
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

RETHINKING MEMORIZATION IN LLMS:
ON LEARNING BY ROTE VS. WITH UNDERSTANDING

Anonymous authors
Paper under double-blind review

ABSTRACT

Understanding whether and to what extent token sequences generated by large
language models (LLMs) are the result of regurgitating memorized training data
or are based on meaningful learning of the training data’s syntax and semantics
has many important implications. In order to cleanly measure and disentangle to-
ken recollection by rote (memorization) from generation with understanding, we
create an experimental framework that is based on training LLMs over sequences
generated using formal grammars. Our framework allows us to better understand
the interplay between the two types of learning, namely, by rote vs. with under-
standing. Using our framework we make several striking observations that hold
consistently across different open-source model families (Pythia, Llama, and Mis-
tral): (a) we find that the learning types are at odds with each other during training,
i.e., rote learning harms understanding and by developing understanding, models
forget previously memorized sequences, (b) we find that entropy of the training
datasets impacts the ease of learning, with lower entropy datasets being easier
to learn with understanding and higher entropy datasets being easier to learn by
rote, (c) we highlight the difficulty of determining the type of learning involved
in a model based solely on recollecting a training data sequence. Our surprising
results have significant downstream implications in the study and usage of LLMs.

1 INTRODUCTION

”Every teacher knows that there is a profound difference between a student
learning a lesson by rote and learning it with understanding, or meaningfully.”

– Herbert Simon in The Sciences of the Artificial, Third Edition, 1996

The unsupervised training objective of generative models, particularly auto-regressive large lan-
guage models (LLMs), raises the potential for learning training data both by rote (Bender et al.,
2021) and with understanding Bubeck et al. (2023). Our goal in this paper is to create a framework
that enables us to better understand, measure and distinguish the two types of learning that influence
the generation (recollection) of next token in LLMs namely, memorization, i.e., learning by rote, and
generalization, i.e., learning with understanding. Such distinction is challenging, but it has many
important implications ranging from assessing privacy risks (Biderman et al., 2023a; Carlini et al.,
2021) and copyright concerns (Petroni et al., 2019; Reisner, 2023) with training LLMs to developing
a foundational understanding of the cognitive abilities of LLMs, i.e., how efficiently they represent,
store, and retrieve information.

To illustrate the central challenges and key ideas of this work, let us conduct a thought experiment.
Imagine an English speaker and a German speaker commit a paragraph in German to memory. When
recollecting the paragraph, do the two speakers rely on rote learning to the same or different extents?
Intuitively, the German speaker understands the syntax and semantics of the tokens in the paragraph,
while the English speaker sees the paragraph as a sequence of alphabet tokens. Even before reading
the paragraph, given some prefix, the former is more likely to predict the next token correctly than
the latter. So it stands to reason that the extent of rote learning involved in recollecting the paragraph
is higher for the English speaker than the German speaker.

Our thought experiment above highlights the importance of disentangling the two types of learning
that are involved in the generation (recollection) of next tokens in the training data. But, how can
we isolate and estimate the extents of the two types of learning? In contrast to prior works on

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

0 5 10 15 20 25
0

0.5
1

1.5
2

2.5
3

3.5
4

Training
Test
Random
(10, 0.72)
(6, 1.33)

Epoch

Lo
ss

Generalization
Phase

Memorization
Phase

(a) Loss

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Training
Test
Random

Epoch

Ac
cu
ra
cy

Recollection
by understanding

Recollection
by rote

(b) Accuracy

Figure 1: Training and test loss and accuracy for the Llama3-8B model on the hierarchical
grammar. We repeatedly train the model on a set of strings from a hierarchical grammar, and show
its performance on the training data, an independently sampled test set and a set of random strings
sampled uniformly from the alphabet of the grammar. While the training and test loss decrease
similarly in earlier training epochs, the loss of random strings is much higher from the beginning
and increases more with training epochs – a demonstration that the LLM indeed learns the grammar
by differentiating between grammar strings (train and test data) and non-grammar random strings.
The cross-marker shows when the training and test loss diverge (start of learning by rote), and the
triangular marker highlights the lowest test loss point (end of learning by understanding).

LLM memorization, our simple but crucial observation is that it is not possible to directly measure
a model’s memorization. However, it is possible to measure the model’s ability to generalize to
other test data, i.e., sequences with similar syntax and semantics as the training data. The extent to
which a model memorized training data can then be indirectly estimated as the difference between
its ability to recollect the training data and its ability to generate test data.

To operationalize our ideas, we created a “clean” experimental framework, where we train LLMs
to memorize sequences generated by formal grammars such as regular and context-free grammars.
Formal grammars allow us to study the phenomena of memorization in isolation from generaliza-
tion. Formal grammars i) allow us to generate training data following the syntax of our choice and
guarantee that models have not seen such data during pre-training, ii) enable us to generate test data
following the same syntax as training data, which can then be used to estimate the model’s gener-
alization and memorization, and iii) give us precise control over all aspects of the data-generation
process, such as string length, alphabet size, and entropy. Achieving all of these properties with nat-
ural language would not be possible. However, as our findings largely reflect the learning abilities
of the LLMs and are not specific to the chosen grammar, we expect them to also apply to natural
language data.

The goal of our experiments is to unveil how the two types of learning evolve when LLMs are trained
or fine-tuned over datasets. Specifically, we hope to understand the learning dynamics, i.e. when
memorization begins and when generalization ends throughout repeated exposition to the training
data and how the model behaves. Figure 1(a) shows how an LLM’s learning evolves when trained
over a dataset generated by an example formal grammar. The differences in the progression of loss
curves for “training”, “test”, and “random” sequences show that both types of learning are involved
and the interplay between them. Memorization (learning by rote) of training data begins at epoch six;
when training and test data curves diverge. Improvement in generalization (learning by understand-
ing) ends at epoch ten; when test data reaches its minimum loss. The extent to which recollection of
training data is based on memorization can be estimated by subtracting the recollection that can be
attributed to generalization as shown in Figure 1(b).

