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Abstract

Surface electromyography (sEMG) signals offer a promising avenue for developing innovative
human-computer interfaces by providing insights into muscular activity. However, limited
available training data and computational constraints during deployment have restricted
the use of state-of-the-art machine learning models, such as transformers, in challenging
sEMG tasks. In this paper, we demonstrate that transformer models can learn effective and
generalizable representations from sEMG datasets that are small by modern deep learn-
ing standards (approximately 100 users), surpassing the performance of classical machine
learning methods and older neural network architectures. Additionally, by leveraging model
distillation techniques, we reduce parameter counts by up to 50x with minimal loss of perfor-
mance. This results in efficient and expressive models suitable for complex real-time sEMG
tasks in dynamic real-world environments.

1 Introduction

Recently, there has been growing interest in using surface electromyography (sEMG) in conjunction with
powerful deep learning techniques to decode human muscle activity (e.g. Di Nardo et al., 2022; Gaso et al.,
2021; Wimalasena et al., 2022; Buongiorno et al., 2021; Ozdemir et al., 2020). sEMG offers the potential for
novel human-computer interfaces (HCIs), where user gestures or movements can serve as direct control input
(CTRL-labs at Reality Labs, 2024). Advances in hardware (e.g. Lu et al., 2024; CTRL-labs at Reality Labs,
2024) have now made it feasible to reliably capture sEMG outside of a controlled clinical setting. Supported
by these developments, deep learning methods have been applied to a variety of EMG tasks, including muscle
activation detection (Di Nardo et al., 2022), (Wimalasena et al., 2022), gesture classification (Atzori et al.,
2016), (He et al., 2018), (Zhang et al., 2023), and speech recognition (Wand & Schmidhuber, 2016).

However, there are a few limitations in previous works. First, these approaches frequently do not employ
cutting-edge model architectures, such as transformers, or apply them only to limited time scales, such as
single isolated gestures (e.g., Ozdemir et al., 2020; He et al., 2018). This limitation may be due to the
restricted quantity and/or diversity of available training data (Li et al., 2021), as large-scale data is often
viewed as a prerequisite for applying contemporary deep-learning methods to complex tasks. Nonetheless,
meeting the needs of a functional HCI requires modeling non-stationary and noisy sEMG data (Cochrane-
Snyman et al., 2016; Chowdhury et al., 2013), a challenge likely better suited to more sophisticated models.
A second consideration commonly unaddressed in previous works is the computational challenges associated
with running an HCI in the wild. In particular, there are likely to be substantial constraints on the model
size (small enough to run on an edge device) and inference time (fast enough for the system to be responsive).
Finally, the ability to effectively generalize to unseen users is critical to successful deployment in real-world
applications, yet evaluation on unseen users is often neglected in the existing literature.

In this paper, we take steps towards addressing these challenges:

1. We demonstrate that transformer models can, in fact, learn effectively on small (by deep learning
standards) sEMG datasets, with approximately 350 hours of data collected from around 100 users,
even on a challenging task like emg2qwerty (Sivakumar et al., 2024). A small transformer (2.2M
parameters) outperforms the SOTA performance on this task by about 20% (absolute). We further
show that the performance of the transformer models improves with model scale, enabling us to
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improve the SOTA performance by over 25% (absolute). Although the community has largely
used simpler modeling techniques like Random Forests (Rani et al., 2024) or RNNs (He et al.,
2018) on handcrafted features, and has avoided data-hungry transformers, our findings suggest that
transformers applied directly to sEMG signal can work well even at this data scale.

2. We demonstrate that model distillation (Hinton et al., 2015), which transfers knowledge from a
large pre-trained ‘teacher’ model to a smaller ‘student’ model, can be effectively applied to sEMG
data. We show that training larger transformer models followed by distillation into smaller models
substantially outperforms direct training of the small-sized transformer without distillation, reducing
the parameter count of the transformer model by up to 50x with minimal performance degradation
(< 1.5% absolute). To date, there has been limited work towards distilling sEMG models.

3. Unlike most previous works, which focused on reporting performance on a set of held-out trials
from the ‘seen’ (during training) users, we focus on the much more realistic and challenging setup -
reporting performance on the ‘heldout’ (during training) users.

We release the code used for training and distilling the models to make it easier for the scientific community
to reproduce our results and build on top of this work.

2 Background

2.1 Surface Electromyography

The human central nervous system initiates muscular activity by transmitting an electrical impulse along a
nerve bundle (Plonsey & Barr, 2007; CTRL-labs at Reality Labs, 2024). Surface electromyography (sEMG)
uses external electrodes to measure these electrical action potentials as they propagate from the nerve fiber
to the motor unit (Mokhlesabadifarahani & Gunjan, 2015; CTRL-labs at Reality Labs, 2024). sEMG data
is noisy and non-stationary (Chowdhury et al., 2013; Cochrane-Snyman et al., 2016), making it a difficult
signal modality for machine learning tasks. Better modeling sEMG has potential applicability to other
electrophysiological data modalities, including EEG and EKG (Brambilla et al., 2021; Li et al., 2023; Yang
et al., 2023)

Due to the difficulty of collecting EMG data, most open-source EMG datasets are small in terms of users
and total recording time. Furthermore, most focus on capturing isolated movements that are relatively
distinct from one another, such as the flexion of different fingers. For example, despite being some of the
largest and most popular sEMG datasets, the Ninapro (Atzori et al., 2014) corpus is predominantly focused
on recognizing isolated gestures and contains only 77 subjects in its largest dataset. The EPN dataset
(Benalcazar et al., 2020) is much larger but still focuses on simple enough gesture recognition such that
relatively simple models seem to saturate performance on it. Most other datasets, such as Amma et al.
(2015) (5 subjects) and Ortiz-Catalan et al. (2013) (17 subjects), are even smaller and still primarily based
on single-gesture/movement recognition. In contrast, an effective human-computer interface (HCI) should
have the ability to disentangle multiple sequential gestures (that may overlap each other) and generalize
across a diverse set of users.

