
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

INTERPRETABLE HIERARCHICAL CONCEPT REASON-
ING THROUGH GRAPH LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Concept-Based Models (CBMs) are a class of deep learning models that provide
interpretability by explaining predictions through high-level concepts. These
models first predict concepts and then use them to perform a downstream task.
However, current CBMs offer interpretability only for the final task prediction,
while the concept predictions themselves are typically made via black-box neural
networks. To address this limitation, we propose Hierarchical Concept Memory
Reasoner (H-CMR), a new CBM that provides interpretability for both concept and
task predictions. H-CMR models relationships between concepts using a learned
directed acyclic graph, where edges represent logic rules that define concepts in
terms of other concepts. During inference, H-CMR employs a neural attention
mechanism to select a subset of these rules, which are then applied hierarchically
to predict all concepts and the final task. Experimental results demonstrate that H-
CMR matches state-of-the-art performance while enabling strong human interaction
through concept and model interventions. The former can significantly improve
accuracy at inference time, while the latter can enhance data efficiency during
training when background knowledge is available.

1 INTRODUCTION

Concept-Based models (CBMs) have introduced a significant advancement in deep learning (DL) by
making models explainable-by-design (Koh et al., 2020; Alvarez Melis & Jaakkola, 2018; Chen et al.,
2020; Espinosa Zarlenga et al., 2022; Mahinpei et al., 2021; Debot et al., 2024; Barbiero et al., 2023;
Poeta et al., 2023; Dominici et al., 2024; Vandenhirtz et al., 2024; Espinosa Zarlenga et al., 2023;
Havasi et al., 2022). These models integrate high-level, human-interpretable concepts directly into DL
architectures, bridging the gap between black-box neural networks and transparent decision-making.
One of the most well-known CBMs is the Concept Bottleneck Model (CBNM) (Koh et al., 2020),
which first maps an input (e.g. an image) to a set of human-understandable concepts (e.g. "pedestrian
present," "danger in front") using a neural network and then maps these concepts to a downstream task
(e.g. "press brakes") via a linear layer. The predicted concepts serve as an interpretable explanation
for the final decision (e.g. "press brakes because there is a danger in front"). Considerable research
has focused on ensuring CBMs achieve task accuracy comparable to black-box models. Some CBMs
(Espinosa Zarlenga et al., 2022; Mahinpei et al., 2021; Debot et al., 2024; Barbiero et al., 2023) are
even known to be universal classifiers (Hornik et al., 1989); they match the expressivity of neural
networks for classification tasks, regardless of the chosen set of concepts.

While CBMs enhance interpretability at the task level, their concept predictions remain opaque,
functioning as a black-box process. Most CBMs model the concepts as conditionally independent
given the input (e.g. Figure 1a), meaning any dependencies between them must be learned in an
opaque way by the underlying neural network (Koh et al., 2020; Alvarez Melis & Jaakkola, 2018;
Chen et al., 2020; Espinosa Zarlenga et al., 2022; Mahinpei et al., 2021; Debot et al., 2024; Barbiero
et al., 2023). In contrast, some existing approaches attempt to capture relationships between concepts
in a structured way (Dominici et al., 2024) (e.g. Figure 1b). However, the current approaches do not
really provide interpretability: while they reveal which concept predictions influence others, they do
not explain how these influences occur. For instance, one can determine that ’pedestrian present’ has
some influence on ’danger in front,’ but not the exact nature of this influence.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

x C3

C2

C1

y

Concepts TaskInput

(a) CMR (Debot et al., 2024)

x C2

C1 C3 y

Concepts TaskInput

(b) CGM (Dominici et al., 2024)

x C2

C1 C3 y

Concepts TaskInput

(c) H-CMR (ours)

Figure 1: Comparison of example CBMs. Blue and black edges are interpretable and black-box
operations, respectively. (a) Some approaches model conditionally independent concepts with
interpretable task inference. (b) Others learn a hierarchy of concepts with black-box task inference.
(c) Only our approach learns a hierarchy with interpretable inference for both concepts and task.

In this paper, we introduce Hierarchical Concept Memory Reasoner (H-CMR) (Figure 1c), the first
CBM that is both a universal classifier and provides interpretability at both the concept and task
levels. H-CMR learns a directed acyclic graph (DAG) over concepts and tasks, which it leverages for
inference. H-CMR employs neural rule generators that produce symbolic logic rules defining how
concepts and tasks should be predicted based on their parent concepts. These generators function as
an attention mechanism between the input and a jointly learned memory of logic rules, selecting the
most relevant rules for each individual prediction. Once the rules are selected for a specific input, the
remaining inference is entirely interpretable for both concepts and tasks, as it follows straightforward
logical reasoning. This means the human can inspect how parent concepts exactly contribute to their
children. By combining graph learning, rule learning, and neural attention, H-CMR provides a more
transparent and structured framework for both concept predictions and downstream decision-making.

Our experiments demonstrate that H-CMR achieves state-of-the-art accuracy while uniquely offering
interpretability for both concept and task prediction. This interpretability enables strong human-
AI interaction, particularly through interventions. First, humans can do concept interventions at
inference time, correcting mispredicted concepts. Unlike in typical CBMs, which model concepts
as conditionally independent, these interventions are highly effective: correcting one concept can
propagate to its dependent concepts, potentially cascading through multiple levels. Second, humans
can do model interventions at training time, modifying the graph and rules that are being learned,
allowing the human to shape (parts of) the model. We show that this enables the integration of prior
domain knowledge, improving data efficiency and allowing H-CMR to perform in low-data regimes.

We want to stress that H-CMR does not attempt to learn the causal dependencies between concepts in
the data. Instead, H-CMR reveals its internal reasoning process: which concepts does the model use
for predicting other concepts (also known as causal transparency (Dominici et al., 2024)), and how
(interpretability).

2 MODEL

We introduce Hierarchical Concept Memory Reasoner (H-CMR), the first CBM that is a universal
binary classifier providing interpretability for both concept and task predictions. We considered three
main desiderata when designing H-CMR (for more details, see Section 5): interpretability, the ability
for humans to understand how concepts and tasks are predicted using each other; intervenability, the
ability for humans to meaningfully interact with the model; expressivity, a requirement for the model
to be able to achieve similar levels of accuracy as black-box models irrespective of the employed set
of concepts. For simplicity, we only consider concepts in the remaining sections, omitting the task.
The task can be treated similar as the concepts, or separately like in most CBMs (see Appendix A).

2.1 HIGH-LEVEL OVERVIEW

From a high-level perspective, H-CMR consists of three main components (Figure 2): a rule memory,
an encoder, and a decoder. The encoder predicts a small number of concepts and an embedding, and
the decoder selects from the memory a set of logic rules to hierarchically predict all other concepts.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

C3 ← C1 ∧ C2

C3 ← ¬C1

Rules for C3

C4 ← C1 ∧ C3

C4 ← ¬C3

Rules for C4

...

Rules for C5

...

Rules for C6

Implied
Graph

Memory

C2

C1 C3

C4

C5 C6

(a) Example Memory

X

NN

E C1 C2

(b) Example Encoder

Parent
Concepts

Emb.Rules

Rule

Selector

Rule
Symbolic

Execution

Child Concept

(c) Decoder

C1 is False
C2 is True

Emb.
Rules

for C3

C3’s Rule

Selector

C3 ← ¬C1

Symbolic

Execution

C3 is True

(d) Example inference C3

Figure 2: High-level overview of the different components of H-CMR. (a) The memory is com-
partmentalized per concept and implies a DAG over the concepts. (b) The encoder predicts source
concepts and an embedding. (c) The decoder infers each non-source concept from its parent concepts,
the embedding and its rules, by selecting a rule (using a neural network) and then symbolically
executing that rule using the parent concepts. (d) Example of the decoder predicting C3.

As standard in CBMs, concepts are predefined and come with the dataset, and they are supervised,
with labels in the dataset or extracted using Vision-Language Models (Oikarinen et al., 2023a).

Memory. The memory is compartmentalized per concept. For each concept, it stores a set of (learned)
logic rules that define that concept in terms of other concepts, e.g. C3 ← C1 ∧ C2, or C3 ← ¬C1.
This memory implicitly defines a directed acyclic graph (DAG) over the concepts: if a concept Ci

appears in at least one rule defining another concept Cj , then Ci is a parent of Cj . For some concepts,
all associated rules will be "empty" (e.g. Ci ← .), meaning they have no parents. These are the source
concepts of the DAG, which are predicted directly by the encoder rather than inferred via rules.

Encoder. The encoder is a neural network which maps the input to the source concepts and a latent
embedding. Thus, source concepts are directly predicted from the input in the same black-box fashion
done by standard CBMs.1 The latent embedding captures additional contextual information from the
input that may not be captured by the concepts. This preserves the concept-prediction expressivity of
other CBMs, and the task-prediction expressivity of black-box neural networks (see Section 5).

Decoder. The decoder is used to hierarchically perform inference over the concept DAG. At each
step, it predicts a concept using its parent concepts, the latent embedding, and its rules in the memory.
It leverages a neural attention mechanism to select the most relevant rule for the current prediction,
based on the parent concepts and the latent embedding. This rule is then symbolically executed on
the parent concepts to produce the concept prediction.

This approach is designed to handle settings where (i) no graph over concepts is available and must
therefore be learned from data, (ii) rules defining concepts in terms of others are unknown and must
be learned, and (iii) the available concepts alone are insufficient for perfect prediction, requiring
additional contextual information, here exploited through the rule selection and the latent embedding.
While the learned rules may be noisy in settings where concepts are insufficient (i.e. directly applying
all rules may not lead to correct predictions in every case), this is not a problem due to the selection
mechanism, as only the selected rule is required to yield the correct prediction.

2.2 PARAMETRIZATION

In this section, we go into more detail on how the individual components are parametrized. We refer to
Appendix C for H-CMR’s probabilistic graphical model, and Appendix B for more details regarding
the neural network architectures. We explain how these components are used to do inference in
Section 3.

