
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

INTERPRETABLE HIERARCHICAL CONCEPT REASON-
ING THROUGH GRAPH LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Concept-Based Models (CBMs) are a class of deep learning models that provide
interpretability by explaining predictions through high-level concepts. These
models first predict concepts and then use them to perform a downstream task.
However, current CBMs offer interpretability only for the final task prediction,
while the concept predictions themselves are typically made via black-box neural
networks. To address this limitation, we propose Hierarchical Concept Memory
Reasoner (H-CMR), a new CBM that provides interpretability for both concept and
task predictions. H-CMR models relationships between concepts using a learned
directed acyclic graph, where edges represent logic rules that define concepts in
terms of other concepts. During inference, H-CMR employs a neural attention
mechanism to select a subset of these rules, which are then applied hierarchically
to predict all concepts and the final task. Experimental results demonstrate that H-
CMR matches state-of-the-art performance while enabling strong human interaction
through concept and model interventions. The former can significantly improve
accuracy at inference time, while the latter can enhance data efficiency during
training when background knowledge is available.

1 INTRODUCTION

Concept-Based models (CBMs) have introduced a significant advancement in deep learning (DL) by
making models explainable-by-design (Koh et al., 2020; Alvarez Melis & Jaakkola, 2018; Chen et al.,
2020; Espinosa Zarlenga et al., 2022; Mahinpei et al., 2021; Debot et al., 2024; Barbiero et al., 2023;
Poeta et al., 2023; Dominici et al., 2024; Vandenhirtz et al., 2024; Espinosa Zarlenga et al., 2023;
Havasi et al., 2022). These models integrate high-level, human-interpretable concepts directly into DL
architectures, bridging the gap between black-box neural networks and transparent decision-making.
One of the most well-known CBMs is the Concept Bottleneck Model (CBNM) (Koh et al., 2020),
which first maps an input (e.g. an image) to a set of human-understandable concepts (e.g. "pedestrian
present," "danger in front") using a neural network and then maps these concepts to a downstream task
(e.g. "press brakes") via a linear layer. The predicted concepts serve as an interpretable explanation
for the final decision (e.g. "press brakes because there is a danger in front"). Considerable research
has focused on ensuring CBMs achieve task accuracy comparable to black-box models. Some CBMs
(Espinosa Zarlenga et al., 2022; Mahinpei et al., 2021; Debot et al., 2024; Barbiero et al., 2023) are
even known to be universal classifiers (Hornik et al., 1989); they match the expressivity of neural
networks for classification tasks, regardless of the chosen set of concepts.

While CBMs enhance interpretability at the task level, their concept predictions remain opaque,
functioning as a black-box process. Most CBMs model the concepts as conditionally independent
given the input (e.g. Figure 1a), meaning any dependencies between them must be learned in an
opaque way by the underlying neural network (Koh et al., 2020; Alvarez Melis & Jaakkola, 2018;
Chen et al., 2020; Espinosa Zarlenga et al., 2022; Mahinpei et al., 2021; Debot et al., 2024; Barbiero
et al., 2023). In contrast, some existing approaches attempt to capture relationships between concepts
in a structured way (Dominici et al., 2024) (e.g. Figure 1b). However, the current approaches do not
really provide interpretability: while they reveal which concept predictions influence others, they do
not explain how these influences occur. For instance, one can determine that ’pedestrian present’ has
some influence on ’danger in front,’ but not the exact nature of this influence.
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Figure 1: Comparison of example CBMs. Blue and black edges are interpretable and black-box
operations, respectively. (a) Some approaches model conditionally independent concepts with
interpretable task inference. (b) Others learn a hierarchy of concepts with black-box task inference.
(c) Only our approach learns a hierarchy with interpretable inference for both concepts and task.

In this paper, we introduce Hierarchical Concept Memory Reasoner (H-CMR) (Figure 1c), the first
CBM that is both a universal classifier and provides interpretability at both the concept and task
levels. H-CMR learns a directed acyclic graph (DAG) over concepts and tasks, which it leverages for
inference. H-CMR employs neural rule generators that produce symbolic logic rules defining how
concepts and tasks should be predicted based on their parent concepts. These generators function as
an attention mechanism between the input and a jointly learned memory of logic rules, selecting the
most relevant rules for each individual prediction. Once the rules are selected for a specific input, the
remaining inference is entirely interpretable for both concepts and tasks, as it follows straightforward
logical reasoning. This means the human can inspect how parent concepts exactly contribute to their
children. By combining graph learning, rule learning, and neural attention, H-CMR provides a more
transparent and structured framework for both concept predictions and downstream decision-making.

Our experiments demonstrate that H-CMR achieves state-of-the-art accuracy while uniquely offering
interpretability for both concept and task prediction. This interpretability enables strong human-
AI interaction, particularly through interventions. First, humans can do concept interventions at
inference time, correcting mispredicted concepts. Unlike in typical CBMs, which model concepts
as conditionally independent, these interventions are highly effective: correcting one concept can
propagate to its dependent concepts, potentially cascading through multiple levels. Second, humans
can do model interventions at training time, modifying the graph and rules that are being learned,
allowing the human to shape (parts of) the model. We show that this enables the integration of prior
domain knowledge, improving data efficiency and allowing H-CMR to perform in low-data regimes.

We want to stress that H-CMR does not attempt to learn the causal dependencies between concepts in
the data. Instead, H-CMR reveals its internal reasoning process: which concepts does the model use
for predicting other concepts (also known as causal transparency (Dominici et al., 2024)), and how
(interpretability).

2 MODEL

We introduce Hierarchical Concept Memory Reasoner (H-CMR), the first CBM that is a universal
binary classifier providing interpretability for both concept and task predictions. We considered three
main desiderata when designing H-CMR (for more details, see Section 5): interpretability, the ability
for humans to understand how concepts and tasks are predicted using each other; intervenability, the
ability for humans to meaningfully interact with the model; expressivity, a requirement for the model
to be able to achieve similar levels of accuracy as black-box models irrespective of the employed set
of concepts. For simplicity, we only consider concepts in the remaining sections, omitting the task.
The task can be treated similar as the concepts, or separately like in most CBMs (see Appendix A).

2.1 HIGH-LEVEL OVERVIEW

From a high-level perspective, H-CMR consists of three main components (Figure 2): a rule memory,
an encoder, and a decoder. The encoder predicts a small number of concepts and an embedding, and
the decoder selects from the memory a set of logic rules to hierarchically predict all other concepts.
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Figure 2: High-level overview of the different components of H-CMR. (a) The memory is com-
partmentalized per concept and implies a DAG over the concepts. (b) The encoder predicts source
concepts and an embedding. (c) The decoder infers each non-source concept from its parent concepts,
the embedding and its rules, by selecting a rule (using a neural network) and then symbolically
executing that rule using the parent concepts. (d) Example of the decoder predicting C3.

As standard in CBMs, concepts are predefined and come with the dataset, and they are supervised,
with labels in the dataset or extracted using Vision-Language Models (Oikarinen et al., 2023a).

Memory. The memory is compartmentalized per concept. For each concept, it stores a set of (learned)
logic rules that define that concept in terms of other concepts, e.g. C3 ← C1 ∧ C2, or C3 ← ¬C1.
This memory implicitly defines a directed acyclic graph (DAG) over the concepts: if a concept Ci

appears in at least one rule defining another concept Cj , then Ci is a parent of Cj . For some concepts,
all associated rules will be "empty" (e.g. Ci ← .), meaning they have no parents. These are the source
concepts of the DAG, which are predicted directly by the encoder rather than inferred via rules.

Encoder. The encoder is a neural network which maps the input to the source concepts and a latent
embedding. Thus, source concepts are directly predicted from the input in the same black-box fashion
done by standard CBMs.1 The latent embedding captures additional contextual information from the
input that may not be captured by the concepts. This preserves the concept-prediction expressivity of
other CBMs, and the task-prediction expressivity of black-box neural networks (see Section 5).

Decoder. The decoder is used to hierarchically perform inference over the concept DAG. At each
step, it predicts a concept using its parent concepts, the latent embedding, and its rules in the memory.
It leverages a neural attention mechanism to select the most relevant rule for the current prediction,
based on the parent concepts and the latent embedding. This rule is then symbolically executed on
the parent concepts to produce the concept prediction.

This approach is designed to handle settings where (i) no graph over concepts is available and must
therefore be learned from data, (ii) rules defining concepts in terms of others are unknown and must
be learned, and (iii) the available concepts alone are insufficient for perfect prediction, requiring
additional contextual information, here exploited through the rule selection and the latent embedding.
While the learned rules may be noisy in settings where concepts are insufficient (i.e. directly applying
all rules may not lead to correct predictions in every case), this is not a problem due to the selection
mechanism, as only the selected rule is required to yield the correct prediction.