Improving on the above, recently Sivakumar et al. (2024) released a dataset that represents a significant
advancement over existing sEMG benchmarks in terms of its scale, task complexity, and real-world applica-
bility. As described in Figure 1, the task is to predict key presses while touch typing on a keyboard using
sEMG activity alone. The dataset captures dynamic typing behavior across 108 users and 1, 135 sessions to-
taling 346 hours of high-resolution wrist-based sEMG recordings. The naturalistic, high-dimensional output
space (key pressed on a keyboard) and the larger data scale make it suitable for studying both cross-user
zero-shot generalization and personalized finetuning on unseen (during training) users. For these reasons,
we focus on this dataset in our experiments.

As a result of both limited data availability and the inherent challenges of the modality (e.g., noise, subject-
based variance), prior works have tended to utilize classical approaches for sEMG tasks. In some, simple
machine learning approaches such as support vector machines, random forests, K-nearest-neighbors or linear
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Reference Task Number of participants Model

(She et al., 2010) Lower-limb movt. 3 SVM
(Alkan & Günay, 2012) Upper-arm movt Not Reported SVM
(Atzori et al., 2016) Hand gesture 78 CNN
(Wand & Schmidhuber, 2016) Speech recog. 4 dev, 7 eval DNN + HMM
(He et al., 2018) Hand gesture 27 LSTM + MLP
(Cai et al., 2018) Facial expr. 7 SVM
(Xia et al., 2018) 3D limb motion est. 8 CNN + RNN
(Shioji et al., 2018) Auth., hand gesture 8 CNN
(Morikawa et al., 2018) Authentication 6 CNN
(Ozdemir et al., 2020) Hand gesture 30 CNN (ResNet-50)
(Rahimian et al., 2021) Hand gesture 40 Transformer
(Gaso et al., 2021) Myopathy, ALS det. 25 FC-DNN
(Godoy et al., 2022) Hand gesture 10 VIT
(Di Nardo et al., 2022) Muscle activation 18 + 30 FC-DNN
(Chen et al., 2023) Finger joint est. 12 Transformer
(Zabihi et al., 2023) Hand gesture 40 Transformer
(Zhang et al., 2023) Hand gesture 20 LSTM + Transf.
(Liu et al., 2024) Hand gesture 50 CNN + VIT
(Rani et al., 2024) Hand gesture 8 + Not Reported + 6 RF, KNN, LDA
(Putro et al., 2024) Finger joint est. 5 Transformer
(Eddy et al., 2024) Hand gesture 612 RNN
(Sivakumar et al., 2024) Typing 108 TDS-ConvNet

Table 1: Prior work: most datasets are relatively small, and often classical ML approaches or older neural
network architectures are used. When number of participants is of the format X + Y, different devices or
protocols were used so that they cannot be trivially combined into one dataset. In some cases, the number
of participants is not reported in the papers and we denote them as ‘Not Reported’. Most of these prior
works have not evaluated their models on unseen users.

discriminant analysis are used (Rani et al., 2024; Atzori et al., 2014). In others, models such as CNNs
(Ozdemir et al., 2020; Atzori et al., 2016) and LSTMs (He et al., 2018) have been applied, primarily for
gesture classification on a restricted set of users. Some recent work has begun to explore the application of
transformer-based models (Chen et al., 2023; Putro et al., 2024; Zabihi et al., 2023; Zhang et al., 2023) and
vision transformers (ViTs) to sEMG data (Rahimian et al., 2021; Godoy et al., 2022; Liu et al., 2024), but
these efforts are also limited to small-scale datasets and simpler tasks. In addition, prior methodologies pri-
marily use manual feature extraction techniques on sliding windows of the sEMG signals, e.g., spectrograms
(Sivakumar et al., 2024), multivariate power frequency features(CTRL-labs at Reality Labs, 2024), Hjorth
parameters (Rani et al., 2024) and others. We instead focus on learning transformer-based models that uses
learned sEMG featurization directly from the raw data, as is popular in other modalities.

Finally, the existing literature often falls short in addressing a critical aspect of training data on sEMG
data: cross-user generalization. It is well-established that sEMG signals, like other bio-signals, exhibit high
inter-individual variability (Chowdhury et al., 2013; CTRL-labs at Reality Labs, 2024), making it essential
to evaluate the robustness of models on “unseen” (heldout during training) users. However, many prior
works neglect this crucial consideration, instead opting to test their models solely on held-out trials from
the same individuals contained within the training set, thus failing to provide a meaningful assessment of

3



Under review as submission to TMLR

Figure 1: The emg2qwerty task: participants type on a keyboard while sEMG activity is recorded from both
hands. The goal is to map from sequences of sEMG signals to sequences of characters. Figure cropped from
https://github.com/facebookresearch/emg2qwerty, licensed CC BY-NC-SA.

the model’s ability to generalize across diverse users. We focus our evaluation on new participants unseen
in the training set.

Table 1 reviews recent work in the domain of sEMG decoding, showing that for the most part, datasets used
are small (<100 participants, or even <10) and modeling techniques used are often classical and data-efficient.