1While standard CBMs do this for all concepts, H-CMR only does this for source concepts.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2.2.1 ENCODER

The encoder directly predicts each source concept Ci and the embedding E from the input x:

p(Ci = 1 | x̂) = fi(x̂), ê = g(x̂) (1)

where each fi and g are neural networks, with the former parametrizing Bernoulli distributions.2 This
deterministic modelling of the embedding E corresponds to a delta distribution.

2.2.2 DECODER

The decoder infers non-source concepts from their parent concepts, the latent embedding and the
rules in the memory, and operates in two steps. First, the parent concepts and the embedding are used
to select a logic rule from the set of rules for that concept. Second, this rule is evaluated on the parent
concept nodes’ values to produce an interpretable prediction. More details on this memory and the
representation and evaluation of rules are given in Section 2.2.3.

The selection of a rule for a concept Ci is modelled as a categorical random variable Si with one
value per rule for Ci. For instance, if there are three rules for C1 and the predicted categorical
distribution for S1 is (0.8, 0.2, 0.0), then this means that the first rule in the memory is selected with
80% probability, the second rule with 20%, and the third with 0%. The logits of this distribution are
parametrized by a neural network that takes the parent concepts and latent embedding as input. For
each non-source concept Ci, the concept prediction is:

p(Ci = 1 | ê, ĉparents(i), r̂i) =
nR∑
k=1

p(Si = k | ê, ĉparents(i))︸ ︷︷ ︸
neural selection of rule k

using parent concepts + emb.

· l(ĉparents(i), r̂i,k)︸ ︷︷ ︸
evaluation of concept i’s rule k

using parent concepts

(2)

with ê the latent embedding, nR the number of rules for each concept, r̂i the set of rules for this
concept, Si the predicted categorical distribution over these rules, and l(ĉ, r̂i,k) the symbolic execution
of rule k of concept i using concepts ĉ (see Section 2.2.3). Intuitively, all the learned rules for Ci

contribute to its prediction, each weighted by the rule probability according to the neural selection.

2.2.3 MEMORY, RULE REPRESENTATION AND RULE EVALUATION

For each concept, H-CMR learns nR rules in its memory, with nR a hyperparameter. The memory
and the representation of rules resemble the approach of Debot et al. (2024).3 For each concept
Ci, the memory contains nR embeddings, each acting as a latent representation of a rule. These
embeddings are decoded using a neural network into symbolic representations of logic rules, enabling
symbolic inference. We consider rule bodies that are conjunctions of concepts or their negations, e.g.
C3 ← C0 ∧ ¬C1 (read "if C0 is true and C1 is false, then C3 is true").

A rule is represented as an assignment to a categorical variable over all possible rules. Explicitly
defining this distribution would be intractable, as there are an exponential number of possible rules.
Instead, we factorize this variable into nC independent categorical variables Ri, each with 3 possible
values corresponding to the role of a concept in the rule. For instance, in C3 ← C0 ∧¬C1, we say C0

plays a positive (R0 = P) role, C1 plays a negative (R1 = N) role, and C2 is irrelevant (R2 = I).

Evaluating a rule on concept predictions follows the standard semantics of the logical connectives.
Using our representation of a rule, this becomes:

l(ĉ, r̂i,k) =

nC∏
j=1

(1[r̂i,k,j = P] · 1[ĉj = 1] + 1[r̂i,k,j = N] · 1[ĉj = 0]) (3)

where nC is the number of concepts, l(·) is the logical evaluation of a given rule using the given
concepts ĉ, and r̂i,k,j is the role of concept j in that rule (positive (P), negative (N) or irrelevant (I)).

Decoding each rule embedding into this symbolic representation (i.e. assignments to nC categorical
variables Ri) happens in two steps, and is different from Debot et al. (2024). First, a neural network

2We abbevriate the notation for assignments to random variables, e.g. x̂ means X = x̂.
3Note that their rules define tasks in terms of concepts. Ours also define concepts in terms of each other.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

C0

C1 C3

C2

(a) All possible edges allowed by
the node priorities (O).

C0

C1 C3

C2

(b) Example graph imposed by un-
adjusted rules (R′).

C0

C1 C3

C2

(c) Example DAG imposed by ad-
justed rules (R).

Figure 3: Example of H-CMR’s learned DAG over concepts as defined by its learned rules. The
learned node priority vector O (i.c. O0 < O1 < O2 < O3) enforces a topological ordering of the
nodes, guaranteeing that the learned graph is a DAG.

maps each rule embedding to the logits for nC categorical distributions R′
i. Then, to ensure that

the rules form a DAG, we must prevent cyclic dependencies. For instance, we should not learn
conflicting rules such as C1 ← C0 and C0 ← C1, or C1 ← C1. To enforce this constraint, we draw
inspiration from Massidda et al. (2023), defining a learnable node priority vector which establishes a
topological ordering over concepts: higher-priority concepts are not allowed to appear in the rules of
lower-priority concepts, thereby preventing cycles. We achieve this by using the node priorities to
modify the categorical distributions R′

i, obtaining the to-be-used distributions Ri. Specifically, we
make any rule that violates the ordering impossible, ensuring its probability is zero. Let Oi be the
node priority of concept i, then:

∀r ∈ {P,N} : p(Ri,k,j = r) = 1[Oj > Oi] · p(R′
i,k,j = r) (4)

p(Ri,k,j = I) = 1[Oj > Oi] · p(R′
i,k,j = I) + 1[Oj ≤ Oi] (5)

where 1[·] is the indicator function, and p(Ri,k,j) is the categorical distribution of the role of concept
j in rule k for concept i corrected with the node priorities O, which are delta distributions. Figure
3 gives a graphical example. The employed rules in the memory are assignments to these random
variables, which are used in Equation 3. During training, these assignments are obtained by sampling
from this distribution (see Section 4). During inference, we take the most likely roles (see Section 3).

3 INFERENCE

For the derivation of the equations below from H-CMR’s probabilistic graphical model, we refer to
Appendix C. Computing the exact likelihood of a concept corresponds to:

p(Ci|x̂) =
∑

ĉparents(i)

1[Sourcei = 1] · p(C ′
i | x̂) + 1[Sourcei = 0] · p(C ′′

i | x̂, ĉparents(i), r̂i) (6)

where r̂i is given by Equation 8, p(C ′
i | ·) by Equation 1 and p(Ĉ ′′

i | ·) by Equation 2. Concepts
are source concepts if all of their rules are empty, i.e. for all their rules, each concept is irrelevant:
Sourcei =

∏nR

k=1

∏nC

j=1 1[r̂i,k,j = I]. The sum goes over all possible assignments to the parent
concepts. As this would make inference intractable, we instead take an approximation of the
Maximum A Posteriori estimate over the concepts by thresholding each individual concept prediction
at 50%:4

p(Ci|x̂) = 1[Sourcei = 1] · p(C ′
i | x̂) + 1[Sourcei = 0] · p(C ′′

i | x̂, ĉparents(i), r̂i) (7)

with ĉparents(i) = {1[p(Cj = 1 | x̂) > 0.5] | 1[Parentij = 1]}. Note that this thresholding is
also beneficial for avoiding the problem of concept leakage in CBMs, which harms interpretability
(Marconato et al., 2022). As mentioned earlier, a concept is another concept’s parent if it appears in
at least one of its rules: Parentij = 1−

∏nR

k=1 1[r̂i,k,j = I] (i.e. in not all rules for Ci, the role of
Cj is irrelevant). Finally, the roles r̂i, which represent logic rules, are the most likely roles:

r̂i,k,j = arg maxr∈{P,N,I} p(Ri,k,j = r) (8)

4An alternative is to sample the concepts instead.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4 LEARNING PROBLEM

During learning, H-CMR is optimized jointly: the encoder (neural network), the decoder (rule selector
neural networks) and the memory (node priority vector, rule embeddings and rule decoding neural
networks). The training objective follows a standard objective for CBMs, maximizing the likelihood
of the concepts. For the derivation of this likelihood and the other equations below using H-CMR’s
probabilistic graphical model, we refer to Appendix C. Because the concepts are observed during
training, this likelihood becomes:

max
Ω

∑
(x̂,ĉ)∈D

nC∑
i=1

log p(ĉi | ĉ, x̂) (9)

where we write ĉparents(i) as ĉ to keep notation simple. Each individual probability is computed
using Equation 1 for source concepts and Equation 2 for other concepts:

p(ĉi|ĉ, x̂) = Er̂∼p(R) [p(ĉ
′
i | x̂) · p(Sourcei | r̂) + p(ĉ′′i | ĉ, ê, r̂) · p(¬Sourcei | r̂)] (10)

where p(Sourcei | r̂) =
nC∏
j=1

nR∏
k=1

1[Ri,k,j = I] (11)

with p(C ′
i | x̂) and ê corresponding to Equation 1, p(C ′′

i | ĉ, ê, r̂) to Equation 2, and p(R) to Equation
4.5 Note that the designation of source concepts and parent concepts may change during training, as
the roles R change. Additionally, to promote learning rules that are prototypical of the seen concepts,
we employ a form of regularization akin to Debot et al. (2024) (see Appendix B).

Scalability. Computing the above likelihood scales O(nR · n2
C) at training time with nC the number

of concepts and nR the number of rules per concept. At inference time, this is the worst-case
complexity, depending on the structure of the learned graph.

5 EXPRESSIVITY, INTERPRETABILITY AND INTERVENABILITY

5.1 EXPRESSIVITY

H-CMR functions as a universal binary classifier for both concept and task prediction. This means
it has the same expressivity of a neural network classifier, regardless of the employed concepts. In
practice, this translates to high accuracy , irrespective of the chosen concept set.
Proposition 5.1. H-CMR is a universal binary classifier (Hornik et al., 1989) if nR ≥ 2, with nR the
number of rules for each concept and task.

Furthermore, H-CMR’s parametrization guarantees that the learned graph over the concepts forms a
DAG, and is expressive enough to represent any possible DAG, meaning any possible dependency
structure. Let Θ be the set of all possible parameter values H-CMR can take. For a specific parameter
assignment θ ∈ Θ, let Gθ represent the corresponding concept graph.
Proposition 5.2. Let DAG denote the set of all directed acylic graphs (DAGs). LetH := {Gθ | θ ∈
Θ} be the set of graphs over concepts representable by H-CMR. Then:

H = DAG

That is,
∀G ∈ DAG, ∃ θ ∈ Θ : Gθ = G, ∀θ ∈ Θ : Gθ is a DAG

For the proofs, we refer to Appendix E.

