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Abstract

Scientific literature understanding is crucial for extracting targeted information and
garnering insights, thereby significantly advancing scientific discovery. Despite
the remarkable success of Large Language Models (LLMs), they face challenges
in scientific literature understanding, primarily due to (1) a lack of scientific
knowledge and (2) unfamiliarity with specialized scientific tasks. To develop an
LLM specialized in scientific literature understanding, we propose a hybrid strategy
that integrates continual pre-training (CPT) and supervised fine-tuning (SFT),
to simultaneously infuse scientific domain knowledge and enhance instruction-
following capabilities for domain-specific tasks. In this process, we identify two key
challenges: (1) constructing high-quality CPT corpora, and (2) generating diverse
SFT instructions. We address these challenges through a meticulous pipeline,
including PDF text extraction, parsing content error correction, quality filtering,
and synthetic instruction creation. Applying this strategy, we present a suite
of LLMs: SciLitLLM, specialized in scientific literature understanding. These
models demonstrate promising performance on scientific literature understanding
benchmarks. Our contributions are threefold: (1) We present an effective framework
that integrates CPT and SFT to adapt LLMs to scientific literature understanding,
which can also be easily adapted to other domains. (2) We propose an LLM-
based synthesis method to generate diverse and high-quality scientific instructions,
resulting in a new instruction set – SciLitIns – for less-represented scientific
domains. (3) SciLitLLM achieves promising performance in scientific literature
understanding benchmarks. We release the data processing codes, model weights
and the synthetic dataset1.

1 Introduction

Figure 1: Average scores on SciRIFF of models
with varying parameter sizes.

Scientific literature understanding involves the
systematic evaluation and interpretation of sci-
entific texts and publications, to identify trends,
extract targeted information, and garner in-
sights (AI4Science and Quantum, 2023; Zheng
et al., 2023), significantly contributing to scien-
tific discovery. Concurrently, Large Language
Models (LLMs) (OpenAI, 2023; Team, 2024;
Touvron et al., 2023) have achieved remarkable

1https://github.com/dptech-corp/Uni-SMART/tree/main/SciLitLLM

Foundation Models for Science Workshop,38th Conference on Neural Information Processing Systems (NeurIPS
2024).
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Abstract: ...We investigated whether single nucleotide polymorphisms (SNPs) of HNF4A, encoding HNF4alpha, influenced the conversion 
from impaired glucose tolerance (IGT) to type 2 diabetes mellitus in subjects of the STOP-NIDDM trial. This trial aimed at evaluating the 
effect of acarbose compared to placebo in the prevention of type 2 diabetes mellitus. Three SNPs in the P2 promoter region (rs4810424, 
rs1884614, and rs2144908) were in almost complete association (D'>0.97, r (2)>0.95) and, therefore, only rs4810424 was included in 
further analyses. No association was found in men. Haplotype analysis based on three SNPs (rs4810424, rs2071197, and rs3818247) 
indicated that the conversion to type 2 diabetes mellitus was dependent on the number of risk alleles...

You will be shown an abstract from a biomedical research paper. Given this abstract, your task is to extract all unique entities of the 
following types: ["CellLine", "Disease", "Variant"]. Please return the output as a JSON object of the format: {"CellLine": ["hRPTEC", ...], 
"Disease": ["Diabetes", ...], "Variant": ["Pro75Ala", ...]}. // Rest of the task.

Answer:

I think you can use spaCy to do this.

spaCy is a library for natural language 
processing (NLP) in Python. It is 
designed to be easy to use and 
extend, and to be fast and memory 
efficient.
You can use it to extract entities from 
your abstract.

Unfamiliar with Scientific Tasks

Galactica-6.7B

{
"CellLine": [
"hRPTEC",
""

],
"Disease": [

"Type 2 diabetes mellitus"
],
"Variant": [

"Pro75Ala", "rs1884614",
"rs4810424", "rs2144908",
"rs2071197",

]
}

Lack of Scientific Knowledge

Llama-3.1-8B

Correct Answer

{
"CellLine": [],
"Disease": [

"IGT",
"impaired glucose tolerance",
"type 2 diabetes mellitus",
"diabetes"

],
"Variant": [

"rs3818247", "rs2071197",
"rs1884614", "rs2144908",
"rs4810424"

]
}

SciLitLLM-7B (Ours)

1 Scientific
Document

2 Task

3 Prediction 
by LLMs

Scientific
Literature
Understanding

Figure 2: An example of scientific literature understanding in SciRIFF. It involves extracting accurate
entities from a biomedicine paper. SciLitLLM-7B demonstrates sufficient scientific knowledge and
instruction-following ability to accurately identify and extract these entities.

success in natural language processing, prompting the development of domain-specific LLMs across
various fields (Cui et al., 2024; Wu et al., 2023; Clusmann et al., 2023). However, recent stud-
ies (Wadden et al., 2024; Cai et al., 2024; Singh et al., 2023) indicate that LLMs face challenges
when specializing in scientific literature understanding, particularly in context understanding and
question answering. Take Figure 2 as an example, where the LLM is asked to understand the content
of a biomedical research paper and then extract the targeted information. LLMs’ potential might be
hindered by two major barriers: (1) a lack of scientific knowledge, which results in errors such as the
missing important entities in Llama-3.1-8B (AI@Meta, 2024), and (2) unfamiliarity with scientific
tasks, leading to the inability of Galactica-6.7B (Taylor et al., 2022) to follow task instructions
accurately.

To make LLMs specialized in science-relevant tasks, existing studies mostly adopt two strategies,
as illustrated in Figure 3: (1) Fine-tuning with scientific instructions (Wadden et al., 2024; Zhang
et al., 2024b; Singhal et al., 2022). A general-purpose LLM is fine-tuned with collected domain-
specific instructions to adapt it to science-relevant tasks. However, instruction fine-tuning alone
is insufficient to imbue the models with comprehensive scientific knowledge. (2) Pre-training on
scientific corpora (Beltagy et al., 2019; Zeng et al., 2022; Taylor et al., 2022). This approach involves
training models on vast scientific corpora. While this method equips LLMs with domain knowledge,
the lack of instruction-tuning confines them to solving relevant tasks. Moreover, it is hampered by
substantial computational costs and data requirements (Ling et al., 2023; Yang et al., 2023). To
address these obstacles while balancing efficiency, we propose a hybrid strategy that incorporates
continual pre-training (CPT) and supervised fine-tuning (SFT), to simultaneously infuse domain
knowledge and enhance domain-specific instruction-following capabilities.

However, as illustrated in Figure 4, developing a scientific literature understanding model using this
CPT and SFT pipeline presents two critical requirements: (1) High-quality CPT Corpora. Scientific
corpora, predominantly in PDF format such as textbooks and research papers, are not directly
digestible for LLM training. Converting these documents to text with PDF parsing tools introduces
formatting and syntax errors, degrading corpus quality. Worse still, scientific documents often contain
segments that contribute little information (e.g., references), necessitating quality control to filter
them out. See the first row in Figure 4 for a comparison of high- and low-quality CPT texts. (2)
Diverse Scientific Instructions. Effective instruction following for scientific literature understanding
requires a large, high-quality, and diverse set of task-related instructions. However, to the best
of our knowledge, there is a scarcity of well-designed instruction datasets for scientific literature
understanding, and hiring human annotators to curate such a dataset from scratch is prohibitively
expensive (Erdmann et al., 2019; Qiu et al., 2023). See the second row in Figure 4 for an illustration
of high- and low-quality instructions.
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Figure 3: Comparison of strategies to adapt LLMs
to scientific tasks.

Of 100 students, 64 could roll their tongue 
lengthwise. Tongue-rolling is governed by 
genes at a single locus. (a) What is the gene-
frequency of the recessive allele in the 
population?..Continued

Pre-training 
Corpora

High Quality

Score: 4.97

Question: You can help user insert 
substituents into CXSMILES-type formula to 
get SMILES formula. 
c1nc(cc(c1)c2cccc(c2)C(=O)N[C@@H]3CCNC[C
@H]3O) ..
Answer: Nc1nc(cc(n1)c2cccc(c2)C(=O)N 
[C@@H]3CCNC[C@H]3O)NCCO

Score: 4.8

Question: Read the below paragraph 
and answer the question at the end. 
Traditionally, diesel fuel has been 
adopted by most industria co npri
ssionswith birthelarc accumu la tion
Answer: Yes

Score: 1.0

Eastman, R. T., 152, 160 Ebetino, F. H., 
184, 203, 305, 308-309, 313, 314, 316, 
318 Edelstein, R. L., 5-6, 10, 104, 105-
107, 111, 123, 124 Edreira.

Score: 0.66

Low Quality

Supervised
Fine-tuning 
Instructions

Figure 4: Examples of high and low-quality CPT
text and SFT instructions.

To address these challenges, we devise an effective pipeline to construct high-quality domain corpora
for CPT and diverse scientific instructions for SFT, as illustrated in Figure 5:

In the CPT stage for domain knowledge injection, we start with an extensive in-house corpus
consisting of 73k textbooks and 625k academic papers in the scientific field, all in PDF format.
Initially, we leverage PyPDF22, a widely used open-source PDF parsing tool, to extract raw texts
from these documents. We then employ a moderate yet powerful model, Llama3-7B-Instruct, to
correct the format and spelling errors introduced by PDF parsing (cf. Section 3.1.1). Subsequently,
we train a small text quality classifier to score the corpus and filter out texts of low educational value3

in the scientific field (cf. Section 3.1.2). These two simple yet effective textual refinement and quality
control measures ensure the high quality of our CPT corpus, culminating 12.7 billion tokens for CPT
via the Qwen2.5 tokenizer.