2.2 Distillation

Model distillation was popularized by (Hinton et al., 2015), who proposed training a small ‘student’ model
on the outputs (logits) of a larger pretrained ‘teacher’ model, along with the ground-truth labels from the
training data. This improved the performance of the smaller ‘student’ model compared to the case where the
smaller model was trained from scratch. Subsequent works have hypothesized that distillation helps because
the ‘teacher’ model’s logits provide information about interclass relationships (Tang et al., 2020) as well as
sample difficulty (Zhao et al., 2022).

Some works go beyond using outputs or logits alone for distillation, especially for deeper models. These
approaches drive the ‘student’ model intermediate layer representations ‘close’ to the intermediate layer
representations in the ‘teacher’ model (Romero et al., 2015). In practice, this is achieved by regularizing the
‘distance’ (e.g. ℓ1, ℓ2) between the activations of the ‘teacher’ and the ‘student’ model for pre-determined
pairs of layers. In case of a mismatch between the shape of the layers, linear regression can be used to align the
dimensions. These ‘feature-based’ distillation methods have been successfully used to distill large foundation
models like HuBERT with minimal performance degradation (Lee et al., 2022; Peng et al., 2023; Wang et al.,
2023). Komodakis & Zagoruyko (2017) proposed applying a function that maps hidden representation of a
CNN to a 2-D attention map and training the ‘student’ model to imitate the attention map from the ‘teacher’
instead of the features from the ‘teacher’. Chen et al. (2021) eliminates the need for ad-hoc mapping functions
by learning the optimal ‘student-to-teacher’ mapping layer. In contrast to directly minimizing some form
of distance measure, Xu et al. (2018) proposed training an adversarial discriminator network to distinguish
between the representations from the ‘teacher’ and the ‘student’.
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Even more sophisticated approaches encode ‘teacher’ knowledge in higher-order relationships between mul-
tiple samples. For example, Tung & Mori (2019) proposed computing an inner-product-based similarity
matrix between a batch of samples for both the ‘teacher’ and ‘student’ models and then training the student
to match the teacher’s matrix. A similar approach was presented by Park et al. (2019), which explored both
Euclidean and angular similarity metrics. However, the benefits of these relational distillation methods are
marginal compared to feature-based approaches, especially considering the added computational complexity.

In this work, our focus is on showing that distillation methods can be applied out-of-the-box on sEMG.
Given that logit distillation is a simple and widely used technique, we use this technique in our experiments.

3 Experiments

We design experiments to demonstrate that: i) Transformer models can be effective for sEMG tasks even
when considering datasets and models that are small by modern deep learning standards; ii) The performance
of the transformer models further improves with scale, resulting in improvements to SOTA performance; iii)
Transformer models can be distilled into smaller-sized models, recovering most of the large-model perfor-
mance with 50x fewer parameters. We primarily focus on zero-shot performance on held-out users, and
additionally report personalization performance (where a model is fine-tuned on a small amount of a held-
out single-user’s data, then evaluated on held-out sessions from that user). Both cross-user generation and
personalization are key challenges for real-world sEMG tasks (CTRL-labs at Reality Labs, 2024).

3.1 Dataset

We use the emg2qwerty dataset (Sivakumar et al., 2024) in our experiments. The dataset consists of two-
handed sEMG recordings from users typing on a computer keyboard. The data is labeled with the corre-
sponding keystrokes, and the task is to map from sEMG sequences to character sequences. Figure 1 shows
a representative example. In total, the dataset contains 346 hours of sEMG recordings across 108 unique
users. The dataset is split into 100 users for training and validation and 8 held-out users for testing. For
each user, we hold out 2 validation sessions and 2 testing sessions, then use the rest for training. In the
generic setting, we train on the 100 user training set, validate on the 100 user validation set and evaluate
on the 8 user testing set. In the personalization setting, for each of the 8 users, we train on their individual
training set, then validate and test on their respective validation and testing set. Sessions are windowed to
form 4 second samples, padded with an additional 900 ms of past context and 100 ms of future context.

3.2 Models

Our baseline is the Time-Depth Separable Convolutional Network (TDS-ConvNet) model introduced in
Hannun et al. (2019) and used by Sivakumar et al. (2024), which reports that the parameter-efficiency of
TDS-ConvNet allows for wider receptive fields which have proven important in emg2qwerty modeling. We
use the same train, validation, and test splits as used in Sivakumar et al. (2024) and report the performance
of the baseline models from that paper.

Our model architecture consists of a convolutional featurizer followed by a transformer encoder and a linear
decoder. The featurizer always uses 3 convolutional layers, with instance norm applied along the time axis
after the first convolutional layer, and downsamples the input sEMG data (which is sampled at 2kHz) to a
sequence of features (sampled at 100 Hz). The encoder consists of a series of Transformer blocks (Vaswani
et al., 2017) whose number and width we manipulate to create larger or smaller models. The transformer
blocks use causal attention so that they can be used in an online streaming setup. The linear decoder converts
the transformer’s output to a sequence of logits. Note that unlike Sivakumar et al. (2024) which uses log-
spectrograms as input features, we train our model end-to-end using raw sEMG data directly, without using
any hand-designed feature engineering pipeline. Following Sivakumar et al. (2024), during training we apply
channel rotation, which randomly shifts the sEMG channels by ±1 as a data augmentation technique to
simulate different spatial orientations of the device.
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Figure 2: An illustration of the distillation pro-
cess: the smaller student model receives training
signal from the logits of the larger teacher model
in addition to the regular supervised loss.