2.2 PARAMETRIZATION

In this section, we go into more detail on how the individual components are parametrized. We refer to
Appendix C for H-CMR’s probabilistic graphical model, and Appendix B for more details regarding
the neural network architectures. We explain how these components are used to do inference in
Section 3.

1While standard CBMs do this for all concepts, H-CMR only does this for source concepts.
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2.2.1 ENCODER

The encoder directly predicts each source concept Ci and the embedding E from the input x:

p(Ci = 1 | x̂) = fi(x̂), ê = g(x̂) (1)

where each fi and g are neural networks, with the former parametrizing Bernoulli distributions.2 This
deterministic modelling of the embedding E corresponds to a delta distribution.

2.2.2 DECODER

The decoder infers non-source concepts from their parent concepts, the latent embedding and the
rules in the memory, and operates in two steps. First, the parent concepts and the embedding are used
to select a logic rule from the set of rules for that concept. Second, this rule is evaluated on the parent
concept nodes’ values to produce an interpretable prediction. More details on this memory and the
representation and evaluation of rules are given in Section 2.2.3.

The selection of a rule for a concept Ci is modelled as a categorical random variable Si with one
value per rule for Ci. For instance, if there are three rules for C1 and the predicted categorical
distribution for S1 is (0.8, 0.2, 0.0), then this means that the first rule in the memory is selected with
80% probability, the second rule with 20%, and the third with 0%. The logits of this distribution are
parametrized by a neural network that takes the parent concepts and latent embedding as input. For
each non-source concept Ci, the concept prediction is:

p(Ci = 1 | ê, ĉparents(i), r̂i) =
nR∑
k=1

p(Si = k | ê, ĉparents(i))︸ ︷︷ ︸
neural selection of rule k

using parent concepts + emb.

· l(ĉparents(i), r̂i,k)︸ ︷︷ ︸
evaluation of concept i’s rule k

using parent concepts

(2)

with ê the latent embedding, nR the number of rules for each concept, r̂i the set of rules for this
concept, Si the predicted categorical distribution over these rules, and l(ĉ, r̂i,k) the symbolic execution
of rule k of concept i using concepts ĉ (see Section 2.2.3). Intuitively, all the learned rules for Ci

contribute to its prediction, each weighted by the rule probability according to the neural selection.

2.2.3 MEMORY, RULE REPRESENTATION AND RULE EVALUATION

For each concept, H-CMR learns nR rules in its memory, with nR a hyperparameter. The memory
and the representation of rules resemble the approach of Debot et al. (2024).3 For each concept
Ci, the memory contains nR embeddings, each acting as a latent representation of a rule. These
embeddings are decoded using a neural network into symbolic representations of logic rules, enabling
symbolic inference. We consider rule bodies that are conjunctions of concepts or their negations, e.g.
C3 ← C0 ∧ ¬C1 (read "if C0 is true and C1 is false, then C3 is true").

A rule is represented as an assignment to a categorical variable over all possible rules. Explicitly
defining this distribution would be intractable, as there are an exponential number of possible rules.
Instead, we factorize this variable into nC independent categorical variables Ri, each with 3 possible
values corresponding to the role of a concept in the rule. For instance, in C3 ← C0 ∧¬C1, we say C0

plays a positive (R0 = P ) role, C1 plays a negative (R1 = N ) role, and C2 is irrelevant (R2 = I).

Evaluating a rule on concept predictions follows the standard semantics of the logical connectives.
Using our representation of a rule, this becomes:

l(ĉ, r̂i,k) =

nC∏
j=1

(1[r̂i,k,j = P ] · 1[ĉj = 1] + 1[r̂i,k,j = N ] · 1[ĉj = 0]) (3)

where nC is the number of concepts, l(·) is the logical evaluation of a given rule using the given
concepts ĉ, and r̂i,k,j is the role of concept j in that rule (positive (P), negative (N) or irrelevant (I)).

Decoding each rule embedding into this symbolic representation (i.e. assignments to nC categorical
variables Ri) happens in two steps, and is different from Debot et al. (2024). First, a neural network

2We abbevriate the notation for assignments to random variables, e.g. x̂ means X = x̂.
3Note that their rules define tasks in terms of concepts. Ours also define concepts in terms of each other.
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Figure 3: Example of H-CMR’s learned DAG over concepts as defined by its learned rules. The
learned node priority vector O (i.c. O0 < O1 < O2 < O3) enforces a topological ordering of the
nodes, guaranteeing that the learned graph is a DAG.

maps each rule embedding to the logits for nC categorical distributions R′
i. Then, to ensure that

the rules form a DAG, we must prevent cyclic dependencies. For instance, we should not learn
conflicting rules such as C1 ← C0 and C0 ← C1, or C1 ← C1. To enforce this constraint, we draw
inspiration from Massidda et al. (2023), defining a learnable node priority vector which establishes a
topological ordering over concepts: higher-priority concepts are not allowed to appear in the rules of
lower-priority concepts, thereby preventing cycles. We achieve this by using the node priorities to
modify the categorical distributions R′

i, obtaining the to-be-used distributions Ri. Specifically, we
make any rule that violates the ordering impossible, ensuring its probability is zero. Let Oi be the
node priority of concept i, then:

∀r ∈ {P,N} : p(Ri,k,j = r) = 1[Oj > Oi] · p(R′
i,k,j = r) (4)

p(Ri,k,j = I) = 1[Oj > Oi] · p(R′
i,k,j = I) + 1[Oj ≤ Oi] (5)

where 1[·] is the indicator function, and p(Ri,k,j) is the categorical distribution of the role of concept
j in rule k for concept i corrected with the node priorities O, which are delta distributions. Figure
3 gives a graphical example. The employed rules in the memory are assignments to these random
variables, which are used in Equation 3. During training, these assignments are obtained by sampling
from this distribution (see Section 4). During inference, we take the most likely roles (see Section 3).

3 INFERENCE

For the derivation of the equations below from H-CMR’s probabilistic graphical model, we refer to
Appendix C. Computing the exact likelihood of a concept corresponds to:

p(Ci|x̂) =
∑

ĉparents(i)

1[Sourcei = 1] · p(C ′
i | x̂) + 1[Sourcei = 0] · p(C ′′

i | x̂, ĉparents(i), r̂i) (6)

where r̂i is given by Equation 8, p(C ′
i | ·) by Equation 1 and p(Ĉ ′′

i | ·) by Equation 2. Concepts
are source concepts if all of their rules are empty, i.e. for all their rules, each concept is irrelevant:
Sourcei =

∏nR

k=1

∏nC

j=1 1[r̂i,k,j = I]. The sum goes over all possible assignments to the parent
concepts. As this would make inference intractable, we instead take an approximation of the
Maximum A Posteriori estimate over the concepts by thresholding each individual concept prediction
at 50%:4

p(Ci|x̂) = 1[Sourcei = 1] · p(C ′
i | x̂) + 1[Sourcei = 0] · p(C ′′

i | x̂, ĉparents(i), r̂i) (7)

with ĉparents(i) = {1[p(Cj = 1 | x̂) > 0.5] | 1[Parentij = 1]}. Note that this thresholding is
also beneficial for avoiding the problem of concept leakage in CBMs, which harms interpretability
(Marconato et al., 2022). As mentioned earlier, a concept is another concept’s parent if it appears in
at least one of its rules: Parentij = 1−

∏nR

k=1 1[r̂i,k,j = I] (i.e. in not all rules for Ci, the role of
Cj is irrelevant). Finally, the roles r̂i, which represent logic rules, are the most likely roles:

r̂i,k,j = arg maxr∈{P,N,I} p(Ri,k,j = r) (8)

4An alternative is to sample the concepts instead.
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4 LEARNING PROBLEM

During learning, H-CMR is optimized jointly: the encoder (neural network), the decoder (rule selector
neural networks) and the memory (node priority vector, rule embeddings and rule decoding neural
networks). The training objective follows a standard objective for CBMs, maximizing the likelihood
of the concepts. For the derivation of this likelihood and the other equations below using H-CMR’s
probabilistic graphical model, we refer to Appendix C. Because the concepts are observed during
training, this likelihood becomes:

max
Ω

∑
(x̂,ĉ)∈D

nC∑
i=1

log p(ĉi | ĉ, x̂) (9)

where we write ĉparents(i) as ĉ to keep notation simple. Each individual probability is computed
using Equation 1 for source concepts and Equation 2 for other concepts:

p(ĉi|ĉ, x̂) = Er̂∼p(R) [p(ĉ
′
i | x̂) · p(Sourcei | r̂) + p(ĉ′′i | ĉ, ê, r̂) · p(¬Sourcei | r̂)] (10)

where p(Sourcei | r̂) =
nC∏
j=1

nR∏
k=1

1[Ri,k,j = I] (11)

with p(C ′
i | x̂) and ê corresponding to Equation 1, p(C ′′

i | ĉ, ê, r̂) to Equation 2, and p(R) to Equation
4.5 Note that the designation of source concepts and parent concepts may change during training, as
the roles R change. Additionally, to promote learning rules that are prototypical of the seen concepts,
we employ a form of regularization akin to Debot et al. (2024) (see Appendix B).