In the SFT stage for domain instruction fine-tuning, to overcome the scarcity of domain-specific
instructions and the high cost of human annotations, we propose a novel instruction synthesis method
(cf. Section 3.2.1). It enables us to generate diverse instructions to better equip the model for domain-
specific tasks. Moreover, we sequentially apply instruction duplication based on Levenshtein distance
and an LLM-based filtering method to ensure the quality of synthetic instructions (cf. Section 3.2.2).

Having established such high-quality datasets, we apply the CPT-SFT integration strategy on a
general-purpose LLM – Qwen2.5 (Team, 2024) and obtain SciLitLLM of two scales: 7B and 14B.
Evaluations on benchmarks of scientific literature understanding demonstrate the effectiveness of
our strategy. We observe promising performance enhancements, with an average improvement of
4.0% on SciAssess (Cai et al., 2024) and 10.1% on SciRIFF (Wadden et al., 2024), compared to
the leading LLMs under 10B parameters. Notably, SciLitLLM-7B even outperforms Llama3.1 and
Qwen2.5 with 70B parameters on SciRIFF. Additionally, SciLitLLM-14B achieves leading results
on both benchmarks, surpassing other open-source LLMs. Further ablation studies demonstrate the
effectiveness of each module in our pipeline.

In summary, our contributions are threefold: (1) We devise an effective and comprehensive pipeline to
adapt general LLMs to a specific domain – scientific literature understanding. It combines continual
pre-training (CPT) and supervised fine-tuning (SFT), to enhance scientific knowledge base and
instruction-following capabilities for specialized domain tasks. (2) We propose a novel domain
instruction synthesis method to curate instructions for scientific literature understanding, resulting in
a new dataset – SciLitIns. (3) SciLitLLM, trained through the proposed pipeline, outperforms leading
open-source LLMs on scientific literature understanding.

2 Related Works

2.1 Knowledge Injection via Continual Pre-training

Pre-training a language model is usually conducted on a large corpus of textual data to learn the
statistical properties of language (Radford et al., 2019; Brown et al., 2020). To further inject domain
knowledge into a general LLM after pre-training, researchers engage in continual pre-training (CPT)
on high-quality domain-specific corpora (Jin et al., 2022; Sun et al., 2020), sometimes combined with

2https://pypdf2.readthedocs.io
3Phi models (Gunasekar et al., 2023; Li et al., 2023; Abdin et al., 2024) propose to determine the quality of a

pre-training text by its educational value for a student whose goal is to learn basic domain concepts.

3
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general corpora. This process enhances the model’s fundamental understanding abilities in specific
downstream domains while mitigating catastrophic forgetting of general knowledge (Wu et al., 2022;
Ke et al., 2023; Mehta et al., 2023). See the comprehensive study (Gupta et al., 2023) for different
warm-up strategies for CPT. Additionally, the CPT corpora can be augmented by transforming
them into an instruction-response format (Cheng et al., 2023, 2024). Furthermore, the scaling
law (Hoffmann et al., 2022) of domain-specific CPT (Que et al., 2024) is explored to determine the
optimal mix of data. However, these studies primarily focus on training dynamics and data recipes,
leaving the pre-processing for scientific data, especially raw PDF files, largely unexplored. Exhibiting
such steps is essential for generating high-quality domain corpora and effectively injecting domain
knowledge, representing a significant challenge for practitioners.

2.2 Domain Adaptation via Supervised Fine-tuning

Supervised fine-tuning (SFT) modifies a pre-trained language model to follow specific instructions
or perform designated tasks by fine-tuning it on a targeted, task-specific dataset (Raffel et al., 2020;
Wei et al., 2021). Applying SFT to a general LLM for specific domain adaptation has demonstrated
effectiveness in various fields: in medicine (Clusmann et al., 2023), corpora of medical literature and
clinical notes are used; in law (Cui et al., 2024), legal documents and case law are compiled; and
in finance (Wu et al., 2023), financial reports and market data are utilized. In the scientific domain,
several studies have specialized LLMs for scientific tasks, often necessitating the construction
of a substantial domain-specific dataset with SFT. For example, SciGLM (Zhang et al., 2024a)
leverages existing LLMs to generate step-by-step reasoning for unlabelled scientific instructions.
ChemLLM (Zhang et al., 2024b), a more specified LLM in the chemistry field, collects structured
chemical data from a vast selection of online databases and transforms this structured data into
a question-answering format for SFT. SciRIFF (Wadden et al., 2024) converts existing literature
understanding datasets into natural language input-output pairs suitable for instruction-tuning using
pre-defined templates. However, benchmark studies (Feng et al., 2024; Cai et al., 2024) indicate
that SFT alone may not provide adequate scientific knowledge to excel in relevant tasks. This
suggests the need for a more comprehensive approach that combines domain knowledge infusion
with instruction-following enhancements.

2.3 LLMs for Scientific Literature Understanding

In the scientific domain, existing strategies for developing specialized LLMs mostly fall into two
categories: (1) Supervised fine-tuning with scientific instructions. This approach requires a large,
high-quality, and diverse set of instructions to cultivate problem-solving abilities for scientific tasks.
Representative works (e.g., SciGLM (Zhang et al., 2024a), ChemLLM (Zhang et al., 2024b), and
SciRIFF (Wadden et al., 2024)) have been detailed in Section 2.2. (2) Pre-training with scientific
corpora. This approach involves pre-training on a large corpus of scientific texts to improve perfor-
mance on downstream scientific tasks. Early attempts, such as SciBert (Beltagy et al., 2019) and
KV-PLV (Zeng et al., 2022), are based on BERT (Devlin et al., 2019) and pre-trained on a large
corpus of scientific text for downstream scientific task enhancement. More recently, Galactica (Taylor
et al., 2022) is pre-trained on a vast corpus of scientific literature, including research papers, scientific
articles, and other relevant scientific texts. Despite these advances, two major limitations hinder
these models from excelling in scientific literature understanding: (1) lack of scientific knowledge,
and (2) inability to follow task instructions. To address these challenges, we propose a combined
pipeline of CPT and SFT to devise a specialized LLM for scientific literature understanding. It injects
domain-specific knowledge through CPT while enhancing task-specific instruction-following abilities
through SFT, leading to a more capable LLM for scientific literature understanding.

3 Method

In this section, we present the details of our proposed pipeline (cf. Figure 5): continual pre-training
for scientific knowledge injection and supervised fine-tuning for scientific tasks enhancement.
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Here is the corrected version of the text: ….

I have extracted the following raw 
text from a PDF, but the extraction 
process has introduced formatting 
issues. Please help me correct these 
formatting issues and provide a clean, 
readable version of the text.
Raw Text: {Raw Text}

Question: <paragraph w/ keywords>, 
Please extract all relevant entities and 
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Answer: (patterns, chemical reaction)

Generate an Entity Extraction question 
using following key words: chemical, 

acid, …
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• Molecule Generation
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Figure 5: The pipeline of SciLitLLM consists of two key stages: continual pre-training (CPT) for
scientific knowledge injection and supervised fine-tuning (SFT) for scientific instruction following.
Specifically, the CPT stage involves several modules: PDF parsing, format & grammar correction (cf.
Section 3.1.1), and quality filtering (cf. Section 3.1.2) modules. These modules ensure the model
is equipped with high-quality scientific domain knowledge. The SFT stage includes LLM-based
instruction generation (cf. Section 3.2.1) and instruction quality control (cf. Section 3.2.2) measures.
These steps are designed to fine-tune the model’s ability to follow scientific instructions accurately
and effectively.

3.1 CPT for Scientific Knowledge Injection

What are high-quality pre-training corpora? Researchers (Gunasekar et al., 2023; Li et al., 2023;
Abdin et al., 2024) suggest that language models benefit from corpora that possess the same qualities
as an exemplary textbook for human learners: clarity, self-containment, instructiveness, and balance.
Recognizing the wealth of high-quality scientific textbooks and research papers over the past decades,
we have curated a substantial collection of over 73,000 textbooks and 625,000 research papers within
the scientific domain, ensuring all documents are copyright-compliant.

However, we still face two practical obstacles when dealing with those textbooks and research papers:
(1) Formatting and syntax errors. Most textbooks and research paper documents are in PDF format,
which is not directly digestible by LLMs. Converting these documents using tools like PyPDF2 often
introduces formatting and syntax errors, which degrade the quality of the corpus. (2) Corpus quality
control. Despite their overall high quality, textbooks and research papers also contain segments
with little useful information, such as references and garbled text introduced during the PDF parsing
process. To tackle these obstacles, we devised the following modules: format & grammar correction
and CPT quality filter.

3.1.1 Format & Grammar Correction

A parsed text from a PDF document often contains many formatting and syntax errors. To address
this issue, we prompt Llama3-8B-Instruct, to correct these errors introduced during the PDF parsing
process. Utilizing the vLLM (Kwon et al., 2023) backend, Llama3-8B-Instruct can process approxi-
mately 2.52 million tokens per Nvidia A100 GPU hour. The process takes over 5,000 A100 GPU
hours to handle all the textbooks and research papers. Example texts – both before and after process-
ing – along with the prompt template are provided in Appendix A to demonstrate the improvements
through this correction process.

3.1.2 CPT Quality Filter

During CPT, maintaining the quality of the training corpus is crucial for effective knowledge injection.
Given the extremely large scale of pre-training corpora, assessing quality through human annotation
is not feasible (Erdmann et al., 2019; Qiu et al., 2023). Consequently, leading LLMs (e.g., Phi (Gu-
nasekar et al., 2023), Llama (Touvron et al., 2023), and Qwen2.5 (Team, 2024)) employ model-based
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quality filters. The typical process involves using larger LLMs to score the quality of a subset of
texts, which then serve as labels for training small classifiers (e.g., random forest (Gunasekar et al.,
2023) and Bert (AI@Meta, 2024)) to annotate the entire training corpus. Inspired by this approach,
we design a resource-efficient method based on a lightweight text quality classifier.