We have trained 20 different architectures, generated by
permuting [2, 4, 6, 8, 10] layers and inner dimension of
[128, 256, 512, 1024]. The ratio of the transformer in-
ner dimension and the transformer feed-forward dimen-
sion is fixed at four. While we report on performance of
all models in the supplement, for ease of exposition in the
main text, we are concerned with three ‘reference’ archi-
tectures: the Tiny architecture consisting of 10 layers of
inner dimension 128 (about 2.2M parameters); the Small
architecture consisting of 6 layers of inner dimension 256
(about 5.4M parameters, close to the 5.3M TDS-ConvNet
baseline); and the Large architecture consisting of 8 lay-
ers of inner dimension 1024 and about 109M parameters.
We use the AdamW optimizer(Loshchilov, 2017) for train-
ing all models. In the figures we additionally include other
models along the size-performance Pareto frontier (i.e.
ones which perform better than any model of the same
or lesser parameter count). For all the experiments, we
report standard deviation across multiple seeds (6 seeds
for supervised training of transformer models, 3 seeds for
personalization experiments, and 3 seeds for distillation
experiments).

3.2.1 Supervised training of transformer models

Following Sivakumar et al. (2024), we use the connection-
ist temporal classification (CTC) loss (Graves et al., 2006)
to train the transformer models on the emg2qwerty task.
We train the transformer models on a single V100 node (8 32Gb GPUs) using cosine learning-rate scheduling
(Loshchilov & Hutter, 2017) and linear learning rate warmup for first 5% of updates. We document all the
hyperparameters in the Appendix in Section A.

3.2.2 Model distillation

We use logit distillation to distill the pretrained Large teacher model into a set of smaller (but differently
sized) student models. For the student models, we include all 20 architectures discussed above (including
ones of the same size as the teacher). This enables us to demonstrate the benefits of distillation at varying
student model sizes. The process is depicted in Figure 2.

The distillation loss Ldistill is the cross-entropy loss where the student’s output probabilities at each time step
are expected to match the soft targets provided by the teacher’s per-timestep output probabilities. We use
a temperature scaling factor of 2 when computing the probabilities. The distillation loss is then combined
with the task loss (i.e. CTC) to give the final training loss for the student model:

L = 1
α + β

(
αLdistill + βLtask

)
.

Here, α and β are hyperparameters. We set β = 1.0 and experimented with α values between 0.1 and 1.0.
The optimal value of different hyperparameters is documented in the Appendix.

3.3 Metrics

Following (Sivakumar et al., 2024), we evaluate the emg2qwerty models using Character Error Rate (CER),
defined as the Levenshtein edit-distance between the predicted and the ground-truth sequence. It can be
expressed as (S+D+I)∗100

N where, given the predicted and the ground-truth sequences, S is the number of

6



Under review as submission to TMLR

Benchmark Architecture Parameters CER (↓%)

Generic

TDS-ConvNet 5.3M 55.57
Tiny Transformer 2.2M 35.9± 0.9
Small Transformer 5.4M 35.2± 1.1
Large Transformer 109M 30.5± 0.6

Personalized
TDS 5.3M 11.39
Tiny Transformer 2.2M 9.7± 0.13
Small Transformer 5.4M 7.9± 0.06
Large Transformer 109M 6.8± 0.07

Table 2: Cross-user performance of transformer models trained on the emg2qwerty dataset, showing that [a]
even the Tiny transformer models substantially outperform the TDS-ConvNet baseline in spite of having
fewer parameters, and [b] the performance of the transformer model keeps improving as we increase the
number of parameters in the model. For the transformer models, we report standard deviation across 6
seeds for Generic benchmark and across 3 seeds for the Personalized benchmark. The standard deviation
for the baseline models is not reported in Sivakumar et al. (2024).

Model CER (↓%) Abs. Gain (↑%)

Benchmark Architecture Params Standard Distilled

Generic Tiny 2.2M 35.9± 0.9 31.9± 0.4 4.0
Small 5.4M 35.2± 1.1 32.7± 0.5 2.5

Personalization Tiny 2.2M 9.7± 0.1 8.6± 0.04 1.1
Small 5.4M 7.9± 0.06 7.1± 0.06 0.8

Table 3: Cross-user performance of small student models on the emg2qwerty dataset with and without
distillation. Performance is measured by character error rate (CER). The ‘Abs. Gain’ column reflects the
absolute improvement in performance from using distillation as opposed to standard supervised training
for a given architecture. Personalized models are personalized from the distilled student. All models see a
substantial benefit (7-11% relative improvement) from the use of the distillation loss. We report standard
deviation across 3 seeds for the distillation results.

character substitutions, D is the number of deletions, and I is the number of insertions between them and
N is the total number of characters in the ground-truth sequence.

4 Results

4.1 Transformer models can effectively learn from relatively small sEMG datasets

In Table 2, we compare the performance of our transformer models with the baseline TDS-ConvNet model.
On the generic (zero-shot, cross-user) benchmark, even the Tiny model outperforms the TDS-ConvNet
model baseline by a margin of about 20% absolute CER, in spite of having fewer than half the number
of parameters as the baseline. While the performance of the Small (which is about the same size of the
baseline) is not very different from that of the Tiny model, scaling the model more aggressively to the Large
size does yield a further 5% improvement, reducing baseline’s CER by nearly a factor of 2 (from about 55%
to about 30%).