In order to obtain a comprehensive understanding of the learning processes in LLMs, we perform
an extensive set of experiments over pretrained models from different families (Pythia, Llama, and
Mistral) with parameter counts spanning more than an order of magnitude. We use data generated
from formal grammars different distributions, vocabularies and string structures.

In all cases, we observed similar learning dynamics over repeated training iterations (epochs). We
consistently observe that models frequently begin the memorization phase before they end the gen-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

eralization phase. But, the exact start and end of the phases as well as their relative impact in
generating (recollecting) tokens varies based on the models, training dataset sizes and their underly-
ing grammars. We further analyze the interplay between the two types of learning, motivated by the
following questions:

Q1: Can we determine whether and to what extent a trained model has memorized a given training
data sequence? Many prior studies attempted to answer this question based only on the extent
to which the trained model can recollect the tokens in the given sequence. We show why it is
impossible to make such determinations, and how the prior works erred by failing to distinguish
cleanly between the two types of learning. Specifically, due to differences in their training, it is
possible for two models to recollect tokens in a sequence to the same extent, with one having begun
the memorization phase, while the other has not started memorization. Beyond quantifying token
recollection, quantifying the memorization of a model requires quantifying its generalization.

Q2: How does learning by rote affect learning with understanding and vice versa? While we
observe that learning by rote and learning with understanding do co-exist, once the generalization
phase ends, additional training iterations improve one at the expense of the other. Specifically,
after the generalization phase, more memorization comes at the cost of generalization performance.
Equally striking, however, is that once a training dataset has been memorized, switching to and
training over a new dataset (with the same underlying syntax) leads to forgetting of the previously
memorized data.

Q3: Are some training datasets easier to generalize or memorize than others? To address this
question, we compare the generalization and memorization performance of models over datasets
drawn from grammars with the same syntax and alphabet, but with different entropy values, i.e.,
different probability distributions over generated sequences. We find that models generalize better on
grammars with lower entropy, i.e., they are easier to learn with understanding, but models memorize
better on grammars with higher entropy, i.e., they are easier to memorize by rote.

Our work stands in contrast to many related works that solely focused on LLM memorization from
the perspective of quantifying privacy risks. Some of the phenomena we unveil as we tackle the
above questions are surprising and unexpected. Many have significant implications for quantify-
ing memorization, understanding how memorization works, and estimating the risks of memoriz-
ing different types of training data. For many of the observed phenomena, we do not have clear
(mechanistic) explanations as of why they happen. But, we feel it is important to report them to
the community, as they rule out certain theories related to memorization and can give rise to new
ones. We also think that our findings can motivate further studies that will increase our foundational
understanding of LLMs’ cognitive abilities.

Related work: The topic of memorization has received great attention in the context of LLMs that
are trained on large “internet-scale” data (Song & Shmatikov, 2019; Carlini et al., 2019; Huang
et al., 2022; Zhang et al., 2021; Biderman et al., 2023a; Mattern et al., 2023; Lukas et al., 2023;
McCoy et al., 2023). Most of these works propose a definition of memorization to test whether
the model can generate a given string (present in the training data) using particular prompts or
prefixes. While they subtly differ in how exactly they operationalize a measure of memorization, at a
higher level, all these works are concerned with answering the “why” question around memorization,
e.g. why should memorization be a practical concern? To this end, these works show compelling
examples of cases where memorization can hurt (e.g. privacy leaks via reconstruction (Carlini et al.,
2021) or membership inference (Mattern et al., 2023)). Similarly, there is also a case to be made
for memorization being desirable in cases where the goal is to generate facts and reduce LLM
hallucinations. Grounding the generation by LLMs in some verified training data sources can be an
effective way to generate trustworthy information (Li et al., 2023; Borgeaud et al., 2022; Khandelwal
et al., 2019; Tay et al., 2022; AlKhamissi et al., 2022; Petroni et al., 2019; Guu et al., 2020; Haviv
et al., 2022).

We differ from existing works in a key aspect. Our goal is to build a foundational understanding
of how these models memorize and how memorization interplays with generalization. Thus, we do
not engage with the question of memorization being desirable or undesirable, and rather provide
observations on how memorization happens at an input-output level. Our work adds to the nascent
literature focused on building a better scientific understanding of memorization in LLMs (e.g. (Tiru-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

mala et al., 2022; Jagielski et al., 2022; Carlini et al., 2022; Kharitonov et al., 2021; Huang et al.,
2024; Schwarzschild et al., 2024)).

2 PRELIMINARIES AND EXPERIMENTAL SETUP

In order to create a “clean” experimental setup, we use strings generated by probabilistic formal
grammars to train and test LLMs. In contrast to natural language, probabilistic grammars provide
us with a clearly defined syntax and control over all aspects of the data generation process. A
grammar defines a probability distribution over strings. Given an alphabet T for a grammar G, the
probability distribution PG over strings from the alphabet T is PG : T ∗ → [0, 1], where T ∗ is the
set of strings generated by T . We consider here only grammars that generate finite-length strings.
In our experiments, we use training and test sets Dtrain, Dtest ∼ PG sampled from PG to train and
evaluate models.

We call ℓ = |T | the size of the alphabet over tokens T . The alphabet T of a grammar is a subset of
a much larger vocabulary of all tokens V used by an LLM, T ⊂ V . Tokens in an LLM’s vocabulary
can range from single characters to entire words, and its size spans from tens of thousands to a few
hundred thousand tokens. In our experiments, we use token alphabets corresponding to lowercase
characters in the Latin alphabet and integer numbers. We often refer to the elements of the alphabet
as characters, even though they are technically tokens.

In Section 5, we discuss how the entropy of a grammar affects the ability of an LLM to recollect
it by rote or with understanding. The entropy H(G) of a grammar G is defined as the entropy
of the probability distribution over all strings that can be generated by the grammar (Cover, 1999;
Carrasco, 1997); formally

H(G) = −
∑
s∈T∗

PG(s) logPG(s).

