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ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable capabilities
across a wide range of problem-solving tasks. Despite their success, LLMs
still face significant challenges in complex reasoning, particularly with advanced
mathematical problems. Existing data synthesis works either focus on the di-
versity of generated problems but ignore the quality of corresponding response
of hard problems, or generate high-quality response of existing hard problems
based on rejection sampling without synthesizing more diverse instructions. To
address this gap, we introduce WISDOM, which draws inspiration from the cur-
riculum learning and gradually synthesizes more diverse and difficult problems
with high-quality responses from easy to hard based on response consistency.
Based on the synthesized data, we further fine-tune and develop the WISDOM
series models, achieving significant improvements across multiple mathemati-
cal reasoning benchmarks. Notably, WISDOM-7B (DSMath) achieves a score
of 62.4% on MATH, matching GPT-4’s performance with 2/30 correct answers
on AIME2024. Furthermore, WISDOM-70B (Llama3) outperforms GPT-4 on
AIME2024 with 3/30 correct answers. More data and models will be available
at https://anonymous.4open.science/r/Wisdom-math-377B.
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Figure 1: An overview of the construction of WISDOM through progressive curriculum synthesis.

1 INTRODUCTION

Figure 2: Comparison of LLMs
fine-tuned with datasets generated
by WISDOM and other synthesis
methods.

While large language models (LLMs) have pushed the lim-
its of various domains (Yang et al., 2024; AI@Meta, 2024;
Zhu et al., 2024), they are still struggling to handle com-
plex reasoning tasks compared to human intelligence (Luo
et al., 2023; Yu et al., 2024; Tang et al., 2024), particularly
in mathematical reasoning. Ongoing research indicates that
high-quality training data can notably enhance the capabili-
ties (Chen et al., 2024; Xia et al., 2024; Liu et al., 2024a)
of LLMs via instructional tuning (Chung et al., 2022). How-
ever, open-source datasets only contain a relatively low propor-
tion of high-quality data (Liu et al., 2024b; Kang et al., 2024;
Chen et al., 2024; Xia et al., 2024; Yue et al., 2024b; Li et al.,
2024e). Interestingly, research shows that a carefully curated
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small subset of data samples can yield better results than us-
ing the entire dataset (Li et al., 2024d). Nevertheless, as the scale of the pretraining increases, the
availability of high-quality internet data for further instruction fine-tuning is diminishing. A practi-
cal approach to address this is through synthetic data generation. Recent studies (Liu et al., 2024b;
Wang et al., 2023b; Xu et al., 2024; Li et al., 2024g) have shown that synthesizing high-quality data
from raw datasets is feasible and effective for instruction tuning. While some works (Tang et al.,
2024; Yu et al., 2023) focus on generating diverse problems with limited effort on the difficulty of
instructions, others, i.e. DART-Math (Tong et al., 2024) generate high-quality responses of diffi-
cult problems with rejection sampling without synthesizing more diverse instructions. Meanwhile,
Li et al. (2024g) devise a neuro-symbolic pipeline via auto-formalization generates mathematical
problems in a domain-specific language, then “mutates” them and generates paraphrases in natural
language. However, they rely on the handcrafted expressiveness of mutations to support more types
of problems. Therefore, it remains a question: how to synthesize diverse problems and high-quality
responses automatically and effectively to improve the performance of LLMs on complex reasoning?

Inspired by the curriculum learning of human, where individuals tackle complex reasoning problems
by breaking them down into smaller, solvable sub-problems, we propose WISDOM. Unlike traditional
curriculum learning refers to the pre-defined difficulty of tasks, we redefine it based on the model’s
performance. As shown in Figure 1, progressively synthesizing complex questions from simpler
ones to enhance the performance of LLMs. Due to the lack of ground truth for newly synthesized
questions, we innovatively use response consistency to evaluate the quality of responses and diffi-
culty level of problems. The motivation comes from an intuitive hypothesis: simpler problems are
more likely to yield consistent results across various solutions. WISDOM gradually increases prob-
lem difficulty through the following steps: Weak Teacher Guiding, Critical Expert Teaching, and
Experts Consistency Voting, which fully leverage the inner consistency of weak models, consistency
between strong and weak models, and inner consistency of strong models. Instead of generating
all problems at once, we adopt a dynamic “funnel-like” filtering mechanism to evolve seed data
iteratively, which progressively synthesizes new and increasingly challenging problems.

Specifically, we use MATH (Hendrycks et al., 2021) and GSM8K (Cobbe et al., 2021) as seed
data and build a synthetic dataset of 1.48 million size WISDOM through a cost-effective progres-
sive curriculum learning method from easy to hard, which encompasses problems and solutions at
various levels of difficulty. Experimental results demonstrate even small language models such as
Llama3-8b and DeepSeekMath-7B (DSMath-7B) can achieve competitive performance exceeding
Qwen2-72B and Llama3-70B. As illustrated in Figure 2, Llama3-8B with WISDOM achieves 59.7%
on MATH, which is better than Llama3-70B-instruct and existing SOTA. Additionally, the perfor-
mance on out-of-domain tasks is noteworthy. Utilizing Llama3-8B, we successfully solved 17 out
of 40 challenging problems, showing competitiveness with Qwen2-72B-instruct. The contributions
are summarized as follows:

• We propose a novel framework for synthesizing mathematical reasoning data, which evolves the
difficulty and quality of questions in a progressive manner from easy to hard. In terms of response
generation, our approach is more cost-effective, and achieves remarkable SOTA on in-domain and
out-of-domain tasks based on same size model.

• Compared with Rejection Sampling and Problems Rewrite, our method leverages response con-
sistency to progressively enhance the difficulty of questions while improving response accuracy
in the absence of ground truth, which is more effective for generating high-quality responses to
newly synthetic questions.

• We will open-source all our models and data to drive further advancements in the open-source
community for challenging mathematical reasoning tasks.

2 WISDOM: PROGRESSIVE CURRICULUM SYNTHESIS

2.1 OVERVIEW

As shown in Figure 3, we describe the workflow of our WISDOM method, which employs a curricu-
lum learning strategy. This approach begins with the MATH and GSM8K datasets as seed data and
synthesizes problems and responses of progressively increasing difficulty. The difficulty progression

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Topics Skills Knowledge BasesMeta Data

GSM8K MATH

Response1

Response2

Response3

Response4

Response5

Seed Pool

Initialization

Question1: ……

Question2: ……

Question3: ……

Question4: ……

Question5: ……

Question6: ……

Question7: ……

Question8: ……

Critical thoughts
CoT & PoT

{Q2,CoT, PoT};…;…;

Questions solved

Random sampling

Seed pool updating: evolved hard questions to be solved

Critical Expert Teaching

Questions
not solved

CoT PoT

{Q1,CoT, PoT}; …; …; 

Weak Teacher Guiding

Questions solved

Questions
not solved

{Q3, Response2,3}

Consistent results

Experts Consistency Voting

Hard Instruction Evolving

Prompt Meta data: Topics, Skills, Knowledge bases Hard
Questions

Evolved Hard 
Questions

Weak Teacher
Guiding Data

Critical Expert
Teaching Data

Experts Consistency
Voting Data

Meta Data Generation

WISDOM

Figure 3: The overall workflow of WISDOM, which leverages Progressive Curriculum Synthesis to
generate questions and responses with Deepseek Coder V2 and GPT-4o, including weak teacher
guiding, critical expert teaching, experts consistency voting, and hard instruction evolving.

follows Easy to Hard Cyclic Iterative Process, a method rooted in curriculum learning principles that
systematically escalates problem complexity across three distinct learning stages within each round.
After five rounds of data synthesis, we obtain WISDOM (W = S1 ∪ S2 ∪ S3), a high-quality, di-
verse dataset specifically curated for complex tasks and formatted in the style of Chain-of-Thought
(CoT) datasets. S1 corresponds to the weak teacher guiding stage, S2 represents the critical expert
teaching stage, and S3 reflects the experts’ consistency voting stage. The data generation algorithm
is described in detail in Algorithm 1.
2.2 DIFFICULTY-AWARE PROGRESSIVE CURRICULUM SYNTHESIS

Previous data synthesis efforts (Yu et al., 2024; Tang et al., 2024; Luo et al., 2023; Li et al., 2024a;
Chan et al., 2024; Lu et al., 2024b) focused on enhancing diversity in mathematical reasoning but
often overlooked question difficulty. Recent studies (Chen et al., 2024; Xia et al., 2024; Liu et al.,
2024a) show that using a subset of high-difficulty data for instruction tuning enhances performance
compared to using the entire dataset. To automatically define problem difficulty, we use response
consistency across LLMs, including inner consistency of weak models, consistency between weak
and strong models, and inner consistency of strong models. To test the hypothesis that ”simpler
problems can be solved by weak models with diverse solutions,” we analyzed the relationship be-
tween response consistency and difficulty on 5,000 MATH dataset problems (see Appendix B.4)
using the DeepSeek-V2.5 model. As shown in Table 9, results indicate a clear trend: higher dif-
ficulty correlates with lower response consistency. This enables a dynamic, “funnel-like” filtering
mechanism that progressively increases problem difficulty, evolving simple questions into more
challenging ones through iterative consistency evaluations.