5.2 INTERPRETABILITY

In sharp contrast to other CBMs, H-CMR offers interpretability not only for task prediction but
also for concept prediction. Most CBMs model the concepts as conditionally independent given the
input, leading to their direct prediction through an uninterpretable black-box mechanism. In H-CMR,

5We use straight-through estimation for the thresholding operator in Equation 4 and the sampling of R.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

interpretability is achieved by representing concepts as the logical evaluation of a neurally selected
rule. H-CMR provides two distinct forms of interpretability: local and global.

H-CMR provides local interpretability by making the logic rules used for predicting both concepts
and tasks explicitly transparent to the human for a given input. Once these rules are selected for a
given input instance, the remaining computation is inherently interpretable, as it consists of logical
inference over the structure of the graph using these rules.

H-CMR enables a form of global interpretability, as all possible rules applicable for obtaining each
concept and task prediction are stored transparently in the memory. First, this allows for human
inspection of the rules, and even formal verification against predefined constraints using automated
tools (see Appendix A). Second, this allows for model interventions (see Section 5.3).

5.3 INTERVENABILITY

Concept interventions. These are test-time operations where some concept predictions are replaced
with ground truth values, simulating expert interaction at decision time. They are considered a
key feature of CBMs, and ideally should maximally influence the model’s predictions. Unlike
CBMs that assume conditional independence, H-CMR allows interventions on parent concepts to
propagate to child concepts, which in turn can influence further downstream concepts. As a result,
H-CMR demonstrates greater responsiveness to interventions compared to CBMs modelling concepts
as conditionally independent. Specifically, an intervention on a concept can affect child concept
predictions in two ways. First, it can modify the rule selection process for the child concept, because
the intervened concept is an input to the child concept’s rule selection. Second, it can alter the
evaluation of the selected logic rule, as the concept may be used in evaluating that rule.

Model interventions. In addition to concept interventions at test time, H-CMR allows for model
interventions at training time, influencing the graph and rules that are learned. A human expert’s
knowledge can be incorporated by manually adding new rules to the memory, and learned rules can
be inspected, modified, or replaced as needed. Moreover, the human can forbid concepts from being
parents of other concepts, or enforce specific structures on the graph (e.g. choose which concepts
should be sources or sinks). For details on how this can be done, we refer to Appendix A.

6 EXPERIMENTS

In our experiments, we consider the following research questions: (Accuracy) Does H-CMR attain
similar concept accuracy as existing CBMs? Does H-CMR achieve high task accuracy irrespective of
the concept set? (Explainability and intervenability) Does H-CMR learn meaningful rules? Are
concept interventions effective? Can model interventions be used to improve data efficiency?

6.1 EXPERIMENTAL SETTING

We only list essential information for understanding the experiments. Details can be found in Ap-
pendix B. We focus on concept prediction as this is what distinguishes H-CMR the most, omitting the
task for most experiments and comparing with state-of-the-art concept predictors. In one experiment
we still support our claim that H-CMR can achieve high task accuracy irrespective of the concept set.

Data and tasks. We use four datasets to evaluate our approach: CUB (Welinder et al., 2010), a
dataset for bird classification; MNIST-Addition (Manhaeve et al., 2018), a dataset based on MNIST
(Lecun et al., 1998); CIFAR10 (Krizhevsky et al., 2009), a widely used dataset in machine learning;
and a synthetic dataset based on MNIST with difficult concept prediction and strong inter-concept
dependencies. All datasets except CIFAR10 provide full concept annotations. For CIFAR10, we use
the same technique as Oikarinen et al. (2023b) to extract concept annotations from a vision-language
model, showing our approach also works on non-concept-based datasets.6

Evaluation. We measure classification performance using accuracy. For intervenability, we report
the effect on accuracy of intervening on concepts (see Appendix D for the used intervention strategies
and ablation studies). Metrics are reported using the mean and standard deviation over 3 seeded runs.

6Note that our approach can be applied to multilabel classification dataset without any concepts, in which
case H-CMR learns a graph over the different tasks (instead of over concepts and tasks).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

H-CMR SCBM CGM NN50%

55%

60%

65%

Co
nc

ep
t A

cc

Synthetic

H-CMR SCBM CGM NN90%

92%

95%

98%

100% MNIST-Addition

H-CMR SCBM CGM NN60%

70%

80%

90% CUB

H-CMR SCBM CGM NN60%

70%

80%

90% CIFAR10

Figure 4: Concept accuracy for all datasets and models.

0 5
60%

80%

100%

Co
nc

ep
t A

cc

Synthetic

0 25

98%

99%

100%
MNIST-Addition

0 50
80%

90%

100%
CUB

0 100

85%

90%

95%

CIFAR10

Number of Concept Interventions

SCBM CGM NN H-CMR

Figure 5: Concept accuracy before vs. after intervening on increasingly more concepts.

Competitors. We compare H-CMR with Stochastic Concept Bottleneck Models (SCBM) (Vanden-
hirtz et al., 2024) and Causal Concept Graph Models (CGM) (Dominici et al., 2024), state-of-the-art
CBMs developed with a strong focus on intervenability. We also compare with a neural network (NN)
directly predicting the concepts, which is the concept predictor for most CBMs, such as Concept
Bottleneck Models (CBNM) (Koh et al., 2020) and Concept-based Memory Reasoner (Debot et al.,
2024). In the task accuracy experiment, we compare with SCBM, CGM, and CBNM.

6.2 KEY FINDINGS

H-CMR’s interpretability does not harm concept accuracy (Figure 4), and achieves high task
accuracy irrespective of the concept set (Figure 7). H-CMR achieves similar levels of concept
accuracy compared to competitors. As a universal classifier, H-CMR can achieve high task accuracy
even with small concept sets, similar to some other CBMs (Espinosa Zarlenga et al., 2022).

H-CMR shows a high degree of intervenability (Figure 5). We evaluate H-CMR’s gain in concept
accuracy after intervening on increasingly more concepts. H-CMR demonstrates far higher degrees
of intervenability compared to CBMs modelling concepts independently (NN), and similar or better
to approaches that model concepts dependently (SCBM, CGM).

Model interventions by human experts improve data efficiency (Figure 6). We exploit these to
provide H-CMR with background knowledge about a subset of the concepts for MNIST-Addition,
allowing H-CMR to maintain high accuracy even in low-data regimes with only partial supervision

1 5 10
Concept Label Probability

0.94

0.96

0.98

Co
nc

ep
t A

cc
ur

ac
y

Base
MI
Ref

Figure 6: Data efficiency of H-CMR with (MI)
and without (Base) background knowledge on
MNIST-Add. The x-axis denotes how many con-
cept labels are included in the training set. The
reference is accuracy when training on all labels.

2 8 16 20
Number of included concepts

0%

20%

40%

60%

80%

100%

Ta
sk

 a
cc

ur
ac

y

H-CMR
SCBM
CBNM
CGM

Figure 7: Task accuracy on MNIST-Addition
for training on different sizes of the concept set.
Universal classifiers (H-CMR, CGM) are robust
to the choice of concepts, while other approaches
are not (SCBM, CBNM).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

on the concepts. We give H-CMR rules defining 18 concepts in terms of the 10 remaining ones,
and force the latter to be source concepts. This helps in two ways. First, when source concepts are
correctly predicted, so are the others. Second, when for a training example a label is only available
on non-sources, the gradient can backpropagate through the given rules to provide a training signal to
the sources. This means H-CMR does not only work in a concept-based setting, where full concept
supervision is typically provided, but also in a neurosymbolic setting, where often distant supervision
is used to train concepts by exploiting background knowledge (Manhaeve et al., 2018).

H-CMR learns meaningful rules. We qualitatively inspect the rules H-CMR learns in Appendix D.

7 RELATED WORK

H-CMR is related to two major directions in concept-based models (CBMs) research: one focus-
ing on closing the accuracy gap between CBMs and black-box models like deep neural networks
(Espinosa Zarlenga et al., 2022; Barbiero et al., 2023), and one focusing on intervenability (Es-
pinosa Zarlenga et al., 2023; Havasi et al., 2022). The former has led to the development of many
CBMs that are universal classifiers: they can achieve task accuracies comparable to black boxes
irrespective of the concept set. However, many models achieve this by sacrificing the interpretability
of their task predictions (Espinosa Zarlenga et al., 2022; Mahinpei et al., 2021). A notable exception is
Concept Memory Reasoner (CMR), an interpretable universal classifier (Debot et al., 2024), achieved
by modelling the task as the symbolic execution of a neurally selected logic rule from a memory.

Table 1: CBMs having proper-
ties (✓), partially (∼) or not at
all (✗): Universal Classifier (UC),
Interpretable Predictions (IP), Ex-
pressive concept Interventions (EI),
Model Interventions (MI).

Model UC IP EI MI

CBNM ✗ ∼ ✗ ∼
CEM ✓ ✗ ✗ ✗
CMR ✓ ∼ ✗ ∼
SCBM ✗ ∼ ∼ ✗
CGM ✓ ✗ ✓ ∼

H-CMR ✓ ✓ ✓ ✓

However, the aforementioned CBMs treat concepts as condi-
tionally independent, which limits the effect of concept inter-
ventions at test time: correcting a mispredicted concept only
impacts the downstream task directly, not other (potentially
correlated) concepts. To overcome this, a second line of work
models dependencies between concepts (Havasi et al., 2022).
For instance, Stochastic Concept Bottleneck Models (SCBMs)
jointly model concepts rather than treating them independently
(Vandenhirtz et al., 2024), enabling interventions to propagate
across concepts. Yet, SCBMs are not universal classifiers: their
accuracy is limited by the concept set. Causal Concept Graph
Models (CGMs) address this by learning a concept graph and
applying black-box message passing (Dominici et al., 2024),
achieving both universality and high intervenability. However,
the message passing makes concepts and tasks uninterpretable.

Our model, H-CMR, can be seen as an extension of CMR’s symbolic reasoning approach to concept
predictions, combining it with CGMs’ idea of concept graph learning. H-CMR achieves expressive
interventions, and unlike previous models, it is a universal classifier that provides interpretability at
both the concept and task levels. Table 1 gives an overview (for references, see Table 2).

