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Abstract

Discovering features with synergistic interactions
in multi-view data, that provide more information
gain when considered together than when consid-
ered separately, is particularly valuable. This fos-
ters a more comprehensive understanding of the
target outcome from diverse perspectives (views).
However, despite the increasing opportunities pre-
sented by multi-view data, surprisingly little at-
tention has been paid to uncovering these cru-
cial interactions. To address this gap, we for-
mally define the problem of selecting synergis-
tic and non-synergistic feature subsets in multi-
view data, leveraging an information-theoretic
concept known as interaction information. To this
end, we introduce a novel deep learning-based
feature selection method that identifies different
interactions across multiple views, employing a
Bernoulli relaxation technique to solve this in-
tractable subset searching problem. Experiments
on synthetic, semi-synthetic, and real-world multi-
view datasets demonstrate that our model discov-
ers relevant feature subsets with synergistic and
non-synergistic interactions, achieving remark-
able similarity to the ground truth. Furthermore,
we corroborate the discovered features with sup-
porting medical and scientific literature, under-
scoring its utility in elucidating complex depen-
dencies and interactions in multi-view data.

1. Introduction
Synergistic interaction offers information gain we attain
from a relationship when attributes are considered together,
which cannot be achieved when they are examined sepa-
rately (McGill, 1954). A straightforward example is the ex-
clusive OR (XOR) operation between two variables, where
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one must understand the values of both variables to accu-
rately identify the outcome. In other words, knowledge of an
individual variable alone is insufficient to provide adequate
information about the target outcome of interest.

Unraveling features with synergistic interactions is partic-
ularly valuable in understanding complicated mechanisms
comprised of multi-view data, where each view represents a
set of different features, potentially from diverse modalities
or sources, describing the same object. A typical example is
deciphering cellular function mechanisms from multi-omics
data (Bunnik & Le Roch, 2013; Vidal et al., 2011). For
instance, diseases rarely arise from the malfunction of a
single gene product. Instead, they often stem from the com-
plex interactions of thousands of gene products (Barabási,
2007). Furthermore, the genes associated with a disease
may individually have minor effects, but when combined,
their cumulative impact can be significant (Petretto et al.,
2007). These intricate interactions lead to diverse responses
to treatment, underscoring the necessity for a comprehen-
sive analysis of the interplay across multiple omic layers
(Benson, 2016). For example, heat shock proteins are fre-
quently deregulated in breast cancer, but their implications
vary depending on the cellular context: specific microRNAs
are up-regulated in cases of poor prognosis, whereas certain
genes are co-expressed in instances of favorable prognosis
(Buttacavoli et al., 2021).

Furthermore, considering that fewer than 1% of gene prod-
ucts are involved in such pathological pathways, pinpoint-
ing the responsible genomes and their interplay is essen-
tial for comprehending the underlying mechanism. This
understanding, in turn, facilitates effective clinical decision-
making tailored to individual patients (Jackson et al., 2018).
Thus, while multi-view data presents many opportunities,
it also requires careful and precise analysis, considering re-
lationships between features across different views to fully
leverage its potential.

Unfortunately, existing multi-view feature selection meth-
ods fail to capture the essence of crucial interactions across
diverse views. Their primary focus lies on simplistic ap-
proaches such as concatenating multiple views and applying
traditional single-view feature selection methods (Acharya
et al., 2020; Zhang et al., 2019), or capturing limited multi-
view interactions based on pre-defined knowledge graphs
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(Pfeifer et al., 2022; Acharya et al., 2020) or highly cor-
related feature subsets (Lindenbaum et al., 2021). These
limitations hinder our ability to uncover meaningful inter-
actions across views that, when considered together, offer
valuable insights into the target outcome.

Contributions. We propose a novel deep learning approach
for multi-view feature selection capable of uncovering in-
formative features by decomposing them into components
reflecting synergistic and non-synergistic interactions across
different views. Our method adopts an information-theoretic
concept, called interaction information, to define a novel
multi-view synergistic and non-synergistic feature selection
problem. Throughout the experiments on synthetic, semi-
synthetic, and real-world multi-view datasets, we validate
that our proposed method discovers relevant feature sub-
sets with different interactions across multiple views, out-
performing traditional state-of-the-art single-view feature
selection methods. Additionally, we demonstrate the effi-
cacy of our method by introducing a variant of the Shapely
value (Lundberg & Lee, 2017) to quantify the synergistic
attribution of selected feature subsets when the ground truth
interactions are unknown. Then, we further corroborate the
discovered synergistic features with supporting medical and
scientific literature.

2. Related Work
Feature Selection. Feature selection is a well-established
area of study, largely categorized into three methods based
on the search strategy: filter (Kira & Rendell, 1992; Liu
et al., 1996), wrapper (Kohavi & John, 1997), and embedded
methods (Tibshirani, 1996). Recently, several deep learning-
based embedded feature selection methods have been pro-
posed. These approaches leverage the capability of deep
neural networks to capture more heterogeneous and complex
interactions between input features and the target outcome.
These methods learn to solve the non-differentiable subset
selection problem by approximating it with Lasso penal-
ization (Li et al., 2016), or, more recently, with continuous
relaxation employing Bernoulli distribution such as Hard-
Concrete (Lee et al., 2021; Imrie et al., 2022) and Gaussian
(Yamada et al., 2020; Yang et al., 2022) distributions.

Multi-View Feature Selection. Despite advancements
in feature selection methods, multi-view feature selection
remains relatively under-explored. Most studies concate-
nate multi-view data into a single view and apply tradi-
tional (single-view) feature selection methods, focusing on
identifying the most essential factors across different views
(Acharya et al., 2020; Zhang et al., 2019). However, these
methods often overlook the intricate interactions that emerge
when multiple views are present together, which are not ob-
servable when each view is considered separately or merely
concatenated into one single view.

A few studies have addressed feature selection in multi-view
data without resorting to simple concatenation. These ap-
proaches utilize various techniques to integrate multi-view
data, including discovering crucial features through knowl-
edge graphs built upon feature relationships (Pfeifer et al.,
2022; Acharya et al., 2020), selecting highly correlated fea-
ture subsets between two views using canonical correlation
analysis (CCA) (Lindenbaum et al., 2021), and identifying
significant features or embeddings (Yang et al., 2023; Lin
& Zhang, 2023) by considering both shared and distinct in-
formation from multi-view data. While these methods offer
insight into specific feature dependencies, they have limita-
tions in capturing a more comprehensive understanding of
how features interact across multiple views and contribute
to the target outcome.

Feature Selection with Group Interactions. ”CompFS
(Imrie et al., 2022) is a single-view feature selection method
that emphasizes the significance of interactions. It identifies
groups of informative features, known as composite features,
by selecting groups where the predictive power significantly
diminishes upon removing any single feature within that
group. While CompFS focuses on single-view data and
does not directly analyze feature interactions across multiple
views, it is the closest comparison to our work due to the
limited existing research on discovering feature interactions
across multiple views.

3. Preliminaries: Information-Theoretic View
3.1. Embedded Feature Selection

Let X ∈ Rp and Y ∈ Y be random variables representing
p-dimensional input features and the corresponding target
label, respectively, whose realizations are denoted as x =
(x1, . . . , xp) and y, i.e., (x, y) ∼ pXY . Here, Y is the label
space where the target task becomes a regression task when
Y = R or a C-class classification task when Y = [C].

Embedded feature selection aims to select a minimal subset,
i.e., S ⊆ [p], of features that are informative about the
target label, which can be formally quantified as the mutual
information (MI) between the selected feature subset and the
target. Denote g = (g1, . . . , gp) ∈ {0, 1}p to be a binary
gate vector where gd indicates whether the d-th feature is
selected in S or not, i.e., gd = 1 if d ∈ S and gd = 0
otherwise. Then, we can define the selected feature subset,
XS ∈ (R∪{∗})p, as XS = g⊙X+(1−g)⊙∗, where ∗ be
any point not in R and⊙ is an element-wise multiplication.1

Then, selecting the smallest informative feature subset can
be achieved by solving the following optimization problem:

minimize
g∈{0,1}p

∥g∥0 subject to Iθ(Y ;XS) > δ (1)

1We substitute ∗ with the mean of each feature, i.e., ∗ = E[xd]
in this paper.
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where Iθ indicates the estimated MI parameterized by θ
which is optimized concurrently during the feature selection
process, and δ constrains the minimum amount of informa-
tion present in XS about Y .