On the personalized benchmark, where the trained model is fine-tuned on a single heldout user’s data, CERs
are much lower across the board and therefore the absolute gains of the transformer are more modest (1.7%,
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Figure 3: Scaling curve of transformers on the emg2qwerty dataset, showing the benefit of model size across
3 orders of magnitude from <1M to over 100M parameters, and the benefit of distillation. A few things
are of note: [a] even the smallest transformer we consider here (about 600K parameters) outperforms the
5.3M parameter TDS-ConvNet baseline (55.57 CER), in spite of having almost an order of magnitude fewer
parameters; and [b] the majority of distillation benefit is seen for small-but-not-too-small models, with a
2.2M parameter distilled model getting within 1.5% CER (absolute) of the top-performing model in spite of
having 50x fewer parameters. Figure includes only models along the pareto front, i.e. ones which outperform
others at the same or smaller parameter count. The vertical bars denote standard deviation across 6 seeds.

1.8% and 4.5% CER for Tiny, Small and Large model respectively). However, the relative magnitude of
improvement is similar to that seen on the generic benchmark, especially for the largest model.

These performance gains over the baseline across all model sizes and benchmark support the usage of
transformer architecture for complex sEMG tasks.

4.2 The performance of transformer models improves with scale

In Table 2, we observe that as we scale the size of the transformer model, the performance of the model
continues to improve even with the same amount of data. An alternate view of this is shown in Figure 3 (red
line) where we report on the 10 architectures that are on the Pareto front w.r.t. scale and performance, i.e.
they perform at least as well as any model of the same or smaller size. These models show a nearly log-linear
scaling curve, validating that there are performance benefits to be realized by using large transformer models
for sEMG data.

One obvious challenge with the use of large transformer models is that this increases the computational
overhead of the models during inference and any potential real-time usage with a HCI (e.g. to control a
prosthetic, for computer text entry, or to control a cursor). Distillation techniques mitigate this limitation.

4.3 Model distillation can be applied effectively to models for sEMG

Table 3 shows the results of distilling small-capacity student models on the emg2qwerty dataset, using the
best performing Large model as a teacher. An alternate view is in Figure 3 (turquoise line), where we
see that the benefit of distillation is largest for small-but-not-too-small models. That is, for the very tiniest
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models, they seem unable to fully benefit from distillation (perhaps too few layers, or too few parameters
to model the teacher’s distribution), while for bigger models they have enough capacity to learn the task
on their own. Notably, the 2.2M parameter Tiny achieves performance within 1.5% of the Large teacher
in spite of having about 50x fewer parameters. We also report that while the Large teacher model takes
26.966 ms for inference over a single sample, the Small model takes 5.7002 ms only, thus providing a 4.7×
speedup during inference. These numbers are obtained by running inference over a single sample a 1000
times to get an average runtime and then further repeating this protocol 3 times and reporting the median
of the three numbers. Additional details around benchmarking are provided in the Appendix. While the
specific size cutoff for a real-time model may vary, distillation provided a benefit across many small model
sizes.

5 Conclusion

Our work provides a new state-of-the-art in complex sEMG decoding, specifically on the emg2qwerty task,
which is unique in the sEMG literature for having both larger data size and higher task complexity. We
demonstrated that models based on a transformer architecture are highly performant on this task, exceeding
the convolutional baseline at a smaller parameter count, and continuing to improve as model size is increased
an order of magnitude larger. Next, we showed that distillation of these large models can yield lightweight
variants that retain strong task performance. We see this work as an early stage in a new wave of sEMG and
HCI research wherein larger datasets and expressive modern architectures such as transformers will provide
substantial improvements in both HCI and neuro-prosthetics domains.

Broader Impact Statement

Beyond this paper, the broader usage of sEMG, and the specific development sEMG-based textual input
models, pose novel ethical and societal considerations. There are numerous societal benefits for the devel-
opment of sEMG models for textual input. sEMG allows one to directly interface a person’s neuromotor
intent with a computing device, which can be used to, for example, develop adaptive controllers for those
who struggle to use existing computer interfaces.
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Appendix

The appendix is organized as follows: In Section A we lay out all of the experimental details of the results
presented in this work and in Section B we show additional results which were not presented in the main
text.

A Experimental details

We describe the hyperparameters and model details in the following subsections. We provide constant hyper-
parameters in one table and hyperparameters that are subject to vary in a separate table. In Section A.2, we
list the hyperparameters of the supervised learning models presented in this paper, i.e., without distillation
signal; in Section A.3, we list the hyperparameters of the distilled models; and in Section A.4 we describe
the hyperparameters of the personalization experiment.

A.1 Dataset details

In Table 4, we detail the aggregated statistics of the emg2qwerty dataset.

Table 4: emg2qwerty dataset statistics

Total subjects 108
Total sessions 1, 135
Avg sessions per subject 10
Max sessions per subject 18
Min sessions per subject 1
Total duration 346.4 hours
Avg duration per subject 3.2 hours
Max duration per subject 6.5 hours
Min duration per subject 15.3 minutes
Avg duration per session 18.0 minutes
Max duration per session 47.5 minutes
Min duration per session 9.5 minutes
Avg typing rate per subject 265 keys/min
Max typing rate per subject 439 keys/min
Min typing rate per subject 130 keys/min
Total keystrokes 5, 262, 671

A.2 Supervised learning details

In the supervised learning experiments, we train a grid of model with sizes [128, 256, 512, 1024] transformer
hidden representation size and [2, 4, 6, 8, 10] layers. For each of the hidden representation sizes, we set the
transformer feed-forward dimension such that the feed-forward ratio (dff/dhidden) is maintained at 4. For each
of these configuration, we launch multiple learning rates ([3e−3, 1e−3, 3e−4, 1e−4]) across 6 different seeds.
Seeding is used to determine dataloading order and model initialization. We train all models to completion
(200 epochs) and evaluate the model on the training and validation at the end of every epoch. For each
model, we artificially early-stop the model post-hoc by choosing the epoch with the lowest validation CER
and record the test set CER of the model for this epoch. The rest of the training-related hyperparameters
(specifically dropout probabilities, weight decay and learning rate schedule) were chosen according to best
values in prior experimentation with a fixed model size.
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We aggregate the results by first taking the validation and test CER averages across seeds, then pick the best
aggregated validation learning rate value and report the average and standard deviation of the test results.
The chosen hyperparameters are reported in Table 6 and the test CER reported in Table 11.