We first annotate a random subset of 50k CPT texts using Llama3-70B-Instruct. We adapt the quality
assessment prompt from fineweb-edu-classifier (Anton et al., 2024), a widely-used quality classifier
for web data, to evaluate the educational value (Gunasekar et al., 2023) of the scientific knowledge
in each sampled text, assigning scores ranging from 0 (lowest quality) to 5 (highest quality). After
annotation, we perform supervised transfer learning on the fineweb-edu-classifier checkpoint.

This process results in a scientific text quality classifier tailored for scientific corpus assessment. We
then utilize this classifier to assess the quality of the entire CPT dataset and exclude the lowest-scoring
25% (See Figure 4 for concrete samples). See Appendix B for more details about classifier training
and hyperparameters.

3.1.3 CPT Training Settings
Stage Data source Domain #Doc/#Ins # Tokens

CPT
In-house Textbooks Science 73k 10B
In-house Journals Science 625k 2.7B
Redpajama (Computer, 2023) General - 11B

SFT
SciLitIns Science 93k 86M
SciRIFF (Wadden et al., 2024) Science 70k 40M
Infinity-Instruct General 3M 1.7B

Table 1: Data statistics of CPT and SFT stages. Under-
lined datasets are curated by us.

After preparing all the corpus, we perform
CPT on Qwen2.5-Base (Team, 2024) for
one epoch, encompassing 23.7 billion to-
kens (cf. Table 1), with a sequence length
of 2,048 tokens. To maintain the model’s
general knowledge, we also include a sim-
ilar scale of general corpus tokens from
Redpajama (Computer, 2023). To stabilize
the learning procedure, we gradually de-
crease the learning rate from 1× 10−5 to 0 with a cosine scheduler. To address overfitting, we apply
a weight decay of 0.1 and gradients were clipped at a maximum value of 1.0. The CPT training took
approximately 3 days on 32 Nvidia A100 GPUs for SciLitLLM-7B-Base and about 7 days for the
14B model.

3.2 SFT for Scientific Instruction Following

After performing CPT on an extensive scientific corpus to incorporate domain knowledge, we subse-
quently conduct SFT on domain-specific instructions to enhance the model’s ability to understand
scientific literature. We identify two major challenges in SFT for scientific instruction following:

• Existing instruction-tuning datasets in the scientific domain (Feng et al., 2024; Fang et al., 2023; Li
et al., 2024) primarily focus on fields such as physics, chemistry, and biology. Manually collecting
instruction-tuning data for other less-represented vertical domains (e.g., biomedicine, and material)
is both time-consuming and costly (Erdmann et al., 2019; Qiu et al., 2023).

• Few instruction-tuning datasets adequately reflect the scenario of scientific literature understanding,
which typically involves a segment of scientific literature accompanied by a question that requires
deriving an answer from the text.

To address these challenges, we draw inspiration from leading models (e.g., Nemotron-4 (Adler et al.,
2024), Phi (Gunasekar et al., 2023), and Qwen (Yang et al., 2024)), which leverage existing LLMs
to construct synthetic instruction sets. We propose a novel instruction synthesis method to curate
instructions specifically for scientific literature understanding.

3.2.1 Instruction Synthesis of Less-represented Domains

Unlike typical question-answer pairs, an instruction for a scientific literature understanding task
comprises three components (Wadden et al., 2024): (1) a segment of scientific literature, (2) a
question pertaining to the context, and (3) the corresponding answer. Simply prompting an LLM to
generate a scientific context along with an associated question-answer pair – without variations in the
instructions or parameters – often yields similar or repeated contents. Thus, we design a simple yet
effective three-step pipeline to generate diverse and high-quality scientific contexts and corresponding
question-answer pairs, consisting of the following:
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1. Probability table of domain keywords. For a target scientific domain (e.g., biomedicine, and
material), we collect dozens of high-impact research papers via Google Scholar4 and count
the word frequency appearing in these papers. Then, we obtain a probability table of domain
keywords.

2. Scientific task list. Since LLMs are expected to handle various types of scientific tasks, an
instruction set with task diversity is essential. Therefore, we compile a list of task descriptions
by including representative tasks from existing scientific NLP datasets (Wadden et al., 2024; Cai
et al., 2024; Feng et al., 2024), covering as many scenarios as possible that an LLM may encounter
in real applications.

3. Instruction Generation. Given a word probability table and the task list for a specific scientific
domain, we sample 20 keywords and a task description each time. Subsequently, GPT-4o (OpenAI,
2023) is prompted to generate a scientific context containing the sampled keywords and a question-
answer pair according to the provided task description.

Utilizing this pipeline, we obtain over 100k synthetic instructions covering less-represented scientific
domains and various types of specialized tasks (details are presented in Appendix C.1).

3.2.2 Instruction Quality Control

To ensure the diversity and quality of generated instructions, effective measures for quality control
are essential. Specifically, we incorporate heuristic deduplication and LLM-based filtering.

1. Heuristic deduplication. Despite the measures taken during the generation process to prevent
high homogeneity in the instructions, the generated data points may still contain similar questions
or identical answers. To eliminate such redundancy, we implement a deduplication process to
remove similar data points. See Appendix C.2 for details.

2. LLM-based filtering. Inspired by recent efforts (Eldan and Li, 2023; Chiang and Lee, 2023; Zhang
et al., 2024c) to measure the quality of generated content using LLMs, we leverage Llama-3-
70B-Instruct to assess the quality of generated instructions for five aspects: clarity, complexity,
correctness, usefulness, and adaptability. We show the quality statistics of synthetic instructions in
Figure 7. The detailed recipe for instruction quality evaluation with concrete examples is included
in Appendix C.3.

Through instruction synthesis and quality control pipeline, we obtain SciLitIns, consisting of 93,894
high-quality and diverse instructions for scientific literature understanding.

3.2.3 SFT Training Settings

Our SFT training dataset consists of three parts: SciLitIns, SciRIFF (Wadden et al., 2024) and
Infinity-Instruct5, as shown in Table 1. Infinity-Instruct is a collection of more than twenty open-
source instructions datasets, covering various general domains. SciRIFF and SciLitIns contain
specialized instructions for scientific literature understanding. For both scales, we train for one epoch
on Infinity-Instruct to cultivate their general instruction-following abilities, then for five epochs on
SciLitIns and SciRIFF for scientific literature understanding enhancement. The training is conducted
with a sequence length of 4,096, a maximum learning rate of 1× 10−5, and a cosine scheduler. The
SFT training takes approximately 32 hours for the 7B and 70 hours for the 14B model on 32 A100
GPUs, resulting in SciLitLLM-7B-Instruct and SciLitLLM-14B-Instruct.

4 Experiments

In this section, we perform experiments to answer the following research questions: (Q1) How does
SciLitLLM perform on scientific literature understanding tasks? (Q2) Can CPT with domain-specific
corpora aid in scientific knowledge injection? (Q3) Can SFT with SciLitIns improve performance on
scientific literature understanding tasks?

4https://scholar.google.com/
5https://huggingface.co/datasets/BAAI/Infinity-Instruct
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Models MMLU-Pro-Bio MMLU-Pro-Chem MMLU-Pro-Heal MaScQA Avg.

# Parameters < 10B
Llama3.1-8B 56.35 25.88 44.50 53.28 45.00
Qwen2.5-7B 68.36 48.37 51.64 56.23 56.15
SciLitLLM-7B 70.45 51.21 54.06 59.27 58.75

# Parameters > 10B
Qwen2.5-14B 79.78 62.73 62.22 66.92 67.91
SciLitLLM-14B 80.62 64.44 64.24 68.06 69.34

Table 2: Performance comparison of base models. SciLitLLM outperforms Llama3.1 and Qwen2.5
with similar scales, demonstrating improved domain-specific understanding through continual pre-
training on scientific corpora.

Dataset
Domain/

Task
# Parameter < 10B # Parameter > 10B API

SciTulu-7B Mistral-7B Llama3.1-8B Qwen2.5-7B SciLitLLM-7B Qwen2.5-14B Llama3.1-70B Qwen2.5-72B SciLitLLM-14B GPT3.5 GPT4o

SciAssess

Biology 45.3 52.0 63.4 60.9 65.3 65.9 69.4 67.2 67.0 55.4 68.9
Chemistry 19.0 34.0 46.1 47.9 55.4 60.0 62.5 63.7 63.4 37.3 68.0
Material 31.3 36.5 50.9 48.9 53.7 57.9 59.2 59.4 62.6 37.0 62.0
Medicine 19.9 25.1 30.2 28.3 32.4 31.5 37.4 37.8 39.9 31.8 45.8

Mean 28.9 36.9 47.7 46.5 51.7 53.8 57.1 57.0 58.2 40.4 61.2

SciRIFF

BioASQ 37.5 43.2 45.0 45.3 51.2 48.0 43.5 46.7 53.9 47.3 46.7
BioR 55.7 48.9 48.1 43.9 76.6 56.8 61.5 57.8 83.3 53.9 61.0

DiscMT 61.5 44.5 68.8 73.7 71.1 70.5 77.3 54.7 77.7 67.9 78.3
EI 11.6 17.2 17.2 23.3 23.5 27.2 26.0 26.3 30.8 19.2 24.7

MC 34.6 47.5 49.7 50.8 70.7 54.2 60.9 58.0 72.1 47.8 58.7
MuP 72.1 87.5 87.0 84.9 67.5 91.5 90.9 94.0 67.7 76.8 86.9

Qasper 54.2/38.6 48.8/43.2 46.5/42.7 38.1/25.7 50.7/54.1 48.4/46.8 49.1/40.2 61.9/50.5 54.0/55.1 54.7/39.8 67.8/50.5
SciERC 35.6 31.1 32.9 30.1 49.9 33.7 36.2 34.1 54.7 28.6 42.2
SciFact 66.0/49.2 68.8/53.8 63.8/53.7 77.8/60.3 83.5/67.3 83.1/65.6 87.3/70.3 86.5/69.6 91.0/68.6 69.7/53.3 84.3/68.7
Mean 47.0 48.6 50.5 50.3 60.6 56.9 58.5 58.2 64.4 50.8 60.9

Table 3: Model performances on scientific literature understanding benchmarks: SciAssess and
SciRIFF. SciLitLLM-7B and SciLitLLM-14B achieve leading performance compared with open-
source models of similar scales. The best-performing models smaller than 10B and larger than 10B
are highlighted in bold. Results for SciTulu-7B, GPT-3.5, and GPT-4o on SciRIFF are taken from its
original papers, while all other results are produced by us.