Specifically, we start the data synthesis process with a set of seed data, which is the training set of
GSM8K and MATH. Firstly, we employ Deepseek Coder V2 (DeepSeek-AI et al., 2024), the weak
teacher to generate the answers {Ai : (ci, pi) : i = 1, . . . , N1} where each answer includes both
Chain of Thought (CoT) ci and Program of Thought (PoT) pi. However, a weak teacher can not
solve all the given questions, therefore, we filter the answers based on the CoT and PoT consistency
(inner consistency). While the assumed solved problems by weak teachers denotes simple questions,
retained in the first stage. The unsolved questions and the inconsistent CoT and PoT answers are
advanced to the next stage for critical expert teaching. In the Critical Expert Teaching Stage, the
expert critically reviews the problems that the weak model struggled to solve, providing a critique rj
and supposed solution {Aj : (rj , cj , pj) : j = 1, . . . , N2}. If the solution of the expert demonstrates
external consistency, the problem and generated response are retained in this stage. Otherwise, the
problem advances to the next stage. In this stage, we leverage a more advanced model, such as GPT-
4o to ensure solution quality better than the weak teacher. In the Experts Consistency Voting Stage,
multiple experts are engaged to provide solutions

{
Ak : c

(j)
k , p

(j)
k ; k = 1, . . . , N3; j = 1, . . . , E

}
,
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Algorithm 1 WISDOM Dataset Construction

Input: Problems Q, Meta infoM, DatasetsR1 = ∅,R2 = ∅,R3 = ∅
Output: WISDOM DatasetW = R1 ∪R2 ∪R3

1: for i = 1 to Rounds do
2: Initialize S1,S2,S3 ← ∅
3: for qi ∈ Q do
4: Extract mi;M←M∪ {mi}
5: Generate ri = CoT(qi) + PoT(qi) via DeepSeek-Coder V2
6: if CoT(qi) = PoT(qi) then
7: S1 ← S1 ∪ {(qi,mi,CoT(qi))}
8: else
9: S2 ← S2 ∪ {(qi, ri)}

10: end if
11: end for
12: for (qj , rj) ∈ S2 do
13: Generate r′j using GPT-4o
14: if CoT(r′j) = PoT(r′j) then
15: S2 ← S2 ∪ {(qj ,mj ,CoT(r′j))}
16: else
17: S3 ← S3 ∪ {qj}
18: end if
19: end for
20: for qk ∈ S3 do
21: Generate {rk1, ..., rkn}; Vote for r∗k
22: if consistent r∗k then
23: S3 ← S3 ∪ {(qk,mk,CoT(r∗k))}
24: end if
25: end for
26: Cluster embeddings of S3 Meta info; Sample m1,m2,m3

27: Generate qnew via GPT-4o with m1,m2,m3 (40% mask); Q ← Q∪ {qnew}
28: R1 ← R1 ∪ S1,R2 ← R2 ∪ S2,R3 ← R3 ∪ S3
29: end for
30: returnW = R1 ∪R2 ∪R3

using a majority voting approach to address the remaining much more challenging questions. Mean-
while, we generate the meta-information related to these questions with the weak teacher, such as
DeepSeek-Coder V2, along with the newly synthesized questions in the hard instruction evolving
module with expert, i.e., GPT-4o, serves as updated seed data for the next round. Throughout the
Cyclic Iterative process, question difficulty is progressively increased, and we can obtain different
level synthetic problems and generated response as the final dataset for fine-tuning.

2.3 COSTS AND RESPONSE EFFICIENCY BALANCING

For data synthesis, majority voting is an effective yet resource-intensive method to improve accu-
racy. Given that the data synthesis process may generate many trivial and vanilla problems (Tong
et al., 2024), we apply majority voting specifically to evaluate and opt for the most difficult ques-
tions. Therefore, we first employ a weak but cost-effective teacher to solve a large number of easy
problems. Subsequently, a strong but more resource-intensive expert is used for medium-difficulty
questions, thereby optimizing resource utilization. To ensure the quality of generated responses,
Rejection Sampling is an effective way. However, it relies heavily on the ground truth of seed data,
making it less applicable to newly synthesized problems. We enforce unsupervised consistency to
improve the quality of responses. With the weak teacher and inner consistency, we can filter out
many simple, easily solvable problems early on, saving costs and improving efficiency. Although
we also apply majority voting in the final stage to further increase response accuracy, by this point,
the dataset has been significantly reduced in size and the difficulty of the problem has been greatly
enhanced.
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2.4 QUESTION DIVERSITY ENHANCED VIA META DATA GENERATION

Since data diversity plays a crucial role in instruction tuning, following existing work (Tang et al.,
2024; Li et al., 2024a; Chan et al., 2024), we utilize the meta-information of questions to enhance
the diversity of synthesized data. In mathematics, meta-information often refers to extracted skills
or topics from questions, and synthesizing data can be generated based on this extra information.
While existing methods (Tang et al., 2024; Huang et al., 2024) rely solely on skill or topic for
question synthesis, we argue that focusing only on these aspects can be overly simplistic and limit
the diversity of the synthesized questions. Instead, we extract a richer set of meta-information,
including Skill, Topic, Knowledge Base, and Similar Problem, and combine multiple pieces of meta-
information from various questions to maximize the diversity of the synthesized questions.

Specifically, we first extract meta-information from the questions (e.g., q3) and obtain embeddings
from the knowledge base in the meta-information using OpenAI’s text-embedding-ada-002. We then
apply k-means++ (Arthur & Vassilvitskii, 2007) clustering to group these embeddings. Furthermore,
we randomly combine all of the aforementioned meta-information across different clusters and mask
the Knowledge Base and Similar Problem with a 40% probability to prompt GPT-4o-0513 to gen-
erate new questions. This strategy not only prevents overfitting on the synthesized data but also
significantly enhances the diversity of the generated questions.

Example 2.1: Knowledge base contained Q-A Pair

Question: A biologist is tracking the growth of a bacterial culture that doubles in size every 3
hours. If the initial size of the culture is 500 bacteria, how many bacteria will be present after
15 hours?
Response:

<knowledge_base_start>

Key Definitions and Explanations:. . . - Exponential Growth: . . .

</knowledge_base_end>

<solution_start>

Step-by-Step Solution:1. Understand the Problem: . . . The final answer is: boxed{16000}
</solution_end>

2.5 KNOWLEDGE-BASED CURRICULUM LEARNING

To further enhance the quality of synthesized data and improve the model’s reasoning abilities, the
current mainstream approach is to adopt the Chain of Thought (CoT) method, which transforms
simple seed data responses into structured, step-by-step reasoning processes and teaches the model
to think before solving. Inspired by the principles of curriculum learning, it is advantageous to re-
call key knowledge points relevant to the problem before answering a question. Thus, we integrate
the knowledge base from the meta-information, which includes Key Definitions and Explanations,
Relevant Formulas and Equations, Common Pitfalls and Misconceptions, and Additional Theoret-
ical Insights, into the preamble of the CoT response. This step helps the model reinforce critical
knowledge points before proceeding to solve a given question. A simple illustrative example can be
found in Example 2.1, and more detailed examples can be found in Appendix D.

3 EXPERIMENTS

3.1 EVALUATION DATASETS

To evaluate curriculum learning in recent benchmarks, we select a diverse and challenging set
of in-domain and out-of-domain benchmarks for evaluation. In-domain datasets include GSM8K
(Cobbe et al., 2021) and MATH (Hendrycks et al., 2021) and out-of-domain datasets contain College
MATH (Tang et al. (2024)), OlympiadBench-Math (He et al. (2024)), TabMWP (Lu et al. (2024a)),
TheromQA (Chen et al. (2023)), AMC2023 and AIME2024. These selected datasets are to compre-
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hensively assess the model’s reasoning ability to solve mathematically challenging problems across
various dimensions. More details of datasets can be found in Appendix A.3.

3.2 BASELINES

We select several representative state-of-the-art closed-source models and open-source models
for comparsion, including GPT-4o-0513, GPT-4-1106-preview, Claude-3-Opus, Llama3-series
(AI@Meta (2024)), DeepSeek-Math-Instruct(Shao et al. (2024))(denote DSMath), DeepSeek-
Coder-V2 (Zhu et al. (2024)), Qwen-2-72B-instruct (Yang et al. (2024)), MetaMath (Yu et al.
(2023)),MathScale (Tang et al., 2024), MAmmoTH2 (Yue et al. (2024b)), KPMath-Plus (Huang
et al. (2024)), DART-Math (Tong et al. (2024)), NuminaMath (Li et al. (2024c)), Mathstral(Team,
2024). Comparison of WISDOM and others can be found in Table 1.

Table 1: Comparison of WISDOM and other mathematical synthetic methods.

Method Cost Efficiency GT-Free w/o External Data Instruction Diversity Evolution Instruction Difficulty Evolution
MetaMath ✗ ✗ ✓ ✓ ✗
MathScale ✗ ✓ ✓ ✓ ✗
MAmmoTH2 ✗ ✓ ✗ ✓ ✗
KPMath-Plus ✗ ✓ ✗ ✓ ✗
DART-Math ✓ ✗ ✓ ✗ ✗
NuminaMath ✗ ✗ ✗ ✓ ✗

WISDOM (ours) ✓ ✓ ✓ ✓ ✓

Table 2: Main results on in-domain benchmarks, GSM8K and MATH, and out-of-domain bench-
marks, including College MATH, Olympiad, TabMWP, TheoremQA, AMC2023, and AIME2024.
We select the current well-performing LLMs to evaluate their test accuracy on these benchmarks.
Since KPMath-Plus is not open-sourced, the results are quoted from the corresponding paper.

