our datasets with these considerations in mind.

3 Primitive study on the relationship between CF and GF

3.1 Experimental setup

We consider the image classification task where each data sample consists of an input image X , a
class attribute Y 2 Y = {0, · · · , |Y|� 1} and a sensitive attribute A 2 {0, 1}, e.g., sex.

Metrics. We measure three metrics for CF, GF, and classification accuracy. Firstly, we de-
scribe the metric for CF. A classifier satisfies CF when the predictions for the original sample
and its counterfactual (CTF) sample are the same for every sample x and sensitive attribute a, i.e.,
P (bY = y|X =x,A = a) = P (bYA a0 = y|X =x,A = a), where bYA a0 represents the prediction for a
counterfactual sample intervened on A with a0 (e.g., changing female to male). We quantify the
degree of violence with respect to CF using counterfactual disparity (CD):

Counterfactual Disparity (CD) , Ex,a

⇥
P
�

{bYA a0 6= bY }|x, a
�⇤
. (1)

Secondly, we adopt equalized odds (EO) as our notion for GF. If a predictor bY and the sensitive
attribute A are conditionally independent given the true class attribute Y , the predictor satisfies EO;
namely, EO holds when P (bY = y0|A = 0, Y = y) = P (bY = y0|A = 1, Y = y). From the definition, we
can capture the degree of violence with respect to GF with the disparity of EO (DEO):

Disparity of EO (DEO) , max
y,y02Y

��P (bY = y0|A = 0, Y = y)-P (bY = y0|A = 1, Y = y)
��. (2)

We note that we empirically compute CD and DEO, defined in Equation (1) and (2), using our
benchmark datasets and the original test datasets of CelebA and LFW, respectively. Additionally,
Pinto et al. [33] propose several other metrics to evaluate CF, and accordingly, we conducted an
additional evaluation based on these metrics, with results provided in Appendix G.5.

Baseline methods. We evaluate a model trained with the vanilla cross-entropy loss (denoted
as “Scratch”) and two CF-aware training methods, Scratch+aug and counterfactual pairing (CP).
Scratch+aug is a Scratch method using an augmented training dataset with counterfactual samples
[7], and CP [36] adopts a regularization term that promotes pairs of original and its CTF sample
to obtain the same prediction (see Equation (4) for the formal definition). Note both methods need
counterfactual samples for training, and hence, we use the samples generated via IP2P with the
same prompts used in Section 2 without any filtering process to obtain results for them. For a
comprehensive study, we additionally evaluate two individual fairness-aware methods, SenSeI [42]
and LASSI [31], of which goals are analogous to CF in aiming to make a model robust to perturbation
of the sensitive attribute. More details are described in Appendix D.3.

Model selection. Due to the accuracy-fairness trade-off [6], appropriate model selection is important
for fair evaluation. We explore varying hyperparameters and select the best model that shows the
lowest CD (Equation (1)) for the held-out validation set while achieving a lower bound of the
accuracy4.

4Considering the accuracy degradation of fair-training methods, we set the bound as 98% of the accuracy of
Scratch, i.e., if Scratch achieves 95.0% accuracy, then we only consider models with more than 93.1% accuracy.
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Table 2: CF does not always imply GF on image classification. We report CD (Equation (1))
and DEO (Equation (2)) for measuring Counterfactual Fairness (CF) and Group Fairness (GF),
respectively. Accuracy and DEO are measured on the original test datasets (CelebA and LFW) and
CD is evaluated on the newly constructed datasets, CelebA-CF and LFW-CF, described in Section 2.
If a model shows an inferior metric value than Scratch, the number is highlighted in red.