Data-generation process. In our experiments, we use two types of grammars for generating our
strings for training and testing: random and hierarchical grammars, denoted as Grandom and Ghierarchy,
respectively (formal definition is in Appendix A.2). In a random grammar, each token in a string s is
independently sampled according to a probability distribution over the alphabet T . In the majority of
our experiments, we use the uniform probability distribution and sample strings of length |s| = 64.
We use alphabets T consisting of Latin lowercase characters T ⊂ {a, . . . , z}, with alphabet sizes
ℓ ∈ {2, 7, 26}, and if not stated differently, ℓ = 26 by default. Note that our random grammar is a
probabilistic regular grammar.

The hierarchical grammar is a probabilistic context-free grammar with 21 production rules, grouped
into 4 hierarchy levels of non-terminal symbols. Each non-terminal in the grammar has two as-
sociated production rules. The grammar has alphabet size ℓ = 9 over numerical tokens T =
{1, 2, 3, . . . , 9}. It generates strings s with a fixed length |s| = 72, which we sample by expanding
the probabilistic production rules. Out of 972 ≈ 1069 possible strings, the grammar generates around
236 ≈ 1011 valid strings. We can change the probability distribution over the generated strings by
“skewing” the probabilities of the production rules. In particular, we can increase the probability p
of the first production rule for each symbol, while decreasing the probability 1 − p of the second
production rule. If not stated differently, we use uniform probabilities p = 0.5 for the production
rules. More details can be found in Appendix A.2 and example strings in Appendix A.3.

Training and evaluation. Given a dataset of strings D, we train a causal (autoregressive) language
model M on D. During training, we minimize the cross-entropy loss for predicting the next token
in the string s ∈ D. We denote by PM(si|s[1,i−1]) the probability that M assigns to the token si at
the i-th position of the string s given the prefix tokens s[1,i−1]. The cross-entropy loss of the LLM
on D is defined as

Loss(M, D) ≜ − 1

|D|
∑
s∈D

1

|s|

|s|∑
i=1

logPM(si | s[1,i−1]). (1)

In this paper, we study memorization by primarily evaluating models based on their training and
test loss Loss(M, Dtrain) and Loss(M, Dtest) on training and test data Dtrain and Dtest, respectively.
All reported results are aggregates over 5 runs training and test sets sampled with different random
seeds We highlight one standard deviation in the plots.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

0 20 40 60 80 100
0

2

4

6

8

10

12

14
n = 8
n = 64
(9, 3.24)
(20, 3.15)
(11, 3.42)
(14, 3.29)

Epoch

Lo
ss

(a) Grandom, Pythia-1B

0 20 40 60 80 100
0

2

4

6

8

10

12

14
n = 8
n = 64
(6, 4.51)
(16, 3.20)
(11, 3.55)
(14, 3.34)

Epoch

Lo
ss

(b) Grandom, Llama3-8B

0 20 40 60 80 100
0

2

4

6

8

10

12

14
n = 8
n = 64
(5, 4.36)
(16, 3.15)
(9, 3.48)
(11, 3.29)

Epoch

Lo
ss

(c) Grandom, Mistral-Nemo-12B

0 20 40 60 80 100
0
1
2
3
4
5
6
7
8
9 n = 8

n = 64
(9, 1.46)
(25, 0.59)
(22, 0.78)
(49, 0.51)

Epoch

Lo
ss

(d) Ghierarchy, Pythia-1B

0 20 40 60 80 100
0
1
2
3
4
5
6
7
8
9 n = 8

n = 64
(6, 1.33)
(13, 0.47)
(10, 0.72)
(17, 0.46)

Epoch

Lo
ss

(e) Ghierarchy, Llama3-8B

0 20 40 60 80 100
0
1
2
3
4
5
6
7
8
9 n = 8

n = 64
(4, 1.12)
(10, 0.48)
(8, 0.69)
(16, 0.45)

Epoch

Lo
ss

(f) Ghierarchy, Mistral-Nemo-12B

Figure 2: Training and test loss for different models on the random and hierarchical grammars.
We show training (solid lines) and test loss (dashed lines) for training dataset sizes of n = 8 and
n = 64. Cross markers indicate the start of memorization (i.e. the start of the divergence between
training and test loss), and triangular markers the end of generalization (i.e. the lowest test loss).
Each epoch corresponds to one pass over the dataset, and we fit the entire training set into a single
batch (for n = 64 via gradient accumulation). We observe two phases: during the Generalization-
Phase both the training and test loss are similar and decrease together, then they diverge during the
Memorization-Phase where the training loss decreases further, whereas the test loss increases.

LLMs: We use Pythia (Biderman et al., 2023b), Llama-3 (Dubey et al., 2024) and Mistral NeMo1

families. We use the 1B variant for the the Pythia family, the 8B variant for the Llama-3 family and
the 12B variant for Mistral NeMo (only available variant). We refer to each model by its parameter
count, e.g., Pythia-1B or Llama3-8B. We choose these models, since they represent popular, modern
architectures, and span a wide spectrum of parameter counts (more than an order of magnitude).

3 CHARACTERIZING MEMORIZATION AND ITS CONNECTION TO
GENERALIZATION

In this section, we first characterize learning dynamics of an LLM in terms of memorization and gen-
eralization phases by carefully comparing the LLM’s performance on training and test data. Then,
we discuss the connection of our work with previous work that attempts to quantify memorization.

3.1 DYNAMICS OF MEMORIZATION AND GENERALIZATION

We disentangle learning by rote vs. learning with understanding by characterizing the training dy-
namics of an LLM at the memorization and the generalization phases, respectively. In particular,
we ask two questions, that we empirically answer through training different LLMs on the random
and the hierarchical grammars and observing their ability to predict tokens from the training and test
datasets generated by the grammar used for their training.