Scalability. Computing the above likelihood scales O(nR · n2
C) at training time with nC the number

of concepts and nR the number of rules per concept. At inference time, this is the worst-case
complexity, depending on the structure of the learned graph.

5 EXPRESSIVITY, INTERPRETABILITY AND INTERVENABILITY

5.1 EXPRESSIVITY

H-CMR functions as a universal binary classifier for both concept and task prediction. This means
it has the same expressivity of a neural network classifier, regardless of the employed concepts. In
practice, this translates to high accuracy , irrespective of the chosen concept set.
Proposition 5.1. H-CMR is a universal binary classifier (Hornik et al., 1989) if nR ≥ 2, with nR the
number of rules for each concept and task.

Furthermore, H-CMR’s parametrization guarantees that the learned graph over the concepts forms a
DAG, and is expressive enough to represent any possible DAG, meaning any possible dependency
structure. Let Θ be the set of all possible parameter values H-CMR can take. For a specific parameter
assignment θ ∈ Θ, let Gθ represent the corresponding concept graph.
Proposition 5.2. Let DAG denote the set of all directed acylic graphs (DAGs). LetH := {Gθ | θ ∈
Θ} be the set of graphs over concepts representable by H-CMR. Then:

H = DAG

That is,
∀G ∈ DAG, ∃ θ ∈ Θ : Gθ = G, ∀θ ∈ Θ : Gθ is a DAG

For the proofs, we refer to Appendix E.

5.2 INTERPRETABILITY

In sharp contrast to other CBMs, H-CMR offers interpretability not only for task prediction but
also for concept prediction. Most CBMs model the concepts as conditionally independent given the
input, leading to their direct prediction through an uninterpretable black-box mechanism. In H-CMR,

5We use straight-through estimation for the thresholding operator in Equation 4 and the sampling of R.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

interpretability is achieved by representing concepts as the logical evaluation of a neurally selected
rule. H-CMR provides two distinct forms of interpretability: local and global.

H-CMR provides local interpretability by making the logic rules used for predicting both concepts
and tasks explicitly transparent to the human for a given input. Once these rules are selected for a
given input instance, the remaining computation is inherently interpretable, as it consists of logical
inference over the structure of the graph using these rules.

H-CMR enables a form of global interpretability, as all possible rules applicable for obtaining each
concept and task prediction are stored transparently in the memory. First, this allows for human
inspection of the rules, and even formal verification against predefined constraints using automated
tools (see Appendix A). Second, this allows for model interventions (see Section 5.3).

5.3 INTERVENABILITY

Concept interventions. These are test-time operations where some concept predictions are replaced
with ground truth values, simulating expert interaction at decision time. They are considered a
key feature of CBMs, and ideally should maximally influence the model’s predictions. Unlike
CBMs that assume conditional independence, H-CMR allows interventions on parent concepts to
propagate to child concepts, which in turn can influence further downstream concepts. As a result,
H-CMR demonstrates greater responsiveness to interventions compared to CBMs modelling concepts
as conditionally independent. Specifically, an intervention on a concept can affect child concept
predictions in two ways. First, it can modify the rule selection process for the child concept, because
the intervened concept is an input to the child concept’s rule selection. Second, it can alter the
evaluation of the selected logic rule, as the concept may be used in evaluating that rule.

Model interventions. In addition to concept interventions at test time, H-CMR allows for model
interventions at training time, influencing the graph and rules that are learned. A human expert’s
knowledge can be incorporated by manually adding new rules to the memory, and learned rules can
be inspected, modified, or replaced as needed. Moreover, the human can forbid concepts from being
parents of other concepts, or enforce specific structures on the graph (e.g. choose which concepts
should be sources or sinks). For details on how this can be done, we refer to Appendix A.

6 EXPERIMENTS

In our experiments, we consider the following research questions: (Accuracy) Does H-CMR attain
similar concept accuracy as existing CBMs? Does H-CMR achieve high task accuracy irrespective of
the concept set? (Explainability and intervenability) Does H-CMR learn meaningful rules? Are
concept interventions effective? Can model interventions be used to improve data efficiency?

6.1 EXPERIMENTAL SETTING

We only list essential information for understanding the experiments. Details can be found in Ap-
pendix B. We focus on concept prediction as this is what distinguishes H-CMR the most, omitting the
task for most experiments and comparing with state-of-the-art concept predictors. In one experiment
we still support our claim that H-CMR can achieve high task accuracy irrespective of the concept set.

Data and tasks. We use four datasets to evaluate our approach: CUB (Welinder et al., 2010), a
dataset for bird classification; MNIST-Addition (Manhaeve et al., 2018), a dataset based on MNIST
(Lecun et al., 1998); CIFAR10 (Krizhevsky et al., 2009), a widely used dataset in machine learning;
and a synthetic dataset based on MNIST with difficult concept prediction and strong inter-concept
dependencies. All datasets except CIFAR10 provide full concept annotations. For CIFAR10, we use
the same technique as Oikarinen et al. (2023b) to extract concept annotations from a vision-language
model, showing our approach also works on non-concept-based datasets.6

Evaluation. We measure classification performance using accuracy. For intervenability, we report
the effect on accuracy of intervening on concepts (see Appendix D for the used intervention strategies
and ablation studies). Metrics are reported using the mean and standard deviation over 3 seeded runs.

6Note that our approach can be applied to multilabel classification dataset without any concepts, in which
case H-CMR learns a graph over the different tasks (instead of over concepts and tasks).
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Figure 4: Concept accuracy for all datasets and models.
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Figure 5: Concept accuracy before vs. after intervening on increasingly more concepts.

Competitors. We compare H-CMR with Stochastic Concept Bottleneck Models (SCBM) (Vanden-
hirtz et al., 2024) and Causal Concept Graph Models (CGM) (Dominici et al., 2024), state-of-the-art
CBMs developed with a strong focus on intervenability. We also compare with a neural network (NN)
directly predicting the concepts, which is the concept predictor for most CBMs, such as Concept
Bottleneck Models (CBNM) (Koh et al., 2020) and Concept-based Memory Reasoner (Debot et al.,
2024). In the task accuracy experiment, we compare with SCBM, CGM, and CBNM.

6.2 KEY FINDINGS

H-CMR’s interpretability does not harm concept accuracy (Figure 4), and achieves high task
accuracy irrespective of the concept set (Figure 7). H-CMR achieves similar levels of concept
accuracy compared to competitors. As a universal classifier, H-CMR can achieve high task accuracy
even with small concept sets, similar to some other CBMs (Espinosa Zarlenga et al., 2022).

H-CMR shows a high degree of intervenability (Figure 5). We evaluate H-CMR’s gain in concept
accuracy after intervening on increasingly more concepts. H-CMR demonstrates far higher degrees
of intervenability compared to CBMs modelling concepts independently (NN), and similar or better
to approaches that model concepts dependently (SCBM, CGM).

Model interventions by human experts improve data efficiency (Figure 6). We exploit these to
provide H-CMR with background knowledge about a subset of the concepts for MNIST-Addition,
allowing H-CMR to maintain high accuracy even in low-data regimes with only partial supervision
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Figure 6: Data efficiency of H-CMR with (MI)
and without (Base) background knowledge on
MNIST-Add. The x-axis denotes how many con-
cept labels are included in the training set. The
reference is accuracy when training on all labels.
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Figure 7: Task accuracy on MNIST-Addition
for training on different sizes of the concept set.
Universal classifiers (H-CMR, CGM) are robust
to the choice of concepts, while other approaches
are not (SCBM, CBNM).
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on the concepts. We give H-CMR rules defining 18 concepts in terms of the 10 remaining ones,
and force the latter to be source concepts. This helps in two ways. First, when source concepts are
correctly predicted, so are the others. Second, when for a training example a label is only available
on non-sources, the gradient can backpropagate through the given rules to provide a training signal to
the sources. This means H-CMR does not only work in a concept-based setting, where full concept
supervision is typically provided, but also in a neurosymbolic setting, where often distant supervision
is used to train concepts by exploiting background knowledge (Manhaeve et al., 2018).

H-CMR learns meaningful rules. We qualitatively inspect the rules H-CMR learns in Appendix D.