Table 5: Supervised learning task details and hyperparameters held constant for models from Table 11.

Data
Input sEMG channels 32
Window length 8000
Padding [1800, 200]

Architecture

Featurizer channels [128, 64, 64]
Featurizer kernels [11, 3, 3]
Featurizer strides [5, 2, 2]
Encoder feed-forward ratio 4
Encoder convolutional dim 64
Encoder attentions heads 16
Tokenizer Character-level
Vocab size 99
Encoder hidden, attention and activation dropout 0.2
Encoder feature projection dropout 0.2
Encoder final layer dropout 0.2

Training
Epochs 200.0
Effective batch size 640
Encoder causal attention True

Optimizer

Learning rate schedule linear warmup + cosine decay
Learning rate warmup ratio 0.05
Weight decay 0.2
CTC zero infinity True
Gradient clipping 0.1

Software Torch version 2.3.1+cu121
Transformers version 4.36.2
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Table 6: Supervised learning task hyperparameters that vary for models from Table 11.

Architecture Encoder hidden size Encoder layers Optimizer learning rate
128 2 1e-03
128 4 1e-03
128 6 1e-03
128 8 1e-03

Tiny 128 10 1e-03
256 2 1e-03
256 4 1e-03

Small 256 6 1e-03
256 8 1e-03
256 10 3e-04
512 2 1e-03
512 4 3e-04
512 6 3e-04
512 8 3e-04
512 10 3e-04

1024 2 1e-03
1024 4 3e-04
1024 6 3e-04

Large 1024 8 3e-04
1024 10 3e-04

A.3 Distillation details

In the distillation experiments, we train the same grid of model width and depth as in the supervised
learning experiments (Section A.2) to use as the student model. The teacher model is chosen by picking
the best performing model from the best model configuration from the supervised learning experiments
in Table 11. For each of the hidden representation sizes of the student model, we set the transformer
feed-forward dimension such that the feed-forward ratio (dff/dhidden) is maintained at 4. For each of these
configurations, we launch multiple learning rates ([3e − 3, 1e − 3, 3e − 4]) across 3 different seeds. Seeding is
used to determine dataloading order and model weight initialization. We train all models to completion (200
epochs) and evaluate the model on the training and validation at the end of every epoch. For each model,
we select the checkpoint with the lowest validation CER and record the test set CER of this checkpoint.
The rest of the training-related hyperparameters (specifically distillation penalty weight, student dropout
probabilities, weight decay and learning rate schedule) were chosen according to best validation metrics in
prior experimentation with a fixed model size.

We aggregate the results by first taking the validation and test CER averages across seeds, then pick the
best aggregated validation learning rate value and report the average and standard deviation on the test
results. The chosen hyperparameters are reported in Table 8 and the test CER reported in Table 12.
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Table 7: Distillation task details and hyperparameters held constant for models from Table 12.

Data
Input sEMG channels 32
Window length 8000
Padding [1800, 200]

Student arch.

Featurizer channels [128, 64, 64]
Featurizer kernels [11, 3, 3]
Featurizer strides [5, 2, 2]
Encoder convolutional dim [64]
Encoder attentions heads 16
Text Tokenizer Character-level
Vocab size 99
Encoder hidden, attention and activation dropout 0.2
Encoder feature projection dropout 0.2
Encoder final layer dropout 0.2

Teacher arch.

Featurizer channels [128, 64, 64]
Featurizer kernels [11, 3, 3]
Featurizer strides [5, 2, 2]
Encoder hidden size 1024
Encoder feed-forward ratio 4
Encoder layers 8
Encoder convolutional dim [64]
Encoder attentions heads 16
Text Tokenizer Character-level
Vocab size 99
Encoder hidden, attention and activation dropout 0.0
Encoder feature projection dropout 0.0
Encoder final layer dropout 0.0

Training
Epochs 200
Effective batch size 640
Encoder causal attention True

Optimizer

Learning rate schedule linear warmup + cosine decay
Learning rate warmup ratio 0.05
Weight decay 0.1
CTC zero infinity True
Gradient clipping 0.1
Distillation loss weight 0.5
Distillation loss (logits) Cross Entropy

Software Torch version 2.3.1+cu121
Transformers version 4.36.2
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Table 8: Distillation hyperparameters that vary for models from Table 12.