We are also related to neurosymbolic approaches that perform rule learning. Some approaches operate
on structured relational data such as knowledge graphs, where target predicates are predefined and
a perception component is typically absent (Cheng et al., 2022; Qu et al., 2020). Others resemble
standard CBMs, where the model’s structure, i.e. which symbols ("tasks") are predicted from which
others ("concepts"), is manually defined by the user (Si et al., 2019; Daniele et al., 2022; Tang & Ellis,
2023). Another line of work builds rules on input features instead of high-level concepts (Okajima &
Sadamasa, 2019; Lee et al., 2022; 2025), and where rules typically provide local explanations (Lee
et al., 2022; 2025). In contrast, H-CMR learns both the symbolic rules, which form both local and
global explanations, and the dependency structure: a directed graph that defines how concepts and
tasks depend on each other. Moreover, such works typically do not provide formal guarantees on
expressivity, whereas we prove that H-CMR is a universal classifier.

8 CONCLUSION

We introduce H-CMR, a concept-based model that is a universal binary classifier while providing
interpretability for both concept and task prediction. Through our experiments, we show that H-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

CMR (1) achieves state-of-the-art concept and task accuracy, (2) is highly responsive to concept
interventions at inference time, and (3) that through model interventions, background knowledge
can be incorporated to improve data efficiency, if available. H-CMR can have societal impact by
improving transparency and human-AI interaction.

Limitations and future work. Interesting directions for future work include extending the inter-
vention strategy to take uncertainty into account, and performing a more extensive investigation of
H-CMR’s performance in a hybrid setting between concept-based and neurosymbolic, where for some
concepts expert knowledge is available, and for others concept supervision. Furthermore, H-CMR’s
worst-case complexity is quadratic in the number of concepts, which is a limitation for very large
concept sets.

Reproducibility statement. All our experiments are seeded, and we will make the code publicly
available upon publication of the paper. Moreover, in Appendix B, we describe in detail the setup of
each experiment, the implementation of each model, and the training setup.

REFERENCES

David Alvarez Melis and Tommi Jaakkola. Towards robust interpretability with self-explaining neural
networks. Advances in neural information processing systems, 31, 2018.

Pietro Barbiero, Gabriele Ciravegna, Francesco Giannini, Mateo Espinosa Zarlenga, Lucie Charlotte
Magister, Alberto Tonda, Pietro Lio’, Frederic Precioso, Mateja Jamnik, and Giuseppe Marra.
Interpretable neural-symbolic concept reasoning. In ICML, 2023.

Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and Jonathan K Su. This looks
like that: deep learning for interpretable image recognition. Advances in neural information
processing systems, 32, 2019.

Zhi Chen, Yijie Bei, and Cynthia Rudin. Concept whitening for interpretable image recognition.
Nature Machine Intelligence, 2(12):772–782, 2020.

Kewei Cheng, Jiahao Liu, Wei Wang, and Yizhou Sun. Rlogic: Recursive logical rule learning from
knowledge graphs. In Proceedings of the 28th ACM SIGKDD conference on knowledge discovery
and data mining, pp. 179–189, 2022.

Alessandro Daniele, Tommaso Campari, Sagar Malhotra, and Luciano Serafini. Deep symbolic
learning: Discovering symbols and rules from perceptions. arXiv preprint arXiv:2208.11561,
2022.

David Debot, Pietro Barbiero, Francesco Giannini, Gabriele Ciravegna, Michelangelo Diligenti, and
Giuseppe Marra. Interpretable concept-based memory reasoning. Advances of neural information
processing systems 37, NeurIPS 2024, 2024.

Gabriele Dominici, Pietro Barbiero, Mateo Espinosa Zarlenga, Alberto Termine, Martin Gjoreski,
Giuseppe Marra, and Marc Langheinrich. Causal concept graph models: Beyond causal opacity in
deep learning. arXiv preprint arXiv:2405.16507, 2024.

Mateo Espinosa Zarlenga, Pietro Barbiero, Gabriele Ciravegna, Giuseppe Marra, Francesco Giannini,
Michelangelo Diligenti, Zohreh Shams, Frederic Precioso, Stefano Melacci, Adrian Weller, Pietro
Lio, and Mateja Jamnik. Concept embedding models: Beyond the accuracy-explainability trade-off.
Advances in Neural Information Processing Systems, 35, 2022.

Mateo Espinosa Zarlenga, Katie Collins, Krishnamurthy Dvijotham, Adrian Weller, Zohreh Shams,
and Mateja Jamnik. Learning to receive help: Intervention-aware concept embedding models.
Advances in Neural Information Processing Systems, 36:37849–37875, 2023.

Marton Havasi, Sonali Parbhoo, and Finale Doshi-Velez. Addressing leakage in concept bottleneck
models. Advances in Neural Information Processing Systems, 35:23386–23397, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366, 1989.

Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, and
Percy Liang. Concept bottleneck models. In International conference on machine learning, pp.
5338–5348. PMLR, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.(2009),
2009.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. IEEE, 86(11):2278–2324, 1998.

Seungeon Lee, Xiting Wang, Sungwon Han, Xiaoyuan Yi, Xing Xie, and Meeyoung Cha. Self-
explaining deep models with logic rule reasoning. Advances in Neural Information Processing
Systems, 35:3203–3216, 2022.

Seungeon Lee, Xiting Wang, Ansen Zhang, Sungwon Han, Jing Yao, Xiaoyuan Yi, Xing Xie, and
Meeyoung Cha. Toward faithful and human-aligned self-explanation of deep models. npj Artificial
Intelligence, 1(1):21, 2025.

Oscar Li, Hao Liu, Chaofan Chen, and Cynthia Rudin. Deep learning for case-based reasoning
through prototypes: A neural network that explains its predictions. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 32, 2018.

Anita Mahinpei, Justin Clark, Isaac Lage, Finale Doshi-Velez, and Weiwei Pan. Promises and pitfalls
of black-box concept learning models. arXiv preprint arXiv:2106.13314, 2021.

Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc De Raedt.
DeepProbLog: Neural Probabilistic Logic Programming. In NeurIPS, pp. 3753–3763, 2018.

Emanuele Marconato, Andrea Passerini, and Stefano Teso. Glancenets: Interpretable, leak-proof
concept-based models. Advances in Neural Information Processing Systems, 35:21212–21227,
2022.

Riccardo Massidda, Francesco Landolfi, Martina Cinquini, and Davide Bacciu. Constraint-free
structure learning with smooth acyclic orientations. arXiv preprint arXiv:2309.08406, 2023.

Tuomas Oikarinen, Subhro Das, Lam Nguyen, and Lily Weng. Label-free concept bottleneck models.
In International Conference on Learning Representations, 2023a.

Tuomas Oikarinen, Subhro Das, Lam M. Nguyen, and Tsui-Wei Weng. Label-free concept bottleneck
models, 2023b.

Yuzuru Okajima and Kunihiko Sadamasa. Deep neural networks constrained by decision rules. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 2496–2505, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning
library, 2019.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Eleonora Poeta, Gabriele Ciravegna, Eliana Pastor, Tania Cerquitelli, and Elena Baralis. Concept-
based explainable artificial intelligence: A survey. arXiv preprint arXiv:2312.12936, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Meng Qu, Junkun Chen, Louis-Pascal Xhonneux, Yoshua Bengio, and Jian Tang. Rnnlogic: Learning
logic rules for reasoning on knowledge graphs. arXiv preprint arXiv:2010.04029, 2020.

Eleanor Rosch. Principles of categorization. In Cognition and categorization, pp. 27–48. Routledge,
1978.

Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and use
interpretable models instead. Nature machine intelligence, 1(5):206–215, 2019.

Xujie Si, Mukund Raghothaman, Kihong Heo, and Mayur Naik. Synthesizing datalog programs
using numerical relaxation. arXiv preprint arXiv:1906.00163, 2019.

Hao Tang and Kevin Ellis. From perception to programs: regularize, overparameterize, and amortize.
In International Conference on Machine Learning, pp. 33616–33631. PMLR, 2023.

Moritz Vandenhirtz, Sonia Laguna, Ričards Marcinkevičs, and Julia Vogt. Stochastic concept
bottleneck models. Advances in Neural Information Processing Systems, 37:51787–51810, 2024.

Peter Welinder, Steve Branson, Takeshi Mita, Catherine Wah, Florian Schroff, Serge Be-
longie, and Pietro Perona. Caltech-ucsd birds 200. Technical Report CNS-TR-201, Caltech,
2010. URL /se3/wp-content/uploads/2014/09/WelinderEtal10_CUB-200.
pdf,http://www.vision.caltech.edu/visipedia/CUB-200.html.

12

/se3/wp-content/uploads/2014/09/WelinderEtal10_CUB-200.pdf, http://www.vision.caltech.edu/visipedia/CUB-200.html
/se3/wp-content/uploads/2014/09/WelinderEtal10_CUB-200.pdf, http://www.vision.caltech.edu/visipedia/CUB-200.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Supplementary Material
TABLE OF CONTENTS

A Details of properties in H-CMR 14

A.1 Task prediction . 14

A.2 Model interventions . 14

A.3 Verification . 15

B Experimental and implementation details 15

C Probabilistic graphical model 18

C.1 General . 18

C.2 Deriving Equation 10 . 19

C.3 Deriving Equation 6 . 20

D Additional results 21

D.1 Learned rules . 21

D.2 Different intervention policies . 21

E Proofs 23

E.1 Theorem 5.1 . 23

E.2 Theorem 5.2 . 23

F LLM usage declaration 25

G Code, licenses and resources 25

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 2: CBMs having properties (✓), partially (∼) or not at all (✗): Universal Classifier (UC),
Interpretable Predictions (IP), Expressive concept Interventions (EI), Model Interventions (MI).