4.1 Experimental Setup

4.1.1 Benchmarks

To evaluate the performance of LLMs regarding scientific knowledge base and specialized task-
solving abilities, our benchmarks include:

• Base model benchmarks. To assess their scientific knowledge, which serves as the foundation for
scientific literature understanding, we evaluate the base models on scientific subjects – biology,
chemistry, and health in MMLU-Pro (Wang et al., 2024) and MaScQA (Zaki et al., 2023) – a
question answering dataset of materials science.

• Instruction model benchmarks. We evaluate the instruct models on scientific literature understand-
ing benchmarks: SciRIFF (Wadden et al., 2024) and SciAssess (Cai et al., 2024). Brief descriptions
of them are provided in Appendix D.

4.1.2 Baselines

• Base model baselines. We compare SciLitLLM-base against leading open-source base models:
Llama-3.1 (AI@Meta, 2024), Qwen-2.5 (Team, 2024).

• Instruction model baselines. We benchmark leading instruction LLMs including GPT-[3.5,
4o] (Brown et al., 2020; OpenAI, 2023), Llama3.1-[8B, 70B] (AI@Meta, 2024) and Qwen2.5-[7B,
14B, 72B] (Yang et al., 2024; Team, 2024) and Mistral-7B (Jiang et al., 2023). We also report the
performance of SciTulu-7B (Wadden et al., 2024), which is a fine-tuned Llama2-7B (Touvron et al.,
2023) model on SciRIFF.
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Model SciAssess SciRIFF

Qwen2.5-Instruct 46.5 50.3
Qwen2.5-Base+SFT 49.8 57.0
Qwen2.5-Base+CPT+SFT 51.7 60.6

Table 4: Ablation study of the
CPT stage. The results shows
that the CPT stage is essential
to improve scientific literature
understanding ability.

SFT Dataset SciAssess SciRIFF

Infinity-Instruct only 47.1 51.2
+ SciRIFF 46.8 56.7
+ SciRIFF + SciLitIns 51.7 60.6

Table 5: Ablation study of
SFT data recipes. Our syn-
thetic dataset SciLitIns effec-
tively improves performance
on both benchmarks.

Dataset SciAssess SciRIFF

SciLitIns
w/o filtering 50.9 60.1
w/ filtering 51.7 60.6

Table 6: Ablation study of
SFT instruction quality fil-
tering. This shows that our
proposed filter refines the
quality of SciLitIns .

4.2 Performance Overview (Q1)

4.2.1 Base model performance

The performance comparison of base models is shown in Table 2. SciLitLLM-base consistently
outperforms other general base models across four scientific benchmarks. Specifically, compared
with LLMs of less than 10 billion parameters, SciLitLLM-7B-Base shows an average accuracy
improvement of 2.60% over Qwen2.5-7B. The results demonstrate that CPT on high-quality scientific
corpora can significantly improve the LLMs’ ability to understand scientific contexts.

4.2.2 Instruct model performance

As shown in Table 3, SciLitLLM-7B-Instruct achieves the highest performance in all 4 domains on
SciAssess, outperforming the second-best model (i.e., Llama3.1-8B) by 4.0%. Notably, on SciRIFF,
it surpasses baseline models by a substantial margin of 10.1%. Additionally, SciLitLLM-14B-Instruct
shows a 4.6% and 7.5% performance improvement over Qwen2-14B-Instruct on SciAssess and
SciRIFF, respectively. It even outperforms other open-source models with five times more parameters
(i.e., Llama3.1-70B and Qwen2.5-72B) on both benchmarks. This demonstrates the effectiveness
of our proposed pipeline in adapting a general-purpose LLM to a specialized model for scientific
literature understanding.

Detailed model performance on SciAssess is presented in Table 7, where SciLitLLM-7B lead in 15
out of 27 sub-tasks. Specifically, SciLitLLM excels in tasks such as table extraction and molecule
generation, likely benefiting from the comprehensive task coverage in our synthetic instruction
dataset – SciLitIns. On SciRIFF, SciLitLLM-7B and SciLitLLM-14B both rank first in 8 out of 11
evaluations6.

4.3 Ablation Study (Q2 & Q3)

We conducted ablation experiments on three key components in our pipeline: the CPT stage, the SFT
data recipe, and the instruction quality filter, to investigate their effectiveness. Note that all ablation
experiments were performed on SciLitLLM-7B due to budget constraints.

4.3.1 Scientific knowledge injection via CPT (Q2)

We investigate the contribution of the CPT stage for SciLitLLM. We compare the three variants: (1)
Qwen2.5-7B-Instruct: official instruct-model checkpoint; (2) Qwen2.5-7B-base + SFT: applying
our SFT stage directly to Qwen2.5-7B-base without CPT; (2) Qwen2.5-7B-base + CPT + SFT:
SciLitLLM-7B-Instruct.

As shown in Table 4, applying SFT alone to the Qwen2.5-7B-Base model yields improvements
on SciAssess (+3.3%) and SciRIFF (+6.7%). Further, incorporating CPT results in an extra 1.9%
improvement on SciAssess and a 3.6% gain on SciRIFF. This shows the effectiveness of our CPT
pipeline in curating high-quality CPT corpora and injecting scientific knowledge to LLMs.

6In SciRIFF, the Qasper and SciFact tasks have two different evaluation methods and thus two results. For
LLM-based evaluations in MuP and Qasper, we use GPT-4o instead of GPT-3.5, as was done in the original
paper.
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4.3.2 SFT with SciLitIns (Q3)

We explore how fine-tuning with our synthetic instruction set, SciLitIns, impacts performance in
scientific literature understanding. We incrementally add three datasets to the SFT training set:
Infinity-Instruct, SciRIFF, and SciLitIns. As shown in Table 5, using only the general purpose
instruction set (i.e., Infinity-Instruct) results in the lowest performance on both SciAssess (47.1%) and
SciRIFF (51.2%). This indicates that fine-tuning LLMs on general instructions alone is insufficient
for scientific literature understanding.

Adding the training set of SciRIFF to Infinity-Instruct improves performance on SciRIFF significantly
(+5.5%) but decreases performance on SciAssess (-0.3%). This drop may be due to SciRIFF’s
relatively narrower focus, primarily covering biomedicine and clinical medicine, while SciAssess
spans broader fields such as biology, chemistry, and material science. This highlights the need for
a diverse instruction set that covers diverse scientific domains. Finally, including SciLitIns boosts
performance on both benchmarks, with SciAssess at 51.7% and SciRIFF at 60.6%. This demonstrates
that SciLitIns, which is designed to contain instructions from less-represented scientific domains, is
useful for improving model performance in scientific literature understanding.

4.3.3 Impact of Instruction filter

We conduct an ablation study to assess the impact of quality filter for synthetic instructions by varying
whether the dataset SciLitIns was filtered. As discussed in Section 3.2.2, this filter removes low-
quality instructions evaluated from five key aspects. Table 6 shows that applying the filter improves
the performance of SciLitLLM-7B on SciAssess (+0.8%) and SciRIFF (+0.5%). This demonstrates
that SFT quality filtering process effectively excludes low-quality instructions, thereby boosting the
performance of SciLitLLMon scientific literature understanding.

5 Limitations

Despite the promising results achieved by SciLitLLM, there are several limitations that should be
acknowledged as follows:

• Insufficient data volume. Compared with existing pre-training datasets (AI@Meta, 2024; Yang
et al., 2024; Taylor et al., 2022), the amount of data used for CPT is comparatively small. Future
work should consider incorporating a larger scientific corpus, potentially including scientific blogs
or purely synthetic data.

• Lack of reasoning enhancement. The current pipeline does not explore advanced reasoning
techniques such as Chain-of-Thought (Wei et al., 2022) or Tree-of-Thought (Yao et al., 2023) in
the data construction or model inference stages.

• Lack of preference alignment. Due to a limited financial budget, the model lacks Reinforcement
Learning from Human Feedback (RLHF) (Ouyang et al., 2022). RLHF has shown significant
improvements in aligning models with human preferences and ensuring more reliable outputs.
Implementing RLHF in future iterations could further enhance the model’s reliability.

Addressing these limitations in future research will be crucial developing a more robust and capable
LLM specialized in scientific literature understanding.

6 Conclusion and Future Works

In this paper, we introduce SciLitLLM, a specialized model for scientific literature understanding. It
is initialized with a general base model – Qwen2.5 (Yang et al., 2024), and trained through continual
pre-training (CPT) and supervised fine-tuning (SFT). Our experiments on widely-used benchmarks
demonstrate the effectiveness of this pipeline in adapting a general model to the field of scientific
literature understanding. We note that this pipeline could be easily adapted to other specialized
domains, particularly those lacking adequate high-quality corpora and instruction sets. Our future
work will focus on expanding the diversity and quality of the training data, as well as exploring more
efficient methods for domain-specific knowledge injection and high-quality instruction generation.