Student arch. Student encoder hidden size Student encoder layers Optimizer learning rate
128 2 1e-03
128 4 1e-03
128 6 1e-03
128 8 1e-03

Tiny 128 10 1e-03
256 2 1e-03
256 4 1e-03

Small 256 6 1e-03
256 8 1e-03
256 10 1e-03
512 2 3e-03
512 4 1e-03
512 6 1e-03
512 8 1e-03
512 10 3e-04

1024 2 1e-03
1024 4 1e-03
1024 6 3e-04

Large 1024 8 3e-04
1024 10 3e-04

A.4 Personalization details

In the personalization experiments, we focus on our three highlighted architecture configurations, i.e., Tiny,
Small and Large. For each architecture, we pick three models from the supervised learning experiments,
irrespective of hyperparameters and seeds, according to the best validation performance. We refer to these
three models as seed A, B and C. For the Tiny and Small architecture, we repeat this procedure with the
distillation set of experiments. We refer to these models as being from the “Distillation” origin, as opposed
to the “Supervised” origin for the models taken from the supervised learning experiments. For each of those
models, we initialize the personalization models from the chosen checkpoint and we launch multiple learning
rates ([3e−3, 1e−3, 3e−4]) across 3 different seeds for each of the 8 personalization users. Seeding is used to
determine dataloading order and model weight initialization. We train all models to completion (100 epochs)
and evaluate the model on the training and validation sets at the end of every epoch. For each model, we
select the checkpoint with the lowest validation CER and record the test set CER of this checkpoint. The
rest of the training-related hyperparameters (specifically student dropout probabilities, weight decay and
learning rate schedule) were chosen according to best validation metrics in prior experimentation with a
fixed model size.

We aggregate the results by first taking the validation and test CER averages across the personalized users
and seeds. We then pick the best aggregated validation learning rate value and report the average and
standard deviation on the test results. The chosen hyperparameters are reported in Table 10 and the test
CER reported in Table 13. Table 10 also reports the supervised or distillation learning rate used by the seed
generic model the personalized was initialized from.
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Table 9: Personalization task details and hyperparameters held constant for models from Table 13.

Data
Input sEMG channels 32
Window length 8000
Padding [1800, 200]

Architecture

Featurizer channels [128, 64, 64]
Featurizer kernels [11, 3, 3]
Featurizer strides [5, 2, 2]
Encoder feed-forward ratio 4
Encoder convolutional dim [64]
Encoder attentions heads 16
Tokenizer Character-level
Vocab size 99
Encoder hidden, attention and activation dropout 0.2
Encoder feature projection dropout 0.2
Encoder final layer dropout 0.2

Training
Epochs 100.0
Effective batch size 640
Encoder causal attention True

Optimizer

Learning rate schedule linear warmup + cosine decay
Learning rate warmup ratio 0.05
Weight decay 0.0
Training warmup ratio 0.05
CTC zero infinity True
Gradient clipping 0.1

Software Torch version 2.3.1+cu121
Transformers version 4.36.2

Table 10: Personalization hyperparameters that vary for models from Table 13.

Architecture Init. origin Init. seed Generic training lr Personalization training lr
Tiny Distillation seed A 1e-03 3e-04
Tiny Distillation seed B 1e-03 3e-04
Tiny Distillation seed C 1e-03 3e-04
Tiny Supervised seed A 1e-03 3e-04
Tiny Supervised seed B 1e-03 3e-04
Tiny Supervised seed C 1e-03 3e-04
Small Distillation seed A 1e-03 3e-04
Small Distillation seed B 1e-03 3e-04
Small Distillation seed C 1e-03 3e-04
Small Supervised seed A 1e-03 3e-04
Small Supervised seed B 3e-04 3e-04
Small Supervised seed C 3e-04 3e-04
Large Supervised seed A 3e-04 3e-05
Large Supervised seed B 3e-04 1e-04
Large Supervised seed C 3e-04 1e-04
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B Additional results

In Section B.1, we show training curve samples from our experiments. In Section B.2, we show the results
for the full model scaling grid we explored. In Section B.3, we present measures of the inference speed of
our models.

B.1 Sample training metrics

We show training curves from some of our experiments assist others to more easily reproduce our results. In
Figure 4 and 5, we show training loss along with validation (cross-session) and test (cross-user) generic CER
for the supervised and distillation tasks respectively. In Figure 6, we show personalization training loss and
personalized CER for three of the eight personalization users.

(a) Loss

(b) Generic CER

Figure 4: Supervised training sample training curves for the Tiny, Small, Large architecture. Validation
is done with unseen sessions from the training users while testing is done across unseen sessions from the
unseen users.
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(a) Loss

(b) Generic CER

Figure 5: Distillation training sample training curves for the Tiny, Small, Large architecture. Validation
is done with unseen sessions from the training users while testing is done across unseen sessions from the
unseen users.
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(a) Loss

(b) Generic CER

Figure 6: Personalization training sample training curves for the Tiny, Small, Large architecture. For the
Tiny and Small architectures we show the separate curves for initializing the model coming from supervised
training and distillation training. We show the training curves for three of the eight personalization users.
Both validation and testing is done with unseen sessions from the (single) training user.

B.2 Full model grid scaling results

Model architecture exploration In Figure 7, we show the results for all model shapes investigated in
this work. We use this grid of shapes to compute the pareto front, i.e. ones which outperform others at
the same or smaller parameter count, presented in Figure 3. Our grid extends from an transformer hidden
representation size of 128 to 1024 and a number of transformer layer from 2 to 10. The featurization module
which first converts raw EMG into features to feed into the transformer is kept fixed for all models (see
Table 5 and Table 7 for the exact configuration). The CER results for generic models (from Figure 7) along
with their standard deviation can be found in Table 11 for supervised learning and Table 12 for distilled
models.
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Figure 7: Supervised learning and distilled results on the emg2qwerty dataset across multiple model hidden
representation size and number of layers. The total number of parameters of the networks are annotated for
each configuration. The performance of the teacher model (Large architecture) for the distillation training
is highlighted by the horizontal line. The vertical bars denote standard deviation across 6 seeds.

Distillation improvement In Figure 8, we show the generic CER improvement observed through distilla-
tion across transformer model width and depth.