Model UC IP EI MI

CBNM (Koh et al., 2020) ✗ ∼ ✗ ∼
CEM (Espinosa Zarlenga et al., 2022) ✓ ✗ ✗ ✗
CMR (Debot et al., 2024) ✓ ∼ ✗ ∼
SCBM (Vandenhirtz et al., 2024) ✗ ∼ ∼ ✗
CGM (Dominici et al., 2024) ✓ ✗ ✓ ∼

H-CMR ✓ ✓ ✓ ✓

A DETAILS OF PROPERTIES IN H-CMR

A.1 TASK PREDICTION

In H-CMR, tasks and concepts are modelled in the same way: they are nodes that are predicted from
their parent nodes, and the learned rules in the memory define this structure. This means that the
memory contains rules for predicting each concept, and for predicting each task. Consequently, the
parametrization explained in the main text, which defines how concepts are predicted from other
concepts, is also used for tasks. The simplest way to incorporate tasks is by simply considering
them as additional concepts. Then, H-CMR learns a graph over concepts and tasks. This allows for
instance that tasks are predicted using each other, and that concepts are predicted using tasks.

This approach is also possible in e.g. CGM (Dominici et al., 2024), but not in most CBMs, where
concepts and tasks are modelled in two separate layers of the model. In most CBMs, concepts are
first predicted from the input using a neural network, and then the task is predicted from the concepts
(e.g. CBNM (Koh et al., 2020)) and possibly some residual, e.g. an embedding to provide additional
contextual information (Mahinpei et al., 2021).

In H-CMR, this concept-task structure can be enforced by forcing the tasks to be sink nodes in the
learned graph, i.e. they have no outgoing edges (no concepts are predicted from the tasks, and tasks
are not predicted using each other), that additionally have all concepts as potential parents. This can
be done through model interventions.

A.2 MODEL INTERVENTIONS

In this section, we give some examples on how human experts can do model interventions on H-CMR
during training, influencing the model that is being learned. To this end, we first derive the following
matrix A ∈ RnC×nC from H-CMR’s parametrization:

∀i, j ∈ [1, nC] : Aij = 1[Oj > Oi] (12)

where Aij = 1 indicates that concept j is allowed to be a parent of concept i based on the node
priority vector O (see Equation 4). This matrix serves as an alternative representation of the parent-
child constraints originally encoded by O, which can then be used in Equation 4 instead of O. By
intervening on this matrix, it is possible to:

• force a concept k to be a source (no parents): set ∀k ∈ [1, nC] : Akj := 0;
• force a concept k to be a sink (no children): set ∀k ∈ [1, nC] : Ajk := 0;
• forbid a concept m to be a parent of concept k: set Akm := 0.

Furthermore, a specific topological ordering of the concepts can be enforced by explicitly assigning
values to the entire node priority vector O. Moreover, to ensure that a concept l precedes or follows
concept k in the topological ordering, one can set Ol := Ok− z or Ol := Ok+ z, respectively, where
z ∈ R+

0 is any chosen positive number.

The human expert can also intervene on the roles the concepts play in individual rules. This means
intervening on the ’unadjusted roles’ R′, which are combined with the node priorities O to form the
rules. For instance, by intervening on R′ (and possibly O), it is possible to:

• force a concept k to be absent in rule l of concept i: set p(R′
i,l,k = I) := 1, p(R′

i,l,k =

P) := 0, and p(R′
i,l,k = N) := 0;

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

• force a concept k to be positively present in rule l of concept i (assuming O allows it): set
p(R′

i,l,k = I) := 0, p(R′
i,l,k = P) := 1, and p(R′

i,l,k = N) := 0;

• force a concept k to be negatively present in rule l of concept i (assuming O allows it): set
p(R′

i,l,k = I) := 0, p(R′
i,l,k = P) := 0, and p(R′

i,l,k = N) := 1.

By intervening on the roles and the node priorities in these ways, experts can have fine-grained
control over the content and structure of the rules. In the extreme case, human experts can choose to
fully specify a rule, or even the entire rule set, through such interventions.

A.3 VERIFICATION

Since the (learned) memory of rules is transparent, it can be formally verified against desired
constraints in a similar fashion as for CMR (Debot et al., 2024). For instance, one can verify whether a
constraint such as "whenever the concept ’black wings’ is predicted as True, the concept ’white wings’
is predicted as False and the task ’pigeon’ is predicted as False" is guaranteed by the learned rules.
This is possible because both concepts and tasks predictions can be represented as disjunctions over
the rules in the memory, expressed in propositional logic. As described by debot2024interpretable, the
neural rule selection can be encoded within this disjunction by introducing additional propositional
atoms that denote whether each individual rule is selected, along with mutual exclusivity constraints
between these atoms. Consequently, standard formal verification tools (e.g. model checkers) can
be employed to verify constraints w.r.t. this propositional logic formula. We refer to Section 4.3 of
debot2024interpretable.

B EXPERIMENTAL AND IMPLEMENTATION DETAILS

Datasets. In CUB (Welinder et al., 2010), there are 112 concepts related to bird characteristics,
such as wing pattern and head size. Each input consists of a single image containing a bird. In
MNIST-Addition (Manhaeve et al., 2018), the input consists of two MNIST images (LeCun et al.,
1998). There are 10 concepts per image, representing the digit present, and 19 tasks corresponding
to the possible sums of the two digits. For CIFAR10, which does not include predefined concepts,
we use the same technique as oikarinen2023labelfree to obtain them. Specifically, we use the same
concept set as oikarinen2023labelfree, which they obtained by prompting an LLM, and obtain concept
annotations by exploiting vision-language models, as in their work. For our synthetic dataset, we
modify MNIST-Addition by restricting it to examples containing only the digits zero and one. We
discard the original concepts and tasks and instead generate new concepts and their corresponding
labels for each example using the following sampling process:

• p(C0 = 1) =

{
0.7 if the first digit is a 1
0 otherwise

• p(C1 = 1) =

{
0.7 if the second digit is a 1
0 otherwise

• p(C2 = 1 | ĉ0, ĉ1) = ĉ0 ⊕′ ĉ1

• p(C3 = 1 | ĉ0, ĉ2) = ĉ0 ⊕′ ĉ2

• p(C4 = 1 | ĉ1, ĉ2) = ĉ1 ⊕′ ĉ2

• p(C5 = 1 | ĉ3, ĉ4) = ĉ3 ⊕′ ĉ4

• p(C6 = 1 | ĉ0, ĉ1) = ĉ0 ⊕′ ĉ1

where ⊕ is the logical XOR, and where we define ⊕′ as a noisy XOR:

ĉi ⊕′ ĉj =

{
1 if ĉi ⊕ ĉj = 1

0.05 otherwise
(13)

For each example, we sample labels from the above distributions. Intuitively, the concepts C0 and C1

indicate whether the corresponding MNIST images contain the digit one; however, these labels are
intentionally noisy. The remaining concepts are constructed as noisy logical XORs of C0, C1, and of
each other, introducing additional complexity and interdependence among the concepts.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Reproducibility. For reproducibility, we used seeds 0, 1 and 2 in all experiments.

Model input. For MNIST-Addition, CIFAR10 and the synthetic dataset, we train directly on the
images. For CIFAR10, we use the same setup as vandenhirtz2024stochastic. For CUB, we instead
use pretrained Resnet18 embeddings (He et al., 2016), using the setup of debot2024interpretable.

General training information. We use the AdamW optimizer. For H-CMR and CBNMs, we
maximize the likelihood of the data. SCBMs and CGMs are trained using their custom loss functions.
After training, we select the model checkpoint with the highest validation accuracy. Validation
accuracy refers to concept prediction accuracy in all experiments, except in the MNIST-Addition
setting where tasks are retained. In that case, accuracy is computed over the concatenation of both
concepts and tasks. Throughout, we model all concepts and tasks as independent Bernoulli random
variables.

Intervention policy. For the results presented in the main text, the intervention policy follows
the graph learned by H-CMR, intervening first on the sink nodes and gradually moving down the
topological ordering as determined by the learned node priority vector. This approach makes it easy
to interpret the results, as the intervention order is the same for different models (i.e. if we intervene
on 3 concepts, they are the same concepts for H-CMR and all competitors). This makes it clear how
well the models are able to propagate the intervention to other concept predictions. To ensure a fair
comparison with CGM, we make sure that CGM learns using the same graph that H-CMR learned.
Additional ablation studies using different intervention policies are provided in Appendix D.

General architectural details. For each experiment, we define a neural network ϕ that maps the
input to some latent embedding with size sizelatent a hyperparameter. The architecture of this neural
network depends on the experiment but is the same for all models.

In H-CMR’s encoder, fi (see Equation 1) is implemented as first applying ϕ to the input, producing
a latent embedding with size sizelatent. This passes through a linear layer with leaky ReLU
activation outputting 2 embeddings of size sizec emb per concept (similar to concept embeddings
(Espinosa Zarlenga et al., 2022), we call one embedding the "positive" one, and the other one
the "negative" one), with sizec emb a hyperparameter. For each concept, the two embeddings
are concatenated and the result passes through a linear layer with sigmoid activation to produce
the concept prediction probability (corresponding to fi in Equation 1. The concatenation of all
embeddings form the output embedding of the encoder (ê as produced by g in Equation 1).

For H-CMR’s decoder, the neural selection p(Si = k | ê, ĉparents(i)) is implemented in the following
way. First, we mask within ê the values that originally corresponded to non-parent concepts. Then,
for each parent concept, if it is predicted to be True, we mask the values of ê that correspond to its
negative embedding. If it is predicted to be False, we mask the ones corresponding to its positive
embedding. Note again that this is similar to concept embeddings (Espinosa Zarlenga et al., 2022).
Next, we concatenate the embedding with the concept predictions ĉ. For non-parents, we set their
value always to 0. The result is a tensor of shape 2 · nc · sizec emb + nC , which is passed through
a linear layer (ReLU activation) with output size sizelatent. This is then passed through another
linear layer with output size nC · nR, which is reshaped to the shape (nC , nR). For each row i in this
tensor, this represents the logits of p(Si | ·). We apply a softmax over the last dimension to get the
corresponding probabilities.