7 RELATED WORK

H-CMR is related to two major directions in concept-based models (CBMs) research: one focus-
ing on closing the accuracy gap between CBMs and black-box models like deep neural networks
(Espinosa Zarlenga et al., 2022; Barbiero et al., 2023), and one focusing on intervenability (Es-
pinosa Zarlenga et al., 2023; Havasi et al., 2022). The former has led to the development of many
CBMs that are universal classifiers: they can achieve task accuracies comparable to black boxes
irrespective of the concept set. However, many models achieve this by sacrificing the interpretability
of their task predictions (Espinosa Zarlenga et al., 2022; Mahinpei et al., 2021). A notable exception is
Concept Memory Reasoner (CMR), an interpretable universal classifier (Debot et al., 2024), achieved
by modelling the task as the symbolic execution of a neurally selected logic rule from a memory.

Table 1: CBMs having proper-
ties (✓), partially (∼) or not at
all (✗): Universal Classifier (UC),
Interpretable Predictions (IP), Ex-
pressive concept Interventions (EI),
Model Interventions (MI).

Model UC IP EI MI

CBNM ✗ ∼ ✗ ∼
CEM ✓ ✗ ✗ ✗
CMR ✓ ∼ ✗ ∼
SCBM ✗ ∼ ∼ ✗
CGM ✓ ✗ ✓ ∼

H-CMR ✓ ✓ ✓ ✓

However, the aforementioned CBMs treat concepts as condi-
tionally independent, which limits the effect of concept inter-
ventions at test time: correcting a mispredicted concept only
impacts the downstream task directly, not other (potentially
correlated) concepts. To overcome this, a second line of work
models dependencies between concepts (Havasi et al., 2022).
For instance, Stochastic Concept Bottleneck Models (SCBMs)
jointly model concepts rather than treating them independently
(Vandenhirtz et al., 2024), enabling interventions to propagate
across concepts. Yet, SCBMs are not universal classifiers: their
accuracy is limited by the concept set. Causal Concept Graph
Models (CGMs) address this by learning a concept graph and
applying black-box message passing (Dominici et al., 2024),
achieving both universality and high intervenability. However,
the message passing makes concepts and tasks uninterpretable.

Our model, H-CMR, can be seen as an extension of CMR’s symbolic reasoning approach to concept
predictions, combining it with CGMs’ idea of concept graph learning. H-CMR achieves expressive
interventions, and unlike previous models, it is a universal classifier that provides interpretability at
both the concept and task levels. Table 1 gives an overview (for references, see Table 2).

We are also related to neurosymbolic approaches that perform rule learning. Some approaches operate
on structured relational data such as knowledge graphs, where target predicates are predefined and
a perception component is typically absent (Cheng et al., 2022; Qu et al., 2020). Others resemble
standard CBMs, where the model’s structure, i.e. which symbols ("tasks") are predicted from which
others ("concepts"), is manually defined by the user (Si et al., 2019; Daniele et al., 2022; Tang & Ellis,
2023). Another line of work builds rules on input features instead of high-level concepts (Okajima &
Sadamasa, 2019; Lee et al., 2022; 2025), and where rules typically provide local explanations (Lee
et al., 2022; 2025). In contrast, H-CMR learns both the symbolic rules, which form both local and
global explanations, and the dependency structure: a directed graph that defines how concepts and
tasks depend on each other. Moreover, such works typically do not provide formal guarantees on
expressivity, whereas we prove that H-CMR is a universal classifier.

8 CONCLUSION

We introduce H-CMR, a concept-based model that is a universal binary classifier while providing
interpretability for both concept and task prediction. Through our experiments, we show that H-

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

CMR (1) achieves state-of-the-art concept and task accuracy, (2) is highly responsive to concept
interventions at inference time, and (3) that through model interventions, background knowledge
can be incorporated to improve data efficiency, if available. H-CMR can have societal impact by
improving transparency and human-AI interaction.

Limitations and future work. Interesting directions for future work include extending the inter-
vention strategy to take uncertainty into account, and performing a more extensive investigation of
H-CMR’s performance in a hybrid setting between concept-based and neurosymbolic, where for some
concepts expert knowledge is available, and for others concept supervision. Furthermore, H-CMR’s
worst-case complexity is quadratic in the number of concepts, which is a limitation for very large
concept sets.

Reproducibility statement. All our experiments are seeded, and we will make the code publicly
available upon publication of the paper. Moreover, in Appendix B, we describe in detail the setup of
each experiment, the implementation of each model, and the training setup.
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Table 2: CBMs having properties (✓), partially (∼) or not at all (✗): Universal Classifier (UC),
Interpretable Predictions (IP), Expressive concept Interventions (EI), Model Interventions (MI).

Model UC IP EI MI

CBNM (Koh et al., 2020) ✗ ∼ ✗ ∼
CEM (Espinosa Zarlenga et al., 2022) ✓ ✗ ✗ ✗
CMR (Debot et al., 2024) ✓ ∼ ✗ ∼
SCBM (Vandenhirtz et al., 2024) ✗ ∼ ∼ ✗
CGM (Dominici et al., 2024) ✓ ✗ ✓ ∼

H-CMR ✓ ✓ ✓ ✓

A DETAILS OF PROPERTIES IN H-CMR

A.1 TASK PREDICTION

In H-CMR, tasks and concepts are modelled in the same way: they are nodes that are predicted from
their parent nodes, and the learned rules in the memory define this structure. This means that the
memory contains rules for predicting each concept, and for predicting each task. Consequently, the
parametrization explained in the main text, which defines how concepts are predicted from other
concepts, is also used for tasks. The simplest way to incorporate tasks is by simply considering
them as additional concepts. Then, H-CMR learns a graph over concepts and tasks. This allows for
instance that tasks are predicted using each other, and that concepts are predicted using tasks.

This approach is also possible in e.g. CGM (Dominici et al., 2024), but not in most CBMs, where
concepts and tasks are modelled in two separate layers of the model. In most CBMs, concepts are
first predicted from the input using a neural network, and then the task is predicted from the concepts
(e.g. CBNM (Koh et al., 2020)) and possibly some residual, e.g. an embedding to provide additional
contextual information (Mahinpei et al., 2021).

In H-CMR, this concept-task structure can be enforced by forcing the tasks to be sink nodes in the
learned graph, i.e. they have no outgoing edges (no concepts are predicted from the tasks, and tasks
are not predicted using each other), that additionally have all concepts as potential parents. This can
be done through model interventions.

A.2 MODEL INTERVENTIONS

In this section, we give some examples on how human experts can do model interventions on H-CMR
during training, influencing the model that is being learned. To this end, we first derive the following
matrix A ∈ RnC×nC from H-CMR’s parametrization:

∀i, j ∈ [1, nC ] : Aij = 1[Oj > Oi] (12)

where Aij = 1 indicates that concept j is allowed to be a parent of concept i based on the node
priority vector O (see Equation 4). This matrix serves as an alternative representation of the parent-
child constraints originally encoded by O, which can then be used in Equation 4 instead of O. By
intervening on this matrix, it is possible to:

• force a concept k to be a source (no parents): set ∀k ∈ [1, nC ] : Akj := 0;
• force a concept k to be a sink (no children): set ∀k ∈ [1, nC ] : Ajk := 0;
• forbid a concept m to be a parent of concept k: set Akm := 0.

Furthermore, a specific topological ordering of the concepts can be enforced by explicitly assigning
values to the entire node priority vector O. Moreover, to ensure that a concept l precedes or follows
concept k in the topological ordering, one can set Ol := Ok− z or Ol := Ok+ z, respectively, where
z ∈ R+

0 is any chosen positive number.

The human expert can also intervene on the roles the concepts play in individual rules. This means
intervening on the ’unadjusted roles’ R′, which are combined with the node priorities O to form the
rules. For instance, by intervening on R′ (and possibly O), it is possible to:

• force a concept k to be absent in rule l of concept i: set p(R′
i,l,k = I) := 1, p(R′

i,l,k =

P ) := 0, and p(R′
i,l,k = N) := 0;

14
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• force a concept k to be positively present in rule l of concept i (assuming O allows it): set
p(R′

i,l,k = I) := 0, p(R′
i,l,k = P ) := 1, and p(R′

i,l,k = N) := 0;

• force a concept k to be negatively present in rule l of concept i (assuming O allows it): set
p(R′

i,l,k = I) := 0, p(R′
i,l,k = P ) := 0, and p(R′

i,l,k = N) := 1.

By intervening on the roles and the node priorities in these ways, experts can have fine-grained
control over the content and structure of the rules. In the extreme case, human experts can choose to
fully specify a rule, or even the entire rule set, through such interventions.