CelebA (and CelebA-CF) LFW (and LFW-CF)
Method Acc " CD # DEO # Acc " CD # DEO #
Scratch 95.53 10.26 47.10 90.85 18.06 7.66

Scratch+aug [7] 95.41 4.65 44.71 90.34 12.15 7.86
CP [36] 94.10 2.53 51.01 89.77 9.20 8.74
SenSeI [42] 95.33 8.00 52.32 87.75 16.09 9.23
LASSI [31] 91.07 9.69 31.79 - - -

3.2 Performance comparison

Table 2 shows accuracy, CD, and DEO for Scratch and four baseline methods. Note that we omit
the result of LASSI on LFW because the number of samples in LFW is not enough to train the
Glow model [20], which is the main component of LASSI. From the table, CF-aware and individual
fairness-aware methods are mostly effective in mitigating CD, when compared to Scratch. However,
it does not necessarily lead to improvements in DEO. Especially, while CP significantly improves
CD for both datasets, it exacerbates DEO compared to Scratch. Namely, contrary to the previous
studies [1, 35] showing that CF implies GF on tabular datasets, our observation shows that CF does
not always imply GF on image datasets. In the following section, we theoretically investigate why
the previous observations may not hold on images.

4 Theoritical analysis on the relationship between CF and EO for images

4.1 Structural Causal Model (SCM) for images

!

"!#
$

%

!" !# !$ !%!⋯

⋯

Attribute space

Figure 2: Image SCM. Blue, gray,
and yellow circles represent latent at-
tributes, components of an image and
a whole image, respectively. Directed
edges indicate a causal relationship
from the source to the target. The blue
region indicates that there can be any
direction of edges between blue nodes.

Structural Causal Models (SCMs) are represented as directed
acyclic graphs satisfying the conditions specified in [30]. In
these models, nodes and edges indicate variables and their
causal relationships within the data-generating process. As
studied in previous works [4, 22], the nodes of an SCM for
image can be categorized into three parts. As shown in Figure 2,
the blue, gray and yellow nodes indicate latent attributes, e.g.,
Y or A, components of the image influenced by these attributes,
e.g., XY or XA, and the whole image X , respectively. Taking
an SCM for facial images as an example, we can interpret these
nodes as follows: latent attributes such as hair color or sex,
facial components like the hair or an Adam’s apple in a facial
image, and an entire face. Note that the blue region in the
figure describes that various causal relationships among latent
attributes can exist 5. Furthermore, although an image SCM
may contain additional latent attributes, we simplify our focus
to only include the class and sensitive attribute, Y and A, and a
third-party attribute, G, which may correlate with the sensitive
attribute A.

4.2 Theoretical analysis

According to the Markov assumption of SCM [30], if there are no unblocked paths between two
variables in an SCM (i.e., they are d-separated), the variables are statistically independent. Utilizing
this property, Anthis and Veitch [1] demonstrated that CF implies several GF notions, including
Equalized Odds (EO) [10], under the specific condition on SCMs such as no backdoor path from the

5We assume no edge or unblocked path from A to Y ; otherwise, all counterfactually fair models based on
that SCM would produce random predictions with respect to XY .
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sensitive attribute A to the image X exists (Theorem 2 of [1]). Moreover, the authors empirically
show that these conditions would hold on some tabular datasets.

However, we argue that these conditions would not hold for image datasets due to a fundamental
difference in what sensitive attributes represent in an image. Specifically, tabular datasets typically
consist of recorded information by subjects, where sensitive attributes such as sex or race usually
represent immutable genetic information; hence they are not caused by other attributes and cause all
attributes correlated with the sensitive attributes. In contrast, sensitive attributes in image datasets
indicate visual characteristics that can change and be influenced by some other attributes, such as the
attribute G. For example, in a facial image dataset, attributes like hair length or accessories might
be highly correlated with, but not caused by, secondary sex characteristics such as beard. Namely, a
backdoor path from the sensitive attribute X through the attribute G could exist, thereby breaking the
connection between CF and GF discovered in previous studies.

Our theoretical result specifies the relationship between CF and GF (especially for EO) with G:
Theorem 4.1. Assume a latent attribute G in Figure 2 is a non-descendant variable of A and

connected to A through an unblocked path. Then, the following inequality holds for a counterfactually

fair classifier ✓ and any pairs of y and y0:
��P (bY = y0|A = 0, Y = y)� P (bY = y0|A = 1, Y = y)

��


X

XY

P (XY |Y = y) max
XG,X0

G

d✓,XY (XG, X
0
G), (3)

in which d✓,XY (XG, X 0G) =
��P (bY = y0|XY , XG)� P (bY = y0|XY , X 0G)

�� and Ŷ is the prediction

of the model ✓. The equality holds when d✓,XY = 0 always regardless of XY .