In H-CMR’s memory, the node priority vector O is implemented as a torch Embedding of shape
(1, nC). The rule embeddings in the memory (each representing the latent representation of a logic
rule) are implemented as a torch Embedding of shape (nR · nC , sizerule emb) with sizerule emb

a hyperparameter. This is reshaped to shape (nC , nR, sizerule emb). The "rule decoding" neural
network consists of a linear layer (leaky ReLU) with output size sizerule emb followed by a linear
layer with output size nC · nR. After passing the embedding through this neural network, the result
has output shape (nC , nR, nC · 3), which is reshaped into (nC , nR, nC , 3). This corresponds to the
logits of the ’unadjusted roles’ p(R′). We obtain the probabilities by applying a softmax to the last
dimension.

The CBNM first applies ϕ, and then continues with a linear layer with sigmoid activation outputting
the concept probabilities. The task predictor is a feed-forward neural network consisting of 2 hidden
layers with ReLU activation and dimension 100, and a final linear layer with sigmoid activation.
We employ hard concepts to avoid the problem of concept leakage which may harm interpretability

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

(Marconato et al., 2022), meaning we threshold the concept predictions at 50% before passing them
to the task predictor.

For SCBM, we use the implementation as given by the authors.7 The only differences are that (1) we
use ϕ to first produce a latent embedding which we pass to SCBM, and (2) we replace the softmax
on their task prediction by a sigmoid, as we treat the tasks in all experiments independently. For the
α hyperparameter, we always use 0.99. We always use the amortized variant of SCBMs, which is
encouraged by vandenhirtz2024stochastic. We use 100 Monte Carlo samples.

For CGM, we also use the implementation as given by the authors.8 The only difference is that we
use ϕ to first produce a latent embedding, which is passed to CGM. To ensure a fair comparison when
measuring intervenability, we equip CGM with the same graph that H-CMR learned.

Hyperparameters per experiment. In CUB, ϕ is a feed-forward neural network with 3 hidden layers.
Each layer has output size sizelatent. We use a learning rate of 0.001, batch size 1048, and train for
500 epochs. We check validation accuracy every 20 epochs. For H-CMR, we use sizelatent = 256,
sizerule emb = 500, sizec emb = 10, nR = 5, and β = 0.1. For SCBM, we use sizelatent = 64. For
CGM, we use sizelatent = 64 and sizec emb = 8.

In the synthetic dataset, ϕ consists of a convolutional neural network (CNN) consisting of a Conv2d
layer (1 input channel, 6 output channels and kernel size 5), a MaxPool2d layer (kernel size and stride
2), a ReLU activation, a Conv2D layer (16 output channels and kernel size 5), another MaxPool2d
layer (kernel size and stride 2), another ReLU activation, a flattening layer and finally a linear layer
with output size sizelatent/2. ϕ applies this CNN to both input images and concatenates the resulting
embeddings. We use a learning rate of 0.001, batch size 256, and train for 100 epochs. We check
validation accuracy every 5 epochs. For H-CMR, we use sizelatent = 128, sizerule emb = 1000,
sizec emb = 3, nR = 10, and β = 0.1. For SCBM, we use sizelatent = 128. For CGM, we use
sizelatent = 128 and sizec emb = 3. For CBNM, we use sizelatent = 128.

In MNIST-Addition, ϕ consists of a CNN that is the same as for the synthetic dataset, but with 3
additional linear layers at the end with output size sizelatent/2, the first two having ReLU activation.
ϕ applies this CNN to both input images and concatenates the resulting embeddings. We use a
learning rate of 0.001, batch size 256, and train for 300 epochs. We check validation accuracy every
5 epochs. For H-CMR, we use sizelatent = 128, sizerule emb = 1000, sizec emb = 3, nR = 10,
and β = 0.1. For SCBM, we use sizelatent = 256. For CGM, we use sizelatent = 100 and
sizec emb = 8. For CBNM, we use sizelatent = 128.

In CIFAR10, ϕ consists of a CNN consisting of a Conv2d layer (3 input channels, 32 output channels,
kernel size 5 and stride 3), ReLU activation, a Conv2d layer (32 input channels, 64 output channels,
kernel size 5 and stride 3), ReLU activation, a MaxPool2d layer (kernel size 2), a Dropout layer
(probability of 50%), a flattening layer and a linear layer with output size sizelatent with ReLu
activation. We use a learning rate of 0.001, batch size 100, and train for 300 epochs. We check
validation accuracy every 5 epochs. For H-CMR, we use sizelatent = 100, sizerule emb = 500,
sizec emb = 3, nR = 10, and β = 0.1. For SCBM, we use sizelatent = 100. For CGM, we use
sizelatent = 100 and sizec emb = 8. For CBNM, we use sizelatent = 100.

Additional details of the MNIST-Addition experiments. In the MNIST-Addition experiment where
only concept accuracy is reported, we treat the labels for both the individual digits and their sums as
concepts. For the experiment reporting task accuracy, we use the more conventional setting, where
the digits are considered as concepts, while the sums of digit pairs are treated as tasks. There, we use
model interventions to make the tasks sinks in the graph.

Hyperparameter search. The hyperparameters for all models were chosen that result in the highest
validation accuracy. For sizelatent, we searched within the grid [32, 64, 100, 128, 200, 256, 512], for
sizec emb within [2, 3, 8, 16], and for sizerule emb within [100, 500, 1000].

Prototypicality regularization. Similar to the approach of CMR (Debot et al., 2024), we employ a
regularization term that encourages the learned rules to be more prototypical of the seen concepts
during training. This aligns with standard theories in cognitive science (Rosch, 1978). While this
notion of prototypicality has inspired many so-called prototype-based models (Rudin, 2019; Li et al.,

7https://github.com/mvandenhi/SCBM
8https://github.com/gabriele-dominici/CausalCGM

17

https://github.com/mvandenhi/SCBM
https://github.com/gabriele-dominici/CausalCGM

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

X

Si

Cj

Rikj
Ci

j ∈ {1..nC} \ {i}

k ∈ {1..nR}

(a) During training.

X

Si

Cj

Ci

j ∈ parents(i)

(b) During inference for each non-
source Ci.

X

Ci

(c) During inference
for each source Ci.

Figure 8: Part of the probabilistic graphical model for computing a single node Ci. Red edges denote
the prediction by the encoder for source concepts; brown edges denote the rule selection; blue edges
denote the rule evaluation. Grey nodes are observed. During inference, the roles are always observed
and fixed, so we do not write them. The observed roles determine which concepts are parents of Ci,
and whether Ci is a source. For each parent Cj , the black edge is a "nested" (b) or (c), depending on
whether Cj is a source.

2018; Chen et al., 2019), where prototypes are built in the input space, such as images. Just like CMR,
H-CMR differs from such models significantly. For instance, H-CMR gives a logical interpretation
to prototypes as being logical rules. Moreover, the prototypes are built in the concept space (as
opposed to the input space). We refer to debot2024interpretable (specifically, Section 4.2) for more
such differences. During training, this regularization is present as an additional factor in the decoder,
replacing Equation 2 with

p(Ci = 1 | ê, ĉ, r̂i, ŷ) =
nR∑
k=1

p(Si = k | ê, ĉparents(i))︸ ︷︷ ︸
neural selection of rule k

using parent concepts + emb.

· l(ĉparents(i), r̂i,k)︸ ︷︷ ︸
evaluation of concept i’s rule k

using parent concepts

· preg(ri,k = ĉ)β·ŷ)︸ ︷︷ ︸
prototypicality of
concept i’s rule k

(14)

where β is a hyperparameter, and

preg(ri,k = ĉ) =

nC∏
j=1

(0.5 · 1[ri,k,j = I] + 1[ĉj = 1] · 1[ri,k,j = P] + 1[ĉj = 0] · 1[ri,k,j = N])

(15)

Inuitively, the rule that is selected should not only provide a correct prediction, but also resemble the
seen concepts as much as possible. For instance, if a concept is True, the loss prefers to see a positive
role, over irrelevance, over a negative one. Like in (Debot et al., 2024), the regularization only affects
positive training examples (ŷ = 1).

C PROBABILISTIC GRAPHICAL MODEL

C.1 GENERAL

In Figure 8, we give the probabilistic graphical model for H-CMR during training (Figure 8a), during
inference for non-source concepts (Figure 8b) and for source concepts (Figure 8c). Additionally, we
provide an ’extended PGM’ in Figure 9, where we add the additional variables that we use in some of
the equations (which are effectively marginalized out in Figure 8).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

X E

Si

Cj

Parentij

RikjR′
ikj

Oj

Oi

C ′′
i

Sourcei

C ′
i

Ci

j ∈ {1..nC} \ {i}

k ∈ {1..nR}

Figure 9: Part of the probabilistic graphical model for computing a single node Ci during training,
extended with additional variables. E is an embedding represented by a delta distribution. Parentij
is a Bernoulli denoting whether j is a parent of i. C ′

i denotes prediction of the concept by the encoder,
while C ′′

i is prediction using the rules in the memory. Sourcei is a Bernoulli denoting whether i is
a source concept, and serves as a "selection" between C ′

i and C ′′
i . Each Oj is a delta distribution

enforcing a topological ordering.

We choose the following conditional probabilities:

p(E | x̂) = δ(E − ê) where ê = g(x̂) (16)

p(ĉi | ĉ′′i , ĉ′i, ˆsourcei) = 1[ˆsourcei = 1] · 1[ĉ′i = ĉi] + 1[ˆsourcei = 0] · 1[ĉ′′i = ĉi] (17)

p(C ′
i = 1 | ê) = fi(ê) (18)

p(C ′′
i = 1 | Si = k, ĉ, r̂i,k) = l(ĉparents(i), r̂i,k) (19)

p(Si = k | x̂, ĉ, ˆparenti) = hi,k(x̂, {ĉj | ˆparentij = 1}) (20)

p(Sourcei = 1 | r̂i) =
nC∏
j=1

nR∏
k=1

1[r̂i,k,j = I] (21)

p(Parentij = 1 | r̂i,:,j) = 1−
nR∏
k=1

1[r̂i,k,j = I] (22)

p(Ri,k,j = P | r̂′i,k,j , ôi, ôj) = 1[ôj > ôi] · 1[r̂′i,k,j = P] (23)

p(Ri,k,j = N | r̂′i,k,j , ôi, ôj) = 1[ôj > ôi] · 1[r̂′i,k,j = N] (24)

p(Ri,k,j = I | r̂′i,k,j , ôi, ôj) = 1[ôj > ôi] · 1[r̂′i,k,j = I] + 1[ôj ≤ ôi] (25)

p(Oj) = δ(Oj − ôj) where ôj is a learnable parameter (26)

where fi, hi,k and g are neural networks parametrizing the logits of a Bernoulli, the logits of a
categorical, and the point mass of a delta distribution, respectively. The remaining probability is the
categorical distribution p(R′

i,k,j), whose logits are parametrized by a learnable embedding and a
neural network mapping this embedding on the logits.