10



References
Marah I Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany

Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat S. Behl, Alon Benhaim, Misha
Bilenko, Johan Bjorck, Sébastien Bubeck, Martin Cai, Caio César Teodoro Mendes, Weizhu
Chen, Vishrav Chaudhary, Parul Chopra, Allie Del Giorno, Gustavo de Rosa, Matthew Dixon,
Ronen Eldan, Dan Iter, Amit Garg, Abhishek Goswami, Suriya Gunasekar, Emman Haider,
Junheng Hao, Russell J. Hewett, Jamie Huynh, Mojan Javaheripi, Xin Jin, Piero Kauffmann, Nikos
Karampatziakis, Dongwoo Kim, Mahoud Khademi, Lev Kurilenko, James R. Lee, Yin Tat Lee,
Yuanzhi Li, Chen Liang, Weishung Liu, Eric Lin, Zeqi Lin, Piyush Madan, Arindam Mitra, Hardik
Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel Perez-Becker, Thomas Portet, Reid
Pryzant, Heyang Qin, Marko Radmilac, Corby Rosset, Sambudha Roy, Olatunji Ruwase, Olli
Saarikivi, Amin Saied, Adil Salim, Michael Santacroce, Shital Shah, Ning Shang, Hiteshi Sharma,
Xia Song, Masahiro Tanaka, Xin Wang, Rachel Ward, Guanhua Wang, Philipp Witte, Michael
Wyatt, Can Xu, Jiahang Xu, Sonali Yadav, Fan Yang, Ziyi Yang, Donghan Yu, Chengruidong
Zhang, Cyril Zhang, Jianwen Zhang, Li Lyna Zhang, Yi Zhang, Yue Zhang, Yunan Zhang, and
Xiren Zhou. 2024. Phi-3 Technical Report: A Highly Capable Language Model Locally on Your
Phone. CoRR abs/2404.14219 (2024).

Bo Adler, Niket Agarwal, Ashwath Aithal, Dong H. Anh, Pallab Bhattacharya, Annika Brundyn,
Jared Casper, Bryan Catanzaro, Sharon Clay, Jonathan M. Cohen, Sirshak Das, Ayush Dattagupta,
Olivier Delalleau, Leon Derczynski, Yi Dong, Daniel Egert, Ellie Evans, Aleksander Ficek,
Denys Fridman, Shaona Ghosh, Boris Ginsburg, Igor Gitman, Tomasz Grzegorzek, Robert Hero,
Jining Huang, Vibhu Jawa, Joseph Jennings, Aastha Jhunjhunwala, John Kamalu, Sadaf Khan,
Oleksii Kuchaiev, Patrick LeGresley, Hui Li, Jiwei Liu, Zihan Liu, Eileen Long, Ameya Sunil
Mahabaleshwarkar, Somshubra Majumdar, James Maki, Miguel Martinez, Maer Rodrigues de
Melo, Ivan Moshkov, Deepak Narayanan, Sean Narenthiran, Jesus Navarro, Phong Nguyen, Osvald
Nitski, Vahid Noroozi, Guruprasad Nutheti, Christopher Parisien, Jupinder Parmar, Mostofa
Patwary, Krzysztof Pawelec, Wei Ping, Shrimai Prabhumoye, Rajarshi Roy, Trisha Saar, Vasanth
Rao Naik Sabavat, Sanjeev Satheesh, Jane Polak Scowcroft, Jason Sewall, Pavel Shamis, Gerald
Shen, Mohammad Shoeybi, Dave Sizer, Misha Smelyanskiy, Felipe Soares, Makesh Narsimhan
Sreedhar, Dan Su, Sandeep Subramanian, Shengyang Sun, Shubham Toshniwal, Hao Wang, Zhilin
Wang, Jiaxuan You, Jiaqi Zeng, Jimmy Zhang, Jing Zhang, Vivienne Zhang, Yian Zhang, and
Chen Zhu. 2024. Nemotron-4 340B Technical Report. CoRR abs/2406.11704 (2024). https:
//doi.org/10.48550/arXiv.2406.11704

Microsoft Research AI4Science and Microsoft Azure Quantum. 2023. The Impact of Large Language
Models on Scientific Discovery: a Preliminary Study using GPT-4. CoRR abs/2311.07361 (2023).

AI@Meta. 2024. Llama 3 Model Card. (2024). https://github.com/meta-llama/llama3/
blob/main/MODEL_CARD.md

Lozhkov Anton, Ben Allal Loubna, von Werra Leandro, and Wolf Thomas. 2024. FineWeb-Edu.
https://doi.org/10.57967/hf/2497

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciBERT: A Pretrained Language Model for Scientific
Text. In EMNLP/IJCNLP (1). Association for Computational Linguistics, 3613–3618.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners. In NeurIPS.

Hengxing Cai, Xiaochen Cai, Junhan Chang, Sihang Li, Lin Yao, Changxin Wang, Zhifeng Gao,
Hongshuai Wang, Yongge Li, Mujie Lin, Shuwen Yang, Jiankun Wang, Yuqi Yin, Yaqi Li, Linfeng
Zhang, and Guolin Ke. 2024. SciAssess: Benchmarking LLM Proficiency in Scientific Literature
Analysis. CoRR (2024). https://doi.org/10.48550/arXiv.2403.01976

Daixuan Cheng, Yuxian Gu, Shaohan Huang, Junyu Bi, Minlie Huang, and Furu Wei. 2024. In-
struction Pre-Training: Language Models are Supervised Multitask Learners. arXiv preprint
arXiv:2406.14491 (2024).

11

https://doi.org/10.48550/arXiv.2406.11704
https://doi.org/10.48550/arXiv.2406.11704
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://doi.org/10.57967/hf/2497
https://doi.org/10.48550/arXiv.2403.01976


Daixuan Cheng, Shaohan Huang, and Furu Wei. 2023. Adapting Large Language Models via Reading
Comprehension. CoRR abs/2309.09530 (2023).

David Cheng-Han Chiang and Hung-yi Lee. 2023. Can Large Language Models Be an Alternative
to Human Evaluations?. In Proceedings of the 61st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), ACL 2023, Toronto, Canada, July 9-14, 2023,
Anna Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki (Eds.). Association for Computational
Linguistics, 15607–15631. https://doi.org/10.18653/v1/2023.acl-long.870

Jan Clusmann, Fiona R Kolbinger, Hannah Sophie Muti, Zunamys I Carrero, Jan-Niklas Eckardt,
Narmin Ghaffari Laleh, Chiara Maria Lavinia Löffler, Sophie-Caroline Schwarzkopf, Michaela
Unger, Gregory P Veldhuizen, et al. 2023. The future landscape of large language models in
medicine. Communications medicine 3, 1 (2023), 141.

Together Computer. 2023. RedPajama: an Open Dataset for Training Large Language Models.
https://github.com/togethercomputer/RedPajama-Data

Jiaxi Cui, Munan Ning, Zongjian Li, Bohua Chen, Yang Yan, Hao Li, Bin Ling, Yonghong Tian,
and Li Yuan. 2024. Chatlaw: A Multi-Agent Collaborative Legal Assistant with Knowledge
Graph Enhanced Mixture-of-Experts Large Language Model. arXiv:2306.16092 [cs.CL] https:
//arxiv.org/abs/2306.16092

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding. In NAACL-HLT (1). Association
for Computational Linguistics, 4171–4186.

Ronen Eldan and Yuanzhi Li. 2023. TinyStories: How Small Can Language Models Be and Still
Speak Coherent English? CoRR abs/2305.07759 (2023). https://doi.org/10.48550/arXiv.
2305.07759

Alexander Erdmann, David Joseph Wrisley, Benjamin Allen, Christopher Brown, Sophie Cohen-
Bodénès, Micha Elsner, Yukun Feng, Brian Joseph, Béatrice Joyeux-Prunel, and Marie-Catherine
de Marneffe. 2019. Practical, Efficient, and Customizable Active Learning for Named Entity Recog-
nition in the Digital Humanities. In NAACL-HLT (1). Association for Computational Linguistics,
2223–2234.

Yin Fang, Xiaozhuan Liang, Ningyu Zhang, Kangwei Liu, Rui Huang, Zhuo Chen, Xiaohui Fan, and
Huajun Chen. 2023. Mol-Instructions: A Large-Scale Biomolecular Instruction Dataset for Large
Language Models. CoRR abs/2306.08018 (2023). https://doi.org/10.48550/arXiv.2306.
08018

Kehua Feng, Keyan Ding, Weijie Wang, Xiang Zhuang, Zeyuan Wang, Ming Qin, Yu Zhao, Jianhua
Yao, Qiang Zhang, and Huajun Chen. 2024. SciKnowEval: Evaluating Multi-level Scientific
Knowledge of Large Language Models. CoRR (2024). https://doi.org/10.48550/arXiv.
2406.09098

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital
Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai,
Yin Tat Lee, and Yuanzhi Li. 2023. Textbooks Are All You Need. CoRR abs/2306.11644 (2023).

Kshitij Gupta, Benjamin Thérien, Adam Ibrahim, Mats L. Richter, Quentin Anthony, Eugene
Belilovsky, Irina Rish, and Timothée Lesort. 2023. Continual Pre-Training of Large Language
Models: How to (re)warm your model? CoRR abs/2308.04014 (2023).

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
2022. Training Compute-Optimal Large Language Models. CoRR abs/2203.15556 (2022).