The proof of the theorem is in Appendix A. Note that when we take the maximum over (y, y0) on
both sides of the inequality in Theorem 4.1, the left-hand side of the inequality becomes identical to
DEO (Equation (2)). Therefore, the theorem implies that DEO is upper bounded by the maximum of
d✓,XY (XG, X 0G) (in which the maximum is over XG, X 0G, y, y0), which measures the sensitivity of
the model with respect to G. In other words, the theorem shows that when a counterfactually fair
model is sensitive to XG (i.e., when max d✓,XY (XG, X 0G) is large), the model may result in having
high DEO in the worst-case.

Theorem 4.1 elucidates why CF-aware methods in Table 2 often fail to mitigate DEO despite
significant improvements in CD. Namely, if the attribute G assumed in Theorem 4.1 exists on CelebA
and LFW, DEO for the classifiers trained by CF-aware methods can worsen depending on their
robustness to G. This will be empirically demonstrated using “hair length” as G in Section 5.2,
together with the results using a controllable synthetic dataset. Furthermore, Theorem 4.1 suggests that
we can re-establish the relationship between two notions by making counterfactually fair classifiers
non-sensitive to G. In the following section, we introduce a method to promote a classifier not to
depend on G while achieving CF.

5 Empirical analyses on the effect of G to CF and GF

5.1 Counterfactual Knowledge Distillation (CKD)

Motivated by Theorem 4.1, we propose a baseline fair-training method to achieve both CF and
GF. Conceptually, if we can reduce the dependency between the latent attribute G described in
Theorem 4.1 and the prediction of a CF-aware trained model, we can expect that the model will
achieve CF and GF simultaneously. Therefore, we improve the CF-aware method, CP [36] (best-
performing in Table 2), such that the dependency to the attribute G is reduced. We first describe the
CP regularization (which is used along with the cross-entropy loss) for given counterfactual samples
D0 = {xi,A a0

i
}Ni=1 corresponding to the original training dataset D:

LCP(✓,D [D0) := 1

N

NX

i=1

kf(✓, xi)� f(✓, xi,A a0
i
)k22, (4)

in which f(✓, x) is a representation vector of input x produced by a classifier ✓, such as logit or
feature vector. Note that the images x and xA a0 differ only in their components corresponding to
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the sensitive attribute A and the attributes caused by the sensitive attribute A. Hence, although the CP
regularization works well for achieving CF, it does not ensure the model does not rely on the attribute
G, potentially leading to worse DEO as argued in the previous section.

Recent studies [16, 38, 45] have shown that the robustness of a teacher model can be transferred into
a student model through knowledge distillation (KD) [12]. To that end, we first assume a teacher
model that is robust to the attribute G is available. Then, our idea is to apply both KD and CP
regularization to train our student model, which leads to a simple yet effective approach, dubbed as
Counterfactual Knowledge Distillation (CKD). Specifically, CKD employs averaged representation
vectors of original and counterfactual samples extracted by the teacher model ✓T as target vectors.
Then, representation vectors of both samples from the student model ✓ are enforced to follow the
target vectors. Namely, the distillation term of CKD is defined as follows:

LCKD(✓,D [D0) := 1

2N

NX

i

✓
kf(✓, xi)� fT

i k22 + kf(✓, xi,A a0
i
)� fT

i k22
◆
,

in which fT
i =

1

2

�
f(✓T , xi) + f(✓T , xi,A a0

i
)
�

is the target vector for the i-th pair. (5)

Note that our distillation terms have both effects of KD and CP by promoting both representations of
original and counterfactual samples to be aligned with the target vectors fT

i produced by the teacher
model. Therefore, based on Theorem 4.1, we can deduce that the CKD regularization encourages
the model to achieve both CF (by the CP effect) and EO-based GF (by the KD effect that distills the
robustness of the teacher with respect to the attribute G). In addition, we optionally incorporate CP
regularization into our objective to further mitigate CD. The final objective of our method (which we
again dub as CKD for brevity) is as follows:

min
✓

LCE(✓,D) + µLCKD(✓,D [D0) + �LCP(✓,D [D0), (6)

in which µ and � are controllable hyperparameters for the CKD and CP regularization, respectively.