Method Base GSM8K MATH College† Olympiad TabMWP TheoremQA AMC2023 AIME2024
GPT-4o-0513 – 95.8 76.6 – – – – – 2/30
GPT-4-1106-preview – 91.4 64.3 – – – – – 1/30
Claude-3-Opus – 95.0 60.1 – – – – – 2/30
DeepSeek Coder V2 – 94.9 75.7 – – – – – 4/30

Mathstral

Mistral-7B

83.3 54.3 36.7 22.4 82.8 26.3 12/40 1/30
KPMath-Plus 82.1 46.8 – – 66.4 – – –
DART-Math 81.3 45.0 28.3 14.5 65.8 20.5 7/40 0/30
MAmmoTH2 67.4 34.2 31.0 9.8 26.8 26.7 6/40 1/30
MathScale 58.5 33.2 22.0 7.8 73.3 18.1 6/40 1/30
WISDOM 80.0 56.4 41.6 21.9 72.3 27.6 15/40 1/30

Llama3-instruct

Llama3-8B

78.2 27.2 22.8 5.6 75.3 18.9 5/40 0/30
MetaMath 80.5 32.6 19.3 6.7 54.1 13.3 6/40 0/30
DART-Math 81.8 46.9 28.4 15.9 66.3 20.5 8/40 1/30
MAmmoTH2 69.6 33.4 32.3 8.1 43.8 29.7 7/40 0/30
MathScale 70.8 34.6 22.5 9.0 74.3 18.9 2/40 1/30
WISDOM 83.2 59.7 42.2 25.6 83.0 28.6 17/40 1/30
DSMath-instruct

DSMath-7B

82.0 46.3 38.1 13.6 76.7 31.9 7/40 1/30
MetaMath 76.5 37.2 27.3 10.7 67.1 13.9 10/40 0/30
KPMath-Plus 83.9 48.8 – – 78.7 – – –
DART-Math 87.5 53.9 40.7 20.0 82.9 31.5 8/40 0/30
NuminaMath 77.1 53.7 32.4 24.0 77.7 29.4 12/40 1/30
MathScale 62.7 33.4 23.0 8.1 71.3 24.5 4/40 0/30
WISDOM 83.3 62.4 45.0 28.9 85.7 34.9 11/40 2/30

Llama3-instruct Llama3-70B 93.1 50.4 40.3 17.6 89.9 34.1 8/40 2/30
Qwen2-instruct Qwen2-72B 93.6 69.3 46.8 35.3 92.4 42.0 17/40 4/30
DART-Math Llama3-70B 89.8 55.7 37.9 21.0 80.9 28.2 13/40 1/30
KPMath-Plus Qwen1.5-72B 87.0 58.3 – – 76.7 – – –
MetaMath Llama3-70B 88.0 44.9 31.9 11.6 – 21.9 – –
NuminaMath Qwen2-72B 91.5 66.9 42.1 33.6 86.7 29.0 13/40 4/30
WISDOM Llama3-70B 94.1 68.2 43.4 34.4 91.8 41.4 22/40 3/30
WISDOM Qwen2-72B 94.2 76.1 47.6 39.1 94.5 45.4 23/40 2/30
† In short of College MATH.

3.3 MAIN RESULTS

As shown in Table 2, we present the performance of WISDOM on in-domain and out-of-domain
datasets, which demonstrates it achieves strong results across all datasets, particularly excelling on
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challenging ones, such as AIME2024, AMC2023. Notably, WISDOM has set a new SOTA perfor-
mance on the MATH dataset. Based on the same small model DSMath-7B, our method reaches
a significant milestone on the in-domain MATH dataset, surpassing the 60% threshold for the
first time with a score of 62.4%, compared to the previous SOTA DART-Math achieving 53.9%.
In addition, even for a weaker mathematical foundation model, we can achieve remarkable im-
provements. While based on the same base model mistral-7B, Mathstral achieved 54.3%, WISDOM
reaches 56.4%, marking a 2.1% improvement. Meanwhile, based on Llama3-8B, previous SOTA
DART-Math achieves 46.9%, WISDOM reaches 59.7%, marking a 12.8% improvement.

As shown in Table 2, on the different out-of-domain datasets, our method exhibits stronger gen-
eralization capabilities, enhancing the ability of smaller models to tackle challenging mathemati-
cal problems. Specifically, based on Llama3-8B, DSMath-7B, Qwen2-72B, and Llama3-70B, our
method WISDOM achieves new SOTA on College MATH, Olympiad, TabMWP. For more chal-
lenging tasks, such as TheoremQA, AMC2023 and AIME 2024, our WISDOM model demonstrates
outstanding performance, even when built on smaller model foundations. For instance, based on
Llama3-8B, we successfully solve 17 out of 40 questions whereas the current SOTA method on the
same model base only solved 8, which represents a relative 112.5%(17/8) improvement, matching
the performance of Qwen2-Instruct. Remarkably, on the AIME 2024 dataset, our method performs
on par with GPT-4o, suggesting the potential of smaller models in solving complex mathematical
problems with easy-to-hard curriculum learning. Even when using only synthetic data, the model
shows excellent performance on both in-domain and out-of-domain datasets, notably surpassing
GPT-4o on the AIME 2024 dataset. Furthermore, we conduct experiments on two larger models
(Llama3-70B and Qwen2-72B) to explore the upper limits of model performance. The results indi-
cate that our approach remains effective at this scale. For example, by implementing easy-to-hard
curriculum learning on Llama3-70b, we improve the performance on the AMC2023 from 8/40 to
22/40, surpassing the performance of Qwen2-Instruct-72B.

Overall, the main results above clearly demonstrate that our proposed easy-to-hard curriculum learn-
ing based synthesis method (WISDOM) is highly effective in improving performance across both
small and large models.

3.4 THE IMPACT OF SCALING STAGE

Figure 4: The accuracy of MATH in relation to
the scaling effects across different stages.

As illustrated in Figure 4, we conduct sev-
eral experiments on MATH to investigate the
impact of scaling stages in our data synthe-
sis method. Initially, the DeepSeek-Math-7B-
base and LLaMA3-8B-base achieve accuracies
of only 36.2% and 20.5%, respectively. How-
ever, fine-tuning with seed data improved their
performance to 52.22% and 36.68%, resulting
in gains of 16.02 and 16.18 percentage points.

With the data synthesized from Weak Teacher
Guiding, the models’ capabilities improve fur-
ther to 58.56% (+6.34%) and 54.04% (+17.36%), respectively. After additional fine-tuning in Crit-
ical Expert Teaching, which primarily focused on medium-difficulty questions, performance in-
creases to 60.52% (+1.96%) and 57.44% (+3.40%). Ultimately, in Experts Consistency Voting, the
model achieves accuracy of 62.44% (+1.92%) and 59.72% (+2.28%). These experimental results
clearly demonstrate the effectiveness of our data synthesis method in enhancing complex mathemat-
ical reasoning abilities at each phase for small-scale base models. More results on out-of-domain
datasets can be found in Appendix C.

3.5 THE IMPACT OF DIFFERENT STAGES

To validate the impact of each stage in the progressive curriculum synthesis process on enhancing
mathematical reasoning, we randomly sample 200k data points from each stage and perform super-
vised fine-tuning (SFT) in conjunction with the initial seed data, GSM8K and MATH training sets.
As shown in Table 3, after fine-tuning, we observe that the Experts Consistency Voting stage led to a
significant accuracy improvement on all challenging problems compared to the other stages, achiev-
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Table 3: Ablation results on Llama3-8B fine-tuned across different stages of WISDOM.

Seed S1 S2 S3 GSM8K MATH TheromQA CollegeMATH Olympiad AIME 2024 AMC 2023 TabMWP
✓ ✓ 80.4 42.8 25.1 25.6 15.3 1/30 4/40 76.2
✓ ✓ 78.2 42.7 23.4 26.2 16.5 1/30 7/40 76.4
✓ ✓ 80.3 47.1 25.1 30.8 18.1 1/30 5/40 78.3

ing 47.14%, 25.13%, 30.76%, 18.10%, 78.3% on MATH, TheromQA, CollegeMATH, Olympiad
and TabMWP respectively. However, the Critical Expert Teaching stage does not show substantial
improvement over the Weak Teacher Guiding. Actually, only a small portion of answers were mod-
ified during the Critical Expert Teaching stage. For most answers, CoT responses from the Weak
Teacher Guiding were retained, some were converted to PoT answers, and a few were completely
revised. This finding also explains the observed improvements on challenging datasets. Overall, as
the stages progress, the difficulty of the curriculum learning process steadily increases, contributing
to performance enhancement.

3.6 INFLUENCE OF KNOWLEDGE BASE ON ANSWERS

Table 4: Comparison of performance on different benchmarks with and without the inclusion of the
knowledge base. To validate the generalizability of the approach, experiments were conducted on
both Llama3 and DeepSeek-Math.