3.2. Synergistic and Non-synergistic Interaction

Interaction information is a generalization of the MI for
more than two random variables (McGill, 1954), which mea-
sures the influence of a variable on the amount of informa-
tion shared between the other variables. More specifically,
given three random variables X , Y , and Z, the interaction
information can be given as I(Y ;X|Z)− I(Y ;X) where
I(Y ;X) is the MI between X and Y and I(Y ;X|Z) is the
conditional MI between X and Y given Z. Having the two
MI quantities not being equivalent indicates the presence of
interactions between X and Z regarding Y . Here, we will
discuss two types of interactions, namely, the synergistic
and non-synergistic interactions.

We define synergistic interactions between X and Z regard-
ing Y as the positive interaction information, as follows:
Definition 3.1. (Synergistic Interaction) Variables X
and Z have synergistic interaction with respect to Y
when the two variables satisfy I(Y ;X|Z) > I(Y ;X) ⇔
I(Y ;X,Z) > I(Y ;X) + I(Y ;Z), which represents that
X possesses more information about Y given Z than it does
unconditionally.

Here, the equivalent inequality term is achieved by applying
the chain rule for MI, suggesting that we can obtain more
information about Y considering both X and Z together
than considering X and Z individually.

Conversely, we define non-synergistic interaction between
X and Z regarding Y as zero or negative interaction infor-
mation, as follows:
Definition 3.2. (Non-Synergistic Interaction) Variables
X and Z have non-synergistic interaction with respect to Y
when the two variables satisfy I(Y ;X|Z) ≤ I(Y ;X) ⇔
I(Y ;X,Z) ≤ I(Y ;X) + I(Y ;Z), which implies that the
information between X and Y becomes redundant given Z.

Thus, zero interaction information indicates that Z does not
provide any additional information about the MI between
X and Y . The negative interaction information, on the
other hand, implies that the MI of X and Y rather decreases
when conditioned on Z, suggesting that some information
of I(Y ;X) can also be obtained from I(Y ;Z) alone.

4. Multi-View Synergistic Feature Selection
Our goal is to discover synergistic and non-synergistic rela-
tionships from informative features to enable a more com-
prehensive analysis for multi-view feature selection while
maintaining superior predictive performance.

Notation. Let X̄ = (X1, . . . ,XV ) ∈ Rp be a random
variable for the set of multi-view features from entire V
views with p =

∑V
v=1 pv and Y ∈ Y for the target la-

bel. Here, Xv ∈ Rpv denotes a random variable for
pv-dimensional features from the v-th view whose real-
izations are denoted as xv = (xv

1, · · · , xv
pv
). We denote

X\v = (X1, · · · ,Xv−1,Xv+1, · · · ,XV ) as the comple-
ment features, comprising entire features other than those
from the v-th view. Following the notations in Section
3.1, we denote gS = (g1

S · · ·gV
S ) and gN = (g1

N · · ·gV
N )

to be binary gate vectors, where gv
S ,g

v
N ∈ {0, 1}pv in-

dicate synergistic and non-synergistic subsets from the v-
th view, i.e., Sv,N v ⊆ [pv], respectively. Then, the se-
lected subset of features with synergistic interactions and
that with non-synergistic interactions from the v-th view
can be defined as Xv

S = gv
S ⊙ Xv + (1 − gv

S) ⊙ ∗ and
Xv

N = gv
N⊙Xv+(1−gv

N )⊙∗, respectively. Similarly, we
can denote X̄S and X̄N be the selected synergistic and non-
synergistic feature subsets from the entire views, and X

\v
S

and X
\v
N be the complement of the v-th view comprising

the selected feature subsets from other views, respectively.

4.1. Synergistic Feature Selection

Building upon Definition 3.1, we formally define the multi-
view features with synergistic interactions as follows:

Definition 4.1. (Multi-View Synergistic Features.) Let
Sv be a subset of features for v ∈ [V ]. Then, Xv

S and X
\v
S

have synergistic interactions with respect to Y when the
following inequality is satisfied:

I(Y ;Xv
S |X

\v
S ) > I(Y ;Xv

S). (2)

Our goal is to find the minimum subsets of features, i.e., S =
(S1, . . . ,SV ), from V views that contribute to multi-view
synergistic interactions, i.e., I(Y ;Xv

S |X
\v
S ) > I(Y ;Xv

S)
for v ∈ [V ]. Here, we can simplify the multiple-constrained
problem, each constraint defined for each view, into a single-
constrained problem based on the following proposition.

Proposition 4.2. Let S∗ = (S∗1, · · · ,S∗V ) be the mini-
mum subset of features that satisfies the inequality below:

I(Y ; X̄S∗) >

V∑
v=1

I(Y ;Xv
S∗). (3)

Then, S∗v is also the minimum subset that satisfies (2), i.e.,
I(Y ;Xv

S∗ |X\v
S∗) > I(Y ;Xv

S∗) for v ∈ [V ].

This asserts that selecting a minimum subset of features that
satisfies (3) guarantees that the selected feature subset must
contain multi-view synergistic interactions.

Finally, we can define the multi-view synergistic feature
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selection problem as follows:

minimize
g1
S ,...,gV

S

∥g1
S∥0 + · · ·+ ∥gV

S ∥0

subject to Iθ(Y ; X̄S) >

V∑
v=1

Iθ(Y ;Xv
S),

(4)

where Iθ indicates the estimated MI parameterized by θ.
Here, (4) effectively generalizes our synergistic feature se-
lection problem into multiple views by introducing a single
constraint based on (i) the MI of Y with the entire multi-
view features and (ii) that with the sum of marginal features.

4.2. Non-Synergistic Feature Selection

Similarly, we can define the multi-view non-synergistic fea-
ture selection problem as selecting minimum subsets of
features from V views, aiming to achieve zero or negative
interaction information, as follows:

minimize
g1
N ,...,gV

N

∥g1
N∥0 + · · ·+ ∥gV

N∥0

subject to Iθ(Y ; X̄N ) ≤
V∑

v=1

Iθ(Y ;Xv
N ).

(5)

Here, the selected non-synergistic features satisfy the re-
verse direction of the constraint in (4), indicating that the MI
of Y with these features decreases when computed jointly,
rather than when computed individually.

Challenges. Overall, our goal is to advance the traditional
feature selection problem by not only identifying informa-
tive features but also unraveling the various multi-view in-
teractions among these features. However, solving the ob-
jectives for the multi-view synergistic and non-synergistic
feature selection problem presents the following challenges:
First, searching over the discrete space for selecting features
becomes intractable in the high-dimensional regime. Sec-
ond, accurate estimation of the MI terms associated with
our objectives is required while jointly selecting synergistic
and non-synergistic features. Third, it is essential to ensure
that the selected synergistic and non-synergistic features are
mutually exclusive while being informative about the target.

5. Method
To address the challenges associated with selecting infor-
mative features with synergistic and non-synergistic interac-
tions, we propose a multi-view embedded feature selection
method based on interaction information, called Multi-View
Synergistic Feature Selector (SynFS).2 Our method com-
prises three key components as depicted in Figure 1:

• a set of V view-specific synergistic selectors, parameter-
ized by µS = (µ1

S , · · · ,µV
S ), each of which governs the

2https://github.com/choheeK/SynFS.

selection of synergistic feature subset,
• a set of V view-specific non-synergistic selectors, pa-

rameterized by µN = (µ1
N , · · · ,µV

N ), each of which
governs the selection of non-synergistic feature subset,

• a set of predictors for synergistic (fϕS
), non-synergistic

(fϕN
), and union (fϕA

) feature subsets, each of which
takes selected feature subsets as input and outputs the
corresponding conditional distribution of Y .

5.1. Synergistic Selectors

The set of synergistic selectors aims to identify the subset of
features with synergistic interactions across multiple views,
as formulated in (4).

Continuous Relaxation. To transform the intractable com-
binatorial search problem in (4) into a search over binary
random variables, we employ the stochastic relaxation using
Gaussian distribution (Yamada et al., 2020). Specifically,
we assume that the binary gate vectors introduced in Sec-
tion 4 follow the Bernoulli distribution, which we approxi-
mate using a Gaussian-based continuous relaxation. Given
µv

S = (µv
S,1, . . . , µ

v
S,pv

), we define the synergistic gate vec-
tors, gv

S , as the realization of the relaxed Bernoulli variable,
where gvS,d = max(0,min(1, µv

S,d+ϵ)) with ϵ ∼ N (0, σ2).
Then, we can convert the constrained combinatorial search-
ing problem into an unconstrained continuous optimization
introducing a Lagrangian multiplier, as follows:

LµS

sel = Ex,y

[
EgS

[
ℓ(y, fϕS

(x̄gS
))−

V∑
v=1

ℓ(y, fϕS
(xv

gS
))

+ λS∥gS∥0
]]
, (6)

where λS is a hyper-parameter that controls the selec-
tion sparsity (i.e., the larger λS the fewer features are
selected). Here, EgS

[∥gS∥0] =
∑V

v

∑pv

d=1 P(gvS,d > 0)
is the sum of activated gates which is equivalent to solv-
ing

∑V
v

∑pv

d=1 Φ(
µv
S,d

σ ) where Φ is the standard Gaussian
CDF. We convert maximizing (minimizing) the MI term
into minimizing (maximizing) the conditional entropy, as
I(Y ;XS) = H(Y ) − H(Y |XS) and H(Y ) is irrelevant
to our optimization target. We denote the cross-entropy
term as ℓ(y, ŷ) =

∑
c yc log ŷc for a C-way classification

if Y = {1, · · · , C} and ℓ(y, ŷ) = ∥y − ŷ∥22 for a regres-
sion task if Y = R.3 Please see Appendix A.2 for detailed
derivation. It is worth highlighting that our objective (6) is
differentiable with respect to µS .