In Figure 2, we see the training and the test loss of different models exposed to different grammars,
as a function of the training epochs. We observe that in the initial training epochs, the training and
test loss of an LLM decreases similarly. This implies that, albeit never seeing the test data, the LLM
demonstrates equal ability to generate the next token regardless of whether the prefix is from the

1Mistral NeMo blog post

5

https://mistral.ai/news/mistral-nemo/

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

training or the test dataset. Hence, the LLM can transfer its knowledge to the unseen test set. During
this period, we say that the LLM is recollecting tokens with understanding.

When does memorization (learning by rote) start? We say that the memorization starts at the
epoch where the test loss starts diverging from the training loss. At the point of this divergence,
the LLM starts to recollect tokens by rote, and it can no longer generate test strings as accurately
as training strings. In Figure 2, we highlight the start of the memorization phase with a cross mark.
The markers (blue and orange crosses) show the points at which the test loss exceeds the training
loss by more than 5%, i.e. the point after which Loss(M,Dtest)

Loss(M,Dtrain)
> 1.05.

When does generalization (learning with understanding) end? As we discussed above, memo-
rization starts at the point where the test loss of the LLM diverges from its training loss. However,
the test loss may still decrease in epochs following this point of divergence. We say that general-
ization ends at the epoch when the test loss reaches its minimum; after this epoch, test loss never
decreases. In Figure 2, we highlight the points with the lowest test loss with triangle markers.

Analyzing memorization and generalization phases. We study the epoch when an LLM reaches
(resp. ends) memorization (resp. generalization) and the corresponding test loss for different training
sizes across different models and grammars in Figure 2. Our observations are the following:

• Overlap between the two phases. In different models and grammars, the generalization phase
and memorization phase may overlap (Figure 1a and 2). During these overlapping epochs, the
total recollection of an LLM is partly with understanding and partly by rote. It is only before the
start of memorization, that the LLM learns with understanding, and after the end of generalization
that the LLM learns by rote.

• Varying Training Size Increasing training size results in delayed memorization and longer gen-
eralization, and the corresponding test loss is lower – the observation holds across models and
grammars. For example, in Pythia-1B model on the random grammar, memorization starts at
epoch 9 with training size n = 8, compared to epoch 20 with n = 64, and the corresponding test
loss is 3.24 for n = 8 and 3.15 for n = 64. For the hierarchical grammar, memorization starts at
epoch 9 for n = 8, but at epoch 25 for n = 64, and the corresponding test loss is 1.46 for n = 8
and 0.59 for n = 64. A similar observation holds at the end of generalization.

• Different Models. The start of memorization and end of generalization may vary among models
for the same grammar and training size. For example, in the random grammar and n = 8, Pythia-
1B, Llama3-8B, and Mistral-Nemo-12B start memorization at epoch 9, 6, and 5, respectively,
and end generalization at epoch 20, 16, and 16, respectively. Thus, Pythia-1B model, takes more
epochs to start memorization and end generalization compared to other models. The correspond-
ing test loss at these two points of interest also vary among models. These observation leads us to
carefully inspect if similar recollection of tokens by different models may occur where one model
is in memorization phase while another is in generalization phase, which we discuss next.

3.2 QUANTIFYING MEMORIZATION IN PRACTICE

Quantifying memorization and determining whether a model has memorized a string has been the
focus of many prior studies (Biderman et al., 2023a; Carlini et al., 2022; Tirumala et al., 2022). All
these studies use the recollection accuracy of tokens in order to define their memorization measures.
We claim below that such measures do not provide sufficient insight into memorization and may
lead to wrong conclusions. Then, we open the floor to discuss some possible alternatives.

Existing memorization measures. Carlini et al. (2022) claim that an LLM has memorized a string
when it can successfully recollect the next 50 tokens given a prefix. This leads to an underestimation
of memorization, as it takes a very long time for an LLM to predict correctly 50 consecutive tokens.
On the other hand, Tirumala et al. (2022) claim that a single token in a string is memorized when
an LLM can correctly predict it given some context. This definition is much more liberal, leading
to an overestimation of memorization, as models can predict many individual tokens correctly via
understanding, rather than by rote. Using the right number of tokens to be predicted correctly is
a parameter that is hard to set a priori. These examples illustrate that measuring memorization is
tricky, as it is easy to be either overly conservative or overly liberal, and it is not clear what the right
parameter setting should be.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

0 5 10 15 20 25 30
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

n = 8
n = 64
(25, 0.59)

Epoch

Lo
ss

(a) Pythia-1B

0 5 10 15 20 25 30
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

n = 8
n = 64
(13, 0.47)

Epoch

Lo
ss

(b) Llama3-8B

0 5 10 15 20 25 30
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

n = 8
n = 64
(10, 0.48)

Epoch

Lo
ss

(c) Mistral-Nemo-12B

Figure 3: Two models can achieve the same loss on a string, with memorization or general-
ization. We show a zoomed-in version of the loss on the hierarchical grammar (last row) from
Figure 2. Solid lines denote training loss and dashed lines test loss. Horizontal lines show the loss
level at which memorization starts for the larger n = 64 dataset, and where it intersects with the
training loss on the smaller n = 8 dataset.

The impossibility of estimating memorization based on recollection. In fact, we claim that
merely looking into recollection of tokens without differentiating between two modes of learning:
learning by rote and with understanding, makes it impossible to decide memorization. To demon-
strate this, we show an example of two LLMs that correctly recollect the same amount of tokens,
while being in different phases; one is in the generalization and another is in the memorization
phase. This example is illustrated in Figure 3. Here, we use two training sizes (n = 8 and n = 64),
and thus, one LLM witnesses more training data than another. We observe that for an identical
training loss, such as 0.6 for Pythia-1B, the LLM trained with n = 8 is recollecting via rote (test
loss diverges to ∼ 0.8), while the LLM with n = 64 recollects with understanding (test loss remains
close to 0.6) at the point where the n = 64 model starts into the Memorization-Phase. The same
observation holds for all three models. Therefore, recollection over training strings cannot be the
sole indicator to accurately estimate memorization, one needs to differentiate between recollection
by rote and with understanding.