While we assumed above the availability of a teacher model that is robust to the attribute G, obtaining
such a model could be challenging in practice. Empirically, we observe that vanilla-trained models
(referred to as “Scratch” models) less depend on the attribute G than CP-trained ones (see Figure 3
and Table 3 for more details). We presume that this is because the attributes A and G behave as
“shortcut” features for classifying the class attribute Y , i.e., they are easy-to-learn discriminatory
features. As observed by Scimeca et al. [37], making a model blind to a certain shortcut feature
causes it to rely more heavily on the other shortcut features. In our case, CP-trained models are
trained to be invariant to the sensitive attribute A, resulting in a greater dependence on the attribute G
compared to the Scratch models. Thus, unless otherwise specified, we will assume the vanilla-trained
model is relatively robust to the attribute G since it would mostly rely on the sensitive attribute A,
hence, we use it as the teacher model.

5.2 Impact of robustness to G on CF and GF

We empirically validate our theoretical result and CKD on both a newly introduced synthetic dataset
(CIFAR-10B) and a real-world dataset (CelebA) by analyzing CF, GF, and the robustness with respect
to the attribute G described in Theorem 4.1. We thus introduce a new metric for the robustness to the
attribute G, the rate of flipped predictions (RFP) :

RFP , Ex,x0
⇥
P
�

{bY 6= bY 0}|x, x0
�⇤
. (7)

in which x is an original image, x0 is its corresponding image with the attribute G flipped. bY and
bY 0 refer to the predicted label by the trained model given x and x0, respectively. RFP quantifies the
amount of flipped predictions when the attribute G is altered. For example, if a model shows the
same prediction after changing the attribute G, its RFP becomes 0%.

CIFAR-10B, a controllable synthetic dataset. We construct the CIFAR-10B dataset, where we
can perfectly control the degree of bias with respect to the attribute G while the target label is biased
towards the sensitive attribute A. We make binary class labels from the 10 classes of CIFAR-10 (0-4
and 5-9 classes). We set the attributes A and G in Theorem 4.1 with the presence of Gaussian and
Contrast noise, respectively. We also set a fixed ratio of 0.8 and a controllable ratio ↵, which represent
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Figure 3: Impact of the correlation of G and A. ↵ indicates how A and G are correlated on CIFAR-10B.

skewnesses among (Y , A) and (A, G), respectively; the former ratio is the spurious correlation
between Y and A, and the latter one is the correlation between A and G. We then construct the
CIFAR-10B dataset by randomly injecting Gaussian or Contrast noise to each CIFAR-10 image at
given ratios, as illustrated in Figure E.2. Unless otherwise noted, we set ↵ as 0.8.

We train models with Scratch, CP, and CKD on CIFAR-10B by adjusting ↵ from 0.5 (i.e., A and
G are decorrelated) to 0.9 at intervals of 0.1. Figure 3 shows CD, DEO, and RFP metric values for
each method. The figures indicate that while CP and our CKD consistently achieve CF, CP fails to
meet GF as ↵ increases, potentially due to higher RFP. Furthermore, RFP of Scratch is lower than
that of CP when ↵ is greater than 0.7. This empirically justifies the use of vanilla-trained models
as teacher models robust to G. By using these teacher models, CKD significantly improves DEO
regardless of the value of ↵ by maintaining the robustness to G, i.e., low RFP, supporting the result
of Theorem 4.1.

Table 3: Impact of G on CelebA. We as-
sume “hair length” as G and manipulate the
hair length of test images. CD, DEO, and
RFP are measured on CelebA-CF, CelebA,
and hair-edited CelebA, respectively.

CelebA
Method CD # DEO # RFP #

Scratch 10.26 47.10 15.27

CP 2.53 51.01 20.37
CKD 4.44 13.23 10.85

Impact of G manipulation on CelebA. We assume
“hair length” as G for facial image datasets, e.g., CelebA
because the hair length G can be highly correlated with,
but not caused by, the sex A. To compute RFP for the hair
length attribute, we manipulate the hair length of CelebA
test images using SDEdit [28]. More details and generated
examples can be found in Appendix E.1. Using the hair
length-edited images, we report RFP in Table 3, together
with DEO and CD. The results share the same trend as the
CIFAR-10B results, i.e., CP shows worse DEO and RFP
than Scratch but better CD, whereas CKD shows the best
DEO and RFP, despite a slight increase of CD.