Model GSM8K MATH CollegeMATH Olympiad TabMWP TheromQA AIME 2024 AMC 2023
WISDOM (Llama3-8B-base) 83.1 59.7 42.2 25.6 83.0 28.6 1/30 17/40

w/o knowledge base 83.9 59.6 41.7 25.3 82.1 32.5 1/30 9/40
WISDOM (DSMath-7B-base) 83.3 62.4 45.0 28.9 85.7 34.9 2/30 11/40

w/o knowledge base 79.5 58.6 42.4 23.7 85.3 31.8 1/30 12/40

Table 5: Comparison of performance on MATH
with and without knowledge base using sample
data in Weak Teacher Guiding stage.

data knowledge base Model Math
Seed+S1(100k) ✗ Llama3-8B 39.0
Seed+S1(100k) ✓ Llama3-8B 43.1(+4.1%)
Seed+S1(200k) ✗ Llama3-8B 43.2
Seed+S1(200k) ✓ Llama3-8B 45.7(+2.5%)
Seed+S1(400k) ✗ Llama3-8B 46.8
Seed+S1(400k) ✓ Llama3-8B 49.0(+2.2%)

Table 6: Accuracy w/ and w/o consistency.

Wrong Right Acc.
Number Number (%)

w/o consistency 92,696 14,304 13.4
w/ consistency 79,966 27,034 25.3(+11.9)

To investigate the impact of knowledge base on learning within the curriculum learning process, we
conduct experiments to explore its effects at different scales. As shown in Table 5, we randomly
select data from the Weak Teacher Guiding stage and observe that as the data scale increases, the
results with knowledge base consistently outperform those without it, with a minimum improvement
of 2% on the MATH. However, we also notice that the rate of improvement decreases as the data
volume increases, prompting us to conduct a full-scale experiment. As shown in Table 4, we conduct
experiments on Llama3 and DeepSeek-Math, removing the knowledge base from the process. We
find that the difference in performance between the presence and absence of the knowledge base
is less pronounced when dealing with smaller datasets. However, as the data scale increases, the
contribution of the knowledge base to performance becomes more evident, though the differences
are not dramatic in most metrics. This may because the model can infer some of the knowledge
from the answers themselves, similar to how one might deduce knowledge points from the context
of an answer. We also observe that DeepSeek-Math is more efficient at learning from knowledge
points compared to Llama 3. We hypothesize that this is because the meta-information is generated
by DeepSeek-Coder V2, which may include pre-training data relevant to DeepSeek-Math, thereby
better activating the knowledge learned during its pre-training. The results indicate that scaling the
knowledge base to a million-level scale still yields improvements, underscoring the importance of
knowledge point learning in the curriculum learning process.
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(a) Weak Teacher Guiding (b) Critical Expert Teaching (c) Experts Consistency Voting

Figure 5: The top 5 topics and their corresponding frequencies after clustering in the three stages.

3.7 EFFECT OF ANSWER CONSISTENCY

We first sample 100k synthetic data points, each containing two different types of responses to the
same set of questions: one consistent and one inconsistent. To investigate their accuracy, we use
GPT-4o to generate reference answers for the 100k synthetic data points and compare the generated
responses with the reference answers to measure consistency. Given that GPT-4o is currently among
the most advanced models in terms of mathematical capabilities, we can reasonably assume that
consistency rates closely reflect accuracy. As shown in Table 6, consistent responses improve accu-
racy by 11.9%. To further explore the impact of response consistency on model training, we conduct
an ablation study by replacing all consistent data in Weak Teacher Guiding stage with data lacking
consistency. As illustrated in Table 8 in Appendix E, it is evident that the absence of consistency
resulted in a significant decline in performance across all datasets. Response consistency not only
enhances accuracy and helps increase the difficulty of synthesized instructions but also contributes
to improving the model’s mathematical reasoning abilities during training.

3.8 ANALYSIS

3.8.1 DATASETS EMBEDDING TOPICS

We conduct an in-depth analysis of the topics included in each stage of the problems, providing
direction for future synthesis of mathematical reasoning datasets. Specifically, we sample 100k data
points from each of the three stages, convert the knowledge base into embeddings using OpenAI’s
text-embedding-ada-002, and apply K-means++ (Arthur & Vassilvitskii, 2007) for clustering, re-
sulting in 200 categories. For each category, we extract the central terms and identify the top five
topics along with their frequencies. As shown in Figure 5, In the initial stage, the data predominantly
features simple and clear topics, such as arithmetic and kinematics. As the difficulty increases, more
complex subjects emerge, including linear algebra, optimization, and complex numbers. In the final
stage, financial-related problems appear, possibly due to the model’s difficulty in handling decimal
precision in financial interest calculations, where the reasoning path is correct, but the answers are
wrong. Therefore, future synthesis of mathematical reasoning problems should aim for more refined
generation and optimization, particularly targeting similar topics while balancing computational pre-
cision and cognitive complexity.

3.8.2 COST SAVING

Curriculum learning not only facilitates a gradual learning process but also enables the strategic
allocation of more resources to difficult problems. This approach can significantly reduce costs
compared to the traditional majority voting method. We analyze the number of tokens used and the
overall expenditure, as illustrated in Figure 6. By calculating the average token consumption for
inputs and outputs within the sampled dataset, and applying an exchange rate of 1:7 between USD
and CNY, we determine the overall cost of the dataset based on the API pricing for DeepSeek and
GPT-4o-0513. Our analysis shows that our approach is 2.82 times more cost-effective compared to
majority voting, leading to a total savings of over 20,000 US dollars in overall expenditure. Our
method resulted in a substantial reduction in costs while maintaining strong outcomes, demonstrat-
ing the scalability and cost-effectiveness of our approach.
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Figure 6: The left figure illustrates the average number of input and output tokens at different stages,
while the right figure presents the monetary cost associated with input and output tokens, as well as
the total expenditure.

4 RELATED WORK

Instruction Tuning. Instruction fine-tuning has been widely validated as an effective method for
enhancing model capabilities. Previous work (Kang et al. (2024); Chen et al. (2024); Xia et al.
(2024); Li et al. (2024d)) has primarily focused on improving model performance through the careful
selection of high-quality data. However, recent literature (Tang et al. (2024); Chung et al. (2022);
Yue et al. (2024b); Tang et al. (2024)) suggests that increasing the volume of data can also contribute
to performance gains. Unlike efforts (Zhang et al. (2024); Muennighoff et al. (2023)) that aim to
broadly enhance general model capabilities, our instruction fine-tuning is specifically designed to
improve complex mathematical reasoning skills.

Mathematical Reasoning. To enhance answer accuracy on challenging benchmarks, recent re-
search (Gou et al. (2024); Zhou et al. (2024); Wang et al. (2024b)) has increasingly focused on
leveraging external tools to improve large language models’ (LLMs) ability to solve mathematical
problems and achieve higher scores. Most approaches utilize Program of Thought (PoT) methods,
employing code interpreters to compute the final result (numerous methods cited here). Addition-
ally, some methods (Wang et al. (2023a); Aggarwal et al. (2023); Wang et al. (2024a); Shao et al.
(2024)) adopt self-consistency techniques, ensembling multiple outputs to achieve better results. In
contrast, we concentrate on improving the model’s intrinsic reasoning capabilities, relying solely on
Chain of Thought (CoT) approaches to develop the model’s inherent mathematical reasoning skills.

Distillation. Training smaller student models using synthetic data generated by more powerful
teacher models has been widely validated as an effective approach (Xu et al. (2024); Li et al. (2024f);
Wang et al. (2024c); Li et al. (2024b)) . In the domain of mathematical reasoning, this effective-
ness has also been demonstrated (Yu et al. (2024); Yue et al. (2024a); Tang et al. (2024); Li et al.
(2024a); Azerbayev et al. (2024)). However, these methods still exhibit a significant gap in perfor-
mance when tackling challenging mathematical problems compared to closed-source models. Our
work addresses this gap by employing curriculum learning, which not only synthesizes diverse and
challenging responses but also gradually generates problems with greater diversity and complexity,
thereby significantly narrowing the performance gap with closed-source models.

5 CONCLUSION

In this work, we propose WISDOM as a data-synthesis framework to enhance the mathematical rea-
soning abilities of LLMs. The key insight behind WISDOM is the use of progressive curriculum
synthesis, which iteratively evolves the difficulty of questions, and generates high-quality responses
in unsupervised ways based on response consistency of weak and strong models without relying
on ground truths. Compared to traditional majority voting, WISDOM is 2.82x more cost-effective.
To validate the effectiveness of the synthesized datasets, we fine-tune a series of open-sourced
LLMs ranging from 7B to 72B parameters. Experimental results show that the fine-tuned LLMs
achieve significant improvements over the base models, highlighting the generalization capabilities
of WISDOM. Our empirical findings also offer valuable insights into tackling challenging problems,
paving the way for future complex reasoning across various fields.
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A EXPERIMENTAL SETUP

A.1 TRAINING SETUP

Table 7: The composition and sources of data for
the proposed WISDOM dataset.

Dataset Pairs Dataset Source
Weak Teacher Guiding 640K DeepSeek Coder V2
Critical Expert Teaching 527K GPT-4o-0513
Experts Consistency Voting 300K GPT-4o-0513

We employ Llama factory (Zheng et al. (2024))
for fine-tuning the entire suite of models and
utilized sequence packing Krell et al. (2021) to
accelerate the training process. To accommo-
date the large model sizes during training, we
leveraged DeepSpeed with ZeRO (Rajbhandari
et al. (2020)) Stage 3. For data preprocessing,
we applied the Alpaca prompt format (Taori
et al. (2023)).