5.2. Non-Synergistic Selectors

Similarly, we suppose that the non-synergistic gate vec-
tors, gv

N , follow the relaxed Bernoulli distribution (Yamada

3For Y = {1, . . . , C}, we will occasionally abuse notation and
write yc to denote the c-th element of the one-hot encoding of y.
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Figure 1: An overview of SynFS architecture. The two sets of view-specific selectors and three predictors are updated
iteratively according to the corresponding loss and gradient highlighted in different colors.

et al., 2020) parameterized by µN = (µ1
N , · · · ,µV

N ), where
gvN,d = max(0,min(1, µv

N,d + ϵ)) with ϵ ∼ N (0, σ2). Be-
fore transforming our non-synergistic feature selection ob-
jective in (5), we introduce an auxiliary loss function that
encourages the selected synergistic and non-synergistic fea-
ture subsets to be mutually exclusive.

Mutual Exclusivity. Based on the definition of synergistic
and non-synergistic feature subsets, a feature cannot simul-
taneously have both positive and negative interaction infor-
mation with respect to Y . Thus, we introduce the following
loss based on the similarity between the synergistic selector,
µS , and the non-synergistic selector, µN to ensure that the
selected feature subsets from the two types of selectors are
mutually exclusive: sim(gS ,gN ) = gS ·gN

∥gS∥∥gN∥ .

Overall, using a Lagrangian approximation, we can convert
(5) into the following objective:

LµN

sel = Ex,y

[
EgN

[ V∑
v=1

ℓ(y, fϕN
(xv

gN
))− ℓ(y, fϕN

(x̄gN
))

+ λN∥gN∥0 + α · sim(gS ,gN ))
]]
, (7)

where λN is a coefficient that controls selection sparsity
and α is a hyperparameter introduced to enforce mutual
exclusivity between the two selectors. Note that we include
the similarity loss only in (7) because having both syner-
gistic and non-synergistic gates open for the same feature
implies that this feature is more informative about the target
when considered together with other views, aligning with
the definition of a synergistic relationship.

5.3. Toward Informative Selected Feature Subsets

Now, we encourage the selected synergistic and non-
synergistic feature subsets to be informative about the tar-
get. To this goal, we introduce a new gate vector, gA,
whose element is the maximum of the corresponding el-
ements in the synergistic and non-synergistic gate vectors,

i.e., gvA,d = max(gvS,d, g
v
N,d). This naturally provides the

union set of the two selected feature subsets represented
by the relaxed gate vectors. Hence, we focus on increasing
the MI between the union feature subsets and the target by
maximizing the following objective:

LµS ,µN ,ϕA

inf = Ex,y

[
EgS ,gN

[
ℓ(y, fϕA

(x̄gA
))
]]
. (8)

5.4. Predictors

As mentioned earlier, our goal is to choose feature subsets
that minimize (maximize) cross-entropy terms, serving as a
proxy for maximizing (minimizing) the MI terms of our in-
terest. This requires accurate estimates of the cross-entropy
terms, which can be obtained by correctly predicting the tar-
get based on the corresponding synergistic, non-synergistic,
and union feature subsets. To achieve this, we focus on
optimizing the predictors for the synergistic feature subsets
(fϕS

), for the non-synergistic feature subsets (fϕN
), and

for the union feature subsets (fϕA
) based on the following

objectives, respectively:

LϕS,ϕN
pre = Ex,y

[
EgS,gN

[
ℓ(y, fϕS

(x̄gS )) +

V∑
v=1

ℓ(y, fϕS
(xv

gS
))

+ ℓ(y, fϕN
(x̄gN

)) +

V∑
v=1

ℓ(y, fϕN
(xv

gN
))
]]
. (9)

Here, we have omitted the objective for the predictor, fϕA
,

as it is already described in (8). Please refer to Appendix
A.2 for detailed derivations.

5.5. Training

Overall, we optimize the three components of SynFS, incor-
porating the previously defined objectives, given as follows:

Ltotal = ︸ ︷︷ ︸
selector

LµS

sel + L
µN

sel +

predictor︷ ︸︸ ︷
LµS ,µN ,ϕA

inf + LϕS ,ϕN
pre . (10)
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Table 1: Optimization directions for different objectives.

Joint views Marginal views

Predictor
(ϕN , ϕS)

ℓ(y, fϕS
(x̄gS

)) ↓
ℓ(y, fϕN

(x̄gN
)) ↓

∑
v ℓ(y, fϕS

(xv
gS

)) ↓∑
v ℓ(y, fϕN

(xv
gN

)) ↓
Synergistic

selector (µS) ℓ(y, fϕS
(x̄gS

)) ↓
∑

v ℓ(y, fϕS
(xv

gS
)) ↑

Non-synergistic
selector (µN ) ℓ(y, fϕN

(x̄gN
)) ↑

∑
v ℓ(y, fϕN

(xv
gN

)) ↓

Here, accurately estimating the MI terms while jointly se-
lecting synergistic and non-synergistic feature subsets is
challenging, as some parts of the objective have conflict-
ing directions for their optimizations. More specifically,
the synergistic selectors, µS , are designed to choose more
predictive features that offer additional information about
the target when considered jointly across all views. This
combined information should exceed what can be gained by
analyzing the features individually Optimizing synergistic
selectors involves minimizing the cross-entropy of the target
variable given feature subsets from the joint views, while
simultaneously maximizing the cross-entropy for the sum of
marginals. In contrast, the corresponding predictor for syn-
ergistic feature subset, fϕS

, minimizes the cross-entropy of
the target given feature subsets from both joint and marginal
views. Such conflicting optimization direction can make
synergistic selectors fall into a trivial solution by adversely
impairing the estimation of marginal views. We summarize
the optimization direction for each component in Table 1.

To avoid such issues, we ensure that parameters are updated
iteratively based on their corresponding objectives as de-
picted in Figure 1. Please refer to Appendix A.3 for the
overall training procedure of SynFS.

6. Experiments
In this section, we evaluate the performance of SynFS and
multiple feature selection methods using synthetic, semi-
synthetic, and real-world experiments. The primary goal
of these experiments is to demonstrate the capability of our
method in discovering features with multi-view interactions.

Benchmarks. To the best of our knowledge, there is no
existing work on selecting feature subsets with multi-view
interactions. Hence, we have compared SynFS with the
state-of-the-art feature selection method, called CompFS
(Imrie et al., 2022), which aims to select feature groups,
each comprising features with interactions, in a single-view
setting. We also compare our method with STG (Yamada
et al., 2020) and Random Forest (RForest) (Ho, 1995),
which are deep learning-based and ensemble-based methods
commonly used for traditional feature selection, respectively.
Please see Appendix A.9 for more details.

Performance Metrics: Known Ground Truths. When
ground truth synergistic and non-synergistic features are

known, we evaluate the discovered feature subsets of ours
and CompFS using Jaccard Index (J-Index) (Jaccard, 1912).
The J-Index of the two sets A and B can be given as
J(A,B) = |A∩B|

|A∪B| . Here, we report 1
2 (J(S, Ŝ)+ J(N , N̂ ))

to evaluate the discovered synergistic and non-synergistic
subsets, denoted as Ŝ and N̂ , respectively. For CompFS,
we re-categorize interactions to synergistic when more than
one features are selected from different views in one subset
and non-synergistic otherwise. For the traditional feature
selection methods, we apply the Group Similarity score as
suggested in (Imrie et al., 2022), which computes a nor-
malized J-Index by using the most similar subsets with
ground truth. We also assess the true positive rate (TPR)
and false discovery rate (FDR) of selected features to deter-
mine whether these features are important (either synergistic
or non-synergistic, i.e., S ∪ N ). Please refer to Appendix
A.10 for more details about the above performance metrics.