A.3 VERIFICATION

Since the (learned) memory of rules is transparent, it can be formally verified against desired
constraints in a similar fashion as for CMR (Debot et al., 2024). For instance, one can verify whether a
constraint such as "whenever the concept ’black wings’ is predicted as True, the concept ’white wings’
is predicted as False and the task ’pigeon’ is predicted as False" is guaranteed by the learned rules.
This is possible because both concepts and tasks predictions can be represented as disjunctions over
the rules in the memory, expressed in propositional logic. As described by debot2024interpretable, the
neural rule selection can be encoded within this disjunction by introducing additional propositional
atoms that denote whether each individual rule is selected, along with mutual exclusivity constraints
between these atoms. Consequently, standard formal verification tools (e.g. model checkers) can
be employed to verify constraints w.r.t. this propositional logic formula. We refer to Section 4.3 of
debot2024interpretable.

B EXPERIMENTAL AND IMPLEMENTATION DETAILS

Datasets. In CUB (Welinder et al., 2010), there are 112 concepts related to bird characteristics,
such as wing pattern and head size. Each input consists of a single image containing a bird. In
MNIST-Addition (Manhaeve et al., 2018), the input consists of two MNIST images (LeCun et al.,
1998). There are 10 concepts per image, representing the digit present, and 19 tasks corresponding
to the possible sums of the two digits. For CIFAR10, which does not include predefined concepts,
we use the same technique as oikarinen2023labelfree to obtain them. Specifically, we use the same
concept set as oikarinen2023labelfree, which they obtained by prompting an LLM, and obtain concept
annotations by exploiting vision-language models, as in their work. For our synthetic dataset, we
modify MNIST-Addition by restricting it to examples containing only the digits zero and one. We
discard the original concepts and tasks and instead generate new concepts and their corresponding
labels for each example using the following sampling process:

• p(C0 = 1) =

{
0.7 if the first digit is a 1
0 otherwise

• p(C1 = 1) =

{
0.7 if the second digit is a 1
0 otherwise

• p(C2 = 1 | ĉ0, ĉ1) = ĉ0 ⊕′ ĉ1

• p(C3 = 1 | ĉ0, ĉ2) = ĉ0 ⊕′ ĉ2

• p(C4 = 1 | ĉ1, ĉ2) = ĉ1 ⊕′ ĉ2

• p(C5 = 1 | ĉ3, ĉ4) = ĉ3 ⊕′ ĉ4

• p(C6 = 1 | ĉ0, ĉ1) = ĉ0 ⊕′ ĉ1

where ⊕ is the logical XOR, and where we define ⊕′ as a noisy XOR:

ĉi ⊕′ ĉj =

{
1 if ĉi ⊕ ĉj = 1

0.05 otherwise
(13)

For each example, we sample labels from the above distributions. Intuitively, the concepts C0 and C1

indicate whether the corresponding MNIST images contain the digit one; however, these labels are
intentionally noisy. The remaining concepts are constructed as noisy logical XORs of C0, C1, and of
each other, introducing additional complexity and interdependence among the concepts.
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Reproducibility. For reproducibility, we used seeds 0, 1 and 2 in all experiments.

Model input. For MNIST-Addition, CIFAR10 and the synthetic dataset, we train directly on the
images. For CIFAR10, we use the same setup as vandenhirtz2024stochastic. For CUB, we instead
use pretrained Resnet18 embeddings (He et al., 2016), using the setup of debot2024interpretable.

General training information. We use the AdamW optimizer. For H-CMR and CBNMs, we
maximize the likelihood of the data. SCBMs and CGMs are trained using their custom loss functions.
After training, we select the model checkpoint with the highest validation accuracy. Validation
accuracy refers to concept prediction accuracy in all experiments, except in the MNIST-Addition
setting where tasks are retained. In that case, accuracy is computed over the concatenation of both
concepts and tasks. Throughout, we model all concepts and tasks as independent Bernoulli random
variables.

Intervention policy. For the results presented in the main text, the intervention policy follows
the graph learned by H-CMR, intervening first on the sink nodes and gradually moving down the
topological ordering as determined by the learned node priority vector. This approach makes it easy
to interpret the results, as the intervention order is the same for different models (i.e. if we intervene
on 3 concepts, they are the same concepts for H-CMR and all competitors). This makes it clear how
well the models are able to propagate the intervention to other concept predictions. To ensure a fair
comparison with CGM, we make sure that CGM learns using the same graph that H-CMR learned.
Additional ablation studies using different intervention policies are provided in Appendix D.

General architectural details. For each experiment, we define a neural network ϕ that maps the
input to some latent embedding with size sizelatent a hyperparameter. The architecture of this neural
network depends on the experiment but is the same for all models.

In H-CMR’s encoder, fi (see Equation 1) is implemented as first applying ϕ to the input, producing
a latent embedding with size sizelatent. This passes through a linear layer with leaky ReLU
activation outputting 2 embeddings of size sizec emb per concept (similar to concept embeddings
(Espinosa Zarlenga et al., 2022), we call one embedding the "positive" one, and the other one
the "negative" one), with sizec emb a hyperparameter. For each concept, the two embeddings
are concatenated and the result passes through a linear layer with sigmoid activation to produce
the concept prediction probability (corresponding to fi in Equation 1. The concatenation of all
embeddings form the output embedding of the encoder (ê as produced by g in Equation 1).

For H-CMR’s decoder, the neural selection p(Si = k | ê, ĉparents(i)) is implemented in the following
way. First, we mask within ê the values that originally corresponded to non-parent concepts. Then,
for each parent concept, if it is predicted to be True, we mask the values of ê that correspond to its
negative embedding. If it is predicted to be False, we mask the ones corresponding to its positive
embedding. Note again that this is similar to concept embeddings (Espinosa Zarlenga et al., 2022).
Next, we concatenate the embedding with the concept predictions ĉ. For non-parents, we set their
value always to 0. The result is a tensor of shape 2 · nc · sizec emb + nC , which is passed through
a linear layer (ReLU activation) with output size sizelatent. This is then passed through another
linear layer with output size nC · nR, which is reshaped to the shape (nC , nR). For each row i in this
tensor, this represents the logits of p(Si | ·). We apply a softmax over the last dimension to get the
corresponding probabilities.

In H-CMR’s memory, the node priority vector O is implemented as a torch Embedding of shape
(1, nC). The rule embeddings in the memory (each representing the latent representation of a logic
rule) are implemented as a torch Embedding of shape (nR · nC , sizerule emb) with sizerule emb

a hyperparameter. This is reshaped to shape (nC , nR, sizerule emb). The "rule decoding" neural
network consists of a linear layer (leaky ReLU) with output size sizerule emb followed by a linear
layer with output size nC · nR. After passing the embedding through this neural network, the result
has output shape (nC , nR, nC · 3), which is reshaped into (nC , nR, nC , 3). This corresponds to the
logits of the ’unadjusted roles’ p(R′). We obtain the probabilities by applying a softmax to the last
dimension.

The CBNM first applies ϕ, and then continues with a linear layer with sigmoid activation outputting
the concept probabilities. The task predictor is a feed-forward neural network consisting of 2 hidden
layers with ReLU activation and dimension 100, and a final linear layer with sigmoid activation.
We employ hard concepts to avoid the problem of concept leakage which may harm interpretability
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(Marconato et al., 2022), meaning we threshold the concept predictions at 50% before passing them
to the task predictor.

For SCBM, we use the implementation as given by the authors.7 The only differences are that (1) we
use ϕ to first produce a latent embedding which we pass to SCBM, and (2) we replace the softmax
on their task prediction by a sigmoid, as we treat the tasks in all experiments independently. For the
α hyperparameter, we always use 0.99. We always use the amortized variant of SCBMs, which is
encouraged by vandenhirtz2024stochastic. We use 100 Monte Carlo samples.

For CGM, we also use the implementation as given by the authors.8 The only difference is that we
use ϕ to first produce a latent embedding, which is passed to CGM. To ensure a fair comparison when
measuring intervenability, we equip CGM with the same graph that H-CMR learned.

Hyperparameters per experiment. In CUB, ϕ is a feed-forward neural network with 3 hidden layers.
Each layer has output size sizelatent. We use a learning rate of 0.001, batch size 1048, and train for
500 epochs. We check validation accuracy every 20 epochs. For H-CMR, we use sizelatent = 256,
sizerule emb = 500, sizec emb = 10, nR = 5, and β = 0.1. For SCBM, we use sizelatent = 64. For
CGM, we use sizelatent = 64 and sizec emb = 8.