12

https://doi.org/10.18653/v1/2023.acl-long.870
https://github.com/togethercomputer/RedPajama-Data
https://arxiv.org/abs/2306.16092
https://arxiv.org/abs/2306.16092
https://doi.org/10.48550/arXiv.2305.07759
https://doi.org/10.48550/arXiv.2305.07759
https://doi.org/10.48550/arXiv.2306.08018
https://doi.org/10.48550/arXiv.2306.08018
https://doi.org/10.48550/arXiv.2406.09098
https://doi.org/10.48550/arXiv.2406.09098


Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. 2023. Mistral 7B. CoRR abs/2310.06825 (2023).
https://doi.org/10.48550/arXiv.2310.06825

Xisen Jin, Dejiao Zhang, Henghui Zhu, Wei Xiao, Shang-Wen Li, Xiaokai Wei, Andrew O. Arnold,
and Xiang Ren. 2022. Lifelong Pretraining: Continually Adapting Language Models to Emerging
Corpora. In NAACL-HLT. Association for Computational Linguistics, 4764–4780.

Zixuan Ke, Yijia Shao, Haowei Lin, Tatsuya Konishi, Gyuhak Kim, and Bing Liu. 2023. Continual
Pre-training of Language Models. In ICLR. OpenReview.net.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Efficient Memory Management for Large Language
Model Serving with PagedAttention. In SOSP. ACM, 611–626.

Sihang Li, Zhiyuan Liu, Yanchen Luo, Xiang Wang, Xiangnan He, Kenji Kawaguchi, Tat-Seng
Chua, and Qi Tian. 2024. Towards 3D Molecule-Text Interpretation in Language Models. CoRR
abs/2401.13923 (2024).

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat Lee.
2023. Textbooks Are All You Need II: phi-1.5 technical report. CoRR abs/2309.05463 (2023).

Chen Ling, Xujiang Zhao, Jiaying Lu, Chengyuan Deng, Can Zheng, Junxiang Wang, Tanmoy
Chowdhury, Yun Li, Hejie Cui, Xuchao Zhang, Tianjiao Zhao, Amit Panalkar, Wei Cheng, Haoyu
Wang, Yanchi Liu, Zhengzhang Chen, Haifeng Chen, Chris White, Quanquan Gu, Carl Yang, and
Liang Zhao. 2023. Beyond One-Model-Fits-All: A Survey of Domain Specialization for Large
Language Models. CoRR abs/2305.18703 (2023). https://doi.org/10.48550/ARXIV.2305.
18703 arXiv:2305.18703

Sanket Vaibhav Mehta, Darshan Patil, Sarath Chandar, and Emma Strubell. 2023. An Empirical
Investigation of the Role of Pre-training in Lifelong Learning. J. Mach. Learn. Res. 24 (2023),
214:1–214:50.

OpenAI. 2023. GPT-4 Technical Report. CoRR abs/2303.08774 (2023). https://doi.org/10.
48550/arXiv.2303.08774

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton,
Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Chris-
tiano, Jan Leike, and Ryan Lowe. 2022. Training language models to follow instructions with
human feedback. In NeurIPS. http://papers.nips.cc/paper_files/paper/2022/hash/
b1efde53be364a73914f58805a001731-Abstract-Conference.html

Hang Qiu, Krishna Chintalapudi, and Ramesh Govindan. 2023. MCAL: Minimum Cost Human-
Machine Active Labeling. In ICLR. OpenReview.net.

Haoran Que, Jiaheng Liu, Ge Zhang, Chenchen Zhang, Xingwei Qu, Yinghao Ma, Feiyu Duan,
Zhiqi Bai, Jiakai Wang, Yuanxing Zhang, et al. 2024. D-CPT Law: Domain-specific Continual
Pre-Training Scaling Law for Large Language Models. arXiv preprint arXiv:2406.01375 (2024).

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. 2019.
Language models are unsupervised multitask learners. OpenAI blog 1, 8 (2019), 9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the Limits of Transfer Learning with a Unified
Text-to-Text Transformer. J. Mach. Learn. Res. 21 (2020), 140:1–140:67.

Amanpreet Singh, Mike D’Arcy, Arman Cohan, Doug Downey, and Sergey Feldman. 2023. SciRepE-
val: A Multi-Format Benchmark for Scientific Document Representations. In EMNLP. 5548–5566.
https://doi.org/10.18653/v1/2023.emnlp-main.338

13

https://doi.org/10.48550/arXiv.2310.06825
https://doi.org/10.48550/ARXIV.2305.18703
https://doi.org/10.48550/ARXIV.2305.18703
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://doi.org/10.18653/v1/2023.emnlp-main.338


Karan Singhal, Shekoofeh Azizi, Tao Tu, S. Sara Mahdavi, Jason Wei, Hyung Won Chung, Nathan
Scales, Ajay Kumar Tanwani, Heather Cole-Lewis, Stephen Pfohl, Perry Payne, Martin Seneviratne,
Paul Gamble, Chris Kelly, Nathaneal Schärli, Aakanksha Chowdhery, Philip Andrew Mansfield,
Blaise Agüera y Arcas, Dale R. Webster, Gregory S. Corrado, Yossi Matias, Katherine Chou,
Juraj Gottweis, Nenad Tomasev, Yun Liu, Alvin Rajkomar, Joelle K. Barral, Christopher Semturs,
Alan Karthikesalingam, and Vivek Natarajan. 2022. Large Language Models Encode Clinical
Knowledge. CoRR abs/2212.13138 (2022). https://doi.org/10.48550/arXiv.2212.13138

Yu Sun, Shuohuan Wang, Yu-Kun Li, Shikun Feng, Hao Tian, Hua Wu, and Haifeng Wang. 2020.
ERNIE 2.0: A Continual Pre-Training Framework for Language Understanding. In AAAI. AAAI
Press, 8968–8975.

Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas Scialom, Anthony Hartshorn, Elvis Saravia,
Andrew Poulton, Viktor Kerkez, and Robert Stojnic. 2022. Galactica: A Large Language Model for
Science. CoRR abs/2211.09085 (2022). https://doi.org/10.48550/arXiv.2211.09085

Qwen Team. 2024. Qwen2.5: A Party of Foundation Models. https://qwenlm.github.io/
blog/qwen2.5/

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. 2023. LLaMA: Open and Efficient Foundation
Language Models. CoRR abs/2302.13971 (2023).

David Wadden, Kejian Shi, Jacob Morrison, Aakanksha Naik, Shruti Singh, Nitzan Barzilay, Kyle
Lo, Tom Hope, Luca Soldaini, Shannon Zejiang Shen, Doug Downey, Hannaneh Hajishirzi, and
Arman Cohan. 2024. SciRIFF: A Resource to Enhance Language Model Instruction-Following
over Scientific Literature. CoRR abs/2406.07835 (2024). https://doi.org/10.48550/arXiv.
2406.07835

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi
Fan, Xiang Yue, and Wenhu Chen. 2024. MMLU-Pro: A More Robust and Challenging Multi-Task
Language Understanding Benchmark. arXiv:2406.01574 [cs.CL]

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. 2021. Finetuned language models are zero-shot learners. arXiv
preprint arXiv:2109.01652 (2021).

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. 2022. Chain-of-Thought Prompting Elicits Reasoning in Large
Language Models. In NeurIPS.

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski, Mark Dredze, Sebastian Gehrmann, Prabhan-
jan Kambadur, David S. Rosenberg, and Gideon Mann. 2023. BloombergGPT: A Large Language
Model for Finance. CoRR abs/2303.17564 (2023). https://doi.org/10.48550/ARXIV.2303.
17564 arXiv:2303.17564

Tongtong Wu, Massimo Caccia, Zhuang Li, Yuan-Fang Li, Guilin Qi, and Gholamreza Haffari. 2022.
Pretrained Language Model in Continual Learning: A Comparative Study. In ICLR. OpenRe-
view.net.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu, Jingren
Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei
Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie
Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng,
Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing Liu, Yang Fan,
Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, Zhifang
Guo, and Zhihao Fan. 2024. Qwen2 Technical Report. https://arxiv.org/abs/2407.10671

14

https://doi.org/10.48550/arXiv.2212.13138
https://doi.org/10.48550/arXiv.2211.09085
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://doi.org/10.48550/arXiv.2406.07835
https://doi.org/10.48550/arXiv.2406.07835
https://doi.org/10.48550/ARXIV.2303.17564
https://doi.org/10.48550/ARXIV.2303.17564
https://arxiv.org/abs/2407.10671


Hongyang Yang, Xiao-Yang Liu, and Christina Dan Wang. 2023. FinGPT: Open-Source Financial
Large Language Models. CoRR abs/2306.06031 (2023). https://doi.org/10.48550/arXiv.
2306.06031

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2023. Tree of Thoughts: Deliberate Problem Solving with Large Language Models. In NeurIPS.

Mohd Zaki, NM Krishnan, et al. 2023. MaScQA: A Question Answering Dataset for Investigating
Materials Science Knowledge of Large Language Models. arXiv preprint arXiv:2308.09115
(2023).

Zheni Zeng, Yuan Yao, Zhiyuan Liu, and Maosong Sun. 2022. A Deep-learning System Bridging
Molecule Structure and Biomedical Text with Comprehension Comparable to Human Professionals.
Nature communications 13, 862 (2022).