Performance Metrics: Unknown Ground Truths. Evalu-
ating the performance of feature and interaction discovery
on real data is difficult since ground truth relevance is rarely
known. Therefore, we evaluate discovery performance
based on two metrics. First, we assess the discriminative
power of the selected feature subsets by training a separate
MLP only utilizing the selected features and then comparing
the AUROC. Second, We propose a Set Interaction Score
(SI) to quantify the magnitude of interaction among selected
features by assessing the difference in the AUROC perfor-
mance when the features are considered collectively versus
individually. We calculate the performance improvement
based on all possible subsets of selected features using a
Shapley-based method (Lundberg & Lee, 2017). That is,
given a set of features S = S1 ∪ · · · ∪ SV , we define the SI
as the average contribution of each feature in the set, as:

SI(S) = C

|S|
∑
v∈V

∑
d∈Sv

∑
a⊂Sv\{d}

P (a+ {d})−P (a) (11)

where C is a normalizing factor |a|!(|Sv|−|a|−1)!
|Sv|! . Here, P (a)

for a ⊂ Sv approximates an interaction score and is defined
as P (a) = F(S) −

∑
i∈V \v F(Si) − F(a), where F sym-

bolizes a performance metric, such as AUROC, which is
computed only by taking input subset. The intuition behind
the SI is that a synergistic feature will have a larger positive
value, as it will have a higher AUROC when considered to-
gether with features from other views than when considered
separately in each view. This implies that a properly chosen
synergistic feature set should have a larger SI. Please see
Appendix A.11 for a detailed explanation of the proposed
metric and its validation on the synthetic datasets.

6.1. Synthetic Experiments

Dataset Description. We start by evaluating the synergistic
and non-synergistic feature selection performance by uti-
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Table 2: Synthetic data generation process.

Dataset Rule Synergistic Non-synergistic Description

Syn1 (X1[1] ·X2[2] > 0.3) OR
(X1[8] > 0.5) OR (X2[8] > 0.5

X1[1],X2[2] X1[8],X2[8]
Synergistic and non-synergistic interactions in each
view with a strong signal.

Syn2 X1[1] ∗X2[2] +X1[3] +X2[4] X1[1],X2[2] X1[3],X2[4]
Same interactions as in Syn1, but in a weaker signal
where detecting interactions is more challenging.

Syn3 X1[1] ∗X2[2] +X1[3] +X2[4] X1[1],X2[2] X1[3],X2[4]
Same interactions as in Syn2 in a 3-view setting,
where View 3 is redundant.

Syn4 (X1[1] + 2) ·X2[2] · (X3[3]− 2) X1[1],X2[2],X3[3] N/A
Complicated synergistic interactions across 3-views
without any non-synergistic interactions.

lizing a set of synthetic datasets employed in (Chen et al.,
2018) and (Imrie et al., 2022) with known ground truth.
Specifically, the input features X̄ ∈ R500 are generated
from an independent Gaussian distribution, i.e., N (0, I),
and the corresponding labels Y are generated based on the
following two cases:
• Strong signal (Imrie et al., 2022): the label is derived

based on the given decision rules.
• Weak signal (Chen et al., 2018): the label is sampled

from a Bernoulli distribution where P(Y = 1|X̄) =
1

1+logit(X̄)
, with logit(X̄) generated by each rule.

The data generation rule and ground truth interactions for
the different synthetic scenarios are summarized in Table
2. Multiplication of features from different views repre-
sents synergistic interaction as more information can be
obtained by considering them together whereas linear sum-
mation represents non-synergistic interaction. We generate
20,000 samples with 500 features (250-250 for two views
and 200-200-100 for three views). All the results are aver-
aged over 10 random iterations of random 64/14/20 train-
ing/validation/testing splits.

Quantitative Analysis. Table 3 shows that SynFS consis-
tently correctly discovers synergistic and non-synergistic
interactions without any false discovery across all the tested
synthetic scenarios, even when there is a redundant view
without any important features (Syn3). STG demonstrates
a perfect discovery of important features without any false
discoveries (and nearly perfect for RForest). However, as
traditional feature selection methods lack a mechanism to
capture interactions between views, they result in poor nor-
malized J-Index. Notably, CompFS almost perfectly distin-
guishes different interactions in Syn1 with a strong signal
and performs relatively well in Syn4, where only synergistic
features exist in each view. However, it exhibits limited per-
formance in Syn2 and Syn3 when each view contains weak
signals from both synergistic and non-synergistic features.
Additionally, it often fails to select important synergistic
features, leading to low TPR performance.

6.2. Semi-Synthetic Experiments: MNIST

Dataset Description. We illustrate the interaction discov-
ery performance of SynFS on the MNIST (LeCun et al.,

Table 3: Performance results on the synthetic datasets. Here,
† indicates the normalized J-Index.

Dataset Methods J-Index ↑ TPR ↑ FDR ↓

Syn1

SynFS 1.00± 0.00 100± 0.0 0± 0.0
CompFS 0.91± 0.18 100± 0.0 0± 0.0
STG 0.47± 0.07† 100± 0.0 0± 0.0
RForest 0.50± 0.00† 100± 0.0 0± 0.0

Syn2

SynFS 1.00± 0.00 100± 0.0 0± 0.0
CompFS 0.48± 0.25 70± 25.0 3.3± 10.0
STG 0.50± 0.00† 100± 0.0 0± 0.0
RForest 0.33± 0.00† 50± 0.0 0± 0.0

Syn3

SynFS 1.00± 0.00 100± 0.0 0± 0.0
CompFS 0.40± 0.20 50± 0.0 0± 0.0
STG 0.50± 0.00† 100± 0.0 0± 0.0
RForest 0.50± 0.00† 50± 0.0 0± 0.0

Syn4

SynFS 1.00± 0.00 100± 0.0 0± 0.0
CompFS 0.90± 0.20 100± 0.0 0± 0.0
STG 1.00± 0.00† 100± 0.0 0± 0.0
RForest 1.00± 0.00† 100± 0.0 0± 0.0

1998), using a commonly used feature selection scenario
of distinguishing ‘3’ and ‘8’. To simulate the multi-view
setting, we horizontally divided each image into two parts,
creating two views following the convention from previous
works (Chen & Denoyer, 2017; Goyal et al., 2019).

Qualitative Analysis. The synergistic features identified
by SynFS in Figure 2a underscore our method’s ability to
detect subtle and previously unnoticed relationships by fo-
cusing on interactions in two views. More specifically, our
method reveals that the diagonal pixels – particularly, the
top-right and bottom-left regions – hold more information
for distinguishing between ’3’ and ’8’, when considered
together. Notably, these pixels seem to be less informative
when considered without interaction information between
the two views. On the other hand, the non-synergistic fea-
tures discovered by SynFS are pixels in central regions
that are chosen as most discriminative by STG, as shown
in Figure 2d. This demonstrates that SynFS is capable of
identifying the important features overlooked by previous
methods and successfully distinguishing between two types
of interactions. Figure 2b illustrates pixels discovered by
CompFS, all of which are identified as synergistic without
any non-synergistic features. However, it is challenging to
visually understand how these specific pixels contribute to
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(a) SynFS: Synergistic (b) CompFS: Interactive

(c) SynFS: Non-synergistic (d) STG: Important

Figure 2: An illustrative comparison of selected features.

the overall synergistic relationship.

We provide an additional set of experiments with artificially
induced biases in Appendix A.6 to further validate whether
our proposed method can correctly identify features with
synergistic interactions.

6.3. Real-World Experiments: METABRIC

Dataset Description. METABRIC (Pereira et al., 2016)
is a multi-view dataset comprising 1,980 primary breast
cancer samples, where each sample is described by clinical
data and targeted sequencing data including mRNA expres-
sion, copy number alteration, and mutation. We construct
a two-view dataset utilizing mRNA expression (p1 = 489)
and mutation profiles (p2 = 177), focusing on discovering
crucial synergistic features between the two views that are
informative about the progesterone receptor (PR) status.

Quantitative Analysis. As demonstrated in Table 5,
SynFS outperforms traditional and interaction-oriented fea-
ture selection methods for interaction discovery perfor-
mance metrics. Here, we treat all the features selected by
STG and RForest as synergistic features and apply the same
re-categorization for the features selected by CompFS. We
leave SI(N ) blank when non-synergistic feature subsets
are not available. Note that all the SI reported in Table 5 are
calculated using 20 features from each view with the highest
importance and are scaled by 100 for better readability. No-
tably, SynFS is the only method capable of accurately cap-
turing view-synergistic features, providing positive SI(S)
value. Furthermore, non-synergistic features have large
negative values, underscoring their contributions from an
individual view perspective. In addition, SynFS achieved
high predictive performance using only 6% of the entire
features, with only a marginal performance gap compared
to an MLP utilizing the entire features.