An alternative quantification of memorization. Given the above discussion, we claim that in order
to quantify memorization one needs to take into consideration both the training loss and test loss of
the LLM at any training epoch. Based on this intuition, one candidate measure can be:

memorization(M, Dtrain, Dtest) = 1− Loss(M, Dtrain)

Loss(M, Dtest)
,

where Loss(M, Dtest) > 0 and Loss(M, Dtest) ≥ Loss(M, Dtrain). Intuitively, as long as both
losses are similar, the memorization is negligible; memorization increases with an increasing differ-
ence between the test and the training loss. Since, in practice, the denominator is always greater or
equal to the numerator, our measure takes values in [0, 1].

One can think of the above measure as a suite of measures; Instead of using loss to quantify mem-
orization, other performance metrics (such as accuracy) can also be used with the same high-level
interpretation: memorization is the difference of the LLM’s performance between training and test
datasets computed using appropriate performance metrics.

Such a family of measures come with their own set of shortcomings. These measures depend on the
model’s performance on train and test data. While we have access to an unseen test set from the same
distribution in our experimental setting, it may be more challenging in practical settings as one must
generate test and training data to compute such measures. We think that defining and computing
such measures in practice will provide new insights regarding the dynamics of memorization of
LLMs and leave it as a direction for future work.

4 INTERPLAY BETWEEN LEARNING BY ROTE VS. WITH UNDERSTANDING

In the previous section we observed that with repeated exposure to a training set, LLMs first gen-
eralize to the distribution of the dataset, before starting to memorize the training data. Importantly,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

0 50 100 150 200
0
2
4
6
8

10
12

Train 1
Train 2
Test

Epoch

Lo
ss

(a) Grandom, Pythia-1B

0 50 100 150 200
0
2
4
6
8

10
12

Train 1
Train 2
Test

Epoch

Lo
ss

(b) Grandom, Llama3-8B

0 50 100 150 200
0
2
4
6
8

10
12

Train 1
Train 2
Test

Epoch

Lo
ss

(c) Grandom, Mistral-Nemo-12B

0 50 100 150 200
0

0.5
1

1.5
2

2.5
3

3.5
4

Train 1
Train 2
Test

Epoch

Lo
ss

(d) Ghierarchy, Pythia-1B

0 50 100 150 200
0

0.5
1

1.5
2

2.5
3

3.5
4

Train 1
Train 2
Test

Epoch

Lo
ss

(e) Ghierarchy, Llama3-8B

0 50 100 150 200
0

0.5
1

1.5
2

2.5
3

3.5
4

Train 1
Train 2
Test

Epoch

Lo
ss

(f) Ghierarchy, Mistral-Nemo-12B

Figure 4: Loss for different sets during sequential memorization. The blue and green curves
denote training datasets Dtrain,1 and Dtrain,2, respectively, that each model is trained on sequentially,
and the green curve denotes the test set Dtest. As models are trained on each dataset, they initially
generalize to its distribution, before memorizing it and losing the ability to predict the distribution.
Additionally, memorizing a new dataset destroys the ability to recall a previously memorized dataset.

as models enter the Memorization-Phase, their loss on the test data increases, i.e. their performance
on the test data deteriorates. In this section, we investigate the interplay between memorization and
generalization in more detail. In particular, we are interested in understanding whether in addition
to recall by rote harming recall with understanding, recall with understanding can also harm recall
by rote.

To investigate this question, we sample two training sets Dtrain,1, Dtrain,2, as well as a test set Dtest
from distribution PG. Then, we train a model M first on Dtrain,1 and then on Dtrain,2, for 100 epochs
each, such that it memorizes them one after the other. Additionally, we measure M’s loss on each
of the datasets. We use 8 samples for the training datasets, 10 samples for the random test set and
100 samples for the test set from the hierarchical grammar.

Figure 4 shows the results of sequentially training models on different datasets sampled from the
random and the hierarchical grammars. For each model M we observe that as it is trained on the
first dataset Dtrain,1, its training loss converges to 0, whereas its test loss increases after the end
of the Generalization-Phase. As we switch and train M on the second dataset Dtrain,2, its loss on
Dtrain,2 decreases as for Dtrain,1. The test loss also initially decreases again, reaching its previous
level at the end of the Generalization-Phase on Dtrain,1, before starting to rise again as M enters the
Memorization-Phase on Dtrain,2. Interestingly, however, the loss on Dtrain,1, which was previously at
0 starts to rise as M is trained on Dtrain,2 and, after plateauing close to the lowest test loss, rises and
closely matches the test loss. In other words, as M memorizes the new dataset Dtrain,2, it briefly re-
generalizes to Dtest and to Dtrain,1, before it forgets what it had previously memorized about Dtrain,1
while memorizing Dtrain,2.

These results show that memorization and generalization are closely linked. Memorizing data from a
particular distribution destroys the ability to generalize to that distribution. Conversely, however, (re-
)generalization, and memorization of different data also erase previously memorized information.
This result is surprising and points to potential differences between human and machine cognition:
for example, humans can both memorize poems while also being able to write new ones. Our results
indicate that this may be more difficult for LLMs.

Practical Implications. Our findings here show that we can trigger the forgetting of previously-
memorized information, by memorizing new data from the same distribution. For example, one way

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

0 20 40 60 80 100

0

2

4

6

8

10
ℓ = 26
ℓ = 7
ℓ = 2
(11, 3.42)
(14, 2.00)
(43, 0.73)

Epoch

Lo
ss

(a) Varying ℓ, Pythia-1B

0 20 40 60 80 100

0
2
4
6
8

10
12
14
16 ℓ = 26

ℓ = 7
ℓ = 2
(11, 3.55)
(12, 2.21)
(12, 0.86)

Epoch

Lo
ss

(b) Varying ℓ, Llama3-8B

0 20 40 60 80 100

0

2

4

6

8

10

12 ℓ = 26
ℓ = 7
ℓ = 2
(9, 3.48)
(11, 2.08)
(18, 0.73)