In the synthetic dataset, ϕ consists of a convolutional neural network (CNN) consisting of a Conv2d
layer (1 input channel, 6 output channels and kernel size 5), a MaxPool2d layer (kernel size and stride
2), a ReLU activation, a Conv2D layer (16 output channels and kernel size 5), another MaxPool2d
layer (kernel size and stride 2), another ReLU activation, a flattening layer and finally a linear layer
with output size sizelatent/2. ϕ applies this CNN to both input images and concatenates the resulting
embeddings. We use a learning rate of 0.001, batch size 256, and train for 100 epochs. We check
validation accuracy every 5 epochs. For H-CMR, we use sizelatent = 128, sizerule emb = 1000,
sizec emb = 3, nR = 10, and β = 0.1. For SCBM, we use sizelatent = 128. For CGM, we use
sizelatent = 128 and sizec emb = 3. For CBNM, we use sizelatent = 128.

In MNIST-Addition, ϕ consists of a CNN that is the same as for the synthetic dataset, but with 3
additional linear layers at the end with output size sizelatent/2, the first two having ReLU activation.
ϕ applies this CNN to both input images and concatenates the resulting embeddings. We use a
learning rate of 0.001, batch size 256, and train for 300 epochs. We check validation accuracy every
5 epochs. For H-CMR, we use sizelatent = 128, sizerule emb = 1000, sizec emb = 3, nR = 10,
and β = 0.1. For SCBM, we use sizelatent = 256. For CGM, we use sizelatent = 100 and
sizec emb = 8. For CBNM, we use sizelatent = 128.

In CIFAR10, ϕ consists of a CNN consisting of a Conv2d layer (3 input channels, 32 output channels,
kernel size 5 and stride 3), ReLU activation, a Conv2d layer (32 input channels, 64 output channels,
kernel size 5 and stride 3), ReLU activation, a MaxPool2d layer (kernel size 2), a Dropout layer
(probability of 50%), a flattening layer and a linear layer with output size sizelatent with ReLu
activation. We use a learning rate of 0.001, batch size 100, and train for 300 epochs. We check
validation accuracy every 5 epochs. For H-CMR, we use sizelatent = 100, sizerule emb = 500,
sizec emb = 3, nR = 10, and β = 0.1. For SCBM, we use sizelatent = 100. For CGM, we use
sizelatent = 100 and sizec emb = 8. For CBNM, we use sizelatent = 100.

Additional details of the MNIST-Addition experiments. In the MNIST-Addition experiment where
only concept accuracy is reported, we treat the labels for both the individual digits and their sums as
concepts. For the experiment reporting task accuracy, we use the more conventional setting, where
the digits are considered as concepts, while the sums of digit pairs are treated as tasks. There, we use
model interventions to make the tasks sinks in the graph.

Hyperparameter search. The hyperparameters for all models were chosen that result in the highest
validation accuracy. For sizelatent, we searched within the grid [32, 64, 100, 128, 200, 256, 512], for
sizec emb within [2, 3, 8, 16], and for sizerule emb within [100, 500, 1000].

Prototypicality regularization. Similar to the approach of CMR (Debot et al., 2024), we employ a
regularization term that encourages the learned rules to be more prototypical of the seen concepts
during training. This aligns with standard theories in cognitive science (Rosch, 1978). While this
notion of prototypicality has inspired many so-called prototype-based models (Rudin, 2019; Li et al.,

7https://github.com/mvandenhi/SCBM
8https://github.com/gabriele-dominici/CausalCGM
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X
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Cj

Rikj
Ci

j ∈ {1..nC} \ {i}

k ∈ {1..nR}

(a) During training.

X

Si

Cj

Ci

j ∈ parents(i)

(b) During inference for each non-
source Ci.

X

Ci

(c) During inference
for each source Ci.

Figure 8: Part of the probabilistic graphical model for computing a single node Ci. Red edges denote
the prediction by the encoder for source concepts; brown edges denote the rule selection; blue edges
denote the rule evaluation. Grey nodes are observed. During inference, the roles are always observed
and fixed, so we do not write them. The observed roles determine which concepts are parents of Ci,
and whether Ci is a source. For each parent Cj , the black edge is a "nested" (b) or (c), depending on
whether Cj is a source.

2018; Chen et al., 2019), where prototypes are built in the input space, such as images. Just like CMR,
H-CMR differs from such models significantly. For instance, H-CMR gives a logical interpretation
to prototypes as being logical rules. Moreover, the prototypes are built in the concept space (as
opposed to the input space). We refer to debot2024interpretable (specifically, Section 4.2) for more
such differences. During training, this regularization is present as an additional factor in the decoder,
replacing Equation 2 with

p(Ci = 1 | ê, ĉ, r̂i, ŷ) =
nR∑
k=1

p(Si = k | ê, ĉparents(i))︸ ︷︷ ︸
neural selection of rule k

using parent concepts + emb.

· l(ĉparents(i), r̂i,k)︸ ︷︷ ︸
evaluation of concept i’s rule k

using parent concepts

· preg(ri,k = ĉ)β·ŷ)︸ ︷︷ ︸
prototypicality of
concept i’s rule k

(14)

where β is a hyperparameter, and

preg(ri,k = ĉ) =

nC∏
j=1

(0.5 · 1[ri,k,j = I] + 1[ĉj = 1] · 1[ri,k,j = P ] + 1[ĉj = 0] · 1[ri,k,j = N ])

(15)

Inuitively, the rule that is selected should not only provide a correct prediction, but also resemble the
seen concepts as much as possible. For instance, if a concept is True, the loss prefers to see a positive
role, over irrelevance, over a negative one. Like in (Debot et al., 2024), the regularization only affects
positive training examples (ŷ = 1).

C PROBABILISTIC GRAPHICAL MODEL

C.1 GENERAL

In Figure 8, we give the probabilistic graphical model for H-CMR during training (Figure 8a), during
inference for non-source concepts (Figure 8b) and for source concepts (Figure 8c). Additionally, we
provide an ’extended PGM’ in Figure 9, where we add the additional variables that we use in some of
the equations (which are effectively marginalized out in Figure 8).
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Figure 9: Part of the probabilistic graphical model for computing a single node Ci during training,
extended with additional variables. E is an embedding represented by a delta distribution. Parentij
is a Bernoulli denoting whether j is a parent of i. C ′

i denotes prediction of the concept by the encoder,
while C ′′

i is prediction using the rules in the memory. Sourcei is a Bernoulli denoting whether i is
a source concept, and serves as a "selection" between C ′

i and C ′′
i . Each Oj is a delta distribution

enforcing a topological ordering.

We choose the following conditional probabilities:

p(E | x̂) = δ(E − ê) where ê = g(x̂) (16)

p(ĉi | ĉ′′i , ĉ′i, ˆsourcei) = 1[ ˆsourcei = 1] · 1[ĉ′i = ĉi] + 1[ ˆsourcei = 0] · 1[ĉ′′i = ĉi] (17)

p(C ′
i = 1 | ê) = fi(ê) (18)

p(C ′′
i = 1 | Si = k, ĉ, r̂i,k) = l(ĉparents(i), r̂i,k) (19)

p(Si = k | x̂, ĉ, ˆparenti) = hi,k(x̂, {ĉj | ˆparentij = 1}) (20)

p(Sourcei = 1 | r̂i) =
nC∏
j=1

nR∏
k=1

1[r̂i,k,j = I] (21)

p(Parentij = 1 | r̂i,:,j) = 1−
nR∏
k=1

1[r̂i,k,j = I] (22)

p(Ri,k,j = P | r̂′i,k,j , ôi, ôj) = 1[ôj > ôi] · 1[r̂′i,k,j = P ] (23)

p(Ri,k,j = N | r̂′i,k,j , ôi, ôj) = 1[ôj > ôi] · 1[r̂′i,k,j = N ] (24)

p(Ri,k,j = I | r̂′i,k,j , ôi, ôj) = 1[ôj > ôi] · 1[r̂′i,k,j = I] + 1[ôj ≤ ôi] (25)

p(Oj) = δ(Oj − ôj) where ôj is a learnable parameter (26)

where fi, hi,k and g are neural networks parametrizing the logits of a Bernoulli, the logits of a
categorical, and the point mass of a delta distribution, respectively. The remaining probability is the
categorical distribution p(R′

i,k,j), whose logits are parametrized by a learnable embedding and a
neural network mapping this embedding on the logits.