C.2 DERIVING EQUATION 10

Now we will derive the likelihood formula during training (Equation 10). For brevity, we will
abbreviate Source as Src and we denote with ĉ an assignment to all concepts except Ci. When
summing over r̂, we mean summing over all possible assignments to these variables, which are nC

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

categoricals each with 3 possible values. First we marginalize out Src, C ′
i and C ′′

i :

p(ĉi | ĉ, x̂) =
1∑

ˆsrci=0

1∑
ĉ′′i =0

1∑
ĉ′i=0

p(ĉi | ˆsrci, ĉ
′
i, ĉ

′′
i) · p(ˆsrci, ĉ

′
i, ĉ

′′
i | ĉ, x̂) (27)

We now marginalize E and R, exploiting the conditional independencies that follow from the PGM:

p(ĉi | ĉ, x̂) =
∫
ê

∑
r̂

1∑
ˆsrci=0

1∑
ĉ′′i =0

1∑
ĉ′i=0

p(ĉi | ˆsrci, ĉ
′
i, ĉ

′′
i) · p(ˆsrci, ĉ

′
i, ĉ

′′
i | ĉ, x̂, ê, r̂) · p(ê|x̂) · p(r̂) dê

(28)

Given C, X , E and R, it follows from the PGM that Srci, C ′
i and C ′′

i are conditionally independent,
and each of the resulting conditional probabilities can be simplified:

p(ĉi | ĉ, x̂) =
∫
ê

∑
r̂

1∑
ˆsrci=0

1∑
ĉ′′i =0

1∑
ĉ′i=0

p(ĉi | ˆsrci, ĉ
′
i, ĉ

′′
i) · p(ˆsrci | r̂) · p(ĉ′i | ê) · p(ĉ′′i | ĉ, ê, r̂)

· p(ê|x̂) · p(r̂) dê (29)

We exploit the fact that p(E | x̂) is a delta distribution. After applying the delta distribution’s sifting
property, we obtain:

p(ĉi | ĉ, x̂) =
∑
r̂

1∑
ˆsrci=0

1∑
ĉ′′i =0

1∑
ĉ′i=0

p(ĉi | ˆsrci, ĉ
′
i, ĉ

′′
i) · p(ˆsrci | r̂) · p(ĉ′i | ê) · p(ĉ′′i | ĉ, ê, r̂) · p(r̂)

(30)

with ê = g(x̂) the point mass of the distribution. After filling in the conditional probability for
p(Ci | ˆsrci, ĉ

′
i, ĉ

′′
i), we have:

p(ĉi | ĉ, x̂) =
∑
r̂

1∑
ˆsrci=0

1∑
ĉ′′i =0

1∑
ĉ′i=0

(1[ˆsrci = 1] · 1[ĉ′i = ĉi] + 1[ˆsrci = 0] · 1[ĉ′′i = ĉi]) (31)

· p(ĉi | ˆsrci, ĉ
′
i, ĉ

′′
i) · p(ˆsrci | r̂) · p(ĉ′i | ê) · p(ĉ′′i | ĉ, ê, r̂) · p(r̂)

(32)

Most terms become zero due to the indicator functions. After simplifying, we have:

p(ĉi | ĉ, x̂) =
∑
r̂

p(r̂) · [p(Srci = 1 | r̂) · p(C ′
i = ĉi | ê) + p(Srci = 0 | r̂) · p(C ′′

i = ĉi | ĉ, ê, r̂)]

(33)

= Er̂∼p(R) [p(Srci = 1 | r̂) · p(C ′
i = ĉi | ê) + p(Srci = 0 | r̂) · p(C ′′

i = ĉi | ĉ, ê, r̂)]
(34)

which corresponds to Equation 10.

C.3 DERIVING EQUATION 6

Now we will derive the likelihood formula used during inference (Equation 6). We begin by
marginalizing out ĉ:

p(Ci | x̂) =
∑
ĉ

p(Ci | ĉ, x̂) · p(ĉ | x̂) (35)

where the sum goes over all possible assignments to all concepts (except Ci). As explained in Section
3, at inference time, we collapse the distributions over roles p(R) on their most likely values r̂, which
means that each role Ri,k,j is observed and fixed. After filling in Equation 10:

p(Ci | x̂) =
∑
ĉ

(1[ˆsrci = 1] · p(C ′
i | ê) + 1[ˆsrci = 0]) · p(C ′′

i | ê, ĉ, r̂)) · p(ĉ | x̂) (36)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 3: Example learned rules for CUB, MNIST-Addition and CIFAR10.

Example Rule Intuition

black throat← ¬yellow throat Mutually exclusive concepts
black throat← black upperparts ∧ ¬yellow throat ∧ brown forehead E.g. crows, ravens, blackbirds

digit1 is 0← ¬digit1 is 1 ∧ ¬digit1 is 2 ∧ ... Mutually exclusive concepts
sum is 7← digit1 is 5 ∧ digit2 is 2 ∧ ¬digit1 is 1 ∧ ... 5 + 2 = 7

a dock← a port ∧ a tire Ports have docks
a passenger← a cab for the driver Cabs and their passengers
engines← four wheels Cars
hooves← long neck Horses

where ˆsrci can be deterministically computed from r̂. First, we use that p(C ′
i | ê) is equivalent to

p(C ′
i | x̂) as E is a deterministic function of X:

p(Ci | x̂) =
∑
ĉ

(1[ˆsrci = 1] · p(C ′
i | x̂) + 1[ˆsrci = 0]) · p(C ′′

i | ê, ĉ, r̂)) · p(ĉ | x̂) (37)

Then, we remark that the first term is independent of ĉ, and the second term is only dependent
on ĉparents(i), as follows from the conditional probabilities p(C ′′

i | Si = k, ĉ, r̂i,k) and p(Si |
x̂, ĉ, ˆparenti). Then, we can rewrite the above equation as:

p(Ci|x̂) =
∑

ĉparents(i)

(1[ˆsrci = 1] · p(C ′
i | x̂)

+1[ˆsrci = 0] · p(C ′′
i | x̂, ĉparents(i), r̂i)) · p(ĉparents(i) | x̂) (38)

which corresponds to Equation 6.

D ADDITIONAL RESULTS

D.1 LEARNED RULES

H-CMR learns meaningful rules (Table 3). For instance, the listed rules for CUB show that H-CMR
has learned that certain concepts are mutually exclusive (e.g. ’black throat’ and ’yellow throat’ for
birds). In MNIST-Addition, H-CMR has also learned that a single MNIST image only contains 1
digit, and the rules of addition are also recognizable.

D.2 DIFFERENT INTERVENTION POLICIES

In this ablation study, we investigate H-CMR’s intervenability when using different intervention
policies. We consider three policies:

• Graph-based policy: this policy is based on H-CMR’s learned concept graph, first interven-
ing on the source concepts and gradually moving to the sinks. This is a natural choice as
intervening on earlier concepts in the graph may have a larger impact. This approach is also
used by dominici2024causal for CGMs, and makes it intuitively easy to interpret results, as
the intervention order is the same for different models (i.e. if we intervene on 3 concepts,
they are the same concepts for H-CMR and all competitors). To ensure the comparison with
CGMs is fair, we make sure that the CGMs learn using the same graph that H-CMR learned.

• Uncertainty-based policy: this policy uses the uncertainty of the concept predictions,
first intervening on concepts with high uncertainty. This policy is introduced by vanden-
hirtz2024stochastic for SCBMs. Note that the intervention order differs between different
input examples, and differs between different models.

• Random policy: this policy randomly generates an intervention order.

We report concept accuracy after different numbers of interventions (like in the main text). For the
results in the paper, we additionally report the difference in accuracy after versus before intervening,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0 5
60%

80%

100%
Co

nc
ep

t A
cc

Synthetic

0 25

98%

99%

100%
MNIST-Addition

0 50
80%

90%

100% CUB

0 100

90%

100%
CIFAR10

Number of Concept Interventions

SCBM CGM NN H-CMR

Figure 10: Concept accuracy using the uncertainty-based policy after intervening on increasingly
more concepts.

0 5
60%

80%

100%

Co
nc

ep
t A

cc

Synthetic

0 25

98%

99%

100%
MNIST-Addition

0 50
80%

90%

CUB

0 100

85%
90%
95%

100% CIFAR10

Number of Concept Interventions

SCBM CGM NN H-CMR

Figure 11: Concept accuracy using the random policy after intervening on increasingly more concepts.

measured on non-intervened concepts, after different numbers of interventions (Figure 12). The
former is reported by e.g. vandenhirtz2024stochastic for SCBM, while the latter is reported by e.g.
dominici2024causal for CGM.

Note that in the main text, we report concept accuracy using the graph-based policy.

H-CMR performs well using other intervention policies (Figures 10 and 11). Using SCBM’s
uncertainty-based policy (Figure 10), H-CMR performs better than competitors except for the
synthetic dataset. When using a random policy (Figure 11), H-CMR performs similar to CGM. For
instance, on CUB, H-CMR outperforms NN and CGM but is outperformed by SCBM. On other
datasets except the synthetic one, H-CMR performs similar to SCBM and CGM. Note that, as SCBM
does not predict concept in a hierarchical fashion, unlike CGM and H-CMR, SCBM is not inherently
at a disadvantage when using a random policy.

0 5
0%

20%

40%

 C
on

ce
pt

 A
cc

Synthetic

0 25

-1%

0%

MNIST-Addition

0 50
0%

10%

20% CUB

0 100

0%

5%

10% CIFAR10

Number of Concept Interventions

SCBM CGM NN H-CMR

Figure 12: Difference in accuracy on non-intervened concepts using the graph-based policy after
intervening on increasingly more concepts.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

E PROOFS

E.1 THEOREM 5.1

We prove that H-CMR is a universal binary classifier if nR ≥ 2 in a similar fashion as done by
debot2024interpretable for CMR.