Epoch

Lo
ss

(c) Varying ℓ, Mistral-Nemo-12B

0 20 40 60 80 100

0

2

4

6

8

10 h = H 26
h = H 7
h = H 2
(11, 3.42)
(13, 2.06)
(13, 0.73)

Epoch

Lo
ss

(d) Varying h, Pythia-1B

0 20 40 60 80 100
0
2
4
6
8

10
12
14 h = H 26

h = H 7
h = H 2
(11, 3.55)
(11, 2.15)
(9, 0.86)

Epoch

Lo
ss

(e) Varying h, Llama3-8B

0 20 40 60 80 100
0

2

4

6

8

10

12 h = H 26
h = H 7
h = H 2
(9, 3.48)
(9, 2.08)
(10, 0.76)

Epoch

Lo
ss

(f) Varying h, Mistral-Nemo-12B

0 20 40 60 80 100
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

p = 0.5
p = 0.75
p = 0.9
(22, 0.78)
(25, 0.64)
(29, 0.45)

Epoch

Lo
ss

(g) Varying p, Pythia-1B

0 20 40 60 80 100
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

p = 0.5
p = 0.75
p = 0.9
(10, 0.72)
(13, 0.63)
(15, 0.48)

Epoch

Lo
ss

(h) Varying p, Llama3-8B

0 20 40 60 80 100
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

p = 0.5
p = 0.75
p = 0.9
(8, 0.69)
(9, 0.58)
(9, 0.41)

Epoch

Lo
ss

(i) Varying p, Mistral-Nemo-12B

Figure 5: Loss when varying the entropy of the training dataset. We vary the entropy of the train-
ing data by changing the alphabet size ℓ (top row), the entropy level h of the probability distribution
by oversampling “a” (middle row), and the skewness p of the hierarchical grammar by modifying
the probability of the production rules (bottom row). Solid lines indicate the loss on the training
data, and dashed lines the loss on the test data from the same distribution. Models generalize better
to lower entropy strings but memorize them more slowly than higher entropy strings.

to make a trained model forget cryptographic keys of a certain format might be to memorize new
randomly generated keys with a similar format.

5 ARE SOME DATASETS EASIER TO GENERALIZE/MEMORIZE THAN OTHERS?

So far, the distributions PG induced by the random and hierarchical grammar were the same. An
interesting question, however, is how the distribution PG that data is sampled from affects a model’s
ability to learn it by understanding and by rote. One factor that is closely associated with memoriza-
tion is entropy (i.e. via compressibility), and here we study how it affects both memorization and
generalization. In a nutshell, we make the following observations: 1) the entropy of a grammar’s
distribution strongly affects a model’s ability to learn it by understanding and by rote, and 2) lower
entropy distributions are easier to generalize to, but harder to memorize to than higher entropy ones.

To study the impact of entropy on learning, we create distributions based on the random and hierar-
chical grammars that differ in their entropy. For the random grammar, we change the entropy in two
ways: i) we change the size of the alphabet T , using sizes ℓ ∈ 2, 7, 26, and ii) we oversample the
first token (“a”), such that the entropy of the ℓ = 26 distribution matches that of the ℓ = 2 (H2) and
ℓ = 7 (H7) distributions. Note that both reducing the alphabet size and oversampling certain tokens
from the alphabet reduces the entropy of the distribution based on that alphabet. For the hierarchical

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

grammar, we skew the probabilities of the production rules to values p ∈ {0.5, 0.75, 0.9}. Here,
higher values of p correspond to lower entropy. We train models on training sets of size 8 and use
test sets of size 10 for the random grammars and 100 for the hierarchical grammars.

Results. Figure 5 shows the impact of varying the entropy of the distribution in three different ways,
for three different models. As we decrease the entropy of the distribution PG, we consistently ob-
serve that models generalize better to the distribution, i.e. the lowest test loss they achieve decreases
with entropy. On the other hand, strings become easier to memorize as entropy increases. Thus, a
lower-entropy grammar is easier to recall by understanding in the generalization phase, but harder
to recall by rote in the memorization phase, and vice versa.

Practical Implications. Our findings demonstrate that not all strings are equally memorable or
generalizable – in fact, we show that memorability and generalizability is intrinsically related to
the entropy of the distribution from which data is sampled from. Generalizing these findings to
natural language strings remains an open challenge, however, as it is unclear how one would esti-
mate the entropy of such strings. Intuitively, however, our findings imply that less typical strings
(higher entropy), are easier for an LLM to memorize. Our observations also encourage potential
conjectures for how generalization or memorization may be occurring in LLMs – for example, bet-
ter generalization over lower entropy data could be related to their better compressibility, while
better memorization over higher entropy data could be related to length of unique prefixes needed
to recollect the next token.

6 CONCLUDING DISCUSSION

Conclusions: In this paper, we study the phenomenon of learning by rote, i.e. memorization, and
its connection with learning with understanding, i.e. generalization, at a foundational level. We
use strings sampled from random and hierarchical formal grammars to create controlled “labora-
tory” conditions. This data-generation process ensures that 1) the distribution of training data is
well-known and identical between training and test sets, and 2) we have full control over the data-
generation process, which allows us, for instance, to change the entropy of the distribution.

We make a number of intriguing observations, including that models exhibit a Generalization-Phase
and a Memorization-Phase which overlap, that learning by rote destroys generalization, but also that
the inverse is true, and that entropy has a significant impact on the learnability of strings from a
distribution; lower-entropy distributions are easier to learn by understanding, but higher-entropy
strings are easier to learn by rote afterwards. Based on our results, we argue, that determining the
degree of memorization is not possible by measuring only the performance on training strings, since
models can achieve the same level of loss on a dataset using both memorization and generalization.
Instead, measures of memorization must contrast the recollection performance on the training set
with that on an unseen test set from the same distribution.

Our findings have significant implications for studies focusing on quantifying memorization, under-
standing how memorization works, and estimating privacy risks with memorization. Furthermore,
many of our empirical findings cannot be easily explained and the quest for a comprehensive ex-
planatory theory of all our findings raises many open and challenging questions.