C.2 DERIVING EQUATION 10

Now we will derive the likelihood formula during training (Equation 10). For brevity, we will
abbreviate Source as Src and we denote with ĉ an assignment to all concepts except Ci. When
summing over r̂, we mean summing over all possible assignments to these variables, which are nC
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categoricals each with 3 possible values. First we marginalize out Src, C ′
i and C ′′

i :

p(ĉi | ĉ, x̂) =
1∑

ˆsrci=0

1∑
ĉ′′i =0

1∑
ĉ′i=0

p(ĉi | ˆsrci, ĉ
′
i, ĉ

′′
i ) · p( ˆsrci, ĉ

′
i, ĉ

′′
i | ĉ, x̂) (27)

We now marginalize E and R, exploiting the conditional independencies that follow from the PGM:

p(ĉi | ĉ, x̂) =
∫
ê

∑
r̂

1∑
ˆsrci=0

1∑
ĉ′′i =0

1∑
ĉ′i=0

p(ĉi | ˆsrci, ĉ
′
i, ĉ

′′
i ) · p( ˆsrci, ĉ

′
i, ĉ

′′
i | ĉ, x̂, ê, r̂) · p(ê|x̂) · p(r̂) dê

(28)

Given C, X , E and R, it follows from the PGM that Srci, C ′
i and C ′′

i are conditionally independent,
and each of the resulting conditional probabilities can be simplified:

p(ĉi | ĉ, x̂) =
∫
ê

∑
r̂

1∑
ˆsrci=0

1∑
ĉ′′i =0

1∑
ĉ′i=0

p(ĉi | ˆsrci, ĉ
′
i, ĉ

′′
i ) · p( ˆsrci | r̂) · p(ĉ′i | ê) · p(ĉ′′i | ĉ, ê, r̂)

· p(ê|x̂) · p(r̂) dê (29)

We exploit the fact that p(E | x̂) is a delta distribution. After applying the delta distribution’s sifting
property, we obtain:

p(ĉi | ĉ, x̂) =
∑
r̂

1∑
ˆsrci=0

1∑
ĉ′′i =0

1∑
ĉ′i=0

p(ĉi | ˆsrci, ĉ
′
i, ĉ

′′
i ) · p( ˆsrci | r̂) · p(ĉ′i | ê) · p(ĉ′′i | ĉ, ê, r̂) · p(r̂)

(30)

with ê = g(x̂) the point mass of the distribution. After filling in the conditional probability for
p(Ci | ˆsrci, ĉ

′
i, ĉ

′′
i ), we have:

p(ĉi | ĉ, x̂) =
∑
r̂

1∑
ˆsrci=0

1∑
ĉ′′i =0

1∑
ĉ′i=0

(1[ ˆsrci = 1] · 1[ĉ′i = ĉi] + 1[ ˆsrci = 0] · 1[ĉ′′i = ĉi]) (31)

· p(ĉi | ˆsrci, ĉ
′
i, ĉ

′′
i ) · p( ˆsrci | r̂) · p(ĉ′i | ê) · p(ĉ′′i | ĉ, ê, r̂) · p(r̂)

(32)

Most terms become zero due to the indicator functions. After simplifying, we have:

p(ĉi | ĉ, x̂) =
∑
r̂

p(r̂) · [p(Srci = 1 | r̂) · p(C ′
i = ĉi | ê) + p(Srci = 0 | r̂) · p(C ′′

i = ĉi | ĉ, ê, r̂)]

(33)

= Er̂∼p(R) [p(Srci = 1 | r̂) · p(C ′
i = ĉi | ê) + p(Srci = 0 | r̂) · p(C ′′

i = ĉi | ĉ, ê, r̂)]
(34)

which corresponds to Equation 10.

C.3 DERIVING EQUATION 6

Now we will derive the likelihood formula used during inference (Equation 6). We begin by
marginalizing out ĉ:

p(Ci | x̂) =
∑
ĉ

p(Ci | ĉ, x̂) · p(ĉ | x̂) (35)

where the sum goes over all possible assignments to all concepts (except Ci). As explained in Section
3, at inference time, we collapse the distributions over roles p(R) on their most likely values r̂, which
means that each role Ri,k,j is observed and fixed. After filling in Equation 10:

p(Ci | x̂) =
∑
ĉ

(1[ ˆsrci = 1] · p(C ′
i | ê) + 1[ ˆsrci = 0]) · p(C ′′

i | ê, ĉ, r̂)) · p(ĉ | x̂) (36)
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Table 3: Example learned rules for CUB, MNIST-Addition and CIFAR10.

Example Rule Intuition

black throat← ¬yellow throat Mutually exclusive concepts
black throat← black upperparts ∧ ¬yellow throat ∧ brown forehead E.g. crows, ravens, blackbirds

digit1 is 0← ¬digit1 is 1 ∧ ¬digit1 is 2 ∧ ... Mutually exclusive concepts
sum is 7← digit1 is 5 ∧ digit2 is 2 ∧ ¬digit1 is 1 ∧ ... 5 + 2 = 7

a dock← a port ∧ a tire Ports have docks
a passenger← a cab for the driver Cabs and their passengers
engines← four wheels Cars
hooves← long neck Horses

where ˆsrci can be deterministically computed from r̂. First, we use that p(C ′
i | ê) is equivalent to

p(C ′
i | x̂) as E is a deterministic function of X:

p(Ci | x̂) =
∑
ĉ

(1[ ˆsrci = 1] · p(C ′
i | x̂) + 1[ ˆsrci = 0]) · p(C ′′

i | ê, ĉ, r̂)) · p(ĉ | x̂) (37)

Then, we remark that the first term is independent of ĉ, and the second term is only dependent
on ĉparents(i), as follows from the conditional probabilities p(C ′′

i | Si = k, ĉ, r̂i,k) and p(Si |
x̂, ĉ, ˆparenti). Then, we can rewrite the above equation as:

p(Ci|x̂) =
∑

ĉparents(i)

(1[ ˆsrci = 1] · p(C ′
i | x̂)

+1[ ˆsrci = 0] · p(C ′′
i | x̂, ĉparents(i), r̂i)) · p(ĉparents(i) | x̂) (38)

which corresponds to Equation 6.

D ADDITIONAL RESULTS

D.1 LEARNED RULES

H-CMR learns meaningful rules (Table 3). For instance, the listed rules for CUB show that H-CMR
has learned that certain concepts are mutually exclusive (e.g. ’black throat’ and ’yellow throat’ for
birds). In MNIST-Addition, H-CMR has also learned that a single MNIST image only contains 1
digit, and the rules of addition are also recognizable.

D.2 DIFFERENT INTERVENTION POLICIES

In this ablation study, we investigate H-CMR’s intervenability when using different intervention
policies. We consider three policies:

• Graph-based policy: this policy is based on H-CMR’s learned concept graph, first interven-
ing on the source concepts and gradually moving to the sinks. This is a natural choice as
intervening on earlier concepts in the graph may have a larger impact. This approach is also
used by dominici2024causal for CGMs, and makes it intuitively easy to interpret results, as
the intervention order is the same for different models (i.e. if we intervene on 3 concepts,
they are the same concepts for H-CMR and all competitors). To ensure the comparison with
CGMs is fair, we make sure that the CGMs learn using the same graph that H-CMR learned.

• Uncertainty-based policy: this policy uses the uncertainty of the concept predictions,
first intervening on concepts with high uncertainty. This policy is introduced by vanden-
hirtz2024stochastic for SCBMs. Note that the intervention order differs between different
input examples, and differs between different models.

• Random policy: this policy randomly generates an intervention order.

We report concept accuracy after different numbers of interventions (like in the main text). For the
results in the paper, we additionally report the difference in accuracy after versus before intervening,
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Figure 10: Concept accuracy using the uncertainty-based policy after intervening on increasingly
more concepts.
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Figure 11: Concept accuracy using the random policy after intervening on increasingly more concepts.

measured on non-intervened concepts, after different numbers of interventions (Figure 12). The
former is reported by e.g. vandenhirtz2024stochastic for SCBM, while the latter is reported by e.g.
dominici2024causal for CGM.

Note that in the main text, we report concept accuracy using the graph-based policy.

H-CMR performs well using other intervention policies (Figures 10 and 11). Using SCBM’s
uncertainty-based policy (Figure 10), H-CMR performs better than competitors except for the
synthetic dataset. When using a random policy (Figure 11), H-CMR performs similar to CGM. For
instance, on CUB, H-CMR outperforms NN and CGM but is outperformed by SCBM. On other
datasets except the synthetic one, H-CMR performs similar to SCBM and CGM. Note that, as SCBM
does not predict concept in a hierarchical fashion, unlike CGM and H-CMR, SCBM is not inherently
at a disadvantage when using a random policy.
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Figure 12: Difference in accuracy on non-intervened concepts using the graph-based policy after
intervening on increasingly more concepts.
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E PROOFS

E.1 THEOREM 5.1

We prove that H-CMR is a universal binary classifier if nR ≥ 2 in a similar fashion as done by
debot2024interpretable for CMR.