Proof. Source concepts are directly predicted from the input X using a neural network, which is a
universal binary classifier. For non-source concepts and tasks Ci, the prediction is made by using a
neural network to select a logic rule based on the parent concepts Cparents(i) and the input X , which
is then evaluated on the parent concepts Cparents(i). Let Ck be an arbitrarily chosen parent of Ci.
Consider the following two rules, which can be expressed in H-CMR as shown between parentheses:

Ci ← Ck (i.e. r̂i,0,k = P , ∀j ̸= k : r̂i,0,j = I) (39)
Ci ← ¬Ck (i.e. r̂i,1,k = N , ∀j ̸= k : r̂i,1,j = I) (40)

By selecting one of these two rules, the rule selector neural network can always make a desired
prediction for Ci based on the predicted parent concepts Cparents(i) and the input X . To predict
Ci = 1, the first rule can be selected if Ck is predicted True, and the second rule if it is predicted
False. To predict Ci = 0, the opposite rule can be selected: the first rule if Ck is predicted False, and
the second rule if it is predicted True.

E.2 THEOREM 5.2

For proving this theorem, we have to prove two statements: that H-CMR’s parametrization can
represent any DAG, and that H-CMR’s parametrization guarantees that the directed graph implied by
the rules is acylic.

Any DAG over the concepts can be represented by H-CMR:

∀G ∈ DAG, ∃ θ ∈ Θ : Gθ = G (41)

Proof. We will show that for any graph G over the concepts, there exists a set of parameters for
H-CMR such that H-CMR has that graph. This means we need to prove that any possible set of edges
that form a DAG, can be represented by H-CMR’s parametrization.

Let EG be G’s set of edges. For any G, it is known that we can find a topological ordering TG of G’s
nodes such that for every edge (i, j) ∈ EG, i occurs earlier in the ordering than j. Let index(i, TG)
denote the index of i in this ordering.

The following random variables of H-CMR are parameters that define the concept graph: O ∈ RnC

(delta distributions, parametrized by an embedding), R′
i,k,j ∈ {P,N, I} (categorical variables,

parametrized by embeddings and neural networks).

The following assignment to these variables ensures that H-CMR’s concept graph corresponds to G:

∀i ∈[1, nC] : Oi = index(i, TG) (42)

∀i, j ∈[1, nC], k ∈ [1, nR] : p(R
′
i,k,j = P) =

{
1 if (i, j) ∈ E

0 if (i, j) /∈ E
(43)

∀i, j ∈[1, nC], k ∈ [1, nR] : p(R
′
i,k,j = N) = 0 (44)

∀i, j ∈[1, nC], k ∈ [1, nR] : p(R
′
i,k,j = I) = 1− p(R′

i,k,j = P) (45)

As the parent relation defines the edges in the graph, we need to prove that:

∀i, j ∈[1, nC] : Parentij = 1⇔ (i, j) ∈ E (46)

From H-CMR’s parametrization, we know that:

Parentij = 1−
nR∏
k=1

1[Ri,k,j = I]

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Thus, it follows that:

Parentij = 1⇔ ∃k ∈ [1, nR] : Ri,k,j ̸= I (47)
⇔ ∃k ∈ [1, nR] : I ̸= arg max

r∈{P,N,I}
p(Ri,k,j = r) (48)

where we used Equation 8. After plugging this into Equation 46, we still need to prove that:

∀i, j ∈[1, nC] : (∃k ∈ [1, nR] : I ̸= arg max
r∈{P,N,I}

p(Ri,k,j = r))⇔ (i, j) ∈ E (49)

We first prove the⇐ direction. If (i, j) ∈ E, then i must appear before j in TG. Therefore:

index(i, TG) < index(j, TG) (50)

If we take Equation 4 and fill in Equation 43, we know that for all k:

p(Ri,k,j = P) = 1[Oj > Oi] · p(R′
i,k,j = P) = 1[Oj > Oi] (51)

p(Ri,k,j = N) = 1[Oj > Oi] · p(R′
i,k,j = N) = 0 (52)

p(Ri,k,j = I) = 1[Oj > Oi] · p(R′
i,k,j = I) + 1[Oj ≤ Oi] = 1[Oj ≤ Oi] (53)

Then, filling in Equation 42 and using Equation 50, we get

p(Ri,k,j = P) = 1[index(j, TG) > index(i, TG)] = 1 (54)
p(Ri,k,j = N) = 0 (55)
p(Ri,k,j = I) = 1[index(j, TG ≤ index(i, TG] = 0 (56)

which proves the⇐ direction after applying this to Equation 49. We now prove the⇒ direction by
proving that

∀i, j ∈ [1, nC] : (i, j) ̸∈ E ⇒ (∀k ∈ [1, nR] : I = arg max
r∈{P,N,I}

p(Ri,k,j = r)). (57)

Using Equation 4 and filling in Equation 42, we know that for all k:

p(Ri,k,j = P) = 1[Oj > Oi] · p(R′
i,k,j = P) = 0 (58)

p(Ri,k,j = N) = 1[Oj > Oi] · p(R′
i,k,j = N) = 0 (59)

p(Ri,k,j = I) = 1[Oj > Oi] · p(R′
i,k,j = I) + 1[Oj ≤ Oi] = 1[Oj > Oi] + 1[Oj ≤ Oi] = 1

(60)

which proves the⇒ direction.

In H-CMR, the directed graph implied by the rules is always acylic:

∀θ ∈ Θ : Gθ is a DAG (61)

Proof. A graph G is a DAG if and only if there exists a topological ordering TG for that graph, such
that for every edge (i, j) ∈ EG, i occurs earlier in TG than j, with EG the set of edges of G. Thus,
we must simply prove that there exists such a topological ordering for each possible θ ∈ Θ. We will
prove that the node priority vector O defines such an ordering.

Specifically, let TO := arg sort(O) be the concepts sorted based on their value in O. We will prove
that TO forms the topological ordering for G.

We know that

TO is a topological ordering forG ⇔ ∀(i, j) ∈ EG : Oi < Oj (62)

As the parent relation defines the edges in the graph, we need to prove that:

∀i, j ∈ [1, nC] : Parentij = 1⇒ Oi < Oj (63)

for which we will use a proof by contradiction. Let us assume that the above statement is false. Then,
we know that:

∃i, j ∈ [1, nC] : Parentij = 1 ∧Oi ≥ Oj (64)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

From H-CMR’s parametrization, we know that:

Parentij = 1−
nR∏
k=1

1[Ri,j,k = I]

Thus, we know that:

∃i, j ∈ [1, nC], k ∈ [1, nR] : Ri,j,k ̸= I ∧Oi ≥ Oj (65)

Then, using Equation 8, this is equivalent to:

∃i, j ∈ [1, nC], k ∈ [1, nR] : I ̸= arg max
r∈{P,N,I}

p(Ri,k,j = r)) ∧Oi ≥ Oj (66)

Filling in Oi ≥ Oj in Equation 4 gives:

p(Ri,k,j = P) = 1[Oj > Oi] · p(R′
i,k,j = P) = 0 (67)

p(Ri,k,j = N) = 1[Oj > Oi] · p(R′
i,k,j = N) = 0 (68)

p(Ri,k,j = I) = 1[Oj > Oi] · p(R′
i,k,j = I) + 1[Oj ≤ Oi] = 1 (69)

which is a contradiction, as I is the most likely role.

F LLM USAGE DECLARATION

During writing, Large Language Models (LLMs) were used only to polish and improve the clarity of
the text.

G CODE, LICENSES AND RESOURCES

Our code will be made publicly available upon acceptance under the Apache license, Version 2.0. We
implemented H-CMR in Python 3.10.12 and additionally used the following libraries: PyTorch v2.5.1
(BSD license) (Paszke et al., 2019), PyTorch-Lightning v2.5.0 (Apache license 2.0), scikit-learn
v1.5.2 (BSD license) (Pedregosa et al., 2011), PyC v0.0.11 (Apache license 2.0). We used CUDA
v12.7 and plots were made using Matplotlib (BSD license).

We used the implementation of Stochastic Concept Bottleneck Models (Apache license 2.0)9 and
Causal Concept Graph Models (MIT license)10.

The used datasets are available on the web with the following licenses: CUB (MIT license11), MNIST
(CC BY-SA 3.0 DEED), CIFAR10 (MIT license)12.

The experiments were run on a machine with an NVIDIA GeForce RTX 3080 Ti, Intel(R) Xeon(R)
Gold 6230R CPU @ 2.10GHz and 256 GB RAM. Table 4 shows the estimated total computation
time for a single run of each experiment.

Table 4: Estimated total computation time for a single run of each experiment.

Experiment Time (hours)
CUB 12.2
MNIST-Addition 3.3
MNIST-Addition (with tasks) 1.6
CIFAR10 33.1
Synth 0.1

9https://github.com/mvandenhi/SCBM
10https://github.com/gabriele-dominici/CausalCGM
11https://huggingface.co/datasets/cassiekang/cub200_dataset
12https://www.kaggle.com/datasets/ekaakurniawan/the-cifar10-dataset/data

25

https://github.com/mvandenhi/SCBM
https://github.com/gabriele-dominici/CausalCGM
https://huggingface.co/datasets/cassiekang/cub200_dataset
https://www.kaggle.com/datasets/ekaakurniawan/the-cifar10-dataset/data

	Introduction
	Model
	High-level overview
	Parametrization
	Encoder
	Decoder
	Memory, rule representation and rule evaluation

	Inference
	Learning problem
	Expressivity, interpretability and intervenability
	Expressivity
	Interpretability
	Intervenability

	Experiments
	Experimental setting
	Key findings

	Related work
	Conclusion
	Details of properties in H-CMR
	Task prediction
	Model interventions
	Verification

	Experimental and implementation details
	Probabilistic graphical model
	General
	Deriving Equation 10
	Deriving Equation 6

	Additional results
	Learned rules
	Different intervention policies

	Proofs
	Theorem 5.1
	Theorem 5.2

	LLM usage declaration
	Code, licenses and resources