Dan Zhang, Ziniu Hu, Sining Zhoubian, Zhengxiao Du, Kaiyu Yang, Zihan Wang, Yisong Yue,
Yuxiao Dong, and Jie Tang. 2024a. SciGLM: Training Scientific Language Models with Self-
Reflective Instruction Annotation and Tuning. CoRR abs/2401.07950 (2024). https://doi.
org/10.48550/arXiv.2401.07950

Di Zhang, Wei Liu, Qian Tan, Jingdan Chen, Hang Yan, Yuliang Yan, Jiatong Li, Weiran Huang,
Xiangyu Yue, Dongzhan Zhou, Shufei Zhang, Mao Su, Hansen Zhong, Yuqiang Li, and Wanli
Ouyang. 2024b. ChemLLM: A Chemical Large Language Model. CoRR abs/2402.06852 (2024).
https://doi.org/10.48550/arXiv.2402.06852

Xingjian Zhang, Yutong Xie, Jin Huang, Jinge Ma, Zhaoying Pan, Qijia Liu, Ziyang Xiong, Tolga
Ergen, Dongsub Shim, Honglak Lee, and Qiaozhu Mei. 2024c. MASSW: A New Dataset and
Benchmark Tasks for AI-Assisted Scientific Workflows. CoRR abs/2406.06357 (2024). https:
//doi.org/10.48550/arXiv.2406.06357

Yizhen Zheng, Huan Yee Koh, Jiaxin Ju, Anh T. N. Nguyen, Lauren T. May, Geoffrey I. Webb, and
Shirui Pan. 2023. Large Language Models for Scientific Synthesis, Inference and Explanation.
CoRR abs/2310.07984 (2023).

15

https://doi.org/10.48550/arXiv.2306.06031
https://doi.org/10.48550/arXiv.2306.06031
https://doi.org/10.48550/arXiv.2401.07950
https://doi.org/10.48550/arXiv.2401.07950
https://doi.org/10.48550/arXiv.2402.06852
https://doi.org/10.48550/arXiv.2406.06357
https://doi.org/10.48550/arXiv.2406.06357


A Format & Grammar Correction Examples

Raw text parsed by PyPDF2

Highly p e n e t r a t i n g radiation, such as γ-rays or fast electorns, deposits ener gy
throughout the solid t a r g e t material. Gas production occurs w i t h i n the solid phase and must d i f f u s e to the surface to be observed.
The a p p a r e n t yield of H
2 can depend on the radiolysis
pro c e d u r e or the particle size if some of the gas remains in the solid. Experiments have shown
that the apparent y i e l d of H 2 can vary by a f a c t o r of 3 in the r a d i o l y s i s of polyethylene spheres
of 7 to 2100 cm2/g (about 9 to 0.03 mm) [12]. The e f f e c t s of gas trapping and diffusion are
not understood in the c o n t e x t of waste storage. Extremely h i g h dose rates in the p r o c e s s i n g of certain materials may lead to
bubble formation, which could a l t e r product quality.
The y i e l d of H
2 in the r a d i o l y s i s of polymers w i t h γ-rays is well known for several
types of p o l y m e r s [2].

Format & Grammar Correction Prompt

I have extracted the following raw text from a PDF, but the extraction process has introduced many formatting issues such as unnecessary
line breaks, extra spaces, and other artifacts that disrupt the text flow. Could you please help me correct these formatting issues and provide a
clean, readable version of the text? Respond with the Corrected Version only.
Raw Text:
{RawText}
Start your response with "Here is the corrected version of the text:".

Text after Format & Grammar Correction

Highly penetrating radiation, such as γ-rays or fast electrons, deposits energy throughout the solid target material. Gas production occurs
within the solid phase and must diffuse to the surface to be observed. The apparent yield of H2 can depend on the radiolysis procedure or
the particle size if some of the gas remains in the solid. Experiments have shown that the apparent yield of H2 can vary by a factor of 3
in the radiolysis of polyethylene spheres of 7 to 2100 cm2/g (about 9 to 0.03 mm) [12]. The effects of gas trapping and diffusion are not
understood in the context of waste storage. Extremely high dose rates in the processing of certain materials may lead to bubble formation,
which could alter product quality.
The yield of H2 in the radiolysis of polymers with γ-rays is well known for several types of polymers [2].

B CPT Quality Filter

We randomly select 50k samples from our CPT data. These selected samples are then scored using
the Llama3-70B-Instruct model. The prompt utilized for this scoring process is as follows:

Prompt for CPT Data Quality Labelling

Below is an extract from a textbook. Evaluate whether the text has a high educational value and could be useful in an educational setting for
teaching from primary school to grade school levels using the additive 5-point scoring system described below. Points are accumulated based
on the satisfaction of each criterion:

- Add 1 point if the extract provides some basic information relevant to educational topics, even if it includes some irrelevant or non-academic
content like advertisements and promotional material.
- Add another point if the extract addresses certain elements pertinent to education but does not align closely with educational standards. It
might mix educational content with non-educational material, offering a superficial overview of potentially useful topics, or presenting
information in a disorganized manner and incoherent writing style.
- Award a third point if the extract is appropriate for educational use and introduces key concepts relevant to school curricula. It is coherent
though it may not be comprehensive or could include some extraneous information. It may resemble an introductory section of a textbook or
a basic tutorial that is suitable for learning but has notable limitations like treating concepts that are too complex for grade school students.
- Grant a fourth point if the extract is highly relevant and beneficial for educational purposes for a level not higher than grade school,
exhibiting a clear and consistent writing style. It could be similar to a chapter from a textbook or a tutorial, offering substantial educational
content, including exercises and solutions, with minimal irrelevant information, and the concepts aren’t too advanced for grade school
students. The content is coherent, focused, and valuable for structured learning.
- Bestow a fifth point if the extract is outstanding in its educational value, and perfectly suited for teaching either at primary school or grade
school. It follows detailed reasoning, the writing style is easy to follow, and offers profound and thorough insights into the subject matter,
devoid of any non-educational or complex content.

After examining the extract:
- Briefly justify your total score, up to 100 words.
- Conclude with the score using the format: "Educational score: <total points>"

We train a Scientific Texts Quality Classifier on these labeled data samples. The classifier is a 109M
BERT (Devlin et al., 2019) classifier, fine-tuned from the checkpoint of fineweb-edu-classifier (Anton
et al., 2024). The model is trained for 20 epochs with a learning rate of 0.001 and a batch size of
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Figure 6: Score distribution of the CPT Data

1024. Ninety percent of the 50K samples are used as the training set, and the rest 10% are used as the
validation set. The training process costs approximately 50 minutes on 4 A100 GPUs. We select the
checkpoint from the epoch that yields the highest validation micro F1 score as our final checkpoint.

During Inference, we set batch size to 2048, and beam number to 1. The inference process costs 90
minutes on 4 A100 GPUs. We utilize the generated to filter out 25% data with the lowest quality. The
distribution of the scores is demonstrated in Figure 6. The filtered-out 25% data are marked gray,
while the remaining 75% CPT data are marked orange.

C SFT Details

C.1 Instruction Generation Pipeline

In SciLitIns, we focus on generating instructions for three less-represented domains (materials science,
medicine, and drug discovery) and five question types:

• Table Extraction: Table Extraction tasks evaluate a model’s proficiency in extracting, summarizing,
and structuring data from an article into a table format.

• Entity Extraction: Entity Extraction tasks are designed to evaluate a model’s ability to extract
specific information, such as entities or relationships, from the text.

• Molecule Translation: Molecule Translation tasks evaluate a model’s ability to translate molecules
between different SMILES formats.

• Molecule Extraction: Molecule Extraction tasks ask a model to extract an appropriate molecule
from a scientific paragraph that contains multiple molecules.

• Multiple Choice and True-or-False: Multiple Choice and True-or-False questions assess a model’s
ability to select the correct answer from a set of options, testing its knowledge and reasoning on
both simple and complex scenarios.

For each of the three scientific domains, we collect a set of high-impact research papers and construct
a word frequency table. To generate a question in a given domain, we sample 20 keywords from
the corresponding word table and insert them into the prompt for that question. To ensure fair
representations of less frequent keywords, we use random sampling with a temperature setting of
3. We will release our code, prompt templates, and word frequency tables. Below is an example of
generating a table extraction question:
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Prompt for Generating a Table Extraction Question

I need synthetic training data for training a machine learning model that extracts tables from text correctly. The data should be formatted in
JSON, with each entry containing "text" and "answer" attributes. You should generate a paragraph that includes the keywords:
{{keywords}}.
The "text" part must contain enough information for the table to be extracted! In "text" part, You must you include a table description in latex
format.
Special notice for the table content:
You should generate a table that has complicated numbers and characters, include non-standard characters, and have a variety of values.
Make sure the value you generated do not follow simple patterns, for example, never include deplicate values or values with constant interval
in columns.
Your answer should contain as much details as possible. You should only generate one JSON. The value for the two attributes should be two
string. Use {{ and }} to warp your output. Pay attention to the escape characters in the latex format. Remember to put a comma at the end of
the first string. Never use a json block to wrap your output. Here is the format for your output:
{
"text": "Your paragraph here, remember to include a table in latex format",
"answer": "Your answer table here"
}
Now start your answer:

C.2 Instruction Deduplication

The generated synthetic data may contain similar questions or identical answers. To eliminate
redundancy, we implement a fuzzy deduplication process using the Levenshtein distance to calculate
the similarity score between question-answer pairs. Specifically, for two pairs (q1, a1) and (q2, a2),
their textual similarity is defined as (1 − lev(q1, q2))(1 − lev(a1, a2)), where lev(·, ·) denotes the
Levenshtein distance. Due to significant differences between texts from different question types,
we compute similarity matrices separately for each type. We then use a disjoint-set data structure
to merge highly similar data points. We use this process to remove approximately 5% to 10% of
duplicated data for each question type.