Limitations: Our insights on memorization rely on synthetic data generated with formal grammars,
and it is possible that some of the observations might change for real-world data. We also focus on
observing what happens during memorization and generalization, and leave it up to future work to
study the mechanisms responsible for the observed behavior.

REFERENCES

Badr AlKhamissi, Millicent Li, Asli Celikyilmaz, Mona Diab, and Marjan Ghazvininejad. A review
on language models as knowledge bases. arXiv preprint arXiv:2204.06031, 2022.

Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the
dangers of stochastic parrots: Can language models be too big?. In Proceedings of the 2021 ACM
conference on fairness, accountability, and transparency, pp. 610–623, 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Stella Biderman, USVSN Sai Prashanth, Lintang Sutawika, Hailey Schoelkopf, Quentin Anthony,
Shivanshu Purohit, and Edward Raf. Emergent and predictable memorization in large language
models. arXiv preprint arXiv:2304.11158, 2023a.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023b.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Milli-
can, George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, et al.
Improving language models by retrieving from trillions of tokens. In International conference on
machine learning, pp. 2206–2240. PMLR, 2022.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song. The secret sharer:
Evaluating and testing unintended memorization in neural networks. In 28th USENIX Security
Symposium (USENIX Security 19), pp. 267–284, 2019.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data
from large language models. In 30th USENIX Security Symposium (USENIX Security 21), pp.
2633–2650, 2021.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramer, and
Chiyuan Zhang. Quantifying memorization across neural language models. arXiv preprint
arXiv:2202.07646, 2022.

Rafael C. Carrasco. Accurate computation of the relative entropy between stochastic regular gram-
mars. RAIRO-Theoretical Informatics and Applications, 31(5):437–444, 1997.

Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval augmented
language model pre-training. In International conference on machine learning, pp. 3929–3938.
PMLR, 2020.

Adi Haviv, Ido Cohen, Jacob Gidron, Roei Schuster, Yoav Goldberg, and Mor Geva. Understanding
transformer memorization recall through idioms. arXiv preprint arXiv:2210.03588, 2022.

Jie Huang, Hanyin Shao, and Kevin Chen-Chuan Chang. Are large pre-trained language models
leaking your personal information? arXiv preprint arXiv:2205.12628, 2022.

Jing Huang, Diyi Yang, and Christopher Potts. Demystifying verbatim memorization in large lan-
guage models. arXiv preprint arXiv:2407.17817, 2024.

Matthew Jagielski, Om Thakkar, Florian Tramer, Daphne Ippolito, Katherine Lee, Nicholas Carlini,
Eric Wallace, Shuang Song, Abhradeep Thakurta, Nicolas Papernot, et al. Measuring forgetting
of memorized training examples. arXiv preprint arXiv:2207.00099, 2022.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Generalization
through memorization: Nearest neighbor language models. arXiv preprint arXiv:1911.00172,
2019.

Eugene Kharitonov, Marco Baroni, and Dieuwke Hupkes. How bpe affects memorization in trans-
formers. arXiv preprint arXiv:2110.02782, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Daliang Li, Ankit Singh Rawat, Manzil Zaheer, Xin Wang, Michal Lukasik, Andreas Veit, Felix Yu,
and Sanjiv Kumar. Large language models with controllable working memory. In Findings of
the Association for Computational Linguistics: ACL 2023, pp. 1774–1793, Toronto, Canada, July
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.112. URL
https://aclanthology.org/2023.findings-acl.112.

Nils Lukas, Ahmed Salem, Robert Sim, Shruti Tople, Lukas Wutschitz, and Santiago Zanella-
Béguelin. Analyzing leakage of personally identifiable information in language models. arXiv
preprint arXiv:2302.00539, 2023.

Justus Mattern, Fatemehsadat Mireshghallah, Zhijing Jin, Bernhard Schölkopf, Mrinmaya Sachan,
and Taylor Berg-Kirkpatrick. Membership inference attacks against language models via
neighbourhood comparison. In Anna Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki
(eds.), Findings of the Association for Computational Linguistics: ACL 2023, Toronto,
Canada, July 9-14, 2023, pp. 11330–11343. Association for Computational Linguistics, 2023.
doi: 10.18653/v1/2023.findings-acl.719. URL https://doi.org/10.18653/v1/2023.
findings-acl.719.

R Thomas McCoy, Paul Smolensky, Tal Linzen, Jianfeng Gao, and Asli Celikyilmaz. How much
do language models copy from their training data? evaluating linguistic novelty in text generation
using raven. Transactions of the Association for Computational Linguistics, 11:652–670, 2023.

Fabio Petroni, Tim Rocktäschel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, Alexander H Miller,
and Sebastian Riedel. Language models as knowledge bases? arXiv preprint arXiv:1909.01066,
2019.

Alex Reisner. Revealed: The authors whose pirated books are powering generative ai,
2023. URL https://www.theatlantic.com/technology/archive/2023/08/
books3-ai-meta-llama-pirated-books/675063/.

Avi Schwarzschild, Zhili Feng, Pratyush Maini, Zachary C Lipton, and J Zico Kolter. Rethinking
llm memorization through the lens of adversarial compression. arXiv preprint arXiv:2404.15146,
2024.

Congzheng Song and Vitaly Shmatikov. Auditing data provenance in text-generation models. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 196–206, 2019.

Yi Tay, Vinh Tran, Mostafa Dehghani, Jianmo Ni, Dara Bahri, Harsh Mehta, Zhen Qin, Kai Hui,
Zhe Zhao, Jai Gupta, et al. Transformer memory as a differentiable search index. Advances in
Neural Information Processing Systems, 35:21831–21843, 2022.

Kushal Tirumala, Aram Markosyan, Luke Zettlemoyer, and Armen Aghajanyan. Memorization
without overfitting: Analyzing the training dynamics of large language models. Advances in
Neural Information Processing Systems, 35:38274–38290, 2022.