The training was conducted using 88 NVIDIA A800 GPUs, with a configuration of batch size 1,
gradient accumulation (Lin et al. (2018)) of 2, sequence length of 8192, and bf16 (Kalamkar et al.
(2019)) precision. We optimized the models with the AdamW (Loshchilov & Hutter (2019)) op-
timizer, setting a learning rate warmup using a cosine schedule with a warmup ratio of 0.03, and
trained each model for 3 epochs. The learning rates were adjusted slightly for different models:
Mistral 7B at 1e-5, DeepSeekMath-7B at 5e-5, Llama3-8B at 4e-5, and both Llama3-70B and
Qwen2-72B at 2e-5.

All final results for the models were obtained using the full dataset. The specific composition of the
dataset can be found in Table 7.

A.2 DATA CONTAMINATION

To mitigate the risk of data contamination, we applied a 10-gram hash deduplication method (Liu
et al. (2019)) to the questions in both our in-domain and out-of-domain benchmarks, with a condition
that the ratio of the longest common sequence must exceed 0.6 (Yang et al. (2024)), Any detected
duplicates were removed. According to our statistics, after deduplication, the remaining samples
were as follows: from 641,514 to 640,987 in Weak Teacher Guiding, from 527,658 to 527,537 in
Critical Expert Teaching, and from 298,190 to 298,118 in Experts Consistency Voting Stage. All
experiments were conducted on these deduplicated datasets to prevent potential data contamination.

A.3 DETAIL DATASETS

The following provides a detailed description of the composition of the evaluation set.

• GSM8K: The test dataset consists of 1,319 high-quality grade school mathematics problems, pri-
marily to evaluate fundamental logical reasoning and applied mathematical abilities.

• MATH: 5,000 curated high school competition-level test problems, including diverse dimensions
like Prealgebra, Algebra, Number Theory, Counting and Probability, Geometry, Intermediate Al-
gebra, and Precalculus.

• College MATH: A total of 2,818 college-level mathematics problems were extracted from nine
textbooks covering seven domains. Mathematical reasoning ability can be assessed from multiple
skill perspectives, such as analytical thinking, logical reasoning, and quantitative analysis.

• OlympiadBench-Math: The text-only English subset of Olympiad-Bench, consisting of 675
Olympiad-level mathematical problems, is designed to evaluate complex and advanced mathe-
matical reasoning abilities.

• TabMWP: A large-scale dataset for math word problems in tabular contexts.The test dataset in-
cludes 1,000 questions with tabular contexts, allowing for a comprehensive evaluation of mathe-
matical reasoning within the context of tables.

• AMC-AIME: The datasets are designed to select students who will represent the United States at
the International Mathematics Olympiad (IMO). The datasets include 30 competition-level prob-
lems from the AIME2024 and 40 from the AMC2023, covering a broad spectrum of problem-

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

solving skills such as arithmetic, algebra, combinatorics, geometry, number theory, and probabil-
ity.

B PROMPTS

B.1 META-INFORMATION GENERATION PROMPT

Example B.1: Meta-information Generation Prompt

As a math mentor, you are dedicated to helping your students understand and master key math-
ematical concepts and problem-solving techniques. Your goal is to provide clear, concise guid-
ance and support. When guiding, you must not give out the answer to the original problem.
## Skill Label
Consider the following mathematical question. Label this question with a specific mathematical
skill required to solve it. The skill name should:

• Be in lowercase letters only.
• Be very descriptive.
• Use multiple words joined by an underscore if necessary.
• Enclose the content within <skill> and </skill> tags.

## Topic Label
Consider the following mathematical question. Label this question with the specific mathemati-
cal topic it belongs to. The topic name should:

• Be in lowercase letters only.
• Be specific and descriptive.
• Use underscores to join multiple words if necessary.
• Enclose the content within <topic> and </topic> tags.

## Knowledge Base
Provide comprehensive information necessary for understanding the mathematical concepts re-
lated to the given problem, without including step-by-step procedures or any information that
could directly solve the problem. Include the following:

• Key definitions and explanations.
• General relevant formulas and equations (without applying them to the specific prob-

lem).
• Common pitfalls and misconceptions.
• Additional theoretical insights related to the topic.
• Do not include any visual or diagram-related knowledge.
• Enclose the content within <knowledge base> and </knowledge base> tags.

## Similar Problem Types
Provide up to two examples and solutions of similar problem types to help students recognize
patterns and apply similar problem-solving methods. For each example:

• State the problem.
• Provide a detailed solution.
• Highlight the similarities to the original question.
• Explain how the solution method can be applied to the original question.
• Do not include any visual or diagram-related knowledge.
• Enclose the content within <similar problems> and </similar problems>

tags.
## Question
{question}
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B.2 QUESTION GENERATION PROMPT

Example B.2: Question Generation Prompt

Role: You are a creative math professor.
Objective: Help senior students learn the following math key skills and topics, create high
quality math word problems to help students learn math.
Task:

1. Using the listed key skills and topics as guidelines, construct multiple, original math
problems. Each problem should be written on a new line.

2. Ensure each problem has a fixed and unique answer.
3. Increase the difficulty of the problems by incorporating foundational knowledge and

common pitfalls.
4. Problems can be generated using a single topic and skill or by combining multiple

topics and skills for higher quality questions.
5. Reference the given problems and maximize the combination of topics and skills to

rewrite and deepen the difficulty, ensuring no conflicts between topics and skills.
6. Based on the example problem, imagine what specific field of study would delve into

such data and generate the problem as if it were created by someone in that field.
7. Ensure that the generated questions are solvable and not inherently unsolvable.
8. Each generated question must be a single question without any sub-questions.
9. Ensure that the generated questions are as quantitative as possible, focusing on prob-

lems that can have numerical solutions.
Instructions:

• Write each new math problem on a new line.
• Use <question> to indicate the beginning of the question.
• Use </question> to indicate the end of the question.

Topics and skills:

• Skills: {skills}
• Topics: {topics}

Knowledge base:
{knowledge base}

Easy example problems:
{problems}

Expanded Requirements:
1. Generate up to eight questions per response, with each question on a new line.
2. Each generated question must have a fixed and unique answer.
3. Increase the difficulty of the questions using foundational knowledge and common pit-

falls.
4. Use a single topic and skill or combine multiple topics and skills to create higher quality

questions.
5. Reference the given questions and maximize the combination of topics and skills to

rewrite and deepen the difficulty, ensuring no conflicts between topics and skills.
6. Each generated question must be a single question without any sub-questions.
7. Ensure that the generated questions are as quantitative as possible, focusing on prob-

lems that can have numerical solutions.
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B.3 CRITICAL EXPERT TEACHING PROMPT

Example B.3: Critical Expert Teaching Prompt

Task: Solve a Complex Math Problem with Step-by-Step Explanation and Python Code
Instructions:

1. Read the math problem carefully.
2. Compare the reference solution and code output, identify dis-

crepancies, and analyze the reasons for these discrepancies in
the section between <reference solution analysis> and
</reference solution analysis>.

3. Think through the correct solution step-by-step.
4. At the end of your step-by-step solution, provide the final answer in the format:

boxed{final result}.
5. After presenting the final answer, write a Python code that demonstrates the solution

process.
6. Ensure the final output of the code is stored in a variable named result.
7. Provide your final solution in the section between <solution> and </solution>.

BACKGROUND

I am working on a complex math problem and need your assistance. I have an incorrect reference
solution and a result obtained from running a code. Please help me understand the discrepancies
and find the correct solution.

REFERENCE SOLUTION

{reference solution}

CODE OUTPUT

{code output}

PROBLEM

{question}

ANALYSIS

<reference solution analysis>
Please analyze the discrepancies between the reference solution and the code output here.
</reference solution analysis>

SOLUTION

<solution>
Please provide a step-by-step solution here, including the final answer in the format:
boxed{final result}.
After presenting the final answer, write a Python code that demonstrates the solution process.
Make sure the final answer in the format boxed{final result} is presented before the
Python code.
Ensure the final output of the code is stored in a variable named result.
</solution>
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B.4 WEAK TEACHER GUIDING PROMPT

Example B.4: Weak Teacher Guiding Prompt

You are a math professor and good at writing python code.
Task: Solve a Complex Math Problem with Step-by-Step Explanation and Python Code
Instructions:

1. Read the math problem carefully.
2. Think through the solution step-by-step.
3. At the end of your step-by-step solution, provide the final answer in the format:

boxed{final result}.
4. After presenting the final answer, write a Python code that demonstrates the solution

process.
5. The generated code should not include any visualization libraries such as matplotlib.

Problem: {question}

B.5 EXPERTS CONSISTENCY VOTING PROMPT

Example B.5: Experts Consistency Voting Prompt

Problem:
{question}
Answer the problem step by step, ensuring that each step is clearly explained and logically
connected to the next. While the solution process should be detailed and thorough, ensure that
the final answer is formatted as \boxed{final_result}.

C DETAILED SCALING ACCURACY

Figure 7: The accuracy results from left to right are for GSM8K, College Math, and Olympiad,
respectively.