Qualitative Analysis. We provide supporting evidence

from medical and scientific literature for the most frequently
discovered synergistic features (more than 7 times out of
10 iterations) as summarized in Table 4. For instance, a
synergistic interaction can be found between KMT2C muta-
tion and MAPT gene expression. The KMT2C mutation can
indicate up-regulation of MAPK signaling pathway (Wang
et al., 2021; Zhao et al., 2011), which is also influenced by
MAPT (Zhang & Liu, 2002). Notably, the MAPK pathway
is known to activate PR, thereby playing a crucial role in
the progestin-induced proliferation of breast cancer (Hagan
et al., 2012).

Table 4: Supporting evidence for synergistic interactions
discovered by SynFS on the METABRIC dataset.

View 1
(Gene Expression)

View 2
(Mutation) Reference

MAPT KMT2C
(Wang et al., 2021)
(Zhao et al., 2011)

(Zhang & Liu, 2002)

NRIP1 KMT2C
(Binato et al., 2021)

(Al-Khayyat et al., 2023)

TGFBR3 PDE4DIP
(Liu et al., 2006)

(Dodge et al., 2001)
(Ogiwara et al., 2021)

HSD17B7 PDE4DIP
(Wang et al., 2015)

(Aronica et al., 1994)

BIRC6 KMT2C
(Wu et al., 1993)
(Li et al., 2021)

6.4. Real-World Experiments: TCGA

Dataset Description. We analyze 1-year mortality based
on the comprehensive observations from two omics layers
(i.e., microRNA and RPPA), considering each layer as a
separate view, on 7,295 cancer cell lines collected by the
Cancer Genome Atlas (TCGA)4.

Quantitative Analysis. Table 5 compares the predictive
power of feature subsets selected by SynFS and the base-
lines. For SynFS, we select features based on a threshold
of 0.55 across all views, which maximizes SI(S)− SI(N )
on the validation set, resulting in 154 features in total.
For benchmarks, we select the same number of features
in their order of importance to provide a fair comparison.
SynFS demonstrates competitive predictive performance
while being the only method capable of distinguishing dif-
ferent types of synergistic and non-synergistic interactions
among views, showing the high SI(S) and the low SI(N ).

Qualitative Analysis. Table 6 summarizes the support-
ing evidence for potential synergistic interactions between
RPPA proteins and miRNAs in determining 1-year mortal-
ity in cancer patients. This evidence focuses on the most
frequently identified synergistic features by SynFS after 10

4https://www.cancer.gov/tcga
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Table 5: Performance results on the real-world datasets.

Dataset Methods AUROC ↑ SI(S) ↑ SI(N ) ↓

METABRIC

SynFS 0.862± 0.02 0.36± 0.13 −3.25± 0.40
CompFS 0.846± 0.03 −0.71± 1.08 0.00± 0.00
STG 0.887± 0.01 −0.22± 0.46† -
Rforest 0.859± 0.01 −0.38± 0.94† -
MLP 0.884± 0.01 - -

TCGA

SynFS 0.683± 0.03 7.87± 18.80 −19.65± 18.24
CompFS 0.686± 0.03 −2.27± 0.59 0.00± 0.00
STG 0.680± 0.01 −1.65± 0.35† -
Rforest 0.677± 0.02 −2.25± 0.78† -
MLP 0.697± 0.01 - -

PBMC

SynFS 0.984± 0.00 0.38± 1.86 −460.2± 1.42
CompFS 0.987± 0.00 −20.02± 0.71 0.00± 0.00
STG 0.980± 0.00 −21.41± 0.72† -
Rforest 0.984± 0.00 −21.80± 1.51† -
MLP 0.977± 0.00 - -

iterations. For example, Caspase-7, a key protein in apopto-
sis (programmed cell death) has been shown to interact with
various miRNAs (Su et al., 2015). Specifically, Caspase-7
can inactivate the EGFR signaling pathway, which regu-
lates critical cellular events like proliferation, migration,
and apoptosis (Bae et al., 2001). Notably, mir-135-a-1 has
been reported to target EGFR, inhibiting cancer cell growth
and migration (Xu et al., 2016). These findings suggest
a possible interplay between Caspase-7, mir-135-a-1, and
EGFR, underscoring the need for further investigation into
their combined effect on cancer patient survival.

Table 6: Supporting evidence for synergistic interactions
discovered by SynFS on the TCGA dataset.

View 1
(RPPA)

View 2
(miRNA) Reference

Caspase-7 mir-135a-1
(Bae et al., 2001)
(Xu et al., 2016)

Caspase-7 mir-215 (Su et al., 2015)

Myosin-iia mir-3199-1
(Even-Ram et al., 2007)

(Toro et al., 2018)
(Cava et al., 2016)

Myosin-iia mir-320c-1 (Liang et al., 2021)

6.5. Real-World Experiments: PBMC

Dataset Description. We analyze the distinction between
two sub-populations of T-cells, specifically naive and regu-
latory T-cells, from purified populations of peripheral blood
monocytes (PBMCs) using single-cell RNA (Zheng et al.,
2017). The PBMC dataset comprises 105,868 samples, each
characterized by 21,932 genes. For our analysis, we fo-
cus on 6,444 samples obtained from CD4 and CD8 T-cells,
which play crucial roles in HIV-1 infection (Streeck et al.,
2009). To construct a multi-view setting, we partition the
RNA features into two distinct views based on their chro-
mosome locations, i.e., chromosome 1 with p1 = 360 genes
and chromosome 2 p2 = 204 genes. The choice of chromo-
somes is based on the presence of genes that demonstrate

strong relevance to the CD4 and CD8 determinant LK2
protein (Hernández-Hoyos et al., 2000; Stelzer et al., 2016).

Quantitative Analysis. We select the top 22 features from
each view based on the maximum difference between SI(S)
and SI(N ), while ensuring a high AUROC in the valida-
tion set. As shown in Table 5, SynFS outperforms the MLP
trained with the entire features while utilizing merely 7% of
the overall features. Furthermore, SynFS demonstrates com-
petitive discriminative capability, slightly trailing behind
CompFS. Notably, our method is the only model capable of
accurately distinguishing synergistic and non-synergistic in-
teractions. Furthermore, the result suggests the potential of
SynFS to extend its applicability to single-view data when
supplemented with expert curation of defining meaningful
views.

Qualitative Analysis. We provide supporting evidence for
the most frequently discovered synergistic features (more
than 7 times out of 10 iterations) as summarized in Table
7. (Zhang et al., 2021) highlight the importance of epige-
netic regulators like RNF2 in regulatory T-cell development.
We can hypothesize that RNF2’s epigenetic modifications
could directly or indirectly influence genes involved in ribo-
some biogenesis, like TTC31, thus impacting the assembly
of multiprotein complexes (Bakhshalizadeh et al., 2023)
critical for T cell differentiation. This is supported by the
broader research on the role of ribosome biogenesis in T-cell
activation and differentiation, as seen in (Galloway et al.,
2021).

Table 7: Supporting evidence for synergistic interactions
discovered by SynFS on the PBMC dataset.

View 1
(Chromosome 1)

View 2
(Chromosome 2) Reference

RNF2 TTC31
(Zhang et al., 2021)

(Bakhshalizadeh et al., 2023)
(Galloway et al., 2021)

HAX1 PROC
(Fan et al., 2022)
(Cai et al., 2024)

(Healy et al., 2018)

7. Conclusion
In this paper, we introduce SynFS, a novel multi-view fea-
ture selection method that is capable of discovering syn-
ergistic interactions. Our experiments demonstrate that
SynFS can discover complex relationships between views
that have been previously overlooked by traditional feature
selection methods. Additionally, we validate the potential of
our model for facilitating scientific discoveries in real-world
applications by corroborating the discovered synergistic fea-
tures with supporting medical and scientific literature.
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Our work goes beyond traditional feature selection methods
by discovering features that exhibit greater predictive power
when considered together with features from other views. In
doing so, this paves the way for a more comprehensive un-
derstanding of the underlying interactions between features
across multiple views, revealing how they collaborate to
influence the outcome – something the conventional (single-
view) feature selection methods cannot achieve.