5.3 Impact of the robustness to G of the teacher model on CKD

Table 4: Impact of robustness to G of the
teacher model. ✓T

CP, ✓T
CKD, and ✓T

Scratch are CP,
CKD, and Scratch teacher model. ✓T

De-biased is a
Scratch model trained on a perfectly de-biased
training dataset (↵ = 0.5). RFPT denotes how
a teacher is biased towards G. CD, DEO, RFP are
metrics for evaluating CF, GF, and bias towards G,
respectively. Results are measured on CIFAR-10B
with ↵ = 0.8

Method RFPT # Acc " CD # DEO # RFP #

CKD w/ ✓T
CP 41.46 76.15 3.59 12.65 18.08

CKD w/ ✓T
Scratch 21.38 78.49 2.85 7.30 11.66

CKD w/ ✓T
CKD 11.66 78.39 2.33 4.89 5.30

CKD w/ ✓T
De-biased 10.81 77.17 2.79 4.01 4.67

Our CKD requires a robust teacher model with re-
spect to the attribute G to distill the robustness to the
target model. To analyze the impact of the robustness
of the teacher model, we compare various teacher
models with different dependencies on the attribute G
using CIFAR-10B. We consider four teacher models,
ordered by robustness to the attribute G: CP (✓T

CP),
Scratch (✓T

Scratch), and CKD model with a Scratch
teacher (✓T

CKD), and a de-biased model trained on
CIFAR-10B balanced for G, i.e., ↵ = 0.5, (✓T

De-biased).
Using these teacher models, we report DEO, CD, and
RFP of CKDs on the CIFAR-10B dataset in Table 4.
We observe that the degree of robustness to the at-
tribute G of the teacher model (i.e., RFPT ) highly
correlates to DEO. It is because as the teacher model
becomes more robust to G, RFP of the target model
gets lower, finally leading to a lower DEO while maintaining fair CD. Namely, these results support
our theoretical result again.
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Table 5: Evaluation of GF and CF of fair-training for image classification. The details are the same as
Table 2. “Scratch” denotes a model trained without considering the notion of fairness through the vanilla
cross-entropy loss. “+aug” denotes counterfactual (CTF) image augmentation described in Section 3. If a model
performs worse than the Scrath model on CD/DEO, we highlight the numbers in red. The best performance is
highlighted in orange , and the second-best performance is highlighted in grey .

CIFAR-10B (↵=0.8) CelebA (and CelebA-CF) LFW (and LFW-CF)
Method Acc " CD # DEO # Acc " CD # DEO # Acc " CD # DEO #
Scratch 78.01 17.90 27.46 95.53 10.26 47.10 90.85 18.06 7.66

SS [14] 74.77 16.42 25.73 95.44 9.13 42.95 90.43 18.19 6.75
RW [17] 76.53 12.15 18.94 95.16 5.50 24.21 90.87 18.68 6.92
COV [43] 79.03 13.90 24.05 94.42 7.72 34.04 90.85 16.43 6.99
MFD [16] 76.84 12.24 15.39 94.37 4.61 19.00 90.47 16.07 2.15
LBC [15] 76.16 15.01 17.12 94.92 6.24 22.61 90.71 15.76 3.56

SS+aug 73.45 9.95 15.21 95.17 5.24 40.80 89.96 15.23 6.82
RW+aug 76.15 12.93 20.94 95.13 5.34 24.63 90.76 18.63 6.71
COV+aug 76.52 8.17 15.04 94.08 8.11 29.03 90.47 13.65 6.78
MFD+aug 77.10 11.16 14.79 93.78 3.87 14.36 89.90 19.36 2.47
LBC+aug 75.82 9.01 15.29 94.39 9.32 36.08 88.66 12.41 2.79