Figure 8: The accuracy results from left to right are for TabMWP, TheoremQA,respectively.
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D DETAILED SAMPLES

Example D.1: Weak Teacher Guiding Sample

Question: In a certain chemical reaction, the ratio of reactant A to reactant B must be 3:7. If
you have 21 grams of reactant B, how many grams of reactant A do you need?
Response:

<knowledge_base_start>

### Key Definitions and Explanations
- **Ratio**: A ratio compares two quantities, often expressed as 3:7, meaning that for every 3
parts of one substance, there are 7 parts of another.
- **Proportion**: A proportion is an equation that shows two ratios are equal. Proportions help
solve for unknown values when part of the ratio is given.
### General Relevant Formulas and Equations
- **Proportion Formula**: If two ratios are equal, they can be set up as a proportion: a

b = c
d ,

where a and b are the known quantities, and c or d is the unknown to be solved.
### Common Pitfalls and Misconceptions
- **Reversing the Ratio**: Be sure to follow the correct order in ratios. For example, the ratio
A:B is not the same as B:A.
- **Incorrect Proportional Set-Up**: Misinterpreting how to set up the proportion can lead to
incorrect solutions. It’s important to align the ratio and the actual quantities properly.
### Additional Theoretical Insights
- **Application of Ratios in Chemistry**: Ratios and proportions are critical in chemistry when
mixing reactants in fixed proportions to ensure reactions occur as intended.
- **Scaling Proportions**: In practical scenarios, such as scaling up chemical reactions, under-
standing proportions is key to calculating the correct amounts of reactants.

</knowledge_base_end>

<solution_start>

### Step-by-Step Solution:
1. **Understand the ratio**: The ratio of reactant A to reactant B is given as 3:7. This means
for every 3 parts of reactant A, there are 7 parts of reactant B.
2. **Set up the proportion**: Let x be the amount of reactant A needed. Using the ratio, we set
up the proportion:

x

21
=

3

7
where 21 is the given amount of reactant B.
3. **Solve for x**: Cross-multiply to solve for x:

7x = 3× 21

4. **Calculate the right-hand side**: Perform the multiplication:

3× 21 = 63

5. **Solve for x**: Divide both sides by 7:

7x = 63

x =
63

7
= 9

### Final Answer:
9

Thus, you need 9 grams of reactant A.

</solution_end>
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Example D.2: Critical Expert Teaching Sample

Question: Find the values of x and y that satisfy the system of equations x2 + y2 = 10 and
x2 − y2 = 6.
Response:

<knowledge_base_start>

### Key Definitions and Explanations
- **System of Equations**: A set of equations with the same variables, solved simultaneously.
- **Substitution and Elimination Methods**: Substitution solves one equation for one variable
and substitutes it into the other equation. Elimination adds or subtracts equations to eliminate
one variable.
- **Algebraic Operations**: Basic operations (addition, subtraction, multiplication, division)
used to manipulate and solve equations.
### General Relevant Formulas and Equations
- For two equations like x2 + y2 = 10 and x2 − y2 = 6, adding or subtracting them simplifies
the system and isolates a variable.
### Common Pitfalls and Misconceptions
- **Misinterpreting Operations**: Errors in tracking signs during addition/subtraction.
- **Square Root Ambiguities**: Both positive and negative roots must be considered.
### Additional Theoretical Insights
- **Graphical Interpretation**: Each equation represents a curve, and solutions are where these
curves intersect.

</knowledge_base_end>

<solution_start>

Let’s solve the given system of equations step-by-step:
1. **Understand the Problem**: We are given a system of two equations:{

x2 + y2 = 10

x2 − y2 = 6

2. **Add the Two Equations**: Adding the two equations, we get:

(x2 + y2) + (x2 − y2) = 10 + 6

Simplifying this, we obtain:
2x2 = 16

Dividing both sides by 2, we get:
x2 = 8

Taking the square root of both sides, we find:

x = ±
√
8 = ±2

√
2

3. **Substitute x2 Back into One of the Original Equations**: Substitute x2 = 8 into the first
equation x2 + y2 = 10:

8 + y2 = 10

Subtracting 8 from both sides, we get:
y2 = 2

Taking the square root of both sides, we find:

y = ±
√
2

### Final Answer: 
x = 2

√
2, y =

√
2

x = 2
√
2, y = −

√
2

x = −2
√
2, y =

√
2

x = −2
√
2, y = −

√
2

</solution_end> 22
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Example D.3: Experts Consistency Voting Sample

Question: Given vectors a = ⟨1, 2,−1⟩ and b = ⟨3,−1, 2⟩, find a unit vector c such that
a · c = b · c = 0. Express your answer in terms of i, j, and k unit vectors.
Response:

<knowledge_base_start>

### Key Definitions and Explanations
- **Dot Product**: The dot product of two vectors u and v, denoted u·v, is u1v1+u2v2+u3v3.
For vectors to be orthogonal, their dot product must be zero.
- **Unit Vector**: A vector with magnitude 1, indicating direction without scale.
- **Orthogonal Vectors**: Vectors are orthogonal if their dot product equals zero.
### General Relevant Formulas and Equations - **Dot Product Formula**:
u · v = u1v1 + u2v2 + u3v3
- **Magnitude of a Vector**: |u| =

√
u2
1 + u2

2 + u2
3

- **Unit Vector Formula**: uunit =
u
|u| for unit vector in the direction of u

### Common Pitfalls and Misconceptions
- **Orthogonality Condition**: Ensure that the orthogonal vector’s dot product with given vec-
tors is zero.
- **Normalization**: Always normalize the vector to confirm it is a unit vector.
- **Sign Precision**: Pay attention to signs when solving for direction.
### Additional Theoretical Insights
- **Cross Product**: In 3D space, the cross product can find a vector orthogonal to two others.

</knowledge_base_end>

<solution_start>

To find a unit vector c such that a·c = 0 and b·c = 0, we need to find a vector that is orthogonal
to both a and b. This can be achieved by taking the cross product of a and b. Given:

a = ⟨1, 2,−1⟩, b = ⟨3,−1, 2⟩

First, compute the cross product a× b:

a× b =

∣∣∣∣∣i j k
1 2 −1
3 −1 2

∣∣∣∣∣
Expanding the determinant:

a× b = i (2 · 2− (−1) · (−1))− j (1 · 2− (−1) · 3) + k (1 · (−1)− 2 · 3)

= i(4− 1)− j(2 + 3) + k(−1− 6)

= i(3)− j(5) + k(−7)
= 3i− 5j− 7k

So, the vector a × b is ⟨3,−5,−7⟩. Next, we need to convert this vector into a unit vector. To
do this, we find the magnitude of a× b:

∥a× b∥ =
√
32 + (−5)2 + (−7)2 =

√
9 + 25 + 49 =

√
83

The unit vector c is then:
c =

1√
83
⟨3,−5,−7⟩

Expressing c in terms of i, j, and k:

c =
3√
83

i− 5√
83

j− 7√
83

k

Thus, the final answer is:
3√
83

i− 5√
83

j− 7√
83

k

</solution_end>
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Example D.4: Response of CoT and PoT Sample

Question: In a clinical trial, the probability of a patient experiencing side effect A is 0.3, and
the probability of experiencing side effect B is 0.4. If the probability of experiencing at least one
of these side effects is 0.58, what is the probability of experiencing both side effects?
Response:
### Step-by-Step Solution
1. Define the given probabilities:

• Probability of experiencing side effect A, P (A) = 0.3

• Probability of experiencing side effect B, P (B) = 0.4

• Probability of experiencing at least one of these side effects, P (A ∪B) = 0.58

2. Use the principle of inclusion-exclusion for probabilities:
The probability of experiencing at least one of the side effects can be expressed as:

P (A ∪B) = P (A) + P (B)− P (A ∩B)

where P (A ∩B) is the probability of experiencing both side effects.
3. Substitute the known values into the inclusion-exclusion formula:

0.58 = 0.3 + 0.4− P (A ∩B)

4. Solve for P (A ∩B):
0.58 = 0.7− P (A ∩B)

P (A ∩B) = 0.7− 0.58

P (A ∩B) = 0.12

### Final Answer
0.12

’’’Python Code

# Given p r o b a b i l i t i e s
P A = 0 . 3
P B = 0 . 4
P A union B = 0 . 5 8

# C a l c u l a t e t h e p r o b a b i l i t y o f e x p e r i e n c i n g bo th s i d e e f f e c t s
r e s u l t = P A + P B − P A union B

# P r i n t t h e r e s u l t
p r i n t ( f ” The p r o b a b i l i t y i s : { r e s u l t }” )

’’’
This Python code calculates the probability of experiencing both side effects using the inclusion-
exclusion principle and prints the result.
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Example D.5: Weak Teacher Guiding Stage Response (Wrong)

Question: For a function f(x) = (5x3 + 9) mod 21 and another function g(x) = 2x− 1, find
f(g(3)).
### Step-by-Step Solution
1. Evaluate g(3):

g(x) = 2x− 1

Substituting x = 3:
g(3) = 2 · 3− 1 = 6− 1 = 5

2. Evaluate f(g(3)): Since g(3) = 5, we need to find f(5):

f(x) = (5x3 + 9) mod 21

Substituting x = 5:
f(5) = (5 · 53 + 9) mod 21

Calculate 53:
53 = 125

Then:
5 · 125 + 9 = 625 + 9 = 634

Finally, compute the modulus:
634 mod 21 = 1

(Since 634÷ 21 = 30 remainder 1)
Thus, the final answer is:

1

Python Code:

d e f f ( x ) :
r e t u r n (5 * x**3 + 9) % 21

d e f g ( x ) :
r e t u r n 2 * x − 1

# E v a l u a t e g ( 3 )
g o f 3 = g ( 3 )

# E v a l u a t e f ( g ( 3 ) )
f o f g o f 3 = f ( g o f 3 )

p r i n t ( f ” g ( 3 ) = { g o f 3 }” )
p r i n t ( f ” f ( g ( 3 ) ) = { f o f g o f 3 }” )
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Example D.6: Critical Expert Teaching Response (Right)

Question: For a function f(x) = (5x3 + 9) mod 21 and another function g(x) = 2x− 1, find
f(g(3)).
### Step-by-Step Solution
1. Evaluate g(3):

g(x) = 2x− 1

Substituting x = 3:
g(3) = 2 · 3− 1 = 6− 1 = 5

2. Evaluate f(g(3)): Since g(3) = 5, we need to find f(5):

f(x) = (5x3 + 9) mod 21

Substituting x = 5:
f(5) = (5 · 53 + 9) mod 21

Calculate 53:
53 = 125

Then:
5 · 125 + 9 = 625 + 9 = 634

Finally, compute the modulus:
634 mod 21 = 4

Thus, the final answer is:
4

Python Code:

d e f f ( x ) :
r e t u r n (5 * x**3 + 9) % 21

d e f g ( x ) :
r e t u r n 2 * x − 1

# E v a l u a t e g ( 3 )
g o f 3 = g ( 3 )

# E v a l u a t e f ( g ( 3 ) )
f o f g o f 3 = f ( g o f 3 )

# S t o r e t h e r e s u l t i n a v a r i a b l e named ‘ r e s u l t ‘
r e s u l t = f o f g o f 3

p r i n t ( f ” g ( 3 ) = { g o f 3 }” )
p r i n t ( f ” f ( g ( 3 ) ) = { r e s u l t }” )

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Example D.7: Weak Teacher Guiding Stage Response (Wrong)

Question: A tech startup can develop two types of software products, X and Y. Each unit of X
requires 4 hours of development time and uses 2 GB of data storage. Each unit of Y requires
3 hours of development time and uses 4 GB of data storage. The startup has 160 hours of
development time and 100 GB of data storage available. The profit from selling one unit of X
is $70 and from Y is $90. Formulate a linear programming problem to maximize the startup’s
profit.
1. **Define the Variables:** - Let x be the number of units of product X. - Let y be the number
of units of product Y.
2. **Formulate the Objective Function:** - The profit from selling x units of X is 70x. - The
profit from selling y units of Y is 90y. - The objective function to maximize is:

P = 70x+ 90y

3. **Formulate the Constraints:** - **Development Time Constraint:** Each unit of X requires
4 hours and each unit of Y requires 3 hours. The total available development time is 160 hours.

4x+ 3y ≤ 160

- **Data Storage Constraint:** Each unit of X uses 2 GB and each unit of Y uses 4 GB. The
total available data storage is 100 GB.

2x+ 4y ≤ 100

- **Non-negativity Constraints:** The number of units produced cannot be negative.

x ≥ 0, y ≥ 0

4. **Solve the Linear Programming Problem:** - Use a graphical method or a linear program-
ming solver to find the optimal solution.
5. **Final Answer:** Using a solver, the incorrect solution suggests:

30

’’’Python Code

from s c i p y . o p t i m i z e i m p o r t l i n p r o g

# De f i n e t h e o b j e c t i v e f u n c t i o n c o e f f i c i e n t s ( maximize 70x + 90y )
c = [ −70 , −90]

# De f i n e t h e i n e q u a l i t y c o n s t r a i n t s ( Ax <= b )
A = [

[ 4 , 3 ] , # Development t ime c o n s t r a i n t
[ 2 , 4 ] # Data s t o r a g e c o n s t r a i n t

]
b = [ 1 6 0 , 100]

# De f i n e t h e bounds f o r x and y ( non − n e g a t i v i t y c o n s t r a i n t s )
x bounds = ( 0 , None )
y bounds = ( 0 , None )

# So lve t h e l i n e a r programming problem
r e s u l t = l i n p r o g ( c , A ub=A, b ub =b ,
bounds =[ x bounds , y bounds ] , method = ’ h ighs ’ )

# E x t r a c t t h e o p t i m a l v a l u e s o f x and y
x o p t i m a l = r e s u l t . x [ 0 ]
y o p t i m a l = r e s u l t . x [ 1 ]

# C a l c u l a t e t h e maximum p r o f i t
m a x p r o f i t = − r e s u l t . fun

p r i n t ( f ”Maximum p r o f i t : {m a x p r o f i t }” )
27
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Example D.8: Critical Expert Teaching Response (Right)

Question: A tech startup can develop two types of software products, X and Y. Each unit of X
requires 4 hours of development time and uses 2 GB of data storage. Each unit of Y requires
3 hours of development time and uses 4 GB of data storage. The startup has 160 hours of
development time and 100 GB of data storage available. The profit from selling one unit of X
is $70 and from Y is $90. Formulate a linear programming problem to maximize the startup’s
profit.
1. **Define the Variables:** - Let x be the number of units of product X. - Let y be the number
of units of product Y.
2. **Formulate the Objective Function:** - The profit from selling x units of X is 70x. - The
profit from selling y units of Y is 90y. - Therefore, the objective function to maximize is:

P = 70x+ 90y

3. **Formulate the Constraints:** - **Development Time Constraint:** Each unit of X requires
4 hours and each unit of Y requires 3 hours. The total available development time is 160 hours.

4x+ 3y ≤ 160

- **Data Storage Constraint:** Each unit of X uses 2 GB and each unit of Y uses 4 GB. The
total available data storage is 100 GB.

2x+ 4y ≤ 100

- **Non-negativity Constraints:** The number of units produced cannot be negative.

x ≥ 0, y ≥ 0

4. **Solve the Linear Programming Problem:** - Use a linear programming solver, such as
Python’s scipy.optimize.linprog, to find the optimal values of x and y that maximize
P = 70x+ 90y under the given constraints.
’’’Python Code

from s c i p y . o p t i m i z e i m p o r t l i n p r o g

# De f i n e t h e o b j e c t i v e f u n c t i o n c o e f f i c i e n t s ( maximize 70x + 90y )
c = [ −70 , −90]

# De f i n e t h e i n e q u a l i t y c o n s t r a i n t s ( Ax <= b )
A = [

[ 4 , 3 ] , # Development t ime c o n s t r a i n t
[ 2 , 4 ] # Data s t o r a g e c o n s t r a i n t

]
b = [ 1 6 0 , 100]

# De f i n e t h e bounds f o r x and y ( non − n e g a t i v i t y c o n s t r a i n t s )
x bounds = ( 0 , None )
y bounds = ( 0 , None )

# So lve t h e l i n e a r programming problem
r e s u l t = l i n p r o g ( c , A ub=A, b ub =b ,
bounds =[ x bounds , y bounds ] , method = ’ h ighs ’ )

# E x t r a c t t h e o p t i m a l v a l u e s o f x and y
x o p t i m a l = r e s u l t . x [ 0 ]
y o p t i m a l = r e s u l t . x [ 1 ]

# C a l c u l a t e t h e maximum p r o f i t
m a x p r o f i t = − r e s u l t . fun

p r i n t ( f ”Maximum p r o f i t : {m a x p r o f i t }” )

Final Answer: The optimal solution is:
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Example D.9: Failure Example of inner Consistency(Precision Issues)

Question: Calculate the surface area of a cylinder with a radius of 3 meters and a height of 7
meters.
Response:
To solve the problem of calculating the surface area of a cylinder with a radius of 3 meters and
a height of 7 meters, follow these steps:
1. **Understand the formula for the surface area of a cylinder:** The surface area A of a
cylinder is given by:

A = 2πr2 + 2πrh

where r is the radius of the base and h is the height of the cylinder.
2. **Substitute the given values into the formula:** Given:

r = 3 meters, h = 7 meters

Substitute these values into the formula:

A = 2π(3)2 + 2π(3)(7)

3. **Calculate each part of the formula:** - Calculate 2πr2:

2π(3)2 = 2π × 9 = 18π

- Calculate 2πrh:
2π(3)(7) = 2π × 21 = 42π

4. **Add the two parts together:**

A = 18π + 42π = 60π

5. **Final Answer:**
188.4 square meters

Python Code:

i m p o r t math

# Given v a l u e s
r a d i u s = 3 # i n m e t e r s
h e i g h t = 7 # i n m e t e r s

# C a l c u l a t e t h e s u r f a c e a r e a o f t h e c y l i n d e r
s u r f a c e a r e a = 2 * math . p i * r a d i u s **2 +
2 * math . p i * r a d i u s * h e i g h t

# P r i n t t h e r e s u l t
p r i n t ( f ” The s u r f a c e a r e a o f t h e c y l i n d e r
i s : { s u r f a c e a r e a } s q u a r e m e t e r s ” )

This Python code calculates the surface area of the cylinder using the given radius and height,
and prints the result.
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Example D.10: Comparison between base(wrong) and wisdom(right) model on MATH

Question: Line j is perpendicular to y
3 + 2x

5 = 2. What is the slope of line j? (Level 2)
Base Answer:

mj = −
5

2

Work Step by Step: The slope of a line perpendicular to a line with slope m is − 1
m . The given

line has slope m = 3
2 . Therefore, the slope of the perpendicular line is:

mj = −
1

m
= − 1

3
2

= −2

3
= −5

2

This solution is incorrect due to a miscalculation.
Wisdom Answer: To determine the slope of line j, which is perpendicular to the line given by
the equation y

3 + 2x
5 = 2, follow these steps:

1. **Rewrite the given equation in slope-intercept form:** The slope-intercept form of a line is
y = mx+ b, where m is the slope and b is the y-intercept.
Start by isolating y:

y

3
+

2x

5
= 2

Subtract 2x
5 from both sides:

y

3
= 2− 2x

5
Multiply every term by 3 to eliminate the fraction:

y = 3

(
2− 2x

5

)
Distribute the 3:

y = 6− 6x

5
Rewrite the equation in slope-intercept form:

y = −6

5
x+ 6

From this, we see that the slope m of the given line is − 6
5 .