For practical implication, this interaction discovery can be
utilized in personalized treatment by targeting the factors
that influence the disease. For example, immune checkpoint
therapy (ICT) is a promising cancer treatment that helps the
immune system recognize and attack tumors (Sammut et al.,
2022). Analyzing a patient’s tumor DNA (genomics) along
with gene expression data (transcriptomic) could provide
additional insights to identify patients who might not benefit
from ICT despite having seemingly favorable mutations and
provide alternative treatment.
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A. Appendix
A.1. Conditional Information and Interaction

Synergistic interaction between X,Z about Y is defined by comparing the MI between marginal, i.e., I(Y ;X) and
conditional, i.e., I(Y ;X|Z) as explained in 3.2. This could be transformed into the comparison between the MI of the joint,
i.e., I(Y ;X,Z), and the sum of marginals I(Y ;X) + I(Y ;Z) applying chain rule as follows:

I(Y ;X|Z) > I(Y ;X)

⇔ H(Y |Z)−H(Y |X,Z) > H(Y )−H(Y |X)

⇔ −H(Y |X,Z) > H(Y )−H(Y |X)−H(Y |Z)

⇔ H(Y )−H(Y |X,Z) > H(Y )−H(Y |X) +H(Y )−H(Y |Z)

⇔ I(Y ;X,Z) > I(Y ;X) + I(Y ;Z)

A.2. From the Problem of Maximizing Mutual Information to Minimizing Conditional Entropies

To identify synergistic features corresponding to the definition (4.2), we convert the maximizing(minimizing) MI terms into
minimizing(maximizing) conditional entropy. We will show the derivation with 2 views for easier understanding, which can
be easily extended to V views.

argmax
S

I(Y ;X1
gS

,X2
gS

)− I(Y,X1
gS

)− I(Y,X2
gS

)

⇔ argmax
S

H(Y )−H(Y |X1
gS

,X2
gS

) +H(Y |X1
gS

) +H(Y |X2
gS

)

⇔ argmin p(Y |X1
gS

,X2
gS

) log p(Y |X1
gS

,X2
gS

)− p(Y |X1
gS

) log p(Y |X1
gS

)− p(Y |X2
gS

) log p(Y |X2
gS

)

⇔ argminE log
p(Y |X1

gS
,X2

gS
)

p(Y |X1
gS

)p(Y |X2
gS

)

(12)
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A.3. Pseudo-code of SynFS

Algorithm 1 Pseudo-code of SynFS

1: Input : D = {x̄i,yi}ni=1, selection regularization λS , λN ,
mutual exclusivity hyperparameter α, mini-batch size nmb, learning rate η,

2: Output : µS ,µN

3: Initialize parameters {µv
S ,µ

v
N}Vv=1, ϕS , ϕN , ϕA

4: while Converge do
5: Sample a mini-batch from the dataset (x̄i, yi)

nmb
i=1 ∼ D

6: for all i = 1, . . . , nmb do
7: Detach µS ,µN and calculate LϕS,ϕN

pre

LϕS,ϕN
pre ← ℓ(yi, fϕS

(x̄gS i)) +

V∑
v=1

ℓ(yi, fϕS
(xv

gS i)) + ℓ(yi, fϕN
(x̄gN i)) +

V∑
v=1

ℓ(yi, fϕN
(xv

gN i)) (13)

8: Update ϕS , ϕN ← ϕS − η∇ϕS
LϕS,ϕN
pre , ϕN − η∇ϕN

LϕS,ϕN
pre

9: Detach ϕN , ϕS and calculate LµS ,µN ,ϕA

inf

LµS ,µN ,ϕA

inf ← ℓ(yi, fϕA
(x̄Ai) (14)

10: Update µS ,µN , ϕA ← µS − η∇µ LµS ,µN ,ϕA

inf , µN − η∇µS
LµS ,µN ,ϕA

inf , ϕA − η∇ϕA
LµS ,µN ,ϕA

inf

11: Detach µN , ϕS , ϕN , ϕA and calculate LµS

sel

LµS

sel ← ℓ(yi, fϕS
(x̄gS i))−

V∑
v=1

ℓ(yi, fϕS
(xv

gS i)) + λS · Φ(µS) (15)

12: Update µS ← µS − η∇µ LµS

sel

13: Detach µS , ϕS , ϕN , ϕA and calculate LµN

sel

LµN

sel ← −ℓ(yi, fϕN
(x̄gN i)) +

V∑
v=1

ℓ(yi, fϕN
(xv

gN i)) + λN · Φ(µN ) + α · sim(gS , gN ) (16)

14: Update µN ← ∇µN
LµN

sel

15: end for
16: end while
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A.4. Extended related works

A few methods have addressed multi-view data without concatenation, capturing interactions between features from different
views. However, these methods have limited ability to provide a more comprehensive understanding of how features interact
across multiple views.

• Greedy Decision Forest (Pfeifer et al., 2022) selects multi-view features by leveraging graph knowledge to identify the
smallest feature set that maximizes discriminative performance across multiple views. Initially, it samples features from
diverse views to construct a tree based on random walks. Subsequently, the next tree is refined using a greedy algorithm.
The process incorporates feature interaction through graph knowledge, constraining features within the same tree to be
neighboring nodes in a graph.

• UMVMO-select (Acharya et al., 2020) constructs two views from diverse biological data, including gene ontology,
protein interaction data, and protein sequences. The first view represents gene-gene dissimilarity, determined by pairwise
correlation distances, while the second view captures protein similarity based on protein sequences. UMVMO-select
solves the gene clustering problem by utilizing these two views and focuses on selecting the most frequently used genes.

Methods Feature Selection Multi-View Interaction
CompFS

(Imrie et al., 2022)
✓ ✗ Regularization

Greedy
(Pfeifer et al., 2022)

✓ ✓ Graph Knowledge

UMVMO-select
(Acharya et al., 2020)

✓ ✓ Graph Knowledge

l0-DCCA
(Lindenbaum et al., 2021)

✓ ✓ ✗

MMDUFS
(Yang et al., 2023)

✓ ✓ ✗

Tilted-CCA
(Lin & Zhang, 2023)

✗ ✓ ✗

Table 8: Comparision table of related works.

A.5. Sensitivity Analysis

We have conducted the sensitivity analysis on the hyperparameters λS and λN on the Synthetic dataset (Syn1), which
are the most important coefficients as they control the number of selected features with synergistic and non-synergistic
interactions, respectively. Tables 9 and 10 present the feature selection performance for both synergistic (S-TPR, S-FDR),
and non-synergistic (N-TPR, N-FDR) features, as well as for their union (J-index, TPR, FDR). We report the average score
after 5 random iterations while varying the value of the target hyperparameter and fixing the other hyperparameters at their
optimal values (marked with ∗). The results show that an overly strict constraint on the number of selected features will
eventually lead our method to deprioritize important synergistic and non-synergistic features. Furthermore, the findings
offer insights into determining the optimal value of λS on a smaller scale, which aligns with the intuition that synergistic
interactions, being more intricate, are inherently harder to discover within the data structure.
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λS J-index ↑ TPR ↑ FDR ↓ S-TPR ↑ S-FDR ↓ N-TPR ↑ N-FDR ↓
0 0.62± 0.05 100.0± 0.0 62.4± 13.3 100.0± 0.0 76.0± 10.1 100.0± 0.0 0.0± 0.0
0.1 1.00± 0.00 100.0± 0.0 0.0± 0.0 100.0± 0.0 0.0± 0.0 100.0± 0.0 0.0± 0.0
0.25 1.00± 0.00 100.0± 0.0 0.0± 0.0 100.0± 0.0 0.0± 0.0 100.0± 0.0 0.0± 0.0
0.38∗ 1.00± 0.00 100.0± 0.0 0.0± 0.0 100.0± 0.0 0.0± 0.0 100.0± 0.0 0.0± 0.0
0.5 1.00± 0.00 100.0± 0.0 0.0± 0.0 100.0± 0.0 0.0± 0.0 100.0± 0.0 0.0± 0.0
0.6 0.80± 0.24 80.0± 24.4 0.0± 0.0 60.0± 48.9 0.0± 0.0 100.0± 0.0 0.0± 0.0
0.75 0.50± 0.00 50.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 100.0± 0.0 0.0± 0.0

Table 9: The Feature Discovery Performance on the Synthetic dataset (Syn1) with varying λS

λN J-index ↑ TPR ↑ FDR ↓ S-TPR ↑ S-FDR ↓ N-TPR ↑ N-FDR ↓
0 1.00± 0.00 100.0± 0.0 0.0± 0.0 100.0± 0.0 0.0± 0.00 100.0± 0.0 0.0± 0.0

1.25∗ 1.00± 0.00 100.0± 0.0 0.0± 0.0 100.0± 0.0 0.0± 0.00 100.0± 0.0 0.0± 0.0
2.07 1.00± 0.00 100.0± 0.0 0.0± 0.0 100.0± 0.0 0.0± 0.00 100.0± 0.0 0.0± 0.0
4 1.00± 0.00 100.0± 0.0 0.0± 0.0 100.0± 0.0 0.0± 0.00 100.0± 0.0 0.0± 0.0
8 1.00± 0.00 100.0± 0.0 0.0± 0.0 100.0± 0.0 0.0± 0.00 100.0± 0.0 0.0± 0.0
13 0.83± 0.20 100.0± 0.0 0.0± 0.0 100.0± 0.0 13.3± 16.3 80.0± 24.4 0.0± 0.0
15 0.83± 0.20 100.0± 0.0 0.0± 0.0 100.0± 0.0 13.3± 16.3 80.0± 24.4 0.0± 0.0
20 0.66± 0.17 100.0± 0.0 0.0± 0.0 100.0± 0.0 26.6± 13.3 60.0± 20.0 0.0± 0.0