Chiyuan Zhang, Daphne Ippolito, Katherine Lee, Matthew Jagielski, Florian Tramèr, and Nicholas
Carlini. Counterfactual memorization in neural language models. ArXiv, abs/2112.12938, 2021.
URL https://api.semanticscholar.org/CorpusID:245502053.

12

https://aclanthology.org/2023.findings-acl.112
https://doi.org/10.18653/v1/2023.findings-acl.719
https://doi.org/10.18653/v1/2023.findings-acl.719
https://www.theatlantic.com/technology/archive/2023/08/books3-ai-meta-llama-pirated-books/675063/
https://www.theatlantic.com/technology/archive/2023/08/books3-ai-meta-llama-pirated-books/675063/
https://api.semanticscholar.org/CorpusID:245502053

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

A ADDITIONAL DETAILS ON THE EXPERIMENTAL SETUP

A.1 TECHNICAL DETAILS ON THE TRAINING SETUP

Models: In this paper, we use pretrained models of the Pythia (Biderman et al., 2023b), Llama-
3 (Dubey et al., 2024) and Mistral NeMo2 families, with 1B, 8B and 12B parameters, respectively.
We choose these models, since they represent popular, modern architectures, and span a wide spec-
trum of parameter counts (more than two orders of magnitude). Pretrained versions for all models
are publicly available on the Huggingface Model Hub.

Training: We train models to minimize the cross-entropy loss over string s for 100 epochs, with a
single batch per epoch, via gradient accumulation. We use a linearly decaying learning rate schedule
with a learning rate of 10−5 for Pythia-1B and 5 ∗ 10−6 for Llama3-8B and Mistral-NeMo-12B.

A.2 FORMAL GRAMMAR

A formal grammar, more specifically a probabilistic formal grammar, is defined as a quintuple.

G = (N,T ,R, S, P)

where N is the set of non-terminals, T is the set of terminals (equivalently, tokens), R is the set of
production rules, S is the start non-terminal, and P is the set of probabilities on production rules.

Random Grammar. We consider a grammar, namely random grammar, to generate random strings.
The grammar is an example of a probabilistic regular grammar. The production rules of the grammar
are shown below, where T = {t1, t2, . . . , tn}, and N = {S,A}. Each non-terminal has a set of
production rules, where the probability of the rule is shown inside the parenthesis. For example, for
the non-terminal A,

∑n
i=1 pi = 1.

S → A [1]

A → t1 A [p1]

A → t2 A [p2]

· · ·
A → tn A [pn]

Hierarchical Grammar. We consider a hierarchical grammar, which is an example of a proba-
bilistic context free grammar, as shown below. In the grammar, N = {S,A7, A8, . . . , A16} and
T = {1, 2, 3, . . . , 9}. The grammar has four levels of hierarchy: the non-terminals from top to
bottom levels are {A16}, {A13, A14, A15}, {A10, A11, A12}, and {A7, A8, A9}, followed by ter-
minals {1, 2, 3, . . . , 9}. Each non-terminal (except the start non-terminal) has two expansion rules,
consisting of non-terminals from the immediate lower level. Further, the expansion rules are prob-
abilistic, where the sum of probabilities of all expansion rules from a given non-terminal is 1. A
grammar can be balanced or skewed by varying the probability distribution of expansion rules. In
our experiments, we vary the skewness as p = {0.5, 0.75, 0.9}: the probabilities of the two expan-
sion rules are p and 1 − p, respectively. Intuitively, p = 0.5 generates strings of almost uniform
probability, while higher p results in skewing the probability mass to a subset of strings.

2Mistral NeMo blog post

13

https://huggingface.co/EleutherAI/pythia-1b
https://huggingface.co/docs/hub/models-the-hub
https://mistral.ai/news/mistral-nemo/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

S → A16 [1]

A16 → A15 A14 A13 [p]

A16 → A13 A15 A14 [1− p]

A13 → A11 A12 [p]

A13 → A12 A11 [1− p]

A14 → A11 A10 A12 [p]

A14 → A10 A11 A12 [1− p]

A15 → A12 A11 A10 [p]

A15 → A11 A12 A10 [1− p]

A10 → A7 A9 A8 [p]

A10 → A9 A8 A7 [1− p]

A11 → A8 A7 A9 [p]

A11 → A7 A8 A9 [1− p]

A12 → A8 A9 A7 [p]

A12 → A9 A7 A8 [1− p]

A7 → 3 1 2 [p]

A7 → 1 2 3 [1− p]

A8 → 6 5 4 [p]

A8 → 6 4 5 [1− p]

A9 → 9 8 7 [p]

A9 → 8 7 9 [1− p]

A.3 EXAMPLES OF STRINGS USED IN THE PAPER

Alphabet and distribution Strings
2 characters, uniform bbabbabbababbabaaabbababaaaababb
7 characters, uniform efceecffdeaggdebbbffddbdabaafaff

26 characters, uniform pwjqshtulrcxxlpegessmognchaatauv

26 characters, H2 aaaaaaaaaagaaaaaaaaaaaaaaaaaaaaa
26 characters, H7 bqadhakmagausabaaaiiaaaaaaaajalp

Table 1: [Examples of random strings used in the paper.] We show the first 32 tokens/characters.

Table 1 shows examples of strings sampled from the random grammar used in the paper. Each
character is tokenized individually.

First production rule probability Strings
p = 0.5 312645879987312654879312654645123879312879...
p = 0.75 654312987645987123123879654654312987312879...
p = 0.9 654987312654312987312987654645312987312987...

Table 2: [Examples of strings sampled from the hierarchical grammar.]

Table 2 shows examples of strings sampled from the hierarchical grammar used in the paper. Each
character is tokenized individually.

14

	Introduction
	Preliminaries and experimental setup
	Characterizing memorization and its connection to generalization
	Dynamics of Memorization and Generalization
	Quantifying memorization in practice

	Interplay between learning by rote vs. with understanding
	Are some datasets easier to generalize/memorize than others?
	Concluding Discussion
	Additional details on the experimental setup
	Technical details on the training setup
	Formal Grammar
	Examples of strings used in the paper