C.3 Quality Assessment of Generated SFT Instructions

In section 3.2.2, we sample 10k instruction pairs from SciLitIns and evaluate them by Llama-3-70B
using the below prompt. Specifically, the quality is evaluated from five aspects: clarity, complexity,
correctness, usefulness, and adaptability, assigning each instruction a score from 0 (lowest quality) to
5 (highest quality).

SFT Evaluation Prompt

You are a helpful and precise assistant for checking the quality of instruction-tuning data for large language models. Your task is to evaluate
the given instruction using the criterions described below.
- Clarity: The sample should be clear, specific, and unambiguous, providing a well-defined task for the model to perform.
- Complexity: The sample should be advanced complexity that necessitate a high level of comprehension and cognitive processing,
challenging the language model significantly.
- Correctness: The sample is impeccably written, with flawless grammar, syntax, and structure, demonstrating exceptional clarity and
professionalism.
- Usefulness: The sample should be highly useful, and contribute to expanding the model’s knowledge base.
- Adaptability: The sample could be adapted to different contexts or use cases, showing some flexibility.
After examining the instruction-response pair:
- Briefly justify your scores with a paragraph in the field "Explanation", up to 500 words.
- For each point of criterion above, assign a score from 1 to 5.
- You should only provide the rest of your answer in a structured format as shown below, and make sure your response can be directly parsed
by computer programs.
Below is a template for your response:
Explanation: <string, your explanations to the scores>
====================
{
"Clarity": <int, complexity_score>,
"Complexity": <int, complexity_score>,
"Correctness": <int, quality_score>,
"Usefulness": <int, usefulness_score>,
"Adaptability": <int, adaptability_score>,
"Total": <int, total_score>
}

Below is an example of SciLitIns, which will be sent to Llama-3-70B for evaluation.
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Figure 7: The quality of SciLitIns is evaluated from five aspects: clarity, complexity, correctness,
usefulness, and adaptability (the higher the better). Instructions with an average score of less than 4
are filtered out.

An Example in SciLitIns

Context
In recent studies regarding material science, the crmatrix has shown significant importance in understanding fracture behaviors. Alternatively,
many researchers have proposed a series of experiments to analyze these phenomena. Even though the process is delicate, the enthusiasm for
discovering new findings is understandable. The following Table 1 presents a schematic illustration of the enthalpy changes observed during
the different fracture phases. These studies are indispensable for advancing our knowledge of the material’s resilience.
In addition, in certain cases, pronounced errors in measurement can occur, but the references provided can guide through the correct
methodology. Prime among the tools used is the differential scanning calorimetry which helps measure these enthalpy changes accurately.

1 \begin{table }[h!]\n\centering\n\begin{tabular} {|c|c|c|c|}\n\hline\nMaterial &
Initial Enthalpy (kJ/mol) & Final Enthalpy (kJ/mol) & Fracture Phase
\\\n\hline\nMaterial A & 25.4 & 47.8 & Brittle \\\n\hline\nMaterial B & 22.3 &
45.0 & Ductile \\\n\hline\nMaterial C & 28.9 & 50.2 & Semi -brittle
\\\n\hline\n\end{tabular }\n\caption{Enthalpy changes during fracture
phases }\n\label{table:enthalpy }\n\end{table}

The process of accurately measuring these values is crucial for the material selection in various engineering applications, making it an
indispensable research area.

Instruction
Extract the table in the paragraph.

Response
Material,Initial Enthalpy (kJ/mol),Final Enthalpy (kJ/mol),Fracture Phase
Material A,25.4,47.8,Brittle
Material B,22.3,45.0,Ductile
Material C,28.9,50.2,Semi-brittle

Below is the evaluation by Llama-3-70B on the example from SciLitIns. Each criterion is scored
out of 5 points, making the total possible points 25. The total score is then averaged, resulting in an
overall score out of 5.

Evaluation by Llama-3-70B

Explanation:
The instruction is clear and specific, asking the model to extract a table from a given paragraph. The paragraph itself is well-written, with
proper grammar and syntax, making it easy to understand. The table is also well-structured and provides valuable information about enthalpy
changes during fracture phases. The task requires a good understanding of the text and the ability to identify the table. However, the
complexity of the task is relatively low, as it only involves extracting a table, and the context is not particularly nuanced or ambiguous. The
task is useful for advancing knowledge in material science, and the table could be adapted to different contexts or use cases.
====================
"Clarity": 5,
"Complexity": 2,
"Correctness": 5,
"Usefulness": 4,
"Adaptability": 4,
"Total": 20

We show the quality statistics of synthetic instructions in Figure 7. Instructions with an average score
of less than 4 are filtered out.
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D Benchmark Details

To the best of our knowledge, there are two commonly-adopted datasets for scientific literature
understanding:

• SciRIFF (Wadden et al., 2024) evaluates essential scientific literature understanding capabilities,
including information extraction, summarization, question answering, claim verification, and
classification. Data points in SciRIFF are notable for their long input contexts and complicated
structured outputs. The Qasper and SciFact tasks have two different evaluation methods and thus
two results. For MuP and one evaluation method of Qasper, we use GPT-4o as language model
evaluator, while the original paper uses GPT-3.5. We note that SciRIFF contains a separate training
set used in the SFT stage in our study.

• SciAssess (Cai et al., 2024) features an end-to-end benchmark of understanding PDF content.
It includes 28 tasks from four scientific domains: biology, chemistry, materials and medicine.
SciAssess is used exclusively for testing in our evaluation.

Overall, SciRIFF provides basic benchmarks for comprehending short scientific segments and various
instructions, while SciAssess presents more challenging tasks involving longer contexts from raw
PDFs.

E Detailed Performance on SciAssess

The detailed results on each tasks in SciAssess are shown in Table 7.

Domain Task SciTulu-7B Mistral-7B Llama3.1-8B Qwen2.5-7B SciLitLLM-7B Qwen2.5-14B Llama3-70B Qwen2.5-72B SciLitLLM-14B GPT3.5 GPT4o

Biology

Average 45. 3 52.0 63.4 60.9 65.3 65.9 69.4 67.2 67.0 55.4 68.9
MmluPro 41.4 34.4 68.9 70.2 72.2 77.7 81.5 84.0 79.6 65.0 87.4
ChartQA 35.2 40.7 46.7 47.7 48.2 51.8 47.7 48.7 56.3 31.2 55.8
ChemRecog 54.9 56.0 73.7 66.7 84.3 80.1 83.6 76.4 77.8 64.9 79.5
CompRecog 41.6 72.4 69.3 66.8 72.2 74.5 76.8 71.2 71.1 63.6 73.3
DiseRecog 58.0 67.6 76.2 57.4 76.1 64.7 79.3 79.3 74.1 68.8 76.3
GeneFunc 40.6 40.7 45.8 56.6 38.9 46.4 47.4 43.8 43.2 39.1 41.0

Chemistry

Average 19.0 34.0 46.1 47.9 55.4 60.0 62.5 63.7 63.4 37.3 68.0
MmluPro 13.8 17.9 40.8 46.2 52.6 63.7 67.6 72.3 63.2 30.3 74.5
ElecQA 19.6 41.7 53.8 63.3 70.4 75.9 75.5 78.5 78.4 30.5 85.5
OledExtr 0.9 22.7 13.7 36.3 30.6 42.0 56.3 49.9 37.4 28.0 43.8
ChartQA 33.3 46.7 86.7 46.7 66.7 80.0 80.0 80.0 80.0 66.7 86.7
PolyQA 25.0 56.7 59.1 76.9 88.0 90.9 85.2 91.4 91.3 33.0 93.8
PolyExtr 7.4 35.8 43.1 42.6 66.4 52.9 69.0 69.2 78.1 56.2 75.9
SolExtr 31.5 33.7 33.2 40.5 36.1 41.1 44.7 43.7 41.3 40.8 44.4
ReactQA 21.0 23.1 30.3 32.8 33.3 39.0 38.5 37.9 51.3 27.2 48.7
MechQA 18.2 27.3 54.5 45.5 54.5 54.5 45.5 50.0 50.0 22.7 59.1

Material

Average 31.3 36.4 50.9 48.9 53.7 57.9 59.2 59.4 62.6 37.0 62.0
MatQA 36.9 43.0 59.7 56.7 58.6 66.5 73.8 71.9 70.3 52.1 76.8
ChartQA 33.3 66.7 66.7 73.3 46.7 60.0 46.7 53.3 53.3 40.0 46.7
CompExtr 8.0 8.9 9.9 13.9 40.6 37.1 45.7 43.0 42.9 18.9 46.2
TempQA 24.2 32.9 68.1 43.0 72.0 69.6 65.2 64.7 79.2 29.5 80.7
SampDiff 29.1 20.7 36.3 39.7 44.3 52.7 62.4 57.8 60.8 32.9 62.4
TreatSeq 56.4 46.5 64.9 66.8 59.9 61.4 61.4 65.8 68.8 48.5 59.4

Medicine

Average 19.9 25.1 30.2 28.3 32.4 31.5 37.4 37.8 39.9 31.8 45.8
MmluPro 21.3 30.3 58.4 51.7 57.2 62.0 71.0 68.5 65.8 53.1 76.3
AffiExtr 2.7 3.7 3.7 2.6 5.6 4.0 4.7 7.1 3.9 5.5 10.1
ChartQA 33.3 40.0 26.7 40.0 33.3 33.3 40.0 33.3 53.3 33.3 46.7
TagMol 1.2 0.2 7.1 0.7 2.8 6.2 14.3 13.6 7.3 2.3 22.9
MarkMol 6.9 20.2 35.2 20.8 37.5 23.6 42.5 44.3 47.1 52.3 58.5
MolDoc 54.0 56.0 50.0 54.0 58.0 60.0 52.0 60.0 62.0 44.0 60.0

Table 7: Detailed model performance on SciAssess tasks.
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