Table 10: The Feature Discovery Performance on the Synthetic dataset (Syn1) with varying λN

A.6. Semi-Synthetic MNIST

MNIST is a widely utilized dataset in feature selection research (Yamada et al., 2020; Imrie et al., 2022; Yang et al., 2022).
Despite individual pixels lacking explicit significance, MNIST’s standardized and centered format makes it an excellent
dataset for visualizing feature selection outcomes. To investigate multi-view interactions, we split the MNIST images
horizontally creating 2 views from the original 28 × 28 images to two 14 × 28 views. This allows for the analysis of
the synergistic and non-synergistic features across views for digit classification. We compare the selected features of
SynFS with CompFS and STG. For these single-view benchmark methods, we utilize the original 28 × 28 images and
present the results using a horizontal split for improved readability.

Noisy MNIST We validate the discovered synergistic features by SynFS utilizing the noisy pixels – i.e., one pixel in each
view with XOR and XNOR interactions to generate artificial labels. Figure 3 demonstrates that increasing regularization, λS ,
progressively isolates the synergistic features (i.e., the noisy pixels). Ultimately, our method pinpoints the two biases that
are sufficient for perfect classification, showing the utility of SynFS in multi-view synergistic feature selection. To further
validate the capability of SynFS to find the synergistic features in MNIST, we synthesize the MNIST data with synergistic
features that the label is distinguishable with two features in each view. We designate a small bias in the range [0, 0.5) as
TRUE and a large bias in the range [0.5, 1.0) as FALSE, and apply the exclusive generating rule as Table 11. For instance, if
the initial random bias in View 1 is 0.35 and the image label is 0, the subsequent bias in View 2 is generated within the range
[0.5, 1.0). Please see Table 11 for different scenarios for the data generation process.

Label Relationship View 1 View 2

0 XOR True False
False True

1 XNOR True True
False False

Table 11: Multi-view Noisy MNIST bias generating rule.
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(a) Biases (b) λS = 0.15 (c) λS = 0.5 (d) λS = 2.5

Figure 3: Discovered synergistic features with varying λS for the MNIST dataset with injected biases (colored in red). The
underlying digit ‘3’ is used for better illustration.

A.7. METABRIC

To investigate the consistency of selected features across different random training/validation/testing splits, we analyzed the
top 20 features from each view after 10 runs. Table 12 summarizes these results, including the total number of selected
features and the number of features discovered more than 5 times.

View Interaction Total Number of Discovered Features Frequently Discovered Features

Gene Expression Synergistic 26 9
Non-Synergistic 21 10

Mutation Synergistic 45 7
Non-Synergistic 21 9

Table 12: The number of selected features for the METABRIC dataset.
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A.8. Experimental Details

Benchmark Implementation. For our experiments, we leveraged publicly available implementations of benchmark
feature selection methods, ranging from traditional approaches like Random Forest (RForest) (Ho, 1995) to advanced
methods such as STG (Yamada et al., 2020) and CompFS (Imrie et al., 2022). The hyper-parameters are chosen to maximize
AUROC performance based on the validation set and detailed hyperparameters for synthetic experiments are presented in
Table 13, with additional insights on benchmark methodologies and specific implementation details outlined below:

• Random Forest5 utilizes an ensemble of decision trees, renowned for its robust performance on tabular data with diverse
feature scales. A feature is considered important if it ranks within the top indexes based on its feature importance
score across high-performing trees. Key hyperparameters and their respective search range include the number of trees
(70-300), max tree depth (3-30), top trees for consideration (5-30), max feature indexes from a single tree (5-30), and a
significance threshold (0.05-0.5).

• STG6 employs a deep neural network for embedded feature selection, utilizing Gaussian-based continuous relaxation to
handle binary selection variables. The regularization parameter λ (referred to as Reg1) is critical for controlling feature
selection sparsity, with a search range from 1× 10−5 to 2.0.

• CompFS7 is an ensemble model for embedded feature selection, adopting Hard Concrete continuous relaxation (Maddison
et al., 2016). CompFS is designed to distinguish interactive features by constituting groups of selected features from each
selector. That is, having more than two features in one group represents there exists an interactive relationship among
them. We further re-categorize each group to be synergistic if more than one features from one group are selected from
different views, and non-synergistic otherwise. Hyperparameters β and βR control sparsity and group overlap (Reg1 and
Reg2), with the number of groups (i.e., estimators) set to 5 for our synthetic data experiments. The search range for Reg1
and Reg2 spans from 0.0 to 5.0.

SynFS Hyperparameters. SynFS incorporates synergistic and non-synergistic selectors to discover features based
on their interaction types. Parameters λS and λN adjust the sparsity for each interaction type (Reg1 and Reg2), while
α is a hyperparameter to ensure the mutual exclusivity of selected features from different interactions. For predictors
that take selected features as input, we utilize dropout(Srivastava et al., 2014) with dropout probability 0.5 and batch
normalization(Ioffe & Szegedy, 2015) to regularize the network.

Throughout the experiments, datasets encompassing multiple views are employed to evaluate the feature interaction discovery
from different views. When applying single-view feature selection benchmark methods, we integrate these multiple views
into a consolidated dataset through concatenation. For Deep learning based methods, we use a backbone network with 2-3
hidden layers with hidden width from {32, 64, 128 }, number of epochs from 50 to 500, and learning rate from 1× 10−3 to
1× 10−5. We employed the ADAM (Kingma & Ba, 2014) optimizer with ReLu (Agarap, 2018) activation.

Semi-Synthetic MNIST Implementations. For SynFS, we set the hidden dimensions to [400, 200, 300], with λS = 0.4, λN

= 4.0, and α = 0.09. The learning rates are 1× 10−3 for predictors and 2× 10−3 for selectors. CompFS employs hidden
dimensions of [256, 256], which is trained with 4 learners, setting both β and βR to 0.18 with a learning rate of 1× 10−3.
STG follows the same hidden dimension with CompFS and is trained with a learning rate of 2 × 10−3. To compare the
features selected by each method, we visualize the most significant 28 features: 14 for each view in SynFS , 7 features for
each learner in CompFS, and the entirety of the view for STG.

5Python package scikit-learn
6https://github.com/runopti/stg
7https://github.com/a-norcliffe/Composite-Feature-Selection
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Dataset Methods Reg1
(β, λN , Top Index)

Reg2
(βR, λS , Top Tree) α

Hidden Width
& Max Depth Epoch lr Estimators Threshold

SYN1

SynFS 2.07 0.38 2.44 [128, 128] 95 0.001 - 0.7
CompFS 0.58 2.41 - [32, 32] 180 0.004 5 0.7

STG 0.012 - - [64, 64] 445 0.003 - 0.7
RForest 19 10 - 16 - - 178 0.14

SYN2

SynFS 1.07 0.1 - [32, 32] 90 0.001 - 0.7
CompFS 1.88 0.025 - [128, 128] 90 0.002 5 0.7

STG 0.077 - - [128, 128] 371 0.005 - 0.7
RForest 20 8 - 9 - - 177 0.123

SYN3

SynFS 1.0 0.21 0.25 [64, 64] 90 0.001 - 0.7
CompFS 0.257 1.54 - [32, 32] 185 0.004 5 0.7

STG 0.014 - - [64, 64] 2322 0.0038 - 0.7
RForest 7 7 - 14 - - 100 0.06

SYN4

SynFS 8.0 0.78 1.5 [32, 32, 32] 55 0.001 - 0.7
CompFS 0.76 3.17 - [32, 32] 125 0.0026 5 0.7

STG 0.082 - - [128, 128] 327 0.0016 - 0.7
RForest 24 10 - 24 - - 100 0.215

Table 13: Hyperparameters for synthetic experiments.