Proof. Source concepts are directly predicted from the input X using a neural network, which is a
universal binary classifier. For non-source concepts and tasks Ci, the prediction is made by using a
neural network to select a logic rule based on the parent concepts Cparents(i) and the input X , which
is then evaluated on the parent concepts Cparents(i). Let Ck be an arbitrarily chosen parent of Ci.
Consider the following two rules, which can be expressed in H-CMR as shown between parentheses:

Ci ← Ck (i.e. r̂i,0,k = P , ∀j ̸= k : r̂i,0,j = I) (39)
Ci ← ¬Ck (i.e. r̂i,1,k = N , ∀j ̸= k : r̂i,1,j = I) (40)

By selecting one of these two rules, the rule selector neural network can always make a desired
prediction for Ci based on the predicted parent concepts Cparents(i) and the input X . To predict
Ci = 1, the first rule can be selected if Ck is predicted True, and the second rule if it is predicted
False. To predict Ci = 0, the opposite rule can be selected: the first rule if Ck is predicted False, and
the second rule if it is predicted True.

E.2 THEOREM 5.2

For proving this theorem, we have to prove two statements: that H-CMR’s parametrization can
represent any DAG, and that H-CMR’s parametrization guarantees that the directed graph implied by
the rules is acylic.

Any DAG over the concepts can be represented by H-CMR:

∀G ∈ DAG, ∃ θ ∈ Θ : Gθ = G (41)

Proof. We will show that for any graph G over the concepts, there exists a set of parameters for
H-CMR such that H-CMR has that graph. This means we need to prove that any possible set of edges
that form a DAG, can be represented by H-CMR’s parametrization.

Let EG be G’s set of edges. For any G, it is known that we can find a topological ordering TG of G’s
nodes such that for every edge (i, j) ∈ EG, i occurs earlier in the ordering than j. Let index(i, TG)
denote the index of i in this ordering.

The following random variables of H-CMR are parameters that define the concept graph: O ∈ RnC

(delta distributions, parametrized by an embedding), R′
i,k,j ∈ {P,N, I} (categorical variables,

parametrized by embeddings and neural networks).

The following assignment to these variables ensures that H-CMR’s concept graph corresponds to G:

∀i ∈[1, nC ] : Oi = index(i, TG) (42)

∀i, j ∈[1, nC ], k ∈ [1, nR] : p(R
′
i,k,j = P ) =

{
1 if (i, j) ∈ E

0 if (i, j) /∈ E
(43)

∀i, j ∈[1, nC ], k ∈ [1, nR] : p(R
′
i,k,j = N) = 0 (44)

∀i, j ∈[1, nC ], k ∈ [1, nR] : p(R
′
i,k,j = I) = 1− p(R′

i,k,j = P ) (45)

As the parent relation defines the edges in the graph, we need to prove that:

∀i, j ∈[1, nC ] : Parentij = 1⇔ (i, j) ∈ E (46)

From H-CMR’s parametrization, we know that:

Parentij = 1−
nR∏
k=1

1[Ri,k,j = I]
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Thus, it follows that:

Parentij = 1⇔ ∃k ∈ [1, nR] : Ri,k,j ̸= I (47)
⇔ ∃k ∈ [1, nR] : I ̸= arg max

r∈{P,N,I}
p(Ri,k,j = r) (48)

where we used Equation 8. After plugging this into Equation 46, we still need to prove that:

∀i, j ∈[1, nC ] : (∃k ∈ [1, nR] : I ̸= arg max
r∈{P,N,I}

p(Ri,k,j = r))⇔ (i, j) ∈ E (49)

We first prove the⇐ direction. If (i, j) ∈ E, then i must appear before j in TG. Therefore:

index(i, TG) < index(j, TG) (50)

If we take Equation 4 and fill in Equation 43, we know that for all k:

p(Ri,k,j = P ) = 1[Oj > Oi] · p(R′
i,k,j = P ) = 1[Oj > Oi] (51)

p(Ri,k,j = N) = 1[Oj > Oi] · p(R′
i,k,j = N) = 0 (52)

p(Ri,k,j = I) = 1[Oj > Oi] · p(R′
i,k,j = I) + 1[Oj ≤ Oi] = 1[Oj ≤ Oi] (53)

Then, filling in Equation 42 and using Equation 50, we get

p(Ri,k,j = P ) = 1[index(j, TG) > index(i, TG)] = 1 (54)
p(Ri,k,j = N) = 0 (55)
p(Ri,k,j = I) = 1[index(j, TG ≤ index(i, TG] = 0 (56)

which proves the⇐ direction after applying this to Equation 49. We now prove the⇒ direction by
proving that

∀i, j ∈ [1, nC ] : (i, j) ̸∈ E ⇒ (∀k ∈ [1, nR] : I = arg max
r∈{P,N,I}

p(Ri,k,j = r)). (57)

Using Equation 4 and filling in Equation 42, we know that for all k:

p(Ri,k,j = P ) = 1[Oj > Oi] · p(R′
i,k,j = P ) = 0 (58)

p(Ri,k,j = N) = 1[Oj > Oi] · p(R′
i,k,j = N) = 0 (59)

p(Ri,k,j = I) = 1[Oj > Oi] · p(R′
i,k,j = I) + 1[Oj ≤ Oi] = 1[Oj > Oi] + 1[Oj ≤ Oi] = 1

(60)

which proves the⇒ direction.

In H-CMR, the directed graph implied by the rules is always acylic:

∀θ ∈ Θ : Gθ is a DAG (61)

Proof. A graph G is a DAG if and only if there exists a topological ordering TG for that graph, such
that for every edge (i, j) ∈ EG, i occurs earlier in TG than j, with EG the set of edges of G. Thus,
we must simply prove that there exists such a topological ordering for each possible θ ∈ Θ. We will
prove that the node priority vector O defines such an ordering.

Specifically, let TO := arg sort(O) be the concepts sorted based on their value in O. We will prove
that TO forms the topological ordering for G.

We know that

TO is a topological ordering forG ⇔ ∀(i, j) ∈ EG : Oi < Oj (62)

As the parent relation defines the edges in the graph, we need to prove that:

∀i, j ∈ [1, nC ] : Parentij = 1⇒ Oi < Oj (63)

for which we will use a proof by contradiction. Let us assume that the above statement is false. Then,
we know that:

∃i, j ∈ [1, nC ] : Parentij = 1 ∧Oi ≥ Oj (64)
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From H-CMR’s parametrization, we know that:

Parentij = 1−
nR∏
k=1

1[Ri,j,k = I]

Thus, we know that:

∃i, j ∈ [1, nC ], k ∈ [1, nR] : Ri,j,k ̸= I ∧Oi ≥ Oj (65)

Then, using Equation 8, this is equivalent to:

∃i, j ∈ [1, nC ], k ∈ [1, nR] : I ̸= arg max
r∈{P,N,I}

p(Ri,k,j = r)) ∧Oi ≥ Oj (66)

Filling in Oi ≥ Oj in Equation 4 gives:

p(Ri,k,j = P ) = 1[Oj > Oi] · p(R′
i,k,j = P ) = 0 (67)

p(Ri,k,j = N) = 1[Oj > Oi] · p(R′
i,k,j = N) = 0 (68)

p(Ri,k,j = I) = 1[Oj > Oi] · p(R′
i,k,j = I) + 1[Oj ≤ Oi] = 1 (69)

which is a contradiction, as I is the most likely role.

F LLM USAGE DECLARATION

During writing, Large Language Models (LLMs) were used only to polish and improve the clarity of
the text.

G CODE, LICENSES AND RESOURCES

Our code will be made publicly available upon acceptance under the Apache license, Version 2.0. We
implemented H-CMR in Python 3.10.12 and additionally used the following libraries: PyTorch v2.5.1
(BSD license) (Paszke et al., 2019), PyTorch-Lightning v2.5.0 (Apache license 2.0), scikit-learn
v1.5.2 (BSD license) (Pedregosa et al., 2011), PyC v0.0.11 (Apache license 2.0). We used CUDA
v12.7 and plots were made using Matplotlib (BSD license).

We used the implementation of Stochastic Concept Bottleneck Models (Apache license 2.0)9 and
Causal Concept Graph Models (MIT license)10.

The used datasets are available on the web with the following licenses: CUB (MIT license11), MNIST
(CC BY-SA 3.0 DEED), CIFAR10 (MIT license)12.

The experiments were run on a machine with an NVIDIA GeForce RTX 3080 Ti, Intel(R) Xeon(R)
Gold 6230R CPU @ 2.10GHz and 256 GB RAM. Table 4 shows the estimated total computation
time for a single run of each experiment.

Table 4: Estimated total computation time for a single run of each experiment.

Experiment Time (hours)
CUB 12.2
MNIST-Addition 3.3
MNIST-Addition (with tasks) 1.6
CIFAR10 33.1
Synth 0.1

9https://github.com/mvandenhi/SCBM
10https://github.com/gabriele-dominici/CausalCGM
11https://huggingface.co/datasets/cassiekang/cub200_dataset
12https://www.kaggle.com/datasets/ekaakurniawan/the-cifar10-dataset/data
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