2. **Determine the slope of the perpendicular line:** The slope of a line perpendicular to
another line is the negative reciprocal of the original line’s slope.
The slope of the given line is − 6

5 . The negative reciprocal of − 6
5 is:

5

6

Final Answer: The slope of line j is:
5

6

Ground Truth:
5

6
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Example D.11: Comparison between base(wrong) and wisdom(right) model on MATH

Question: Let

f(n) =

{
n3 + 2n− 1 if n > 1,

n− 1 if n ≤ 1.

Find f(0) + f(1) + f(2). (Level 3)
Base Answer:
Answer

f(0) + f(1) + f(2) = 1

Solution
We have f(0) = 0− 1 = −1, f(1) = 1− 1 = 0, and f(2) = 23 + 2 · 2− 1 = 13.
Thus,

f(0) + f(1) + f(2) = −1 + 0 + 13 = 12.

Related Problems
Let f(x) = x

x+1 and g(x) = 1
x . Then the composition (g ◦ f)(x) is the same as:

• (A) x
x+1

• (B) x
x−1

• (C) . . .

Wisdom Answer:
To solve the problem, we need to evaluate the function f(n) for n = 0, 1, and 2, and then sum
the results.
First, let’s evaluate f(0):

f(0) = 0− 1 = −1
Next, let’s evaluate f(1):

f(1) = 1− 1 = 0

Now, let’s evaluate f(2):

f(2) = 23 + 2 · 2− 1 = 8 + 4− 1 = 11

Now, we sum the results:

f(0) + f(1) + f(2) = −1 + 0 + 11 = 10

Thus, the final answer is:
10

Ground Truth:
10
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Example D.12: Comparison between base(wrong) and wisdom(right) model on MATH

Question: If the square root of the length of the hypotenuse of a right triangle is 2 units, what is
the sum of the squares of the lengths of the two other sides? (Level 5)
Base Answer:
Answer
The sum of the squares of the lengths of the two other sides is 8.
Explanation:
Let the two other sides be a and b.
The square of the length of the hypotenuse is 22 = 4.
The sum of the squares of the lengths of the two other sides is a2 + b2.
The Pythagorean theorem states that the sum of the squares of the lengths of the two other sides
is equal to the square of the length of the hypotenuse.
So a2 + b2 = 4.
The sum of the squares of the lengths of the two other sides is 8.
God bless... I hope the explanation is useful.
Wisdom Answer:
Step-by-Step Solution
1. Understand the Problem: We are given that the square root of the length of the hypotenuse
of a right triangle is 2 units. We need to find the sum of the squares of the lengths of the two
other sides.
2. Define Variables: Let a and b be the lengths of the two legs of the right triangle, and c be the
length of the hypotenuse.
3. Given Information: The square root of the length of the hypotenuse is 2 units, so:

√
c = 2 =⇒ c = 22 = 4

4. Apply the Pythagorean Theorem: According to the Pythagorean theorem:

a2 + b2 = c

Substituting c = 4:
a2 + b2 = 4

5. Conclusion: The sum of the squares of the lengths of the two other sides is:

16

Ground Truth:
16
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Example D.13: Base model succeeds while the final model gets it wrong (forgetting)

Question: Let a, b, c, d, and e be five consecutive terms in an arithmetic sequence, and suppose
that a+ b+ c+ d+ e = 30. Which of the following can be found?

(A) a (B) b (C) c (D) d (E) e

Enter the letter of the correct option, so your answer will be A, B, C, D, or E.
Base Answer:
Solution
We know that the sum of the first and last terms is equal to the sum of the second and second-to-
last terms, and so on. So, a+e = b+d = c+c = 2c. We also know that a+b+c+d+e = 30.
So, 2c+ 2c+ 2c = 30. Thus, 6c = 30. Solving for c:

c = 5

So, the answer is C .
See Also
The problems on this page are copyrighted by the Mathematical Association of America’s Amer-
ican Mathematics Competitions.
WISDOM Answer:
To solve the problem, we need to determine the values of the five consecutive terms in an
arithmetic sequence, given that their sum is 30. Let’s denote the five consecutive terms as
a, a+ d, a+ 2d, a+ 3d, a+ 4d, where a is the first term and d is the common difference.
The sum of these terms is:

a+ (a+ d) + (a+ 2d) + (a+ 3d) + (a+ 4d)

Combining like terms, we get:
5a+ 10d

We are given that this sum equals 30:

5a+ 10d = 30

To simplify, we can divide the entire equation by 5:

a+ 2d = 6

This equation tells us the relationship between a and d. We need to find the individual values of
a and d to determine the specific terms in the sequence.
Let’s solve for a in terms of d:

a = 6− 2d

Now, we can find the values of the terms a, a+ d, a+ 2d, a+ 3d, a+ 4d:

a = 6− 2d

a+ d = (6− 2d) + d = 6− d

a+ 2d = (6− 2d) + 2d = 6

a+ 3d = (6− 2d) + 3d = 6 + d

a+ 4d = (6− 2d) + 4d = 6 + 2d

Given that a, a+ d, a+ 2d, a+ 3d, a+ 4d are consecutive terms in an arithmetic sequence, we
can see that the terms are:

6− 2d, 6− d, 6, 6 + d, 6 + 2d

To find the correct option, we need to determine which of these terms is the first term a. Since
a = 6− 2d, the first term is:

a = 6− 2d

Thus, the correct option is:
A

Ground Truth:
C
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Example D.14: Model fails to tackle the easier question.

Question: Find the product of the first 20 terms of the sequence below. Express your answer as
a common fraction.

2

3
,
3

4
,
4

5
,
5

6
, . . .

Wisdom Answer:
To find the product of the first 20 terms of the sequence 2

3 ,
3
4 ,

4
5 ,

5
6 , . . ., we start by identifying

the general term of the sequence. The n-th term of the sequence can be written as:

n+ 1

n+ 2

We need to find the product of the first 20 terms:

20∏
n=1

n+ 1

n+ 2

To simplify this product, we write out the first few terms explicitly:

2

3
· 3
4
· 4
5
· 5
6
· 6
7
· 7
8
· 8
9
· 9
10
· 10
11
· 11
12
· 12
13
· 13
14
· 14
15
· 15
16
· 16
17
· 17
18
· 18
19
· 19
20

(Wrong)

Notice that in the product, each numerator n+1 cancels with the denominator n+2 of the next
fraction:

2

3
· 3
4
· 4
5
· 5
6
· 6
7
· 7
8
· 8
9
· 9
10
· 10
11
· 11
12
· 12
13
· 13
14
· 14
15
· 15
16
· 16
17
· 17
18
· 18
19
· 19
20

After canceling out all intermediate terms, we are left with:

2

20

Simplifying this fraction:
2

20
=

1

10
Thus, the product of the first 20 terms of the sequence is:

1

10

E CONSISTENCY ABLATION

Table 8: Accuracy with or without consistency.

data S1 Consistency Model GSM8K Math TheoremQA College Math Olympiad AIME 2024 AMC 2023 TabMWP
Seed+S1 ✗ DSMath-7B 76.1 52.6 31.0 35.7 20.9 0/30 11/40 80.1
Seed+S1 ✓ DSMath-7B 84.0(+7.9) 58.6(+6.0) 34.5(+3.5) 36.9(+1.2) 25.6(+4.7) 2/30(+6.7) 13/40(+5.0) 85.3(+5.2)

Seed+S1+S2+S3 ✗ DSMath-7B 77.8 56.7 32.4 36.9 24.0 1/30 10/40 80.0
Seed+S1+S2+S3 ✓ DSMath-7B 83.3(+5.5) 62.4(+5.7) 34.9(+2.5) 45.0(+8.1) 28.9(+4.9) 2/30(+3.3) 11/40(+2.5) 85.7(+5.7)
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Table 9: The relationship between response consistency and difficulty level on MATH.

Level 1 Level 2 Level 3 Level 4 Level 5
Response Consistency Rate 75.3 70.6 65.0 62.1 54.2
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