Dataset Methods Reg1
(β, λN , Top Index)

Reg2
(βR, λS) α

Hidden Width
& Max Depth Epoch lr Estimators Batch size Top-K

/ Threshold

METABRIC

SynFS 1.95 0.45 1.06 [64, 64, 64] 175 0.00115 - 76 10
CompFS 2.15 2.0 - [32, 32] 121 0.005 4 76 5

STG 0.185 - - [20, 20] 220 0.0014 - 87 20
RForest 5 - - 20 - - 85 - 4

MLP - - - [20, 20] 290 0.0007 - 55 -

TCGA

SynFS 0.54 0.22 0.59 [64, 64] 200 0.0029 - 128 0.55
CompFS 0.23 3 - [32, 32] 150 0.0029 2 32 77

STG 1.95 - - [128, 128] 150 0.002 - 64 154
RForest 64 - - 19 - - 232 - 2

MLP - - - [128, 128] 274 0.0004 - 107 -

PBMC

SynFS 2.64 0.417 0.987 [64, 64] 50 0.002 - 64 11
CompFS 3.47 3.89 - [64, 64] 200 0.0039 2 64 11

STG 0.206 - - [64, 64] 200 0.004 - 32 22
RForest 26 - - 9 - - 106 - 2

MLP - - - [128, 128] 100 0.0048 - 64 -

Table 14: Hyperparameters for real-world datasets experiments.

A.9. Predictive Performance of Synthetic and Semi-Syntheitc experiments

In this experiment, we evaluate the predictive performance of SynFS and baselines using each feature selection method
as a pre-processing method for both synthetic and MNIST semi-synthetic datasets. For each method, we perform feature
selection as described in Table. 3 and Figure. 2 and train a separate MLP using selected features as input. Table. 15 illustrates
the superior performance of our method in selecting the most discriminative features across all synthetic tasks. Notably, the
predictive performance of our method is comparable to that of feature selection methods focusing only on discriminative
power, such as STG, which cannot provide explanations about the synergistic feature interactions. Similarly, Table. 16
demonstrates that our method outperforms baseline methods in classifying ”3” and ”8” by focusing on discriminative
features that contribute synergistically to classification performance. This highlights that, by selecting synergistic features,
our novel objectives achieve the dual benefit of fostering a deeper understanding of the data between the different views and
demonstrably improving prediction performance.
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Dataset Methods AUROC ↑ AUPRC ↑ Accuracy ↑ F1 Score ↑

Syn1

SynFS 0.999± 0.00 0.998± 0.00 0.963± 0.00 0.948± 0.00
CompFS 0.999± 0.00 0.998± 0.00 0.964± 0.00 0.949± 0.00

STG 0.999± 0.01 0.998± 0.01 0.963± 0.00 0.948± 0.01
RForest 0.998± 0.00 0.997± 0.00 0.963± 0.00 0.948± 0.00

Syn2

SynFS 0.827± 0.00 0.828± 0.00 0.756± 0.00 0.761± 0.00
CompFS 0.815± 0.03 0.814± 0.03 0.746± 0.02 0.751± 0.02

STG 0.826± 0.01 0.826± 0.01 0.756± 0.00 0.762± 0.00
RForest 0.769± 0.00 0.769± 0.00 0.706± 0.00 0.710± 0.00

Syn3

SynFS 0.817± 0.00 0.816± 0.01 0.745± 0.00 0.742± 0.01
CompFS 0.804± 0.02 0.803± 0.02 0.733± 0.02 0.732± 0.02

STG 0.818± 0.00 0.816± 0.01 0.746± 0.00 0.744± 0.00
RForest 0.757± 0.04 0.745± 0.05 0.699± 0.00 0.702± 0.00

Syn4

SynFS 0.915± 0.00 0.920± 0.00 0.825± 0.00 0.825± 0.01
CompFS 0.916± 0.00 0.921± 0.00 0.825± 0.00 0.825± 0.00

STG 0.915± 0.00 0.920± 0.00 0.824± 0.00 0.825± 0.00
RForest 0.872± 0.00 0.856± 0.00 0.814± 0.00 0.811± 0.00

Table 15: Predictive Performance on the Synthetic Dataset.

Dataset Methods AUROC ↑ AUPRC ↑ Accuracy ↑ F1 Score ↑

MNIST
SynFS 0.999± 0.00 0.999± 0.00 0.993± 0.00 0.993± 0.00

CompFS 0.976± 0.02 0.975± 0.02 0.929± 0.03 0.928± 0.03
STG 0.995± 0.00 0.994± 0.00 0.971± 0.00 0.971± 0.00

Table 16: Predictive Performance on the MNIST Dataset.

A.10. Interaction discovery with Known Ground Truth

The key distinction between the baselines and SynFS lies in their ability to distinguish the features with synergistic and
non-synergistic interactions. An optimal model should proficiently discover informative features and categorize them into
these two groups. To assess this, we employ the normalized Jaccard Index (J-Index), which evaluates whether the model
successfully identifies and categorizes features into the correct groups. When ground truth feature interactions are known,
we use the Jaccard Index which compares two sets with their union and intersection as below

J (A,B) =
|A ∩B|
|A ∪B|

(17)

For methods that can distinguish interactions, we compare the ground truth feature sets, i.e., synergistic S and non-synergistic
N , with predicted synergistic and non-synergistic feature sets, Ŝ, N̂ , respectively. For benchmark methods that select
informative features without distinguishing the interactions, we compute Group Similarity (Imrie et al., 2022) which
compares each ground truth feature set to the most similar set of features from the predicted sets. We will describe this more
in detail with examples.

Jaccard Index: Metric for Methods with Feature Interactions. For SynFS, the Jaccard index is calculated as

1

2

[
J (S, Ŝ) + J (N , N̂ )

]
. (18)

For CompFS (Imrie et al., 2022), we re-categorize the selected features when interactive features exist across views. For
instance, when View 1 and View 2 have 10 dimensions each and if selected groups are {{1, 13}, {2}, {4}}, this means that
{1, 13} are synergistic features and non-synergistic features are {2, 4}.
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Group Similarity: Metric for Methods with Feature Interactions. For other benchmark methods that are not specifically
designed for differentiating interactions, we adopted the normalized Jaccard Index, called Group Similarity introduced in
(Imrie et al., 2022). This metric compares the ground truth with the most similar set of features from the predicted groups
and normalizes the score by the number Gsim of predictions as follows where ’T’ and ’P’ refer to the ground truth and the
predicted features respectively:

Gsim =
1

max (T, P )

T∑
i=1

max
j∈[P ]

J (Gi, Ĝj). (19)

Please see Table 17 to help understand how the above metrics for interaction discovery are calculated depending on different
methods. As demonstrated in the second and third examples in Table 17 even if a model successfully identifies informative
features, misclassification into the wrong group can lead to a lower interaction discovery score.

Ground Truth Predicted J-index Predicted Sum max(T,P ) GsimSyn Non-Syn Syn Non-Syn

{1,3} {2,4} {1,3} {2,4} 1 {2,4}, {1,3} 2 2 1
{2,4} {1,3} 0 {1,2}, {3,4} 2 2 1
{1,2} {3,4} 0.5 {1,2}, {3,4}, {5,6,7} 2 3 2/3

Table 17: A toy example of the similarity metrics.

A.11. Set Interaction Score

Set Interaction Scores (SI) measures the magnitude of synergistic interaction among selected features in a set by averaging
the attribution of how each feature contributes to the interaction information. More specifically, given a set of features
S = S1 ∪ · · · ∪ SV , we define the SI as the average contribution of each feature in the set, as follows:

SI(S) = C

|S|
∑
v∈V

∑
d∈Sv

∑
a⊂Sv\{d}

P (a+ {d})− P (a) (20)

where C is a normalizing factor |a|!(|Sv|−|a|−1)!
|Sv|! . Here, P (a) for a ⊂ Sv approximates an interaction score and is defined as

P (a) = F(S)−
∑

i∈V \v F(Si)− F(a), where F symbolizes a performance metric, such as AUROC, which is computed
only by taking input subset. To calculate the feature interaction attribution of a set, we compare the performance metrics
with and without the inclusion of the specific feature. This combinatorial challenge necessitates considering all possible
feature subsets within the interaction set.

For efficient computation, we randomly sample features from the identified interaction set. To ensure a robust evaluation
of the performance across these variable feature subsets, we employ a neural network trained with a binary random mask,
assigning a 70% probability for a mask value of zero. We further substantiate the effectiveness of the SI by assessing its
performance on synthetic datasets with known ground truth interactions. Table 18 demonstrates the utility of SI by assigning
higher scores for the known synergistic features (SI(S)) compared to the known non-synergistic features (SI(N )). This
supports the effectiveness of SI in identifying features that work together for better prediction.

Dataset SI(S) ↑ SI(N ) ↓
Syn1 0.174± 0.00 −0.188± 0.00
Syn2 0.270± 0.00 −0.204± 0.00
Syn3 0.241± 0.00 −0.211± 0.00
Syn4 0.041± 0.00 N/A

Table 18: Set Interaction Score for Synthetic Dataset.
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