Figure 8: Performance improvement from distillation over supervised learning on the emg2qwerty dataset
across multiple model hidden representation size and number of layers.

Numerical results Following is the full set of numerical performance reported in this paper. In Table 11
and 12 we annotate the Tiny, Small and Large architecture which corresponds to the architecture high-
lighted in Table 3 of the main paper.
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Table 11: Numerical generic CER and their standard deviation for supervised learning analysis. Hyperpa-
rameters provided in Section A.2. The specific named architectures from the main text are highlighted in
bold.

Architecture Encoder hidden size Encoder layers Model params Generic CER
128 2 631523 42.19 ±0.85
128 4 1028067 38.73 ±0.64
128 6 1424611 37.76 ±1.20
128 8 1821155 36.46 ±0.92

Tiny 128 10 2217699 35.88 ±0.91
256 2 2229091 37.81 ±0.60
256 4 3808611 34.89 ±0.67

Small 256 6 5388131 35.18 ±1.11
256 8 6967651 34.14 ±1.37
256 10 8547171 34.15 ±0.42
512 2 8569955 36.36 ±0.44
512 4 14874723 36.65 ±0.65
512 6 21179491 34.89 ±0.54
512 8 27484259 33.56 ±0.75
512 10 33789027 32.34 ±0.62

1024 2 33834595 37.00 ±0.36
1024 4 59027043 35.04 ±0.19
1024 6 84219491 33.10 ±0.85

Large 1024 8 109411939 30.47 ±0.61
1024 10 134604387 30.89 ±0.60

Table 12: Numerical generic CER and their standard deviation for distillation analysis. Encoder hidden
sizes and layers represents the student encoder sizes. The teacher follows the Large architecture. Hyper-
parameters are provided in Section A.3

.
Student arch. Student encoder hidden size Student encoder layers Model params Generic CER

128 2 631523 41.56 ±0.45
128 4 1028067 37.57 ±0.72
128 6 1424611 34.89 ±0.76
128 8 1821155 33.32 ±0.67

Tiny 128 10 2217699 31.93 ±0.39
256 2 2229091 36.31 ±0.60
256 4 3808611 33.29 ±0.98

Small 256 6 5388131 32.67 ±0.48
256 8 6967651 32.89 ±1.11
256 10 8547171 32.47 ±1.45
512 2 8569955 35.42 ±0.48
512 4 14874723 34.70 ±1.32
512 6 21179491 33.19 ±0.91
512 8 27484259 32.24 ±1.34
512 10 33789027 31.52 ±0.23

1024 2 33834595 36.52 ±0.19
1024 4 59027043 33.50 ±0.75
1024 6 84219491 32.06 ±0.22

Large 1024 8 109411939 30.38 ±0.46
1024 10 134604387 30.63 ±0.56
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Table 14: Inference speed of highlighted model sizes (per 4 second window).

Architecture Encoder hidden size Encoder layers Params Inference speed (ms)
Tiny Transformer 128 10 2.2M 6.1
Small Transformer 256 6 5.4M 5.7
Large Transformer 1024 8 109M 27.0

Table 13: Numerical generic CER and their standard deviation for the personalization results with varying
model initialization. The initialization origin column represents whether the generic model used as initializa-
tion for the personalized model has been trained through Supervised learning (i.e., without distillation loss)
or through Distillation. The initialization seed column represents distinction between different models with
the same architecture, but trained on different seeds or different hyperparameters, selected by choosing the
best validation performance among the all the models trained. Hyperparameters provided in Section A.4.

Architecture Init. origin Init. seed Model params Generic CER
Tiny Distillation seed A 2217699 8.64 ±0.04
Tiny Distillation seed B 2217699 8.65 ±0.02
Tiny Distillation seed C 2217699 8.91 ±0.06
Tiny Supervised seed A 2217699 9.72 ±0.13
Tiny Supervised seed B 2217699 9.91 ±0.13
Tiny Supervised seed C 2217699 10.36 ±0.02
Small Distillation seed A 5388131 7.07 ±0.06
Small Distillation seed B 5388131 7.02 ±0.03
Small Distillation seed C 5388131 7.16 ±0.01
Small Supervised seed A 5388131 7.94 ±0.06
Small Supervised seed B 5388131 9.78 ±0.07
Small Supervised seed C 5388131 9.20 ±0.06
Large Supervised seed A 109411939 6.81 ±0.07
Large Supervised seed B 109411939 6.48 ±0.02
Large Supervised seed C 109411939 6.54 ±0.08

B.3 Inference speed

We measured the inference speed of the highlighted Tiny, Small and Large in Table 2 model architecture
to assess their viability to be run in real time and to see how much model scale influences inference speeds.
We present the inference speeds in Table 14.

Naive streaming inference In the most naive case of streaming inference, we pass a full window length of
data (4 second in emg2qwerty) to the model and use exclusively the final prediction, then repeat this process
for the next prediction.

Applying this naive streaming inference paradigm to single-window inference speed in Table 14 tells us that
the Large architecture could not be inferable in real-time due to the maximum inference frequency being
approximately f = 1

27ms = 37Hz.

Note that under this setting one can trade off latency with inference speed, for example by using the last n
predictions from a window as predictions, which alleviates the requirements on inference speed by nx at the
cost of increasing latency of the output by nx.

Accelerated streaming inference In a more sophisticated implementation of streaming inference, one
could further improve the performance of the models by using optimizations like KV Caching (Pope et al.,
2023) or designing custom kernels. These techniques are outside the scope of our work.
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