CP [36] 75.26 2.05 33.23 94.10 2.53 51.01 89.77 9.20 8.74
SS+CP 76.54 3.14 9.08 94.54 2.40 37.97 88.7 6.13 4.26
RW+CP 75.68 8.83 13.92 95.19 4.67 25.56 90.87 15.24 6.16
COV+CP 77.74 4.30 19.42 94.29 5.36 51.63 91.23 11.91 6.52
MFD +CP 76.67 10.01 13.17 93.81 3.47 23.31 89.39 15.15 1.90
LBC+CP 76.88 3.02 12.45 95.12 4.72 22.78 89.92 8.33 3.02

CKD (� = 0) 76.32 8.59 11.23 94.12 4.31 14.11 90.76 12.42 2.64
CKD 78.49 2.85 7.30 93.08 4.44 13.23 89.26 7.94 1.88

6 Full comparisons of fair-training methods on image classification

Finally, we evaluate the existing fair-training methods focusing on group fairness (GF) and coun-
terfactual fairness (CF) on CelebA and LFW, together with CIFAR-10B for image classification
tasks. We emphasize that only CelebA-CF and LFW-CF have counterfactual images of the real-world
images; hence, we measure a CF metric, i.e., Counterfactual Disparity (CD) (Equation (1)), using
our datasets. Along with the CF-aware methods, such as CP [36] and CKD, we report the GF-aware
methods including SS [14], RW [17], COV [43], MFD [16], and LBC [15]. In addition, we report the
naive combinations of GF-aware and CF-aware methods, e.g., training GF-aware method with the
augmented training dataset with counterfactual images generated by IP2P [2] (denoted as “+aug”)
and combinations of the GF-aware methods and the CP regularization (Equation (4)) (denoted as
“+CP”). The hyperparameters for all methods besides the GF-aware methods are selected using the
same protocol in Section 3, and ones for the GF-aware methods are chosen based on DEO using the
same lower bound of the accuracy. Implementation details are provided in Appendix D.3.

Table 5 shows the holistic evaluation of CF and GF for all the methods mentioned above on the
three image classification tasks. The table shows four important observations. First, although CP
(a CF-aware method) mostly performs the best on CD, it even shows worse DEO than Scratch.
We theoretically and empirically discussed the reason in Section 4 and 5. Second, the GF-aware
methods are effective in improving DEO but have a minimal impact on CD. This suggests that
the faithfulness assumption for SCM may not hold, which will be discussed in more details in
Appendix F. Third, the naive combinations of GF-aware and CF-aware methods exhibit much better
CD than using the GF-aware methods alone. Additionally, DEOs achieved by the naively combined
methods tend to be improved since their training datasets are balanced over the sensitive attributes
by incorporating generated samples into the original training datasets. Lastly, we found that CKD
shows the best DEO for every evaluation dataset. It shows that if we can train a CF-aware model
by reducing the dependency on G, we can achieve both CF and GF even on the image classification
task. We additionally conduct an ablation study on CKD by removing CP (i.e., CKD (� = 0)) from
Equation (6). We observe that this ablated version achieves suboptimal performances than CKD.
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This suggests that adding the CP regularization term to the CKD objective function can be helpful to
improve both CD and DEO.

7 Concluding remarks

This paper offers carefully crafted benchmark datasets for evaluating the counterfactual fairness
(CF) of image classification methods. Since obtaining true counterfactual images is impossible in
practice, we employ a high-quality image editing technique to generate counterfactual images of the
given images. We construct two facial image benchmarks, CelebA-CF and LFW-CF, by carefully
filtering out and verifying the generated counterfactual images by human annotators. Our datasets
relax the constraints of the impossibility of evaluating CF in image classification. Using our datasets,
we also provide theoretical and empirical results showing that CF may not imply GF, contradictory
to the studies conducted on tabular datasets. We elucidate this phenomenon by the presence of the
third-party attribute highly correlated with, but not caused by, the sensitive attribute. From this
finding, we propose a simple baseline method, CKD, to achieve CF and GF simultaneously. Our
extensive experimental results on both GF and CF metrics show that when reducing the reliance
on the attribute (e.g., by using CKD), improving the CF metric leads to a significant improvement
in the GF metric. By providing our benchmarks and various analyses, we believe that our findings
bridge CF and GF in image classification, contributing to the development of fair and robust image
recognition systems.
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